JP6662531B2 - 多層構造のリチウム金属酸化物を含むリチウム二次電池用正極活物質およびそれを含む正極 - Google Patents

多層構造のリチウム金属酸化物を含むリチウム二次電池用正極活物質およびそれを含む正極 Download PDF

Info

Publication number
JP6662531B2
JP6662531B2 JP2018505447A JP2018505447A JP6662531B2 JP 6662531 B2 JP6662531 B2 JP 6662531B2 JP 2018505447 A JP2018505447 A JP 2018505447A JP 2018505447 A JP2018505447 A JP 2018505447A JP 6662531 B2 JP6662531 B2 JP 6662531B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018505447A
Other languages
English (en)
Other versions
JP2018523895A (ja
Inventor
ミン・キュ・ユ
ホ・ソク・シン
ホン・キュ・パク
Original Assignee
エルジー・ケム・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド filed Critical エルジー・ケム・リミテッド
Publication of JP2018523895A publication Critical patent/JP2018523895A/ja
Application granted granted Critical
Publication of JP6662531B2 publication Critical patent/JP6662531B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本出願は、2015年10月20日付の韓国特許出願第10−2015−0145825号に基づく優先権の利益を主張し、当該韓国特許出願の文献に開示されたすべての内容は本明細書の一部として含まれる。
本発明は、多層構造のリチウム金属酸化物を含むリチウム二次電池用正極活物質およびそれを含む正極に関する。
化石燃料使用の急激な増加によって代替エネルギーやクリーンエネルギーの使用に対する要求が増加しており、その一環として最も活発に研究されている分野が、電気化学を利用した発電、蓄電分野である。
現在、このような電気化学的エネルギーを用いる電気化学素子の代表例として二次電池が挙げられ、ますますその使用領域が拡大する傾向にある。
最近は、携帯用コンピュータ、携帯用電話機、カメラなどの携帯用機器に対する技術開発と需要が増加するにつれて、エネルギー源として二次電池の需要が急激に増加しており、そのような二次電池のうち、高いエネルギー密度と作動電位を示し、サイクル寿命が長く、自己放電率が低いリチウム二次電池に対して多くの研究が行われてきており、また、商用化されて幅広く使用されている。
このようなリチウム二次電池としては、主に、リチウム含有コバルト酸化物(LiCoO)が使用されており、その他、層状結晶構造のLiMnO、スピネル結晶構造のLiMnなどのリチウム含有マンガン酸化物と、リチウム含有ニッケル酸化物(LiNiO)の使用も考慮されている。
リチウム二次電池の正極活物質としては、リチウム含有コバルト酸化物(LiCoO)が主に使用されており、その他、層状結晶構造のLiMnO、スピネル結晶構造のLiMnなどのリチウム含有マンガン酸化物と、リチウム含有ニッケル酸化物(LiNiO)の使用も考慮されている。
前記正極活物質のうち、LiCoOは、寿命特性および充放電効率に優れて最も多く使用されているが、高温安全性に劣り、原料として使用されるコバルトが資源的限界によって高価な物質であるので、価格競争力に限界があるという欠点がある。
LiMnO、LiMnなどのリチウムマンガン酸化物は、熱的安全性に優れ、価格が安価であり、合成が容易であるとの利点があるが、容量が小さくて高温特性が劣化し、伝導性が低い問題点がある。
また、LiNiO系正極活物質は、比較的安価であり、高い放電容量の電池特性を示しているが、充放電サイクルに伴う体積変化によって結晶構造の急激な相転移が現れ、空気と湿気に露出した時、安定性が急激に低下する問題点がある。
そこで、最近は、代替物質として、ニッケルの一部をマンガン、コバルトなどの他の遷移金属に置換した形態のリチウム遷移金属酸化物が提案された。しかし、このような金属置換されたニッケル系リチウム遷移金属酸化物は、相対的にサイクル特性および容量特性に優れているという利点があるが、この場合にも、長期間使用時にはサイクル特性が急激に低下し、電池におけるガス発生によるスウェリング、低い化学的安定性による熱的安全性の低下などの問題は十分に解決されていない。
したがって、向上した容量および出力特性を発揮しながらも熱的安全性の問題を解決できる正極活物質に対する必要性が高い。
本発明は、上記の従来技術の問題点と過去から要請されてきた技術的課題を解決することを目的とする。
本出願の発明者らは、深い研究と多様な実験を繰り返した末に、後で説明するように、コア−シェル構造を有するリチウム二次電池用正極活物質が、ニッケル(Ni)、マンガン(Mn)、およびコバルト(Co)を含むリチウム遷移金属酸化物からなるコアと;コバルト(Co)を含むリチウム遷移金属酸化物からなるシェルと;を含んでおり、前記シェルの表面上には無機物層がコーティングされて追加的に形成されている場合、無機物層が活物質の構造的安定性を高め、このような正極活物質は、コアおよびシェルそれぞれの化合物の利点のみを発揮して、高い容量、優れた高出力特性を発揮しながらも熱的安全性を維持できることを確認して、本発明を完成するに至った。
上記の目的を達成するための、本発明によるコア−シェル構造を有するリチウム二次電池用正極活物質は、
ニッケル(Ni)、マンガン(Mn)、およびコバルト(Co)を含むリチウム遷移金属酸化物からなるコアと;
コバルト(Co)を含むリチウム遷移金属酸化物からなるシェルと;を含んでおり、
前記シェルの表面上には無機物層がコーティングされて追加的に形成されており、
