JP6660953B2 - 湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法 - Google Patents

湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法 Download PDF

Info

Publication number
JP6660953B2
JP6660953B2 JP2017529889A JP2017529889A JP6660953B2 JP 6660953 B2 JP6660953 B2 JP 6660953B2 JP 2017529889 A JP2017529889 A JP 2017529889A JP 2017529889 A JP2017529889 A JP 2017529889A JP 6660953 B2 JP6660953 B2 JP 6660953B2
Authority
JP
Japan
Prior art keywords
air
absorbent
water
stream
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017529889A
Other languages
English (en)
Other versions
JPWO2017014200A1 (ja
Inventor
晴治 香川
晴治 香川
直行 神山
直行 神山
貴志 吉元
貴志 吉元
哲 牛久
哲 牛久
覚 杉田
覚 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Publication of JPWO2017014200A1 publication Critical patent/JPWO2017014200A1/ja
Application granted granted Critical
Publication of JP6660953B2 publication Critical patent/JP6660953B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1412Controlling the absorption process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

本発明は、湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法に関する。
例えば火力発電所等では、燃焼機器で重油や石炭等を燃焼して発生する排ガス中の硫黄酸化物を除去する脱硫設備が設けられている。脱硫設備としては、吸収塔において排ガスと吸収液(石灰石などのカルシウム化合物を含有する液体)とを接触させて、排ガス中の硫黄酸化物を吸収液に吸収し、接触後の該吸収液を酸化して固液分離することにより石膏を副生する湿式排煙脱硫装置がある。
この湿式排煙脱硫装置では、導入される排ガス中の硫黄分(以下「S分」ともいう)である二酸化硫黄(SO2)を吸収液と接触させて、吸収液側にSO2を移行させて、排ガスを浄化している。この吸収液側に移行したSO2は、吸収液中で亜硫酸イオンとなる。
湿式排煙脱硫装置は、吸収液中に空気を導入し、吸収液中の亜硫酸イオンを硫酸イオンに酸化させ、その後、吸収液中の硫酸イオンを処理し、例えば石膏として回収する。湿式排煙脱硫装置は、酸化用空気を槽内に供給するための装置として、吸収液を貯留する吸収液貯留槽に吸収液とともに空気を供給する水流酸化装置が用いられている。
この水流酸化装置としては、複数のジェットエアスパージャー(Jet Air Sparger:JAS)から噴出される噴出水流を用いて、吸収液貯留槽内の酸化と攪拌とを行う気液混合装置が提案されている(特許文献1)。
特開2009−6245号公報
ここで、特許文献1で提案する水流酸化装置を用いる湿式排煙脱硫装置では、導入される排ガス中のSO2濃度や排ガスの量の変動が発生する。例えば、夜間操業時のような運転負荷が低い場合、排ガス中のSO2濃度が、設計当初の基本計画の条件を下回る濃度となる。この時、湿式排煙脱硫装置は、通常運転時と同様に運転すると、水流酸化装置から酸素が必要以上に供給(過酸化状態)されるという可能性がある。この過酸化状態となると、難分解性の過酸化物の生成(例えば4価のセレンが6価のセレンとなる)が問題となる。
本発明は、前記問題に鑑みてなされたものであって、脱硫性能を維持しつつ、効率よく運転を行うことができる湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法を提供することを目的とする。
本発明の少なくとも一実施形態に係る湿式排煙脱硫装置は、吸収液を貯留する吸収液貯留槽と、燃焼機器から排出された排ガスが通過する排ガス通路とを有し、前記排ガスと前記吸収液とを接触させ、前記排ガスに含まれる硫黄酸化物を前記吸収液に吸収させる吸収塔と、前記吸収塔の上部側壁に設けられ、前記排ガスを前記吸収塔に導入するガス導入部と、前記排ガス通路に設けられ、前記吸収液を前記吸収塔の空間内に噴出させる吸収液噴出部と、前記吸収液貯留槽から前記吸収液噴出部に前記吸収液を供給する吸収液循環ラインと、前記吸収液循環ラインから分岐して導入された前記吸収液の一部を空気と共に前記吸収液貯留槽の内部に噴射する複数の水流酸化装置と、前記排ガス中に含まれる硫黄分の割合、前記吸収液貯留槽内の前記吸収液中の硫黄分の割合のいずれか一方又は両方に基づいて、前記水流酸化装置から噴射する前記吸収液の噴射量、前記水流酸化装置へ供給する前記空気の供給量のいずれか一方又は両方を調整する制御装置と、を備えるように構成されている。
上記構成によれば、前記排ガス中に含まれる硫黄分の割合又は、前記吸収液貯留槽内の前記吸収液中の硫黄分の割合のいずれか一方又は両方に基づいて、前記水流酸化装置から噴射する前記吸収液の噴射量の調整、前記水流酸化装置へ供給する前記空気の供給量のいずれか一方又は両方を調整することで、吸収液貯留槽内に導入される空気量を減少させ、酸素過多となることを抑制することができる。
幾つかの実施形態では、上記構成において、前記制御装置は、前記水流酸化装置の運転の数を変化させる制御、前記水流酸化装置へ循環する吸収液の循環量を変化させる制御のいずれか一方又は両方を実行するように構成されている。
上記構成によれば、前記水流酸化装置の運転の数を変化させる制御、前記水流酸化装置へ循環する吸収液の循環量を変化させる制御のいずれか一方又は両方を実行することで、吸収液貯留槽内に導入される空気量を減少させ、酸素過多となることを抑制することができる。
幾つかの実施形態では、上記構成において、前記水流酸化装置へ供給する空気量を弁により変化させる制御を実行するように構成されている。
上記構成によれば、前記水流酸化装置へ供給する空気量を弁により変化させる制御を実行することで、吸収液貯留槽内に導入される空気量を減少させ、酸素過多となることを抑制することができる。
幾つかの実施形態では、上記構成において、前記制御装置は、前記吸収液貯留槽内の前記吸収液中の硫黄分の割合が、予め設定した所定閾値よりも低い場合、前記空気を噴射させる前記水流酸化装置の運転数を減少させるように構成されている。
上記構成によれば、吸収液中の硫黄分の割合が、予め設定した所定閾値よりも低い場合、前記空気を噴射させる前記水流酸化装置の運転数を減少させることで、空気導入量を低下させ、酸素過多となることを抑制することができる。
幾つかの実施形態では、上記構成において、前記吸収液循環ラインは、循環ポンプを複数有し、前記制御装置は、前記排ガス中に含まれる硫黄分の割合又は、前記吸収液貯留槽内の前記吸収液中の硫黄分の割合が、予め設定した所定閾値よりも低い場合、複数台の循環ポンプの一部の運転を停止し、吸収液の循環量を低減させるように構成されている。
上記構成によれば、硫黄分の割合が、予め設定した所定閾値よりも低い場合、複数台の循環ポンプの一部の運転を停止し、吸収液の循環量を低減させることで、水流酸化装置への吸収液の導入量を低下させ、空気導入量を低下させ、酸素過多となることを抑制することができる。
幾つかの実施形態では、上記構成において、複数の前記水流酸化装置に各々空気を供給する複数の空気供給ラインと、前記空気供給ラインに各々設けられ、前記空気の供給量を調整する弁とを有し、前記制御装置は、前記排ガス中に含まれる硫黄分の割合又は、前記吸収液貯留槽内の前記吸収液中の硫黄分の割合が、予め設定した所定閾値よりも低い場合、複数の内の一部の弁の閉鎖を実行、又は複数の弁の開度を調整し、前記水流酸化装置に供給する前記空気量を低減させるように構成されている。
上記構成によれば、硫黄分の割合が、予め設定した所定閾値よりも低い場合、複数の内の一部の弁の閉鎖を実行、又は複数の弁の開度を調整し、前記水流酸化装置に供給する前記空気量を低減させることで、水流酸化装置への空気導入量を低下させ、酸素過多となることを抑制することができる。
幾つかの実施形態では、上記構成において、前記水流酸化装置は、前記吸収液循環ラインから吸収液の一部を分岐する吸収液分岐ラインと接続する接続部と、前記接続部と連通され、内部に流路狭小部を形成した液体供給通路と、前記液体供給通路内部の流路狭小部の下流域に開口部を有する空気供給通路と、を備えるように構成されている。
上記構成によれば、接続部から流入された吸収液が流路狭小部を通過する際、導入された吸収液の流れは、流路狭小部の下流域に負圧領域を発生し、縮流効果によって空気供給通路から開口部を経由して供給される空気を吸引しつつ先端側からジェット噴流を噴射し、吸収液貯留槽に微細な空気を導入すると共に吸収液貯留槽内の攪拌を促進する。
幾つかの実施形態では、上記構成において、前記制御装置は、複数の前記水流酸化装置の運転を停止する場合、複数の前記水流酸化装置の配列方向において、運転を停止する前記水流酸化装置を一定本数間隔で設けるように構成されている。
上記構成によれば、運転を停止する前記水流酸化装置を一定本数間隔で設ける間引き運転することで、吸収液貯留槽内の噴流による攪拌を均一とすることができる。
幾つかの実施形態では、上記構成において、前記吸収液貯留槽内の酸化還元電位を計測する酸化還元電位計を設け、前記制御装置は、前記酸化還元電位計で計測した酸化還元電位の計測値に基づいて、前記吸収液貯留槽内の前記吸収液中の硫黄分の割合を求めるように構成されている。
上記構成によれば、酸化還元電位により硫黄分の割合を求め、適正範囲以上の過酸化状態となった際、間引き運転することで、吸収液貯留槽内が酸素過多となることを抑制することができる。
幾つかの実施形態では、上記構成において、前記制御装置は、ボイラ負荷、入口SO2濃度、出口SO2濃度、脱硫率の少なくとも一つの値と、前記吸収液貯留槽内の前記吸収液中の硫黄分の割合とに基づいて、前記水流酸化装置から噴射する前記吸収液の噴射量の調整、前記水流酸化装置へ供給する前記空気の供給量のいずれか一方又は両方を調整するように構成されている。
上記構成によれば、ボイラ負荷、入口SO2濃度、出口SO2濃度、脱硫率の少なくとも一つの値と、前記吸収液貯留槽内の前記吸収液中の硫黄分の割合とに基づいて、前記水流酸化装置から噴射する前記吸収液の噴射量の調整、前記水流酸化装置へ供給する前記空気の供給量のいずれか一方又は両方を調整することで、吸収液貯留槽内に導入される空気量を減少させ、酸素過多となることを抑制する。
幾つかの実施形態では、上記構成において、前記吸収液貯留槽内に攪拌装置を備え、前記攪拌装置は、前記制御装置により起動・停止されるように構成されている。
上記構成によれば、攪拌装置により、吸収液貯留槽内の攪拌が促進される。
