WO2016158781A1 - 湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法 - Google Patents

湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法 Download PDF

Info

Publication number
WO2016158781A1
WO2016158781A1 PCT/JP2016/059690 JP2016059690W WO2016158781A1 WO 2016158781 A1 WO2016158781 A1 WO 2016158781A1 JP 2016059690 W JP2016059690 W JP 2016059690W WO 2016158781 A1 WO2016158781 A1 WO 2016158781A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidation
reducing additive
sulfur
flue gas
additive
Prior art date
Application number
PCT/JP2016/059690
Other languages
English (en)
French (fr)
Inventor
本城 新太郎
紀和 稲葉
岡本 卓也
橋本 淳
直行 神山
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201680017719.3A priority Critical patent/CN107427766B/zh
Priority to JP2017509922A priority patent/JP6522114B2/ja
Priority to RS20210027A priority patent/RS61357B1/sr
Priority to CA2980264A priority patent/CA2980264C/en
Priority to EP16772662.9A priority patent/EP3275529B1/en
Publication of WO2016158781A1 publication Critical patent/WO2016158781A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/505Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound in a spray drying process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the present invention relates to a wet flue gas desulfurization apparatus and an operation method of the wet flue gas desulfurization apparatus.
  • exhaust gas and slurry-like absorption liquid comprising calcium compounds such as limestone
  • a wet flue gas desulfurization device by which gypsum is by-produced by absorbing the sulfur oxide in the exhaust gas into the slurry-like absorption liquid, oxidizing the slurry-like absorption liquid after contact and solid-liquid separation Is widely spread.
  • sulfur dioxide which is the main component of the sulfur oxides in the exhaust gas, is absorbed into the absorption liquid by the reaction and reacts with oxygen in the exhaust gas and oxygen supplied from outside, Generate.
  • the exhaust gas has a low oxygen concentration, and the amount of oxygen in the exhaust gas does not sufficiently oxidize calcium sulfite to gypsum.
  • the wet flue gas desulfurization apparatus promotes the production of gypsum by passing a gas containing oxygen from the outside of the system into the absorption liquid.
  • the concentration of unoxidized calcium sulfite increases, resulting in problems such as inhibition of dissolution of calcium carbonate as an absorbent and deterioration of desulfurization performance.
  • ORP oxidation-reduction potential
  • the oxygen (O 2 ) concentration in the exhaust gas may deviate from the correlation, or the sulfur oxide (SO 2 ) concentration may deviate from the correlation and become low.
  • the flow rate of the air for oxidation introduced into the absorption liquid storage part of the wet flue gas desulfurization apparatus is zero, sulfur oxides are caused by natural oxidation caused by contact between the exhaust gas in the absorption tower and the absorption liquid. Sulfurous acid generated by the absorption of sulfite is sufficiently oxidized.
  • the absorption liquid becomes a peroxidized state due to natural oxidation caused by contact between the exhaust gas in the absorption tower and the absorption liquid, and cannot be controlled to a desired ORP.
  • the ORP is unstable at a very high value of 200 to 1000 mV and becomes a peroxidized state, so that it is a heavy metal ion contained in the exhaust gas such as manganese.
  • Oxidized manganese oxide produces problems such as coloring of gypsum, problems of pH meter malfunction, nozzle clogging problems, and clogging of solid-liquid separators due to the occurrence of manganese scale. appear.
  • selenium in the absorption liquid changes from the state of tetravalent selenium (Se 4+ ) to the state of hexavalent selenium (Se 6+ ) which is difficult to remove, and persulfuric acid and the like are generated in the absorption liquid.
  • the absorption liquid cannot maintain the wastewater treatment standard and needs a separate post-treatment.
  • the oxidation-reduction potential of the absorbing solution is measured with an ORP meter, the supply amount of the gas containing oxygen is adjusted according to the oxidation-reduction potential, and the supply amount of the gas containing the oxygen is reduced.
  • the concentration exceeds the adjustment range, the oxidation inhibitor (silicon-based, fat-based, fatty acid-based, mineral oil-based, alcohol-based, amide-based, phosphate ester-based, metal soap-based antifoaming agent) , Alcohol and glycerin) to adjust the oxidation-reduction potential (Patent Document 1).
  • the input organic substance remains in the absorbent as it is, which is not preferable.
  • the present invention has been made in view of the above-mentioned problems, and for example, even when the amount of oxidizing air supplied to the absorbing liquid reservoir is zero, wet flue gas desulfurization can be controlled to the set ORP. It aims at providing the operating method of an apparatus and a wet flue gas desulfurization apparatus.
  • an absorption tower that removes sulfur oxide in exhaust gas with an absorption liquid
  • an absorption liquid storage section that stores the absorption liquid that has absorbed the sulfur oxide
  • An oxidation-reduction potentiometer for measuring the oxidation-reduction potential of the absorption liquid
  • a reducing additive supply part for supplying a sulfur oxoacid-based reducing additive into the absorption liquid or the absorption liquid storage part
  • the oxidation-reduction potentiometer A control device that controls the reducing additive supply unit based on a measured value of the oxidation-reduction potential of the absorbent measured by the control device, wherein the control device has a measured value of the oxidation-reduction potential, When the upper limit of the appropriate range of the oxidation-reduction potential is exceeded, the reducing additive supply unit is controlled to supply the sulfur oxo acid-based reducing additive.