前記無機物層の含有量は、正極活物質の全体重量を基準として0.1重量%以上〜3.0重量%以下であることを特徴とする。
したがって、本発明による二次電池用正極活物質は、ニッケル(Ni)およびマンガン(Mn)を含むリチウム遷移金属酸化物、またはニッケル(Ni)、マンガン(Mn)、およびコバルト(Co)を含むリチウム遷移金属酸化物からなるコアと、コバルト(Co)を含むリチウム遷移金属酸化物からなるシェルとを含む構造に形成され、前記シェルの表面上には無機物層がコーティングされて追加的に形成されることによって、このような正極活物質は、二次電池の寿命を向上させ、高電圧で正極活物質の安定性を向上させ、コアおよびシェルそれぞれの化合物のそれぞれの欠点を補完し、それぞれの利点のみを発揮して、高い容量、優れた高出力特性を発揮しながらも熱的安全性を維持できる効果を発揮する。
一具体例において、本発明による二次電池用正極活物質は、構造的安定性を高めるために、前記コアおよびシェルそれぞれのリチウム遷移金属酸化物における遷移金属のうちの少なくとも1つ以上は、所定量の範囲で+2価または+3価の1つ以上の金属で置換されていてもよいし、詳しくは、前記コアのリチウム遷移金属酸化物とシェルのリチウム遷移金属酸化物は、互いに独立に、タングステン(W)、ホウ素(B)、アルミニウム(Al)、ジルコニウム(Zr)、チタン(Ti)、マグネシウム(Mg)、クロミウム(Cr)、およびケイ素(Si)からなる群より選択される1つ以上の元素をさらに含んでよく、詳しくは、前記コアのリチウム遷移金属酸化物とシェルのリチウム遷移金属酸化物は、ジルコニウム(Zr)元素をさらに含んでいる。
具体的には、前記コアのリチウム遷移金属酸化物は、下記化学式1で表される化合物であってもよく、前記シェルのリチウム遷移金属酸化物は、下記化学式2で表される化合物であってもよい。
Li[NiMnCo1−(a+b+c)]O (1)
式中、
0.55≦a≦0.9、0.05≦b≦0.5、0≦c≦0.1、a+b+c≦1、0.98≦y≦1.10であり;
Mは、W、B、Al、Zr、Ti、Mg、Cr、およびSiからなる群より選択される1つ以上である;
LiCo(1−a) (2)
式中、
0≦a≦0.1、0.98≦y≦1.10であり;
Zは、W、B、Al、Zr、Ti、Mg、Cr、およびSiからなる群より選択される1つ以上である。
前記化学式1のリチウム遷移金属酸化物は、MnおよびCoに比べて相対的にNiを相対的に多く含有することによって、容量を極大化させることが好ましい。したがって、前記Niのモル分率(a)は、0.55〜0.9であってもよい。反面、ニッケルの含有量が0.5未満の場合には、高い容量を期待しにくく、0.95を超える場合には、サイクル内で構造的安定性が非常に劣る問題がある。
前記化学式2のリチウム遷移金属酸化物は、Coを相対的に多く含有することによって、高出力特性を向上させることが好ましい。したがって、前記Coのモル分率(1−a)は、0.9〜1.0であってもよい。
一具体例において、前記無機物層は、Al、Ti、Zr、W、Mg、Co、B、およびNbからなる群より選択された1つ以上の無機元素を含むことができ、詳しくは、前記無機物層は、Alの無機元素を含んでいてもよい。
一具体例において、前記無機物層は、Al、ZrO、PO、SeO、およびSnOからなるグループより選択されたいずれか1つであってもよい。
また、前記無機物層の含有量は、正極活物質の全体重量を基準として0.1重量%以上〜3.0重量%以下であってもよい。反面、前記無機物層の含有量が0.1重量%未満の場合、正極活物質の安定性を向上させにくく、3.0重量%を超える場合、エネルギー容量が減少することがある。詳しくは、前記無機物層の含有量は、正極活物質の全体重量を基準として1.1重量%以上〜3.0重量%以下であってもよく、より詳しくは、2.0重量%以上〜3.0重量%以下であってもよい。
一具体例において、前記無機物層は、厚さが1〜150nmであってもよい。
一具体例において、前記コアおよびシェルの含有量比は、重量を基準として20:80〜80:20であってもよく、詳しくは、40:60〜60:40であってもよいし、より詳しくは、前記コアおよびシェルの含有量比は、40:60〜50:50、または50:50〜60:40であってもよい。前記含有量比20:80〜80:20を外れる場合には、本願のコアおよびシェルそれぞれの化合物のそれぞれの欠点を補完し、それぞれの利点のみを発揮しにくく、高い容量、優れた高出力特性を発揮しにくい。
一具体例において、前記コアは、ニッケル、マンガン、およびコバルトの濃度は、外部表面へいくほど減少する濃度勾配を有し、前記シェルは、コバルトの濃度は外部表面へいくほど減少する濃度勾配を有する構造であってもよい。
他の具体例において、前記コアは、ニッケル、マンガン、およびコバルトの濃度はコア領域内で濃度勾配なく一定であり、前記シェルは、コバルトの濃度はシェル領域内で濃度勾配なく一定の構造であってもよい。
また、前記正極活物質は、前記コアの外郭とシェルの内郭との間に形成され、1つ以上の遷移金属の濃度が連続的に変化して濃度勾配を示す濃度勾配層をさらに含んでいてもよい。
前記遷移金属は、ニッケル、マンガン、およびコバルトからなる群より1つ以上選択される。
また、前記正極活物質の粒径は、0.1〜1μmであってもよい。
他の具体例において、前記正極活物質は、1次粒子が凝集してなる2次粒子であり、前記1次粒子内のリチウムイオン拡散経路(lithium ion diffusion path)が2次粒子の中心方向に形成されていてもよい。
本発明はまた、リチウム二次電池用正極活物質を製造する方法を提供することができる。
具体的には、前記リチウム二次電池用正極活物質を製造する方法は、
(a)コア−シェル構造を有する正極活物質製造用前駆体をリチウム酸化物と均一に混合した後、焼成反応させてリチウム遷移金属酸化物粉末を製造する過程を含むことができる。
ここで、前記リチウム酸化物は、炭酸リチウム(LiCO)および/または水酸化リチウム(LiOH)であってもよい。
また、本発明によるリチウム二次電池用正極活物質を製造する方法は、
(b)有機溶媒内にAl、Ti、Zr、W、Mg、Co、B、およびNbからなる群より選択された1つ以上の無機元素が含まれている混合溶液を製造する過程と;