幾つかの実施形態では、上記構成において、前記水流酸化装置へ空気を供給するブロアを有し、前記制御装置は、前記排ガス中に含まれる硫黄分の割合又は、前記吸収液中の硫黄分の割合が閾値より高い場合に、前記ブロアから前記水流酸化装置へ供給する前記空気の供給量を増加させるように構成されている。
上記構成によれば、ブロアにより強制的に外部から空気を供給するので、吸収液貯留槽内の酸化能力が向上する。
幾つかの実施形態では、上記構成において、前記水流酸化装置へ前記空気を供給するブロアを有し、前記水流酸化装置に供給する前記空気の供給量を調整する際、前記制御装置は、前記排ガス中に含まれる硫黄分の割合又は、前記吸収液中の硫黄分の割合が閾値より低い場合に、前記ブロアから前記水流酸化装置へ供給する前記空気の供給量を低減させるように構成されている。
上記構成によれば、前記制御装置は、前記排ガス中に含まれる硫黄分の割合又は、前記吸収液中の硫黄分の割合が閾値より低い場合に、前記ブロアから前記水流酸化装置へ供給する前記空気の供給量を低減させることで、吸収液貯留槽内に導入される空気量を減少させ、酸素過多となることを抑制する。
本発明の少なくとも一実施形態に係る湿式排煙脱硫装置の運転方法は、燃焼機器から排出された排ガス中の硫黄酸化物を、吸収液及び空気を噴射させる水流酸化装置を備えた吸収液貯留槽から吸収液循環ラインで循環する前記吸収液により接触して除去する際、前記排ガス中に含まれる硫黄分の割合又は、前記吸収液貯留槽の吸収液中の硫黄分の割合に基づいて、前記水流酸化装置から噴射する前記吸収液の噴射量、前記水流酸化装置へ供給する前記空気の供給量のいずれか一方又は両方を調整するように構成されている。
上記構成によれば、前記硫黄分の割合に基づいて、前記水流酸化装置から噴射する前記吸収液の噴射量、前記水流酸化装置へ供給する前記空気の供給量のいずれか一方又は両方を調整することで、吸収液貯留槽内に導入される空気量を減少させ、酸素過多となることを抑制することができる。
本発明の少なくとも一実施形態に係る湿式排煙脱硫装置によれば、排ガス中に含まれる硫黄分の割合又は、湿式排煙脱硫装置の吸収塔の吸収液貯留槽内の前記吸収液中の硫黄分の割合に基づいて、前記水流酸化装置から噴射する前記吸収液の噴射量の調整、前記水流酸化装置へ供給する前記空気の供給量のいずれか一方又は両方を調整することで、吸収液貯留槽内に導入される空気量を減少させ、酸素過多となることを抑制し、適正な運転状態を維持することができる。
図1は、実施例1に係る湿式排煙脱硫装置を示す概略図である。 図2は、実施例1に係る吸収液の循環ライン系統の吸収液抜出側の模式図である。 図3は、実施例1に係る吸収液の循環ライン系統の平面模式図である。 図4は、実施例1に係る水流酸化装置の一例を示す概略図である。 図5は、ボイラ負荷による通常運転と間引き運転との弁の開閉状態を示す図である。 図6は、ボイラ負荷と水流酸化装置の運転台数との関係を示す図である。 図7は、実施例1に係る他の湿式排煙脱硫装置を示す概略図である。 図8は、図7に示す湿式排煙脱硫装置の吸収液の循環ライン系統の平面模式図である。 図9は、実施例1に係る他の湿式排煙脱硫装置の吸収液の循環ライン系統の平面模式図である。 図10は、実施例1に係る他の湿式排煙脱硫装置を示す概略図である。 図11は、実施例2に係る湿式排煙脱硫装置を示す概略図である。 図12Aは、ORP値と水流酸化装置の運転台数(酸素量)との関係を示す説明図である。 図12Bは、ORP値と硫黄分量との関係を示す説明図である。 図13は、実施例3に係る湿式排煙脱硫装置を示す概略図である。 図14は、実施例3に係る吸収液の循環ライン系統の平面模式図である。 図15は、実施例3に係る他の湿式排煙脱硫装置の吸収液の循環ライン系統の平面模式図である。 図16は、実施例4に係る湿式排煙脱硫装置を示す概略図である。 図17は、実施例4に係る湿式排煙脱硫装置の吸収液の循環ライン系統の平面模式図である。 図18は、実施例4に係る他の湿式排煙脱硫装置の吸収液の循環ライン系統の平面模式図である。 図19は、ボイラ負荷と、空気量とを調整するグラフである。 図20は、ボイラ負荷による通常運転と間引き運転との空気弁の開閉状態を示す図である。 図21は、ボイラ負荷と、空気量とを空気調整弁で調整するグラフである。 図22Aは、ボイラ負荷による通常運転と間引き運転との開閉弁の開閉状態を示す図である。 図22Bは、ボイラ負荷による通常運転と間引き運転との空気弁の開閉状態を示す図である。
以下、本発明の幾つかの実施形態につき図面を参照しつつ詳細に説明する。なお、下記の実施例により本発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施例で開示した構成要素は適宜組み合わせることが可能である。
図1は、本発明の実施例1に係る湿式排煙脱硫装置を示す概略図である。図1に示すように、湿式排煙脱硫装置(以下「脱硫装置」という)10Aは、ボイラ等の燃焼機器で燃料を燃焼して生成される排ガスが供給され、供給された排ガスから硫黄酸化物を低減、除去する。
脱硫装置10Aは、吸収塔11と、ガス導入部13aと、吸収液噴出部15と、複数の水流酸化装置20と、吸収液供給部25と、デミスタ30と、ガス排出部13bと、硫黄分検出部35と、制御装置40と、吸収液循環ラインL11と、脱硫排水排出ラインL12と、石膏排出ラインL13と、分離液戻しラインL14と、複数の循環ポンプPと、複数の開閉弁Vと、を有する。実施例1に係る脱硫装置10Aは、石灰石膏法の脱硫装置であり、吸収液14として例えば石灰石スラリー(水に石灰石粉末を溶解させた水溶液)が用いられている。
吸収塔11は、排ガス12中の硫黄酸化物を吸収液14で除去する。吸収塔11は、吸収液貯留槽11Aと排ガス通路11Bとを有する。吸収液貯留槽11Aは、吸収液14を貯留する。排ガス通路11Bは、吸収液貯留槽11Aの鉛直方向上側に設けられている。排ガス通路11Bは、排ガス12が通過する。
ガス導入部13aは、吸収塔11の上部側、すなわち吸収塔11の一方の排ガス通路11Bの側壁11aに設けられている。ガス導入部13aは、燃焼機器で生成された排ガス12を吸収塔11に導入する。吸収液噴出部15は、排ガス通路11Bの内部に配置されている。吸収液噴出部15は、吸収液14を噴出する噴霧部15aを有する。噴霧部15aは、鉛直方向上側に向けて吸収液14を噴霧する。
吸収液循環ラインL11は、吸収液貯留槽11Aと吸収液噴出部15とを接続している。循環ポンプPは、吸収液循環ラインL11に設置されている。図1では、1つの循環ポンプPを示しているが、幾つかの実施形態では循環ポンプPは複数配置されている。
脱硫装置10Aは、循環ポンプPで吸収液循環ラインL11に吸収液貯留槽11Aから吸収液噴出部15に向かう流れを形成することで、吸収液貯留槽11Aの吸収液14を吸収液噴出部15に供給する。吸収液噴出部15に供給された吸収液14は、噴霧部15aから排ガス通路11Bに噴出される。噴霧部15aから噴出される吸収液14は、噴出液14aともいう。
ここで、図2及び図3を参照して、吸収塔11の吸収液貯留槽11Aの吸収液14を取り出し、吸収塔11に供給させることで、吸収塔11の吸収液14を循環させる循環ライン系統について説明する。図2は、吸収液の循環ライン系統の吸収液抜出側の模式図である。図3は、吸収液の循環ライン系統の平面模式図である。図2は、循環ライン系統のうち、側壁11aと対向する側壁11b側に設けられた吸収液14を抜き出す部分から吸収液噴出部15に吸収液14を供給する部分を示している。また、図3は、循環ライン系統のうち、側壁11b側に設けられた吸収液14を抜き出す部分から、側壁11a側に設置された水流酸化装置20に吸収液14を供給する部分を示している。図3は、吸収液循環ラインL11の吸収液噴出部15と接続する部分の図示を省略している。
本実施例では、吸収液循環ラインL11及び水流酸化装置20とガス導入部13aとが吸収塔11の対向する壁面にそれぞれ配置されている場合としたが、配置位置は特に限定されない。同じ面に配置されていてもよい。なお、吸収塔11は、水平面における形状が一方向に長い形状の場合、長辺側の壁面に吸収液循環ラインL11、水流酸化装置20及びガス導入部13aを配置することが好ましい。
図2及び図3に示すように、吸収液14の循環ライン系統は、吸収液循環ラインL11と、吸収液循環ラインL11の吸収液14の一部を水流酸化装置20に供給する吸収液供給ラインL22及び吸収液分岐ラインL23(L23-1〜L23-6)とを含む。ここで、図2及び図3に示すように脱硫装置10Aは、3つの循環ポンプP(P1〜P3)と、複数の噴霧部15aとを有する。吸収液循環ラインL11は、3つの循環ポンプP(P1〜P3)を用いて、吸収液貯留槽11Aの吸収液14を複数の噴霧部15aに供給する。吸収液循環ラインL11は、3本の抜出ラインL11-1〜L11-3と、集合配管L20と、4本の吸収液噴出ラインL21(L21-1〜L21-4)と、を有する。なお、抜出ラインL11-1〜L11-3と、吸収液噴出ラインL21(L21-1〜L21-4)の本数は、循環ポンプPの数、噴霧部15aの配置に応じて調整すればよい。
抜出ラインL11-1〜L11-3は、それぞれ一方の端部が吸収塔11のガス導入部13aが設置された側壁11aと対向する側壁11bと接続し、他方の端部が集合配管L20と接続している。抜出ラインL11-1〜L11-3には、それぞれ循環ポンプP(P1〜P3)が設置されている。循環ポンプP(P1〜P3)は、設置されている抜出ラインL11-1〜L11-3を介して吸収液貯留槽11Aから集合配管L20に吸収液14を供給する。集合配管L20は、抜出ラインL11-1〜L11-3から供給された吸収液14が集合する配管である。集合配管L20は、抜出ラインL11-1〜L11-3よりも径が大きい配管である。本実施例の集合配管L20は、U字形状となる。集合配管L20は、抜出ラインL11-1〜L11-3から供給された吸収液14を接続された他の配管に供給する。吸収液噴出ラインL21(L21-1〜L21-4)は、集合配管L20と接続され、複数の噴霧部15aが設置されている。
脱硫装置10Aは、吸収液貯留槽11A内の吸収液14を複数の抜出ラインL11-1〜L11-3により外部に抜き出した後、集合配管L20へ供給する。集合配管L20に供給された吸収液14は、集合配管L20から分岐される吸収液噴出ラインL21-1〜L21-4及び吸収液供給ラインL22に供給される。吸収液噴出ラインL21-1〜L21-4に供給された吸収液14は、各々の噴霧部15aから、塔頂部側に向かって液柱の噴出液14aとして噴出する。
次に、図3の循環ライン系統図に示すように、吸収液供給ラインL22は、集合配管L20と接続し、集合配管L20の吸収液14の一部が流入する。本実施例では6本の吸収液分岐ラインL23(L23-1〜L23-6)は、それぞれ一方の端部が吸収液供給ラインL22と接続し、他方の端部が水流酸化装置20(20−1〜20−6)と接続している。吸収液分岐ラインL23は、吸収液供給ラインL22と水流酸化装置20とを接続し、吸収液供給ラインL22から水流酸化装置20に吸収液14を供給する。また、吸収液分岐ラインL23-1〜L23-6には、それぞれ第1〜第6の開閉弁V1(V1-1〜V1-6)が設けられている。開閉弁V1は、開閉を切り換えることで、吸収液供給ラインL22から水流酸化装置20に吸収液14を供給するか否かを切り換える。なお、図1に示すように、吸収液供給ラインL22は、吸収液貯留槽11Aの吸収液14の液面よりも、上方側の位置となるように設置するのが好ましい。これにより、循環ポンプP(P1〜P3)の停止(脱硫装置停止)に伴い、水流酸化装置20への吸収液14の供給が停止した場合、配管内から自然に排出することができる。また、例えば石灰石膏法の場合では、スラリー液が循環することとなり、循環ポンプ停止時に水流酸化装置20への供給配管内の石膏23の沈殿発生を防止することができる。