(c)前記混合溶液と製造されたリチウム遷移金属酸化物粉末とを混合してペースト状態に撹拌する過程と;
(d)前記ペースト状態の混合物を乾燥して有機溶媒を蒸発させる過程と;
(e)前記乾燥した混合物を熱処理して、前記リチウム遷移金属酸化物粒子の表面上に無機物層が形成されている正極活物質を製造する過程と;をさらに含んでもよい。
本発明はさらに、前記正極活物質を含む正極を提供し、前記正極を含むリチウム二次電池を提供する。
一方、前記リチウム二次電池は、一般に、前記正極、負極、分離膜、およびリチウム塩含有非水系電解質から構成されている。
前記正極は、例えば、正極集電体上に、本発明による正極活物質、導電剤、およびバインダーの混合物からなるスラリーを塗布した後、乾燥して製造され、必要に応じては、前記正極活物質、導電剤、バインダーなどの混合物(電極合剤)に、粘度調節剤および充填剤からなる群より選択される1種以上の物質がさらに含まれてもよい。
前記正極集電体は、一般に、3〜500μmの厚さに作る。このような正極集電体は、当該電池に化学的変化を誘発することなく高い導電性を有するものであれば特に制限されるわけではなく、例えば、ステンレススチール、アルミニウム、ニッケル、チタン、焼成炭素、またはアルミニウムやステンレススチールの表面に、カーボン、ニッケル、チタン、銀等で表面処理したものなどが使用できる。集電体は、その表面に微細な凹凸を形成して正極活物質の接着力を高めることもでき、フィルム、シート、箔、ネット、多孔質体、発泡体、不織布体など多様な形態が可能である。
前記導電剤は、電極活物質の導電性をさらに向上させるための成分であって、電極合剤の全体重量を基準として0.01〜30重量%添加される。このような導電剤は、当該電池に化学的変化を誘発することなく導電性を有するものであれば特に制限されるわけではなく、例えば、天然黒鉛や人造黒鉛などの黒鉛;カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;カーボンナノチューブやフラーレンなどの炭素誘導体、炭素繊維や金属繊維などの導電性繊維;フッ化カーボン、アルミニウム、ニッケル粉末などの金属粉末;酸化亜鉛、チタン酸カリウムなどの導電性ウィスキー;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの導電性素材などが使用できる。
前記バインダーは、活物質と導電剤などの結合と集電体に対する結合に役立つ成分であって、通常、正極活物質を含む混合物の全体重量を基準として1〜50重量%添加される。このようなバインダーの例としては、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、デンプン、ヒドロキシプロピルセルロース、再生セルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブチレンゴム、フッ素ゴム、多様な共重合体などが挙げられる。
前記粘度調節剤は、電極合剤の混合工程とその集電体上の塗布工程が容易となるように電極合剤の粘度を調節する成分であって、電極合剤の全体重量を基準として30重量%まで添加可能である。このような粘度調節剤の例としては、カルボキシメチルセルロース、ポリビニリデンフルオライドなどがあるが、これらにのみ限定されるものではない。場合によっては、先に説明した溶媒が粘度調節剤としての役割を併行することができる。
前記充填剤は、電極の膨張を抑制する補助成分として選択的に使用され、当該電池に化学的変化を誘発することなく繊維状材料であれば特に制限されるわけではなく、例えば、ポリエチレン、ポリプロピレンなどのオレフィン系重合体;ガラス繊維、炭素繊維などの繊維状物質が使用される。
前記負極は、負極集電体上に負極材料を塗布、乾燥して作製され、必要に応じて、先に説明したような、導電剤、バインダーなどの成分がさらに含まれてもよい。
前記負極集電体は、一般に、3〜500μmの厚さに作られる。このような負極集電体は、当該電池に化学的変化を誘発することなく導電性を有するものであれば特に制限されるわけではなく、例えば、銅、ステンレススチール、アルミニウム、ニッケル、チタン、焼成炭素、銅やステンレススチールの表面に、カーボン、ニッケル、チタン、銀等で表面処理したもの、アルミニウム−カドミウム合金などが使用できる。また、正極集電体と同様に、表面に微細な凹凸を形成して負極活物質の結合力を強化させることもでき、フィルム、シート、箔、ネット、多孔質体、発泡体、不織布体など多様な形態で使用可能である。
前記負極活物質としては、例えば、天然黒鉛、人造黒鉛、膨張黒鉛、炭素繊維、難黒鉛化性炭素、カーボンブラック、カーボンナノチューブ、フラーレン、活性炭などの炭素および黒鉛材料;リチウムと合金可能なAl、Si、Sn、Ag、Bi、Mg、Zn、In、Ge、Pb、Pd、Pt、Tiなどの金属およびこのような元素を含む化合物;金属およびその化合物と炭素および黒鉛材料の複合物;リチウム含有窒化物などが挙げられる。なかでも、炭素系活物質、ケイ素系活物質、スズ系活物質、またはケイ素−炭素系活物質がさらに好ましく、これらは、単独または2以上の組み合わせで使用されてもよい。
前記分離膜は、正極と負極との間に介在し、高いイオン透過度と機械的強度を有する絶縁性の薄い薄膜が使用される。分離膜の気孔径は、一般に、0.01〜10μmであり、厚さは、一般に、5〜300μmである。このような分離膜としては、例えば、耐薬品性および疎水性のポリプロピレンなどのオレフィン系ポリマー;ガラス繊維またはポリエチレンなどで作られたシートや不織布などが使用される。電解質としてポリマーなどの固体電解質が使用される場合には、固体電解質が分離膜を兼ねることもできる。
前記リチウム塩含有非水系電解質は、非水電解質とリチウム塩とからなる。前記非水電解質としては、非水電解液、固体電解質、無機固体電解質などが使用される。
前記非水電解液としては、例えば、N−メチル−2−ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ガンマ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン(franc)、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、ギ酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エーテル、プロピオン酸メチル、プロピオン酸エチルなどの非プロトン性有機溶媒が使用できる。