また、図3の循環ライン系統図に示すように、本実施例では、6台の水流酸化装置20−1〜20−6には、6本の吸収液分岐ラインL23-1〜L23-6の先端側が接続されていると共に、開口部53の空気供給通路54には、複数(本実施例では6本)の空気供給ラインL24-1〜L24-6が接続されている。空気供給ラインL24-1〜L24-6の端部側には、ブロアを設置していないので、空気21は縮流効果によって、自給で導入される。これは、例えばブロア等の空気押込み装置を用いて、外部から空気を水流酸化装置20に強制的に押し込むものではなく、空気21を縮流効果にのみによって自然に導入する自給式の空気導入方法である。なお、ブロアを設置する強制式の空気導入方法については後述する。
図4を参照して水流酸化装置の一例について説明する。図4は、実施例1に係る水流酸化装置の一例を示す概略図である。図4に示すように、実施例1に係る水流酸化装置20は、吸収液分岐ラインL23と接続する接続部50と、接続部50と連通され、内部に流路狭小部51を形成した液体供給通路52と、該液体供給通路52内部の流路狭小部51の下流域に開口部53を有する空気供給通路54と、を備えた気液混合攪拌装置である。
水流酸化装置20は、液体供給通路52内に供給された吸収液14の流れは、流路狭小部51の下流域に負圧領域55を発生し、縮流効果によって空気供給通路54から開口部53を経由して供給される空気21を吸引しつつ、その先端側からジェット噴流56として噴射する。このジェット噴流56は、水流酸化装置20の噴出口が対向する側壁11b側まで到達するように吸収液14を噴出している。これにより水流酸化装置20は、空気21の気泡を含むジェット噴流56を吸収液貯留槽11A内に供給する。
脱硫排水排出ラインL12は、図1に示すように、吸収液循環ラインL11と固液分離機22とを接続する。脱硫排水排出ラインL12は、吸収液循環ラインL11を流れる吸収液14の一部が脱硫排水14Aとして流入する。石膏排出ラインL13は、固液分離機22と接続されている。分離液戻しラインL14は、固液分離機22と吸収液貯留槽11Aとを接続している。
固液分離機22は、吸収液循環ラインL11及び脱硫排水排出ラインL12を介して吸収塔11を循環する吸収液14の一部が脱硫排水14Aとして供給される。固液分離機22は、脱硫排水14Aを固液分離する。具体的には、固液分離機22は、脱硫排水14Aを液体成分の分離液14Bと固体成分の石膏23とに分離する。固液分離機22で脱硫排水14Aを固液分離して生成された石膏23は、石膏排出ラインL13から外部に排出される。固液分離機22で脱硫排水14Aを固液分離して生成された分離液14Bは、分離液戻しラインL14を介して、吸収液貯留槽11Aに戻る。
デミスタ30は、排ガス12の流れ方向において、吸収液噴出部15よりも下流側の排ガス通路11Bに配置されている。デミスタ30は、排ガス通路11Bの排ガス12中のミストを除去する。脱硫装置10Aは、吸収塔11の吸収液14と排ガス12とを気液接触させることで、排ガス12中の硫黄酸化物を除去し、浄化ガス32とする。ガス排出部13bは、吸収塔11の排ガス通路11Bに接続されている。ガス排出部13bは、デミスタ30を通過した浄化ガス32を排出する。
硫黄分検出部35は、吸収液貯留槽11Aにある吸収液14の硫黄分の割合(又は濃度)を求める。また、硫黄分検出部35は、吸収液貯留槽11Aにある吸収液14の硫黄分の割合(濃度)を、排ガス12を生成する燃焼機器の運転条件又は燃焼用の燃料等の各種情報に基づいて、流入する排ガス12の硫黄酸化物濃度を算出し、算出結果と脱硫装置10Aの運転条件に基づいて硫黄分の割合を間接的に算出する機器でもよい。また、吸収液貯留槽11Aにある吸収液14の所定量を抜き出し、その吸収液14に酸(例えば硫酸、塩酸)を添加し、pHを所定の値に調整することにより、亜硫酸塩を亜硫酸ガスに分解し、脱気する。その脱気した亜硫酸ガスを不活性ガスで所定量に希釈し、その希釈ガスを例えば赤外分光器等の計測装置で連続してガスの濃度を検出する。亜硫酸ガス濃度信号は演算器に送り、希釈率、サンプルの採取量等の値から吸収液貯留槽11A内の吸収液14中の亜硫酸イオンを演算し、硫黄分の割合を算出する機器でもよい。
また、例えばガス導入部13aの煙道内に入口SO2計36を設けると共に、ガス排出部13bの煙道内に出口SO2計37を設けており、これらの計器により計測した排ガス12中及び浄化ガス32中のSO2量から、又はこれらの値により換算した脱硫率から、吸収液14の硫黄分(S分)の割合を求めるようにしてもよいが、本発明はこれに限定されるものではない。
制御装置40は、硫黄分検出部35で求めた吸収液14の硫黄分(S分)の割合に基づいて、稼働させる水流酸化装置20の本数を制御する。つまり、制御装置40は、硫黄分検出部35で求めた吸収液14の硫黄分(S分)の割合に基づいて、吸収液14及び空気21を噴射する水流酸化装置20の運転本数を制御する。制御装置40は、例えば、吸収液14中の硫黄分の割合が、予め設定した所定閾値よりも低い場合(亜硫酸イオン量が低い場合)、運転する水流酸化装置20を間引く、つまり吸収液14及び空気21を噴射する水流酸化装置20の運転本数を減少させる。
また、制御装置40は、水流酸化装置20の運転の数を減らす間引き運転する以外に、水流酸化装置20から噴出する吸収液14の噴出量を変化させるような制御を実行するようにしてもよい。この噴出量の変化は、吸収液14の一部を水流酸化装置20に供給する吸収液供給ラインL22から分岐した吸収液分岐ラインL23-1〜L23-6に、例えば流量調整弁又は可変ポンプ等を設け、これらの操作により、吸収液14の噴射量を変化させるようにしてもよい。この結果、水流酸化装置20の運転を間引くことなく、水流酸化装置20の稼働本数を維持しつつ、吸収液14の噴射量を調整することができる。
本実施形態では、制御装置40による、水流酸化装置20から噴射する吸収液14の噴射量の調整とは、複数設置されている水流酸化装置20の運転を間引いて、吸収液貯留槽11A内への吸収液14の噴射量を低下させる調整と、複数ある水流酸化装置20の稼働はそのまま継続し、水流酸化装置20へ供給する吸収液14の供給量をポンプ又は弁により調整することで、吸収液貯留槽11A内への噴射量を低下させる調整と、のいずれか一方又は両方をも含む。
次に、本発明の一実施形態に係る脱硫装置10Aの全体動作について説明する。幾つかの実施形態では、脱硫装置10Aは、燃焼機器(図示せず)から排出された排ガス12が、ガス導入部13aから吸収塔11内に導入される。吸収塔11に導入された排ガス12は、循環する石灰石スラリーの吸収液14の噴出液14aと排ガス12とが接触して、排ガス12中のSO2が吸収液14により除去される。
石灰石スラリーである吸収液14は、吸収液供給部25から吸収塔11の塔底部内の吸収液貯留槽11Aに供給される。吸収液貯留槽11Aに供給された吸収液14は、吸収液循環ラインL11を介して吸収塔11内の複数の噴霧部15aに送られ、この噴霧部15aから塔頂部側に向かって液柱の噴出液14aが噴出される。吸収液循環ラインL11は、循環ポンプP(P1〜P3)が設けられており、循環ポンプP(P1〜P3)を稼働させることで、吸収液循環ラインL11から噴霧部15aに石灰石スラリーの吸収液14を送る。吸収塔11のガス導入部13aから導入され、上昇してくる排ガス12が噴出・落下する石灰石スラリーと気液接触することにより、排ガス12中の硫黄酸化物が吸収液14により吸収され、排ガス12から分離、除去される。石灰石スラリーの吸収液14により浄化された排ガス12は、浄化ガス32として吸収塔11の塔頂部側のガス排出部13bより排出され、図示しない煙突から外部に放出される。
吸収塔11の内部において、排ガス12中の亜硫酸ガス(SO2)は石灰石スラリーと下記反応式(1)で表される反応を生じる。
SO2+CaCO3→CaSO3+CO2・・・(1)
さらに、排ガス12中のSOを吸収した石灰石スラリーは、吸収塔11の底部側の吸収液貯留槽11A内に、水流酸化装置20から供給される空気21により酸化処理され、空気21と下記反応式(2)で表される反応を生じる。
CaSO3+1/2O2+2H2O→CaSO4・2H2O・・・(2)
このようにして、排ガス12中のSOは、吸収塔11において石膏(CaSO・2HO)の形で捕獲される。
また、上記のように、石灰石スラリーは、吸収塔11の塔底部の吸収液貯留槽11Aに貯留した液を揚水したものが用いられるが、この揚水される石灰石スラリーの吸収液14中には、脱硫装置10Aの稼働に伴い、反応式(1)、(2)により石膏(CaSO・2HO)が混合される。以下では、この亜硫酸ガスを吸収するための石灰石石膏スラリー(石膏が混合された石灰石スラリー)を吸収液とよぶ。
吸収塔11内で脱硫に用いる吸収液14は、吸収液循環ラインL11により、循環再利用されると共に、この吸収液循環ラインL11に接続された脱硫排水排出ラインL12を介して、その一部が脱硫排水14Aとして外部に排出されて、別途固液分離機22に送られ、ここで脱水処理される。
固液分離機22は、脱硫排水14A中の固形物である石膏23と液体分の分離液14Bとを分離するものである。固液分離機22としては、例えばベルトフィルタ、遠心分離機、デカンタ型遠心沈降機等が用いられる。よって、吸収塔11から排出された脱硫排水14Aは、固液分離機22により固形物の石膏23と脱水濾液である分離液14Bとに分離される。この分離の際、吸収液14の一部である脱硫排水14A中の塩化水銀は石膏23に吸着された状態で、該石膏23とともに液体と分離される。分離した石膏23は、システム外部(系外)に排出される。一方、固液分離機22からの分離液14Bは、分離液戻しラインL14を介して返送水として、吸収塔11の吸収液貯留槽11A内に供給している。また、脱硫装置10Aは、吸収塔11の底部の吸収液貯留槽11A内には水流酸化装置20から所定量の空気21を供給し、吸収液14中の亜硫酸イオンの酸化を行う。
また、脱硫装置10Aは、吸収液14中の硫黄分の割合に基づいて、水流酸化装置20の稼動及び、吸収液循環ラインL11を循環する吸収液14の量を制御する。脱硫装置10Aは、吸収液貯留槽11A内の吸収液14中の硫黄分の割合について、所望の硫黄分の割合の閾値範囲、つまり値の上限と下限を設定する。閾値は、例えば、脱硫装置10Aが設計上最も高い効率で稼働した場合に、脱硫性能を維持できる硫黄分の割合を基準に規定する。具体的には、脱硫装置10Aの要求性能の最大処理時で脱硫性能を維持できる処理を行っている状態での吸収液14中の硫黄分の割合を基準に設定する。脱硫装置10Aの要求性能の最大処理時とは、燃焼機器が基本計画の100%運転状態でかつ燃料として硫黄分(S分)が多い燃焼を用いた場合である。なお、閾値は、脱硫装置が効率よく運転できる硫黄分の割合に基づいて設定してもよい。
制御装置40は、硫黄分検出部35で求めた吸収液14中の硫黄分の割合に基づいて、稼働する水流酸化装置20の数を変化させる。制御装置40は、吸収液14中の硫黄分が閾値の下限以下である場合、一部の開閉弁V1を閉じて、接続されている水流酸化装置20への吸収液14の供給を停止する。制御装置40は、一部の水流酸化装置20への吸収液14の供給を停止している状態で、かつ、吸収液14中の硫黄分が閾値の上限以上である場合、閉じている開閉弁V1を開いて、接続されている水流酸化装置20への吸収液14を供給する。制御装置40は、開閉弁V1の開閉を制御することで、吸収液貯留槽11A内の貯留された吸収液14に噴射する吸収液14の噴射量、吸収液14の噴射に伴う空気21の導入量を調整する。
また、制御装置40は、吸収液貯留槽11A内の吸収液14中の硫黄分の割合が所定閾値よりも低い場合、循環ポンプP(P1〜P3)の稼働率を低減させて、循環する吸収液14の循環量を低減させる。
また、制御装置40は、循環させる吸収液14の循環量を低減させ、かつ、稼働させる水流酸化装置20の本数を減少させることで、1つの水流酸化装置20に供給される吸収液14の量の変化を小さくすることができる。
これにより、1つの水流酸化装置20が吸収液貯留槽11A内に導入する空気21の導入量が変化することを抑制することができ、1つの水流酸化装置20の吸収液14を循環させる性能、吸収液14に空気21を導入する性能が低減することを抑制できる。この結果、硫黄分の割合に合わせて全体の空気21の導入量を低減させつつ、稼動している水流酸化装置20の性能は維持することができる。これにより、吸収液貯留槽11A内の吸収液14中の酸素が過多となることを抑制しつつ、装置全体を効率よく稼働させることができる。
以下、制御装置40の制御の一例を説明する。以下の例は、排ガス12を供給する燃焼機器の運転状態、具体的には運転負荷に基づいて、吸収液14中の硫黄分の濃度を算出する場合で説明する。つまり、硫黄分検出部35が、ボイラ負荷の状態に基づく硫黄分変動情報39からSO2濃度の割合を求め、制御装置40がボイラ負荷と稼働する水流酸化装置20の本数とを対応付けて制御を行う場合として説明する。なお、以下の制御の一例は、3台の循環ポンプP1〜P3と、6台の水流酸化装置20−1〜20−6とを稼働して、脱硫を行うことを説明するが、本発明はこれに限定されるものではない。
例えばボイラ負荷が100%負荷運転である場合には、基本計画の運転状態であるので、排ガス12中の硫黄分(SO2濃度)は初期閾値(α0)からの大幅な変動は無い。よって、排ガス12中には、初期閾値(α0)のSO2濃度が含まれる。よって、ボイラ負荷が基本計画の100%負荷運転の場合には、本実施例においては、3台の循環ポンプP1〜P3と、6台の水流酸化装置20−1〜20−6とを全て稼働して、脱硫を行う。
その後、ボイラ負荷が計画の100%負荷での運転状態が継続する場合には、そのまま3台の循環ポンプP1〜P3と、6台の水流酸化装置20−1〜20−6とを全台数稼働したままの状態として、脱硫を継続する。
これに対し、基本計画から運転を変更し、ボイラ負荷を低下させる場合(例えば夜間運転等の計画運転の出力の50%で運転する場合等)には、硫黄分(SO2濃度)が予め設定した所定閾値(α1)よりも低い値となる。この硫黄分(SO2濃度)が予め設定した所定閾値(α1)よりも低くなる場合には、排ガス12中の硫黄分(S分)であるSO2濃度が低下し、吸収液14中の硫黄分の濃度が低下する場合がある。
よって、本実施例では、このボイラ負荷低下情報に基づく硫黄分濃度が低下することを硫黄分検出部35で確認し、制御装置40の指示により、循環ポンプP(P1〜P3)の運転を3台から2台に変更(例えばP1及びP2、P1及びP3又はP2及びP3に台数を変更)すると共に、水流酸化装置20の運転も間引き運転とする。
この間引き運転は、例えば第1、第3及び第5の水流酸化装置20−1、20−3、20−5の運転を継続させ、例えば第2、第4及び第6の水流酸化装置20−2、20−4、20−6の運転を停止する。
この間引き運転の一例を図5に示す。図5は、ボイラ負荷による通常運転と間引き運転との弁の開閉状態を示す図である。図5に示すように、計画運転(100%負荷運転)の場合には、第1〜第6の開閉弁V1-1〜V1-6は全開としている。これに対して、低負荷運転(1)の場合には、第2、第4、第6の開閉弁V1-2、V1-4、V1-6を閉じ、第2、第4、第6の水流酸化装置20−2、20−4、20−6への吸収液14の導入を停止する。なお、循環ポンプP(P1〜P3)の運転を3台から2台に変更することで、吸収液14の循環量が低下した場合でも、第1、第3、第5の水流酸化装置20−1、20−3、20−5を稼働させる間引き運転することとしているので、ジェット噴流56の勢いが低下することはない。
この間引き運転を行うことにより、第1、第3、第5の水流酸化装置20−1、20−3、20−5から吸収液貯留槽11A内に供給される空気21の供給量が低減することとなるが、低負荷運転であり、吸収液貯留槽11A内の吸収液14中の亜硫酸イオン濃度が低いので、硫酸イオンに酸化させる空気量も低減することができ、結果として吸収液貯留槽11A内が過酸化状態となることが抑制される。
このように、水流酸化装置20の間引き運転と、複数の循環ポンプPの稼働とを調整することで、水流酸化装置20に供給する吸収液14の循環液の総量が低下した場合でも、間引きにより水流酸化装置20の一部の稼働が停止しているので、水流酸化装置20には適切な量の吸収液14を供給するように調整することで、吸収液14が流路狭小部51を通過する際の縮流作用が低下することがない。この結果、微細化するジェット噴流56の供給量が低下することがない。よって、自給式の空気21の取り込み量も低下することがないので、酸化性能が悪くなることもない。また、吸収液貯留槽11A内へのジェット噴流56の勢いも低下することがないので、吸収液貯留槽11A内の攪拌効率も低下ことするがない。
ここで、水流酸化装置20の間引き運転の一例としては、複数台の内の奇数番号(1、3、5)の装置を停止させ、偶数番号(2、4、6)の装置を運転するようにして、等間隔で運転、停止を行うのが好ましい。これは、第1、第2、第3の開閉弁V1-1、V1-2、V1-3を閉じ、第4、第5、第6の開閉弁V1-4、V1-5、V1-6を開くような、偏った間引き運転とする場合には、吸収液貯留槽11A内への噴射する吸収液14が偏在してしまい、内部攪拌が不十分となるからである。
なお、水流酸化装置20を間引く台数は、処理する亜硫酸イオン濃度により適宜変更する。
このように、制御装置40は、ボイラ負荷等の燃焼機器の運転条件に基づいて、フィードフォワード制御、具体的には循環ポンプP(P1〜P3)、開閉弁V1(V1-1〜V1-6)に対するフィードフォワード制御を行うことも好ましい。
なお、排ガス12中の硫黄分の割合は、ボイラ負荷の変動以外にも、例えばボイラに供給する燃料中の硫黄分(S分)量の変動(例えば炭種の変更等)により変化する。また、ボイラ負荷の変動以外に、例えば脱硫通風機(BUF)流量、ボイラへの供給空気量、吸収塔11に導入する排ガス12中の入口SO2濃度、吸収塔11から排出される排ガス12中の出口SO2濃度及び脱硫率等のいずれかの情報の1つ又はこれらの2以上の情報を組み合わせた硫黄分変動情報39を基に、フィードフォワード制御を行うようにしてもよい。
また、本実施例では、ガス導入部13aの煙道内に入口SO2計36を設けると共に、ガス排出部13bの煙道内に出口SO2計37を設けているがこの設置は省略できる。なお、入口SO2計36及び出口SO2計37を設置した場合には、これらにより計測した排ガス12中及び浄化ガス32中のSO2量から、またはこれらの値による脱硫率を硫黄分変動情報39として、硫黄分検出部35において吸収液14の硫黄分の割合を求めている。
これにより、ボイラ負荷以外の入口SO2濃度、出口SO2濃度、脱硫率等の少なくとも一つの値の硫黄分変動情報39を基に、吸収液貯留槽11A内の吸収液14中の硫黄分の割合が、予め設定した所定閾値よりも低いか否かを、硫黄分検出部35で判断し、硫黄分の割合が所定閾値よりも低い場合に、水流酸化装置20の間引き運転を行うことで、吸収液貯留槽11A内に導入される空気21の量を減少させ、吸収液貯留槽11A内が酸素過多となることを抑制する。
図6は、ボイラ負荷と水流酸化装置の運転台数との関係を示す図である。図6に示すように、複数台の水流酸化装置20を設置する際、ボイラ運転負荷に応じて、制御装置40により段階的に開閉弁V1の制御を行い、複数台の水流酸化装置20の運転台数を変更することで3段階の間引き運転を行うこともできる。
以上説明したように、実施例1に係る脱硫装置10Aによれば、例えばボイラ運転負荷が低い場合(例えば夜間等の操業時の低負荷運転)等において、吸収液貯留槽11A内の吸収液14中の硫黄分の割合が、予め設定した所定閾値よりも低い場合、循環する吸収液14の循環量を低減させると共に、これに応じて水流酸化装置20を間引き運転することで、吸収液貯留槽11Aへの酸化用の空気21の供給を低下させ、酸素が必要以上に供給されて過酸化状態となることを防止することができる。この結果、吸収液貯留槽11A内の吸収液14において過酸化状態となるのが抑制され、例えば吸収液14中での難分解性の過酸化物の生成(例えば4価のセレンが6価のセレンとなる)が抑制される。
また、前述した実施例では開閉弁V1-1〜V1-6の制御は、開閉弁を用いて間引き運転をしていたが、本発明はこれに限定されず、開閉弁を用いる代わりに、弁の開度を所定量調整することができる調整弁を用いて調整するようにしてもよい。
例えば、図5に示す低負荷運転(2)に示すように、第2、第4、第6の開閉弁V1-2、V1-4、V1-6を調整弁とし、この調整弁の開度を、制御装置40により調整して、50%を閉鎖することで、水流酸化装置20−2、20−4、20−6への吸収液14の導入量を50%停止する。この開度を50%調整した場合には、水流酸化装置20−2、20−4、20−6に導入される吸収液14の流量が低下するので、ジェット噴流56の勢いは低下するが、空気量は低減するので、過酸化状態を回避できる。
図7は、実施例1に係る他の湿式排煙脱硫装置を示す概略図である。図8は、図7に示す湿式排煙脱硫装置の吸収液の循環ライン系統の平面模式図である。図7に示す湿式排煙脱硫装置10Bは、脱硫装置10Aの各部に加え、攪拌装置41を備える。攪拌装置41は、吸収液貯留槽11Aの側壁11aに設置されている。つまり、攪拌装置41は、水流酸化装置20と同じ面に配置されている。本実施例では、図8に示すように、各水流酸化装置20の間に攪拌装置41を設置している。攪拌装置41は、例えばプロペラ等を備えたものであり、設置されている位置の吸収液14を攪拌することで、吸収液貯留槽11A内の攪拌効率を増大させることができる。
脱硫装置10Bは、攪拌装置41を設けることで、吸収液貯留槽11A内の攪拌が大幅に促進することができる。これにより、ジェット噴流56の勢いが低下して攪拌効率の低下した場合や、より攪拌が必要な場合、攪拌装置41で吸収液14を攪拌することができる。脱硫装置10Bは、開閉弁Vを閉じて、一部の水流酸化装置20からの吸収液14の供給を停止する間引き運転の際においても、攪拌装置41を設け、攪拌装置41に隣接する水流酸化装置20の運転を優先するように間引き運転することで、攪拌効率が向上する。
図9は、実施例1に係る他の湿式排煙脱硫装置の吸収液の循環ライン系統の平面模式図である。図9に示す他の湿式排煙脱硫装置は、脱硫装置10Aの各部に加え、ブロア60を備える。ブロア60は、空気導入ラインL25の空気導入端部側に設置されている。ブロア60は、稼働されると空気導入ラインL25に空気(酸素)21を外部から強制的に吹き込み、水流酸化装置20に強制的に空気21を導入する方式である。
図9に示す湿式排煙脱硫装置は、ブロア60を稼動させることで、空気導入ラインL25に空気21を吹き込み、水流酸化装置20により多くの空気21を供給する。ブロア60を設けることで、水流酸化装置20に導入される空気21を、縮流効果により自給で吸収液貯留槽11A内に導入される空気21よりも多くすることができる。これにより、吸収液貯留槽11Aにより多くの空気21を供給することができ、吸収液貯留槽11A内の酸化能力の向上をさせることができる。そして、前記制御装置40は、排ガス12中に含まれる硫黄分の割合又は、吸収液14中の硫黄分の割合が閾値より高い場合に、ブロア60から水流酸化装置20へ供給する空気21の供給量を増加させ、酸化能力を向上させる。