前記有機固体電解質としては、例えば、ポリエチレン誘導体、ポリエチレンオキシド誘導体、ポリプロピレンオキシド誘導体、リン酸エステルポリマー、ポリアジテーションリシン(agitation lysine)、ポリエステルスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、イオン性解離基を含む重合体などが使用できる。
前記無機固体電解質としては、例えば、LiN、LiI、LiNI、LiN−LiI−LiOH、LiSiO、LiSiO−LiI−LiOH、LiSiS、LiSiO、LiSiO−LiI−LiOH、LiPO−LiS−SiSなどのLiの窒化物、ハロゲン化物、硫酸塩などが使用できる。
前記リチウム塩は、前記非水系電解質に溶解しやすい物質であって、例えば、LiCl、LiBr、LiI、LiClO、LiBF、LiB10Cl10、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、CHSOLi、CFSOLi、(CFSONLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、4フェニルホウ酸リチウム、イミドなどが使用できる。
また、非水系電解質には、充放電特性、難燃性などの改善を目的として、例えば、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グリム(glyme)、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノン、N,N−置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ピロール、2−メトキシエタノール、三塩化アルミニウムなどが添加されてもよい。場合によっては、不燃性を付与するために、四塩化炭素、三フッ化エチレンなどのハロゲン含有溶媒をさらに含ませてもよく、高温保存特性を向上させるために、二酸化炭酸ガスをさらに含ませてもよいし、FEC(Fluoro−Ethylene carbonate)、PRS(Propene sultone)、FEC(Fluoro−Ethlene carbonate)などをさらに含ませてもよい。
本発明はさらに、リチウム二次電池を含んでいることを特徴とする電池パックを提供する。
このような電池パックの構造および作製方法は当業界で公知であるので、本明細書ではそれに関する詳細な説明を省略する。
前記電池パックは、高容量、優れた出力特性と電池の安全性などが要求されるモバイルデバイスの電源として含まれる。
具体的には、前記デバイスは、例えば、携帯電話、携帯用コンピュータ、ウェアラブル電子機器、タブレットPC、スマートパッド、ネットブック、およびスマートワッチ(watch)からなる群より選択される。
このようなモバイルデバイスの構造および作製方法は当業界で公知であるので、本明細書ではそれに関する詳細な説明を省略する。
以下の実施例、比較例、および実験例で本発明の内容をより具体的に説明するが、本発明がこれに制限されるわけではない。
<実施例1>
(正極活物質製造用前駆体の製造)
二次電池用正極活物質を製造するための前駆体を製造するために、まず、3L湿式反応器用タンクに蒸留水2Lを満たした後、窒素ガスをタンクに1L/minの速度で連続的に投入して溶存酸素を除去した。この時、タンク内の蒸留水の温度を温度維持装置を用いて45〜50℃に維持した。また、タンクの外部に設けられているモータに連結されているインペラを用いて、タンク内部の蒸留水を1000〜1200rpmの速度で撹拌した。
ニッケル硫酸塩、マンガン硫酸塩、およびコバルト硫酸塩を0.55:0.25:0.2の比率(モル比)で混合して1.5M濃度の遷移金属水溶液を準備し、3M濃度の水酸化ナトリウム水溶液を準備した。前記遷移金属水溶液を45〜50℃に維持される蒸留水が含まれている湿式反応器に0.3L/hrで供給し、ドーピング元素としてジルコニウム(Zr)を含む塩を供給し、湿式反応器内部の蒸留水がpH11.0〜12.5に維持されるように準備された水酸化ナトリウム水溶液を加え、添加物として30%濃度のアンモニア溶液を0.035L〜0.04L/hrの速度で湿式反応器に連続的に供給した。インペラの速度を1100rpmにして撹拌し、遷移金属水溶液、水酸化ナトリウム水溶液、およびアンモニア溶液の流量を調節して、湿式反応器内の平均滞留時間が約5時間程度となるように供給し、定常状態(steady state)の到達後、持続時間を与えて高い密度を有する酸化物が得られるようにし、この後、遷移金属水酸化物(Ni0.55Mn0.3Co0.1Zr0.05(OH0.53)が合成された。
湿式反応器に合成された遷移金属水酸化物(Ni0.55Mn0.3Co0.1Zr0.05(OH0.53)にコバルト硫酸塩が2M濃度の遷移金属水溶液、ドーピング元素としてジルコニウム(Zr)を含む塩、水酸化ナトリウム水溶液、およびアンモニア溶液の流量を調節して、湿式反応器内の平均滞留時間が約2時間程度となるように供給し、この時、ガス供給を窒素ガスに切り替えて還元雰囲気にし、pHを11に維持するように4M濃度の水酸化ナトリウム溶液を供給し、定常状態の到達後、持続時間を与えて高い密度を有する酸化物が得られるようにした。この後、Ni0.55Mn0.3Co0.1Zr0.05(OH0.53からなるコアに、遷移金属水酸化物Co0.95Zr0.05(OH0.53からなるシェル層が形成されて、コア−シェル構造を有する前駆体を得た。
(正極活物質の製造)
前記反応器によって得られた前駆体を蒸留水で洗浄後にろ過し、120℃の恒温乾燥機で24時間乾燥させて残留水分を除去した。このように乾燥したコア−シェル構造を有する前駆体と、LiCOとを1:1の重量比で混合した後に、5℃/分の昇温速度で加熱して920℃で10時間焼成して、リチウム遷移金属酸化物粉末(正極活物質)を製造した。この時、正極活物質のコア層はLi[Ni0.55Mn0.3Co0.1Zr0.05]Oからなり、シェル層はLiCo0.95Zr0.05からなるコア−シェル(core−shell)構造を有する正極活物質粉末を得た。この時、コア層およびシェル層の含有量比は、重量を基準として50:50であった。