また、幾つかの実施形態では、循環ポンプPを複数設置して、その一部の運転を停止することで、循環する吸収液14の量を制御しているが、本発明はこれに限定されるものではなく、循環ポンプPの稼働率を変更して、循環する吸収液14の循環量を調整してもよい。また、循環ポンプPの稼働台数と稼働率の両方を変更してもよい。また、循環ポンプPの稼働率を調整する場合、循環ポンプPは1つでもよい。
以上述べた幾つかの実施形態では、吸収液噴出部15は、排ガス12中の硫黄酸化物を吸収する吸収液14をスプレーノズル等の噴霧部15aから上方に噴出させ、噴出した液滴を落下させる液柱塔形式の噴出部としているが、本発明はこれに限定されるものではなく、例えばスプレーノズル等から吸収液14をそのまま下方に液滴として落下させるスプレー塔形式の噴出部にも適用することができる。
図10は、実施例1に係る他の湿式排煙脱硫装置を示す概略図である。幾つかの実施形態では、脱硫装置10Cは、脱硫装置10Aの吸収塔11内の噴霧部を液柱形式の噴霧部に代えて、内部に充填材(グリッド)80を設けたいわゆるグリッド塔形式としている。そして、吸収液循環ラインL11の端部に吸収液噴射部81を接続し、吸収液14を噴射させている。この吸収液噴射部81から噴射された吸収液14はこの充填材(グリッド)80を経由して流下させることにより、排ガス12と接触させて、SO2を吸収している。
本実施例によれば、脱硫装置10Cの吸収塔11の吸収液貯留槽11A内の吸収液14中の硫黄分の割合に基づいて、水流酸化装置20の数を変化させる運転をすることで、酸素過多となることを抑制し、適正な運転状態を維持することができる。
また、本発明は、石灰石膏法の脱硫装置に限定されず、吸収液14の酸素過多が問題となる脱硫装置(例えば海水脱硫装置)にも適用することができる。
本発明の実施例2に係る湿式排煙脱硫装置について、図面を参照して説明する。図11は、実施例2に係る湿式排煙脱硫装置を示す概略図である。なお、実施例1と同一部材については、同一符号を付してその説明は省略する。
図11に示すように、実施例2に係る脱硫装置10Dは、実施例1の脱硫装置10Aの硫黄分検出部35に代えて、酸化還元電位(ORP)計18を備える。ORP計18は、吸収液貯留槽11A内の酸化還元電位(Oxidation−reduction Potential;ORP、以下実施例2では「ORP」という)の値を計測する。脱硫装置10Dの制御装置40は、ORP計18でORPの値を計測し、ORPの値に基づいて、稼働させる水流酸化装置20の数、または、水流酸化装置20からの空気21及び吸収液14の噴射量を制御する。制御装置40は、ORPの値を吸収液14の硫黄成分の割合を求める手段として用い、ORPの値に基づいて制御を実行する。
制御装置40は、例えば、ORPの値が適正範囲か否かに基づいて水流酸化装置20の運転状態を切り換える。このORP計18での計測の結果、適正範囲値を超える場合に、吸収液貯留槽11A内が過酸化の状態(酸素過剰状態)であると判断した際には、ORP値を適正範囲内とするように、実施例1で説明した脱硫装置10Aと同様に水流酸化装置20の間引きを行う。一例として、稼働させる水流酸化装置20の数を減らす。これにより、水流酸化装置20は間引き運転される。
ここで、ORPの適正範囲とは、吸収液14内に捕集されている酸化された水銀イオンの一部が金属水銀となるのが防止され、水銀の再飛散がないこと、また、吸収液14中への水銀イオンが石膏23側に取り込まれ、吸収液14中での水銀イオンの蓄積がないORPの範囲であり、プラント毎に決定している。一般的には、ORPの適正範囲として、50mV以上200mV以下の範囲、より好適には50mV以上150mV以下の範囲、さらに好適には80mV以上150mV以下の範囲である。
なお、ORPの適正範囲は、プラント毎や運転条件によって変動するので、試運転の際にORPの適正範囲を予め求めておくようにする。また、ボイラに供給する燃料やボイラ運転の負荷変動により、変更する場合もあるので、それらの変動の際にもORPの適正範囲をその都度求めるようにしてもよい。なお、プラント運転に際しては、ORPの適正範囲の中で、最適な1つのORPの値を選定して操業するようにしている。
このORPの値に基づく間引き運転制御は、制御装置40により行う。制御装置40は、ORP計18により測定された、吸収塔11の吸収液貯留槽11Aの吸収液14のORPの値に基づいて吸収液貯留槽11A内へのジェット噴流56を噴射する水流酸化装置20の間引き運転を行う。
具体的には、吸収液貯留槽11A内のORP値を計測し、適正範囲の場合には、そのまま運転を継続し、ORP値が適正範囲を超える場合、制御装置40により水流酸化装置20の間引き運転を実行する。なお、この運転制御は自動で行うようにしてもよいし、運転作業員が手動により行うようにしてもよい。
図12Aは、ORP値と水流酸化装置の運転台数(酸素量)との関係を示す説明図である。図12Bは、ORP値と硫黄分量との関係を示す説明図である。
図12Aに示すように、ORP値が適正範囲においては、水流酸化装置20は初期の設置台数全部を運転する。そして、ORP値が適正範囲を超えて高くなる場合には、酸素過剰状態であると判断し、水流酸化装置の運転台数を減らす間引き運転する。この水流酸化装置20の運転を停止することで、吸収液貯留槽11A内への吸収液14に同伴して引き込まれる空気21の供給が停止され、酸素過多となることを抑制し、適正な運転状態を維持する。また、ORP値が適正範囲を超える場合、図12Bに示すように、硫黄分の割合が少ないので、制御装置40により水流酸化装置20の間引き運転を実行する。これにより、酸素過多となることを抑制し、適正な運転状態を維持する。
このように、この間引き運転は、ORP計18により求めたORP値をフィードバック制御して、制御装置40により段階的に循環ポンプP、開閉弁V1の制御を行い、吸収液貯留槽11A内への空気21の供給を停止し、酸素過多となることを抑制する。
さらに、ボイラ負荷によるフィードフォワード制御とORP値によるフィードバック制御とを組み合わせたカスケード制御を、制御装置40により行うことで、段階的に弁V1-1〜V1-6の制御を可能とすることができる。
また、図9に示すように、ブロア60を備える空気の導入を強制式とする場合にはさらに以下の制御を制御装置40により実行することもできる。
先ず、水流酸化装置20に供給する吸収液14の供給量を調整する際、硫黄分が閾値以下の場合には、制御装置40により間引き運転を行い、吸収液14及び空気21の供給量を低下させる。そして、硫黄成分が閾値以下であると判断して空気供給を低減させて運転を継続させた場合、吸収液14中のORPをORP計18で計測した結果、吸収液14中のORPが閾値より高くなるような過酸化状態と判断する場合には、ブロア60から水流酸化装置20へ供給する空気21の供給量を低下させる制御を行う。これにより、間引き運転による酸素供給量のさらなる修正をすることができる。
また、これに対して、硫黄分検出部35で硫黄分が所定値以下と判断した場合、その後の運転条件の変動の結果、ORP18を用いて吸収液14中のORP値を計測しておくことで、吸収液14中のORP値が閾値よりも低下した場合、酸素不足状態となっていることがオンラインで確認できる。この場合には、間引き運転により低下させていた空気量を強制的に補うために、ブロア60を稼働させて空気21の導入量を強制的に増加させて、ORP値を適正範囲にすることができる。
本発明の実施例3に係る湿式排煙脱硫装置について、図面を参照して説明する。図13は、実施例3に係る湿式排煙脱硫装置を示す概略図である。図14は、実施例3に係る吸収液の循環ライン系統の平面模式図である。なお、実施例1と実施例2の湿式脱硫装置10A、10Bの構成部材と同一部材については、同一符号を付してその説明は省略する。実施例1及び実施例2においては、水流酸化装置20に供給する吸収液の循環量や水流酸化装置20の運転の本数を制御することで、吸収液貯留槽11A内に導入される空気21の量を減少させ、吸収液貯留槽11A内が酸素過多となることを抑制していたが、本実施例では、水流酸化装置に供給する吸収液の循環量は一定として、空気供給量を調整することで、吸収液貯留槽11A内に導入される空気21の量を減少させるようにする。
図13に示すように、実施例3に係る脱硫装置10Eは、実施例1の脱硫装置10Aにおいて、制御装置40から空気供給ラインL24に空気21の導入量を調整する空気弁V11を設けている。なお、実施例1において制御していた制御装置40からの吸収液14の調整は実行しない。
図14に示すように、空気導入ライン系統は、外部より空気21を導入する空気供給ラインL25と、この空気供給ラインL24から各々分岐して、空気21を水流酸化装置20に供給する空気供給ラインL24(L24-1〜L24-6)とを含む。そして、空気供給ラインL24(L24-1〜L24-6)には、各々空気21の導入のON-OFFを行う空気弁V11(V11-1〜V11-6)を有する。なお、空気供給ラインL24の本数、空気弁V11の本数は限定されるものではない。
そして、制御装置40は、吸収液貯留槽11A内の吸収液14中の硫黄分の割合が、予め設定した所定閾値よりも低い場合、複数の空気弁V11の内の一部の空気弁(例えばV11-1、V11-3、V11-5)の閉鎖を実行し、水流酸化装置20に供給する空気21の供給量の総量を低減させる。この際、本実施例では、吸収液14を循環させる3つの循環ポンプP(P1〜P3)の稼働は変更せず、吸収液供給ラインL22からの水流酸化装置20への吸収液14の循環量は一定としている。
前述した実施例1及び実施例2においては、制御装置40は、硫黄分検出部35で求めた吸収液14の硫黄分(S分)の割合に基づいて、ポンプP(P1〜P3)の稼働を調整したり、稼働させる水流酸化装置20の本数を減らしたりしていたが、本実施例では、このポンプP(P1〜P3)の稼働及び水流酸化装置20の稼働本数の制御を行わず、制御装置40は、硫黄分検出部35で求めた吸収液14の硫黄分(S分)の割合に基づいて、水流酸化装置20へ自給式により引き込まれる空気の流路の開閉を制御する。
制御装置40は、例えば、吸収液14中の硫黄分の割合が、予め設定した所定閾値よりも低い場合(亜硫酸イオン量が低い場合)、空気弁V11(V11-1〜V11-6)の一部を閉鎖する、つまり空気弁V11(V11-1〜V11-6)の一部を間引く制御を行う。この結果、水流酸化装置20から吸収液14が噴射される際、V11(V11-1〜V11-6)の一部が閉鎖された水流酸化装置20からは、縮流効果による空気21の引き込みによる同伴がなくなる。但し、水流酸化装置20からの吸収液14の噴射量は低減することがないので、攪拌効率の低下はない。よって、水流酸化装置20の稼働本数を維持しつつ、吸収液14の噴射に伴い導入される空気21量を調整することができる。
図19は、ボイラ負荷と、空気量とを調整するグラフである。図19に示すように、この空気21の調整は、ボイラ負荷等の硫黄分変動情報39に応じて変更する。すなわち、例えばボイラ負荷が大の場合には、空気量を減らすことができないので、空気供給ラインL24の空気弁V11(V11-1〜V11-6)は閉鎖しないが、ボイラ負荷が小さい場合には、弁V11(V11-1〜V11-6)の一部を閉鎖することで、空気量を低減させる。
この空気導入を間引く運転の一例を図20に示す。図20は、ボイラ負荷による通常運転と間引き運転との空気弁の開閉状態を示す図である。図20に示すように、計画運転(100%負荷運転)の場合には、第1〜第6の空気弁V11-1〜V11-6は全開としている。これに対して、低負荷運転(1)の場合には、第2、第4、第6の空気弁V11-2、V11-4、V11-6を閉じ、第2、第4、第6の水流酸化装置20−2、20−4、20−6への空気21の導入を停止する。なお、循環ポンプP(P1〜P3)の運転を3台とし、水流酸化装置20は全て稼働させているので、ジェット噴流56の勢いが低下することはない。
この際、第2、第4、第6の空気弁V11-2、V11-4、V11-6の閉鎖は段階的に閉じるのが好ましい。これにより大幅な空気減少変動を抑制できる。
この間引き運転を行うことにより、第2、第4、第6の水流酸化装置20−2、20−4、20−6から吸収液貯留槽11A内に供給される空気21の供給量が停止することとなるが、低負荷運転であり、吸収液貯留槽11A内の吸収液14中の亜硫酸イオン濃度が低いので、硫酸イオンに酸化させる空気量も低減することができ、結果として吸収液貯留11A内が過酸化状態となることが抑制される。
ここで、水流酸化装置20への空気の間引き運転の一例としては、複数台の内の偶数号の第2、第4、第6の空気弁V11-2、V11-4、V11-6を閉じ、奇数番号の第1、第3、第5の空気弁V11-1、V11-3、V11-5を開いて、等間隔で運転、停止を行うのが好ましい。これは、例えば第1、第2、第3の空気弁V11-1、V11-2、V11-3を閉じ、第4、第5、第6の空気弁V11-4、V11-5、V11-6を開くような、偏った間引き運転とする場合には、吸収液貯留槽11A内への噴射する空気21が偏在してしまい、酸化効果が偏在し、酸化が不十分となるからである。
なお、空気弁V11を閉鎖して空気21を間引く台数は、処理する亜硫酸イオン濃度により適宜変更する。
このように、制御装置40は、ボイラ負荷等の燃焼機器の運転条件に基づいて、フィードフォワード制御、具体的には空気弁V11(V11-1〜V11-6)に対するフィードフォワード制御を行うことも好ましい。この間引き運転は、ボイラ負荷等の硫黄分変動情報39をフィードフォワードとしてF(x)を設定し、段階的に空気弁V11を閉鎖する制御可能なものとする。
例えば、図20に示す低負荷運転(2)に示すように、第2、第4、第6の空気弁V11-2、V11-4、V11-6を調整弁とし、この調整弁の開度を、制御装置40により調整して、50%を閉鎖(50%半開)することで、第2、第4、第6の水流酸化装置20−2、20−4、20−6への空気21の導入量を50%停止する。この開度を50%調整した場合には、第2、第4、第6の水流酸化装置20−2、20−4、20−6に導入される空気21の引き込み量が低下するので、ジェット噴流56の勢いはそのままで、空気量は半減するので、過酸化状態を回避できる。
また、前述した実施例では空気弁V11-1〜V11-6の制御は、ON-OFF弁を用いて空気の導入を調節していたが、本発明はこれに限定されず、ON-OFF弁を用いる代わりに、空気弁V11の開度を所定量調整することができる調整弁を用いて調整するようにしてもよい。
図21は、ボイラ負荷と、空気量とを空気調整弁で調整するグラフである。空気21の供給の調整を調整弁で行う場合には、図19に示すような段階式に調整するものとは異なり、ボイラ負荷に応じて直線的の空気の流量を制御することができる。
(ブロア設置)
図15は、実施例3に係る他の湿式排煙脱硫装置の吸収液の循環ライン系統の平面模式図である。図15に示す他の湿式排煙脱硫装置は、脱硫装置10Eの各部に加え、ブロア60を備える。ブロア60は、空気導入ラインL25の空気導入端部側に設置されている。ブロア60は、稼働されると空気導入ラインL25に空気(酸素)21を外部から強制的に吹き込み、水流酸化装置20に強制的に空気21を導入する方式である。
また、ブロア60と、このブロア60側に近い空気供給ラインL24-6との間の空気導入ラインL25には、強制的に空気21を放出21aする放風ラインL26が接続されている。そして、この放風ラインL26には、空気21の放出21a用のON−OFFを制御する放風弁V21が設置されている。
図15に示す湿式排煙脱硫装置は、ブロア60を稼動させることで、空気導入ラインL25に空気21を強制的に吹き込み、水流酸化装置20により多くの空気21を供給する。ブロア60を設けることで、水流酸化装置20に導入される空気21を、縮流効果により自給で吸収液貯留槽11A内に導入される空気21よりも多くすることができる。これにより、吸収液貯留槽11Aにより多くの空気21を供給することができ、吸収液貯留槽11A内の酸化能力の向上をさせることができる。
本実施例では、図14に示す脱硫装置10Eのものとは異なり、制御装置40は、硫黄分検出部35で求めた吸収液14の硫黄分(S分)の割合に基づいて、水流酸化装置20へブロア60により強制的に供給する空気の供給量を調整する。空気の調整は、放風弁V21の開度を調整することで、水流酸化装置20に供給する空気供給量を抑制することができる。
すなわち、制御装置40は、例えば、吸収液14中の硫黄分の割合が、予め設定した所定閾値よりも低い場合(亜硫酸イオン量が低い場合)、放風弁V21の開度を調整することで、水流酸化装置20に供給する空気供給量を制御することができる。
この結果、水流酸化装置20から吸収液14が噴射される際、空気の供給量の総量が低減されるので、水流酸化装置20から噴射される吸収液14中の空気21量が低下する。しかしながら、水流酸化装置20からの吸収液14の噴射量は一定であり、低減することがないので、吸収液14による攪拌効率の低下はない。よって、水流酸化装置20の稼働本数を維持しつつ、吸収液14の噴射に伴いブロア60から強制的に導入される空気21量を調整することができる。
さらに、放風弁V21の調整と共に、空気弁V11(V11-1〜V11-6)の一部を閉鎖する、つまり空気弁V11(V11-1〜V11-6)の一部を間引く制御を行うようにしてもよい。この結果、水流酸化装置20から吸収液14が噴射される際、空気弁V11(V11-1〜V11-6)の一部が閉鎖された水流酸化装置20からは、吸収液14により同伴される空気21がなくなるが、水流酸化装置20からの吸収液14の噴射量は低減することがないので、攪拌効率の低下はない。よって、水流酸化装置20の稼働本数を維持しつつ、吸収液14の噴射に伴い導入される空気21量を調整することができる。
なお、放風弁V21を調整して、放風ラインL26から空気21を強制的に放出する代わりに、ブロア60の運転負荷を変更して、水流酸化装置20へ供給する空気量を調整することもできる。
本発明の実施例4に係る湿式排煙脱硫装置について、図面を参照して説明する。図16は、実施例4に係る湿式排煙脱硫装置を示す概略図である。図17は、実施例4に係る湿式排煙脱硫装置の吸収液の循環ライン系統の平面模式図である。
なお、実施例1、実施例2及び実施例3の湿式脱硫装置の構成部材と同一部材については、同一符号を付してその説明は省略する。実施例3に係る脱硫装置10Eでは、水流酸化装置に供給する吸収液の循環量は一定として、空気供給量を調整することで、吸収液貯留槽11A内に導入される空気21の量を減少させるようにしていたが、本実施例では、吸収液の噴射量の調整と空気量の調整とを実行するものである。
図16に示すように、実施例4に係る脱硫装置10Fは、実施例1の脱硫装置10Aにおいて、さらに制御装置40から空気供給ラインL24に空気21の導入量を調整する空気弁V11を設けている。
本実施例に係る脱硫装置10Fでは、実施例1のように、硫黄分検出部35で求めた吸収液14の硫黄分(S分)の割合に基づいて、制御装置40による、複数設置されている水流酸化装置20の運転を間引いて、吸収液貯留槽11A内への吸収液14の噴射量を低下させる調整と、複数ある水流酸化装置20の稼働はそのまま継続し、水流酸化装置20へ供給する吸収液14の供給量をポンプ又は弁により調整することで、吸収液貯留槽11A内への噴射量を低下させる調整と、のいずれか一方又は両方に加えて、水流酸化装置20への空気21の供給を変化させる調整をも併用する。ここで、水流酸化装置20への空気量を変化させる調整は、実施例3で説明したように、空気弁V11のON−OFFの調整、空気弁V11を調整弁とした場合の任意の調整を実行する。
この間引き運転の一例は、図22Aに示すように、計画運転(100%負荷運転)の場合には、吸収液14を供給する第1〜第6の開閉弁V1-1〜V1-6は全開としている。これに対して、低負荷運転(1)の場合には、第2、第4、第6の開閉弁V1-2、V1-4、V1-6を閉じ、第2、第4、第6の水流酸化装置20−2、20−4、20−6への吸収液14の導入を停止する。なお、循環ポンプP(P1〜P3)の運転を3台から2台に変更することで、吸収液14の循環量が低下した場合でも、第1、第3、第5の水流酸化装置20−1、20−3、20−5を稼働させる間引き運転することとしているので、ジェット噴流56の勢いが低下することはない。
この間引き運転を行うことにより、図22Bに示すように、第2、第4、第6の水流酸化装置20−2、20−4、20−6の停止に伴い、空気21の導入も停止され、第1、第3、第5の水流酸化装置20−1、20−3、20−5からの空気21の供給のみとなり、全体として空気供給量は低減することとなる。しかし、ボイラの運転は、低負荷運転であり、吸収液貯留槽11A内の吸収液14中の亜硫酸イオン濃度が低いので、硫酸イオンに酸化させる空気量も低減することができる。この結果、ボイラが低負荷運転の場合において、空気21の導入が制御され、吸収液貯留11A内が過酸化状態となることが抑制され、適正な運転状態を維持することができる。
この第1、第3、第5の水流酸化装置20−1、20−3、20−5を稼働させる間引き運転する際、さらに低負荷運転となるような場合について、低負荷運転(3)として説明する。図22Aは、ボイラ負荷による通常運転と間引き運転との開閉弁の開閉状態を示す図、図22Bは、ボイラ負荷による通常運転と間引き運転との空気弁の開閉状態を示す図である。
低負荷運転(1)の場合には、図22Aに示すように、空気21は、空気供給ラインL24-1、L24-3、L24-5から導入されているが、低負荷運転(3)とする場合には、図22Bに示すように、第3の空気弁V11-3の閉鎖を行うことにより、空気21の導入量をさらに減少させることができる。
この低負荷運転(3)のような運転とするのは、低負荷運転(1)の状態で、酸素の供給を低減させても、まだ酸素が十分に存在することで、酸素過剰となる場合、空気量の調整をすることで、酸素過剰の状態を解消することができる。
図18は、実施例4に係る他の湿式排煙脱硫装置の吸収液の循環ライン系統の平面模式図である。図18に示す他の湿式排煙脱硫装置は、脱硫装置10Fの各部に加え、ブロア60を備える。ブロア60は、空気導入ラインL25の空気導入端部側に設置されている。ブロア60は、稼働されると空気導入ラインL25に空気(酸素)21を外部から強制的に吹き込み、水流酸化装置20に強制的に空気21を導入する方式である。このブロア60を有する強制式の場合には、吸収液14の調整に加えて、図18に示すように、放風弁V21を調整するか空気弁V11を個別に調整する。
この際、ボイラ負荷等の硫黄分変動情報39に応じて変更するに際して、水流酸化装置20からの吸収液14の噴出量と、空気21を水流酸化装置20へ供給する供給量との割合(流量比率)を調整することで、ボイラ負荷に応じた適正な脱硫性能の維持を図ることができる。
10A、10B、10C、10D、10E、10F 湿式排煙脱硫装置(脱硫装置)
11 吸収塔
11a、11b 側壁
11A 吸収液貯留槽
11B 排ガス通路
12 排ガス
13a ガス導入部
13b ガス排出部
14 吸収液
14a 噴出液
15 吸収液噴出部
15a 噴霧部
18 ORP計
20 水流酸化装置
21 空気
22 固液分離機
23 石膏
25 吸収液供給部
35 硫黄分検出部
39 硫黄分変動情報
11 吸収液循環ライン
12 脱硫排水排出ライン
22 吸収液供給ライン
24 空気供給ライン
P(P1〜P3) 循環ポンプ
1(V1-1〜V1-6) 開閉弁
11(V11-1〜V11-6) 空気弁