製造された正極活物質粉末に、有機溶媒内にAl元素を含む塩が混合されている混合溶液を混合してペースト状態に撹拌し、撹拌されたペースト状態の混合物を乾燥して有機溶媒を蒸発させた後、このように乾燥した混合物を熱処理して、正極活物質粒子の表面上にアルミニウム酸化層(無機物層)が正極活物質の全体重量を基準として2.0重量%形成されている正極活物質を製造した。
(リチウム二次電池の製造)
先に製造された正極活物質を導電剤およびバインダー(PVdF)と95:2.5:2.5の比率(活物質:導電剤:バインダー、重量比)で溶剤のNMP(N−methyl−2−pyrrolidone)に添加して正極混合物スラリーを製造し、負極活物質として人造黒鉛95重量%、導電剤(Super−P)1.5重量%、およびバインダー(PVdF)3.5重量%を溶剤のNMPに添加して負極混合物スラリーを製造した後、アルミニウム箔と銅箔上にそれぞれコーティング、乾燥およびプレスして、正極および負極を製造した。
前記正極と負極との間に多孔性ポリエチレン分離膜を介在させた後、EC:EMC=1:2の溶媒(carbonate solvent)にLiPFが1M溶けている電解液を注入して、コイン電池を製造した。
<実施例2>
ニッケル硫酸塩、マンガン硫酸塩、およびコバルト硫酸塩を0.6:0.2:0.2の比率(モル比)で混合して1.5M濃度の遷移金属水溶液を準備したことを除けば、実施例1と同様の方法で電池を製造した。
<実施例3>
二次電池用正極活物質を製造するための前駆体の製造中において、ドーピング元素としてジルコニウム(Zr)を含む塩を供給しないことを除けば、実施例1と同様の方法で電池を製造した。
比較例4
コア−シェル構造を有する正極活物質の表面に無機物層を形成させないことを除けば、実施例1と同様の方法で電池を製造した。
<実施例5>
正極活物質の表面に形成された無機物層の含有量が正極活物質の全体重量を基準として0.1重量%となるようにしたことを除けば、実施例1と同様の方法で電池を製造した。
<実施例6>
正極活物質の表面に形成された無機物層の含有量が正極活物質の全体重量を基準として3.0重量%となるようにしたことを除けば、実施例1と同様の方法で電池を製造した。
<実施例7>
正極活物質の表面に形成された無機物層の含有量が正極活物質の全体重量を基準として1.1重量%となるようにしたことを除けば、実施例1と同様の方法で電池を製造した。
<比較例1>
コア−シェル構造の正極活物質粉末を製造する代わりに、Li[Ni0.55Mn0.3Co0.1Zr0.05]Oの化合物粒子と、LiCo0.95Zr0.05の化合物粒子とが均一に混合された構造を有する正極活物質粉末を製造したことを除けば、実施例1と同様の方法で電池を製造した。
<比較例2>
正極活物質の表面に形成された無機物層の含有量が正極活物質の全体重量を基準として5.0重量%となるようにしたことを除けば、実施例1と同様の方法で電池を製造した。
<比較例3>
正極活物質の表面に形成された無機物層の含有量が正極活物質の全体重量を基準として0.05重量%となるようにしたことを除けば、実施例1と同様の方法で電池を製造した。
<実験例1>
寿命特性
実施例1〜11、および比較例1〜3でそれぞれ製造されたコイン電池に対して、3.0V〜4.4V電圧範囲で0.5Cの電流で100回充放電して、寿命特性を評価した。その結果を下記表1に示した。
Figure 0006662531
前記表1に示されるように、本発明による実施例1〜7で製造されたコア−シェル構造の正極活物質を用いたリチウム二次電池は、比較例1〜3のリチウム二次電池と比較して高い容量維持率を示すことが分かる。
<実験例2>
高速充電特性
実施例1〜7、および比較例1〜3でそれぞれ製造されたコイン電池に対して、3.0V〜4.4Vの電圧範囲で0.1Cの電流で充放電後、5.0Cの電流で充放電して、高速充電特性を評価した。その結果を下記表2に示した。
Figure 0006662531
前記表2に示されるように、本発明による実施例1〜7から製造されたリチウム二次電池は、比較例1〜3のリチウム二次電池と比較して高出力特性を示すことが分かる。
<実験例3>
DSCによる熱安定性の測定
本願の実施例1、実施例5、実施例6および実施例7と、比較例2および比較例3で製造された各活物質を含む正極をそれぞれ4.4V充電させた状態で、示差走査熱分析器(DSC)を用いて、10℃/minの速度で昇温させながら測定し、その結果を表3に示した。
Figure 0006662531
前記表3の結果から明らかなように、本願の実施例1、実施例6および実施例7は、実施例5、比較例2および比較例3と比較して熱的安定性がさらに優れていることが分かる。
先に説明したように、本発明による二次電池用正極活物質は、ニッケル(Ni)およびマンガン(Mn)を含むリチウム遷移金属酸化物、またはニッケル(Ni)、マンガン(Mn)、およびコバルト(Co)を含むリチウム遷移金属酸化物からなるコアと、コバルト(Co)を含むリチウム遷移金属酸化物からなるシェルとを含む構造に形成され、このようなシェルの表面上には無機物層がコーティングされて追加的に形成されることによって、無機物層が活物質の構造的安定性を高め、コアおよびシェルそれぞれの化合物のそれぞれの欠点を補完し、それぞれの利点のみを発揮して、高い容量、優れた高出力特性を発揮しながらも熱的安全性を維持できる効果を発揮する。
本発明の属する分野における通常の知識を有する者であれば、内容に基づいて本発明の範疇内で多様な応用および変形を行うことが可能であろう。
以上の説明のように、本発明による二次電池用正極活物質は、ニッケル(Ni)、マンガン(Mn)、およびコバルト(Co)を含むリチウム遷移金属酸化物からなるコアと、コバルト(Co)を含むリチウム遷移金属酸化物からなるシェルとを含む構造に形成され、このようなシェルの表面上には無機物層がコーティングされて追加的に形成されることによって、無機物層が活物質の構造的安定性を高め、コアおよびシェルそれぞれの化合物のそれぞれの欠点を補完し、それぞれの利点のみを発揮して、高い容量、優れた高出力特性を発揮しながらも熱的安全性を維持できる効果を発揮する。