Claims (13)

  1. 吸収液を貯留する吸収液貯留槽と、燃焼機器から排出された排ガスが通過する排ガス通路とを有し、前記排ガスと前記吸収液とを接触させ、前記排ガスに含まれる硫黄酸化物を前記吸収液に吸収させる吸収塔と、
    前記吸収塔の上部側壁に設けられ、前記排ガスを前記吸収塔に導入するガス導入部と、
    前記排ガス通路に設けられ、前記吸収液を前記吸収塔の空間内に噴出させる吸収液噴出部と、
    前記吸収液貯留槽から前記吸収液噴出部に前記吸収液を供給する複数の吸収液循環ラインと、
    前記吸収液循環ライン上に設けられた複数の循環ポンプと、
    前記吸収液循環ラインから分岐して導入された前記吸収液の一部を空気と共に前記吸収液貯留槽の内部に噴射する複数の水流酸化装置と、
    前記吸収液循環ライン中の吸収液の一部を前記水流酸化装置に供給する吸収液供給ライン及び複数の吸収液分岐ラインと、
    前記吸収液分岐ライン上に設けられた複数の開閉弁と、
    前記吸収液貯留槽内の前記吸収液中の硫黄分の濃度を求める硫黄分検出部と、
    前記硫黄分検出部により求められた前記吸収液貯留槽内の前記吸収液中の前記硫黄分の濃度に基づいて、前記水流酸化装置から噴射する前記吸収液の噴射量、前記水流酸化装置へ供給する前記空気の供給量のいずれか一方又は両方を調整する制御装置と、を備え、
    前記制御装置は、前記開閉弁の開閉を制御することで前記水流酸化装置の運転本数を変化させる制御、及び前記複数の循環ポンプの運転本数を変化させることで前記水流酸化装置へ循環する前記吸収液の循環量を変化させる制御のいずれか又は両方を実行すること、を特徴とする湿式排煙脱硫装置。
  2. 前記水流酸化装置の各々に空気を供給する複数の空気供給ラインと、
    前記空気供給ラインの各々に設けられ、空気の供給量を調節する複数の空気弁と、を備え、
    前記制御装置は、前記水流酸化装置へ供給する空気量を前記空気弁により変化させる制御を実行することを特徴とする請求項1に記載の湿式排煙脱硫装置。
  3. 前記制御装置は、前記吸収液貯留槽内の前記吸収液中の硫黄分の濃度が、予め設定した所定閾値よりも低い場合、前記水流酸化装置の運転本数を減少させることを特徴とする請求項1に記載の湿式排煙脱硫装置。
  4. 前記制御装置は、前記吸収液貯留槽内の前記吸収液中の硫黄分の濃度が、予め設定した所定閾値よりも低い場合、前記循環ポンプの一部の運転を停止し、前記吸収液の循環量を低減させることを特徴とする請求項1から3のいずれか一項に記載の湿式排煙脱硫装置。
  5. 前記制御装置は、前記吸収液貯留槽内の前記吸収液中の硫黄分の濃度が、予め設定した所定閾値よりも低い場合、前記空気弁の一部を閉鎖し、又は前記空気弁の開度を調整し、前記水流酸化装置に供給する前記空気量を低減させることを特徴とする請求項2から4のいずれか一項に記載の湿式排煙脱硫装置。
  6. 前記水流酸化装置は、
    前記吸収液循環ラインから前記吸収液の一部を分岐する前記吸収液分岐ラインと接続する接続部と、
    前記接続部と連通され、内部に流路狭小部を形成した液体供給通路と、
    前記液体供給通路内部の前記流路狭小部の下流域に開口部を有する空気供給通路と、を備えることを特徴とする請求項1から5のいずれか一項に記載の湿式排煙脱硫装置。
  7. 前記制御装置は、複数の前記水流酸化装置の運転を停止する場合、複数の前記水流酸化装置の配列方向において、運転を停止する前記水流酸化装置を一定本数間隔とすることを特徴とする請求項1又は請求項3に記載の湿式排煙脱硫装置。
  8. 前記吸収液貯留槽内に、前記硫黄分検出部に代えて、酸化還元電位を計測する酸化還元電位計を設け、
    前記制御装置は、前記酸化還元電位計で計測した酸化還元電位の計測値に基づいて、前記吸収液貯留槽内の前記吸収液中の硫黄分の濃度を求めることを特徴とする請求項1から7のいずれか一項に記載の湿式排煙脱硫装置。
  9. 前記制御装置は、ボイラ負荷、入口SO2濃度、出口SO2濃度、脱硫率の少なくとも一つの値と、前記吸収液貯留槽内の前記吸収液中の硫黄分の濃度とに基づいて、
    前記水流酸化装置から噴射する前記吸収液の噴射量の調整、前記水流酸化装置へ供給する前記空気の供給量のいずれか一方又は両方を調整することを特徴とする請求項1から8のいずれか一項に記載の湿式排煙脱硫装置。
  10. 前記吸収液貯留槽内に攪拌装置を備え、
    前記攪拌装置は、前記制御装置により起動・停止されることを特徴とする請求項1から9のいずれか一項に記載の湿式排煙脱硫装置。
  11. 前記水流酸化装置へ前記空気を供給するブロアを有し、
    前記制御装置は、前記吸収液中の硫黄分の濃度が閾値より高い場合に、前記ブロアから前記水流酸化装置へ供給する前記空気の供給量を増加させることを特徴とする請求項1から10のいずれか一項に記載の湿式排煙脱硫装置。
  12. 前記水流酸化装置へ前記空気を供給するブロアを有し、
    前記水流酸化装置に供給する前記空気の供給量を調整する際、
    前記制御装置は、前記吸収液中の硫黄分の濃度が閾値より低い場合に、
    前記ブロアから前記水流酸化装置へ供給する前記空気の供給量を低減させることを特徴とする請求項2に記載の湿式排煙脱硫装置。
  13. 燃焼機器から排出された排ガス中の硫黄酸化物を、吸収液及び空気を噴射させる複数の水流酸化装置を備えた吸収液貯留槽と、前記吸収液を吸収塔の空間内に噴出させる吸収液噴出部とを接続する複数の吸収液循環ラインで循環する前記吸収液により接触して除去する際、
    硫黄分検出部により求められた前記吸収液貯留槽の吸収液中の硫黄分の濃度に基づいて、
    前記水流酸化装置から噴射する前記吸収液の噴射量、前記水流酸化装置へ供給する前記空気の供給量のいずれか一方又は両方を制御装置により調整する工程において、
    前記吸収液循環ラインから吸収液供給ラインを介して前記吸収液の一部を供給し、この供給した吸収液を複数の前記水流酸化装置に供給する複数の吸収液分岐ライン上に設けられた複数の開閉弁の開閉を制御することで前記水流酸化装置の運転本数を変化させる制御、及び前記吸収液貯留槽から前記吸収液を抜出し、複数の前記吸収液循環ラインに設けられた複数の循環ポンプの運転本数を変化させることで前記水流酸化装置へ循環する前記吸収液の循環量を変化させる制御のいずれか又は両方を前記制御装置により実行すること、を特徴とする湿式排煙脱硫装置の運転方法。
JP2017529889A 2015-07-23 2016-07-15 湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法 Active JP6660953B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015145818 2015-07-23
JP2015145818 2015-07-23
PCT/JP2016/071045 WO2017014200A1 (ja) 2015-07-23 2016-07-15 湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法