Claims (18)

  1. コア−シェル構造を有するリチウム二次電池用正極活物質であって、
    ニッケル(Ni)、マンガン(Mn)、およびコバルト(Co)を含むリチウム遷移金属酸化物からなるコアと;
    コバルト(Co)を含むリチウム遷移金属酸化物からなるシェルと;を含んでおり、
    前記コアのリチウム遷移金属酸化物は、下記化学式1で表される化合物であり、前記シェルのリチウム遷移金属酸化物は、下記化学式2で表される化合物であり、
    前記シェルの表面上には、Al、ZrO、PO、SeO、およびSnOからなるグループより選択されたいずれか1つである無機物層がコーティングされて追加的に形成されており、前記無機物層の含有量は、正極活物質の全体重量を基準として0.1重量%以上〜3.0重量%以下であることを特徴とする正極活物質:
    Li[NiMnCo1−(a+b+c) Zr ]O (1)
    式中、
    0.55≦a≦0.9、0.05≦b≦0.5、0.05≦c≦0.1、a+b+c≦1、0.98≦y≦1.10であり
    LiCo(1−a) Zr (2)
    式中、
    0.05≦a≦0.1、0.98≦y≦1.10である。
  2. 前記無機物層は、Alの無機元素を含んでいることを特徴とする請求項1に記載の正極活物質。
  3. 前記無機物層の含有量は、正極活物質の全体重量を基準として1.1重量%以上〜3.0重量%以下であることを特徴とする請求項1に記載の正極活物質。
  4. 前記無機物層の含有量は、正極活物質の全体重量を基準として2.0重量%以上〜3.0重量%以下であることを特徴とする請求項に記載の正極活物質。
  5. 前記無機物層は、厚さが1〜150nmであることを特徴とする請求項1に記載の正極活物質。
  6. 前記コアおよびシェルの含有量比は、重量を基準として20:80〜80:20であることを特徴とする請求項1に記載の正極活物質。
  7. 前記コアおよびシェルの含有量比は、重量を基準として40:60〜60:40であることを特徴とする請求項に記載の正極活物質。
  8. 前記コアは、ニッケル、マンガン、およびコバルトの濃度は外部表面へいくほど減少する濃度勾配を有し、前記シェルは、コバルトの濃度は外部表面へいくほど減少する濃度勾配を有することを特徴とする請求項1に記載の正極活物質。
  9. 前記コアは、ニッケル、マンガン、およびコバルトの濃度はコア領域内で濃度勾配なく一定であり、前記シェルは、コバルトの濃度はシェル領域内で濃度勾配なく一定であることを特徴とする請求項1に記載の正極活物質。
  10. 前記正極活物質は、前記コアの外郭とシェルの内郭との間に形成され、1つ以上の遷移金属の濃度が連続的に変化して濃度勾配を示す濃度勾配層をさらに含んでいることを特徴とする請求項1に記載の正極活物質。
  11. 前記正極活物質の粒径は、0.1〜1μmであることを特徴とする請求項1に記載の正極活物質。
  12. 前記正極活物質は、1次粒子が凝集してなる2次粒子であり、前記1次粒子内のリチウムイオン拡散経路(lithium ion diffusion path)が2次粒子の中心方向に形成されたことを特徴とする請求項1に記載の正極活物質。
  13. リチウム二次電池用正極活物質を製造する方法において、
    (a)コア−シェル構造を有する正極活物質製造用前駆体をリチウム酸化物と均一に混合した後、焼成反応させて、コア−シェル構造を有するリチウム遷移金属酸化物粉末を製造する過程と;
    (b)有機溶媒内に、Al、Ti、Zr、W、Mg、Co、B、およびNbからなる群より選択された1つ以上の無機元素が含まれている混合溶液を製造する過程と;
    (c)前記混合溶液と前記コア−シェル構造を有するリチウム遷移金属酸化物粉末とを混合してペースト状態に撹拌する過程と;
    (d)前記ペースト状態の混合物を乾燥して有機溶媒を蒸発させる過程と;および
    (e)前記乾燥した混合物を熱処理して、前記リチウム遷移金属酸化物粉末の表面上に無機物層が形成されている正極活物質を製造する過程と;を含み、
    前記コアのリチウム遷移金属酸化物は、下記化学式1で表される化合物であり、前記シェルのリチウム遷移金属酸化物は、下記化学式2で表される化合物であることを特徴とする製造方法:
    Li[NiMnCo1−(a+b+c) Zr ]O (1)
    式中、
    0.55≦a≦0.9、0.05≦b≦0.5、0.05≦c≦0.1、a+b+c≦1、0.98≦y≦1.10であり
    LiCo(1−a) Zr (2)
    式中、
    0.05≦a≦0.1、0.98≦y≦1.10である。
  14. 前記リチウム酸化物は、炭酸リチウム(LiCO)および/または水酸化リチウム(LiOH)であることを特徴とする請求項13に記載の製造方法。
  15. 請求項1に記載の正極活物質を含むことを特徴とする正極。
  16. 請求項15に記載の正極を含むことを特徴とするリチウム二次電池。
  17. 請求項16に記載のリチウム二次電池を含んでいることを特徴とする電池パック。
  18. 請求項17に記載の電池パックを電源として含んでいることを特徴とするモバイルデバイス。
JP2018505447A 2015-10-20 2016-09-20 多層構造のリチウム金属酸化物を含むリチウム二次電池用正極活物質およびそれを含む正極 Active JP6662531B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2015-0145825 2015-10-20
KR20150145825 2015-10-20
PCT/KR2016/010445 WO2017069410A1 (ko) 2015-10-20 2016-09-20 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극