Publications (2)

Publication Number Publication Date
JPWO2017014200A1 JPWO2017014200A1 (ja) 2018-05-31
JP6660953B2 true JP6660953B2 (ja) 2020-03-11

Family

ID=57834965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017529889A Active JP6660953B2 (ja) 2015-07-23 2016-07-15 湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法

Country Status (7)

Country Link
US (1) US10646820B2 (ja)
EP (1) EP3326708B8 (ja)
JP (1) JP6660953B2 (ja)
KR (1) KR102047196B1 (ja)
CN (1) CN107847857B (ja)
PL (1) PL3326708T3 (ja)
WO (1) WO2017014200A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11065576B2 (en) 2018-01-19 2021-07-20 Doosan Heavy Industries & Construction Co., Ltd. Wet flue gas desulfurization apparatus
KR102048539B1 (ko) * 2018-01-19 2019-11-25 두산중공업 주식회사 습식배연 탈황장치
KR102048538B1 (ko) * 2018-01-25 2019-11-25 두산중공업 주식회사 습식배연 탈황장치
CN110075702B (zh) * 2018-01-25 2022-10-04 斗山重工业建设有限公司 同时清除废气中的氮氧化物(NOx)及硫氧化物(SOx)的装置
KR102080570B1 (ko) * 2018-01-25 2020-02-24 두산중공업 주식회사 습식배연 탈황장치
JP7193261B2 (ja) * 2018-07-13 2022-12-20 三菱重工業株式会社 湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、及びこの湿式排煙脱硫装置の制御装置を備えた遠隔監視システム
JP7164344B2 (ja) * 2018-07-23 2022-11-01 三菱重工業株式会社 酸化還元電位決定装置及びそれを備える脱硫装置、並びに酸化還元電位決定方法
CN111151106B (zh) * 2018-11-07 2022-05-24 洛阳德明石化设备有限公司 一种提高wgs脱硫塔气液分离效果的系统及其应用
JP6553277B1 (ja) * 2018-12-11 2019-07-31 三菱日立パワーシステムズ株式会社 気液混合装置、および気液混合装置を備える排ガス脱硫装置
JP6588147B1 (ja) * 2018-12-11 2019-10-09 三菱日立パワーシステムズ株式会社 排ガス脱硫装置
JP2020104043A (ja) * 2018-12-27 2020-07-09 三菱日立パワーシステムズ株式会社 流体送出装置および流体送出装置の改造方法
CN110215826B (zh) * 2019-06-05 2023-09-19 国能(山东)能源环境有限公司 一种循环流化床半干法脱硫除尘双塔解耦切换系统及方法和应用
US11395987B2 (en) * 2019-10-17 2022-07-26 Veolia North America Regeneration Services, Llc Scrubber system improvement for sulfur containing gas streams
CN111013365A (zh) * 2019-12-30 2020-04-17 深圳续盈环保科技有限公司 烟气湿法脱酸装置及方法
CN114867544A (zh) * 2020-07-15 2022-08-05 富士电机株式会社 废气处理装置
US11524759B2 (en) 2020-08-14 2022-12-13 SeaVar LLC Method and process for capturing carbon dioxide from marine engines
KR20220045372A (ko) * 2020-10-05 2022-04-12 주식회사 엘지화학 스트리핑 장치 및 스트리핑 방법
CN116422118B (zh) * 2023-04-18 2024-07-23 中国华电科工集团有限公司 一种烟气脱硫氧化风系统及其使用方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691940B2 (ja) 1986-03-04 1994-11-16 バブコツク日立株式会社 湿式排煙脱硫装置の酸化空気制御方法
JPH084710B2 (ja) * 1986-05-07 1996-01-24 バブコツク日立株式会社 湿式排煙脱硫装置の運転方法
JPH08950A (ja) * 1994-06-20 1996-01-09 Ishikawajima Harima Heavy Ind Co Ltd 気体吹込装置
JPH09327616A (ja) 1996-06-11 1997-12-22 Ishikawajima Harima Heavy Ind Co Ltd 排煙脱硫装置の酸化性物質濃度制御方法及び装置
JP3968457B2 (ja) * 1997-09-30 2007-08-29 バブコック日立株式会社 湿式排煙脱硫方法
US6896851B1 (en) 1998-08-11 2005-05-24 Mitsubishi Heavy Industries, Ltd. Wet type flue gas desulfurization equipment
JP2007007612A (ja) * 2005-07-01 2007-01-18 Mitsubishi Heavy Ind Ltd 排ガス処理装置及び方法
DE102007005494A1 (de) * 2007-01-30 2008-07-31 Dge Dr.-Ing. Günther Engineering Gmbh Verfahren und Anlage zur Gewinnung von flüssigem Methan aus methan- und kohlendioxidhaltigen Rohgasen, insbesondere Biogas
JP5046755B2 (ja) * 2007-06-27 2012-10-10 三菱重工業株式会社 気液接触装置
CN100506354C (zh) * 2007-09-13 2009-07-01 大连理工大学 一种脱除烟气中二氧化硫并副产铁系复合絮凝剂的方法
JP5081000B2 (ja) * 2008-01-26 2012-11-21 中国電力株式会社 湿式排煙脱硫装置の酸化用空気供給量制御方法
CN102794092A (zh) * 2012-07-23 2012-11-28 四川极度电控系统制造有限责任公司 燃煤烟气湿法节能脱硫方法
JP6230818B2 (ja) * 2013-06-06 2017-11-15 三菱日立パワーシステムズ株式会社 排ガス処理装置及び排ガス処理方法
CN104208985B (zh) * 2014-09-29 2016-08-24 长沙华时捷环保科技发展股份有限公司 烟气脱硫方法及系统

Also Published As

Publication number Publication date
JPWO2017014200A1 (ja) 2018-05-31
EP3326708B8 (en) 2020-12-30
EP3326708A4 (en) 2018-07-04
KR20180019721A (ko) 2018-02-26
CN107847857A (zh) 2018-03-27
EP3326708A1 (en) 2018-05-30
PL3326708T3 (pl) 2021-06-28
EP3326708B1 (en) 2020-11-04
CN107847857B (zh) 2021-03-26
US20180200667A1 (en) 2018-07-19
US10646820B2 (en) 2020-05-12
KR102047196B1 (ko) 2019-11-20
WO2017014200A1 (ja) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6660953B2 (ja) 湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法
JP5668244B2 (ja) 排煙脱硫装置と燃焼システムと燃焼方法
JP2013094729A (ja) 排煙脱硫装置
JP6462359B2 (ja) 亜硫酸ガス含有排ガスの脱硫方法および脱硫装置
WO2016158781A1 (ja) 湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法
WO2013118683A1 (ja) 脱硫海水処理システム
JP5437151B2 (ja) 排煙脱硫装置及びこれを備えた酸素燃焼装置と方法
US10040024B2 (en) System for sulphur removal from a flue gas
JP3332678B2 (ja) 湿式排煙脱硫装置
EP3769835A1 (en) Flue gas desulfurization device
WO2014196458A1 (ja) 海水脱硫装置及び海水脱硫システム
JP3337380B2 (ja) 排煙処理方法
JP3337382B2 (ja) 排煙処理方法
JP5991664B2 (ja) 排煙脱硫システム
JP6742830B2 (ja) 傾斜曝気と混合自動回復を備える海水プラント
JP7065161B2 (ja) 脱硫方法および脱硫装置
JP3068452B2 (ja) 湿式排煙脱硫装置
KR100294625B1 (ko) 액발취장치및습식배연탈황시스템내의현탁액농도제어방법
JP3842706B2 (ja) 湿式排煙脱硫装置と方法
JP6985084B2 (ja) 硫黄酸化物を含むガスの脱硫方法および脱硫装置
KR20060101290A (ko) 본질적으로 수평인 통과 흐름을 구비하는 연도 가스 정화장치
KR20190090569A (ko) 습식배연 탈황장치
JP2008178786A (ja) 排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法
JP2011194296A (ja) 排煙脱硫装置
JP2000015043A (ja) 排煙脱硫装置の出口煤塵濃度制御方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200210

R150 Certificate of patent or registration of utility model

Ref document number: 6660953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350