Publications (2)

Publication Number Publication Date
JP2018523895A JP2018523895A (ja) 2018-08-23
JP6662531B2 true JP6662531B2 (ja) 2020-03-11

Family

ID=58557952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018505447A Active JP6662531B2 (ja) 2015-10-20 2016-09-20 多層構造のリチウム金属酸化物を含むリチウム二次電池用正極活物質およびそれを含む正極

Country Status (6)

Country Link
US (1) US10741872B2 (ja)
EP (1) EP3316357B1 (ja)
JP (1) JP6662531B2 (ja)
KR (1) KR101982790B1 (ja)
CN (1) CN107925065B (ja)
WO (1) WO2017069410A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI651271B (zh) * 2016-05-27 2019-02-21 比利時商烏明克公司 小粒徑的鎳鋰金屬複合氧化物粉體的製造方法
KR20190003110A (ko) 2017-06-30 2019-01-09 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
US11081693B2 (en) 2017-08-30 2021-08-03 Samsung Electronics Co., Ltd. Composite cathode active material, method of preparing the same, and cathode and lithium battery including the composite cathode active material
WO2019066403A2 (ko) * 2017-09-28 2019-04-04 주식회사 엘지화학 리튬 이차 전지용 전극 활물질 복합체 및 상기 전극 활물질 복합체의 제조방법
KR102213174B1 (ko) 2017-10-12 2021-02-05 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102041578B1 (ko) 2017-12-08 2019-11-06 주식회사 포스코 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR102412586B1 (ko) 2017-12-27 2022-06-23 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN109461893B (zh) * 2017-12-29 2020-05-26 北京当升材料科技股份有限公司 一种新型锂离子电池正极材料及其制备方法
KR102313091B1 (ko) * 2018-01-19 2021-10-18 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102288290B1 (ko) 2018-02-23 2021-08-10 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR102327530B1 (ko) * 2018-05-21 2021-11-17 주식회사 엘지화학 이차 전지용 양극 및 이를 포함하는 이차 전지
KR20190138196A (ko) * 2018-06-04 2019-12-12 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
KR102654264B1 (ko) * 2018-08-13 2024-04-02 에스케이온 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR102248105B1 (ko) * 2018-08-22 2021-05-06 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
CN109713250B (zh) * 2018-11-19 2021-05-25 北京泰丰先行新能源科技有限公司 一种锂电池正极材料的核壳结构前驱体的制备方法
GB201913817D0 (en) * 2019-09-25 2019-11-06 Johnson Matthey Plc Process
WO2021201270A1 (ja) * 2020-04-03 2021-10-07 株式会社田中化学研究所 複合水酸化物の製造方法及び複合水酸化物
CN111900363A (zh) * 2020-08-21 2020-11-06 珠海冠宇电池股份有限公司 一种正极活性物质及含有该正极活性物质的极片和锂离子电池
WO2022126253A1 (fr) * 2020-12-14 2022-06-23 HYDRO-QUéBEC Matériaux d'électrode comprenant un oxyde lamellaire de métaux enrobé d'un oxyde de métaux de type tunnel, électrodes les comprenant et leur utilisation en électrochimie
TWI747735B (zh) 2021-02-08 2021-11-21 台灣立凱電能科技股份有限公司 正極材料顆粒結構及其製造方法
CN115832275B (zh) * 2021-09-18 2023-11-21 宁德时代新能源科技股份有限公司 改性的高镍三元正极材料及其制备方法,以及用电装置
KR20230095518A (ko) * 2021-12-22 2023-06-29 포스코홀딩스 주식회사 전고체전지용 양극 활물질과 이의 제조 방법

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4161382B2 (ja) 1997-02-25 2008-10-08 堺化学工業株式会社 2層構造粒子状組成物の製造方法
JPH11238504A (ja) * 1998-02-23 1999-08-31 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
CN1278438C (zh) 2000-09-25 2006-10-04 三星Sdi株式会社 用于可充电锂电池的正电极活性材料及其制备方法
JP4264513B2 (ja) 2003-10-30 2009-05-20 独立行政法人産業技術総合研究所 電極用複合粉末及びその製造方法
JP4954451B2 (ja) * 2004-07-05 2012-06-13 株式会社クレハ リチウム二次電池用正極材およびその製造方法
KR100738192B1 (ko) 2005-06-14 2007-07-10 에스케이 주식회사 코아·쉘 다층구조를 갖는 리튬이차전지용 양극 활물질과이를 사용한 리튬이차전지 및 그 제조 방법
JP5508674B2 (ja) 2007-01-04 2014-06-04 株式会社東芝 非水電解質電池、電池パック及び自動車
CN101796672A (zh) * 2007-09-04 2010-08-04 三菱化学株式会社 锂过渡金属类化合物粉末
JP5575744B2 (ja) 2008-04-03 2014-08-20 エルジー・ケム・リミテッド リチウム遷移金属酸化物製造用の前駆物質
KR101050438B1 (ko) * 2008-11-10 2011-07-19 주식회사 코캄 안전성이 우수한 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
KR101154876B1 (ko) * 2009-01-06 2012-06-18 주식회사 엘지화학 리튬 이차전지용 양극 활물질
KR101185366B1 (ko) * 2010-01-14 2012-09-24 주식회사 에코프로 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체 및 양극활물질을 제조하는 방법
EP2555286B1 (en) 2010-04-01 2014-10-08 LG Chem, Ltd. Positive electrode active material and lithium secondary battery using same
KR101215829B1 (ko) 2010-07-22 2012-12-27 주식회사 에코프로 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지
KR101465490B1 (ko) 2011-11-30 2014-11-26 주식회사 코캄 안전성과 안정성이 향상된 리튬 이차 전지
KR20130138073A (ko) * 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
CN103515606B (zh) 2012-06-21 2016-09-14 中国科学院宁波材料技术与工程研究所 高能量密度锂离子电池氧化物正极材料及其制备方法
KR101540673B1 (ko) 2012-08-03 2015-07-30 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR101567039B1 (ko) * 2012-12-13 2015-11-10 주식회사 에코프로 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질
KR101785266B1 (ko) * 2013-01-18 2017-11-06 삼성에스디아이 주식회사 복합양극활물질, 이를 채용한 양극 및 리튬전지, 및 그 제조방법
EP2966711B1 (en) 2013-01-31 2019-05-22 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Cathode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery using the same
KR101706298B1 (ko) 2013-07-30 2017-02-13 주식회사 엘지화학 표면 처리된 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR101665754B1 (ko) 2013-09-30 2016-10-12 주식회사 엘지화학 다층 구조의 금속 산화물을 포함하는 양극 활물질 및 이를 포함하는 리튬 이차전지용 양극
KR101636148B1 (ko) 2013-09-30 2016-07-04 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지용 양극
KR101577180B1 (ko) 2013-12-30 2015-12-15 주식회사 에코프로 고에너지 밀도의 혼합 양극활물질
TWI600202B (zh) 2014-03-06 2017-09-21 烏明克公司 用於在汽車應用中的電池組之摻雜並且塗覆的鋰過渡金屬氧化物陰極材料
JP6222347B2 (ja) * 2014-03-31 2017-11-01 日立金属株式会社 リチウムイオン二次電池用正極活物質、その製造方法およびリチウムイオン二次電池
KR101568263B1 (ko) 2014-08-07 2015-11-11 주식회사 에코프로 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지

Also Published As

Publication number Publication date
EP3316357A1 (en) 2018-05-02
EP3316357A4 (en) 2019-01-30
EP3316357B1 (en) 2020-07-29
US20180241073A1 (en) 2018-08-23
CN107925065B (zh) 2021-06-01
WO2017069410A1 (ko) 2017-04-27
KR101982790B1 (ko) 2019-05-27
JP2018523895A (ja) 2018-08-23
KR20170046066A (ko) 2017-04-28
CN107925065A (zh) 2018-04-17
US10741872B2 (en) 2020-08-11

Similar Documents

Publication Publication Date Title
JP6662531B2 (ja) 多層構造のリチウム金属酸化物を含むリチウム二次電池用正極活物質およびそれを含む正極
JP6732010B2 (ja) 多層構造の金属酸化物を含む正極活物質製造用前駆体およびこれを用いて製造されたリチウム二次電池用正極活物質
JP6692559B2 (ja) 多層構造の金属酸化物を含む正極活物質製造用前駆体およびこれを用いて製造されたリチウム二次電池用正極活物質
JP6135000B2 (ja) 正極活物質及びそれを含むリチウム二次電池とその製造方法
EP3340348B1 (en) Positive electrode active material for lithium secondary battery, containing high-voltage lithium cobalt oxide having doping element, and method for preparing same
TWI466830B (zh) 用於製備鋰複合過渡金屬氧化物之前驅物及其製備方法
JP7041802B2 (ja) リチウム欠乏遷移金属酸化物を含むコーティング層が形成されたリチウム過剰のリチウムマンガン系酸化物を含む正極活物質およびこれを含むリチウム二次電池用正極
CN107799733B (zh) 二次电池用正极活性材料、其制备方法及包含其的正极和锂二次电池
TWI464948B (zh) 用於製備鋰複合過渡金屬氧化物之前驅物、製備該前驅物之方法以及鋰複合過渡金屬氧化物
JP6483723B2 (ja) 正極活物質及びそれを含むリチウム二次電池
JP7037013B2 (ja) リチウムコバルト酸化物を含むコア及びリチウムコバルトリン酸化物を含むシェルを含む正極活物質粒子及びその製造方法
JP7039775B2 (ja) 長寿命に適合した二次電池用電極の製造方法
JP2020511740A (ja) リチウムマンガン系酸化物を含む高電圧用正極活物質およびその製造方法
JP6490109B2 (ja) 正極活物質及びそれを含むリチウム二次電池
JP7041803B2 (ja) リチウム過剰のリチウムマンガン系酸化物およびリチウム過剰のリチウムマンガン系酸化物上にリチウムタングステン化合物、または追加的にタングステン化合物をさらに含む正極活物質およびこれを含むリチウム二次電池用正極
CN104412424B (zh) 具有增强的寿命特性的二次电池用正极活性材料及其制备方法
JP7495439B2 (ja) リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
JP2022184711A (ja) リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200206

R150 Certificate of patent or registration of utility model

Ref document number: 6662531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250