  • the sulfur oxoacid-based additive is used as an additive for reducing the oxidation-reduction potential. Therefore, the redox potential can be adjusted within an appropriate range.
  • the absorbing solution is not in a peroxidized state, and is a heavy metal ion contained in the gas, for example, the problem of gypsum coloring due to the production of manganese oxide in which manganese is oxidized, the problem of nozzle clogging, the problem of the solid-liquid separator
  • the problem of clogging is solved, and further, the promotion of oxidation from tetravalent selenium to hexavalent selenium is prevented, and a stable desulfurization apparatus can be operated.
  • the sulfur oxo acid-based reducing additive has a valence of 2 to 4 inclusive.
  • the valence of the sulfur oxo acid-based reducing additive By setting the valence of the sulfur oxo acid-based reducing additive to a valence of 2 or more and a valence of 4 or less, the effect of lowering the oxidation-reduction potential is ensured, and the oxidation-reduction potential can be adjusted within an appropriate range.
  • the sulfur oxoacid-based reducing additive is at least one of sodium thiosulfate, sodium metabisulfite, and sodium dithionite.
  • the sulfur oxoacid-based reducing additive is at least one of sodium thiosulfate, sodium metabisulfite and sodium dithionite, even if it is subsequently decomposed, it becomes sulfite ions, preventing a decrease in desulfurization function. Is done.
  • the appropriate range of the oxidation-reduction potential is 50 mV or more and 200 mV or less.
  • the appropriate range of the oxidation-reduction potential to 50 mV or more and 200 mV or less, most of the oxidized mercury ions collected in the absorption liquid are taken into the gypsum side and discharged out of the system together with gypsum. There is no accumulation of mercury ions in the absorption liquid, so that it is prevented from becoming metallic mercury, and re-scattering of mercury can be prevented.
  • an exhaust gas duct that is connected to the absorption tower and discharges the purified gas that has passed through the absorption tower, and a mercury meter that is installed in the exhaust gas duct and measures the concentration of mercury in the purified gas discharged from the absorption tower. And when the value of the mercury meter exceeds a predetermined threshold, the control device controls the reducing additive supply unit to supply the sulfur oxoacid-based reducing additive.
  • the sulfur oxo acid-based reducing additive is supplied, and the ORP is controlled within an appropriate range, so that the mercury concentration in the liquid phase of the absorption liquid is reduced.
  • the mercury concentration is reduced and the mercury concentration in the purified gas is set to a predetermined threshold value or less.
  • the absorption liquid or the absorption liquid storage section includes an oxidizing additive supply section that supplies an oxidizing additive, and the control device supplies the sulfur oxoacid-based reducing additive,
  • the oxidizing additive supply unit is controlled to supply the oxidizing additive.
  • the oxidizing additive is supplied from the oxidizing additive supply unit.
  • the oxidized mercury ions collected in the absorption liquid are prevented from being reduced to become metallic mercury, and mercury is not re-scattered and stable desulfurization can be continued.
  • the operation method of the wet flue gas desulfurization apparatus when the sulfur oxide in the exhaust gas is removed by the absorbent, when the redox potential of the absorbent exceeds the upper limit of the appropriate range, A sulfur oxo acid-based reducing additive is supplied to adjust the oxidation-reduction potential within an appropriate range.
  • this wet flue gas desulfurization apparatus when the oxidation-reduction potential exceeds the upper limit of the appropriate range and it becomes difficult to control the oxidation-reduction potential, as an additive for lowering the oxidation-reduction potential, Since the reducing additive is supplied, the oxidation-reduction potential can be adjusted within an appropriate range.
  • the sulfur oxo acid-based reducing additive has a valence of 2 to 4 inclusive.
  • the valence of the sulfur oxo acid-based reducing additive By setting the valence of the sulfur oxo acid-based reducing additive to a valence of 2 or more and a valence of 4 or less, the effect of lowering the oxidation-reduction potential is ensured, and the oxidation-reduction potential can be adjusted within an appropriate range.
  • the sulfur oxoacid-based reducing additive is at least one of sodium thiosulfate, sodium metabisulfite, and sodium dithionite.
  • the sulfur oxoacid-based reducing additive is at least one of sodium thiosulfate, sodium metabisulfite and sodium dithionite, even if it is subsequently decomposed, it becomes sulfite ions, preventing a decrease in desulfurization function. Is done.
  • the appropriate range of the oxidation-reduction potential is 50 mV or more and 200 mV or less.
  • the appropriate range of the oxidation-reduction potential to 50 mV or more and 200 mV or less, most of the oxidized mercury ions collected in the absorption liquid are taken into the gypsum side and discharged together with the gypsum. There is no accumulation of mercury ions, and it can be prevented from becoming metallic mercury, and re-scattering of mercury can be prevented.
  • the mercury concentration in the purified gas discharged from the absorption tower is measured, and when the measurement result exceeds a predetermined threshold value, the sulfur oxoacid-based reducing additive is supplied, and the mercury concentration is set to the predetermined threshold value. It is characterized as follows.
  • the sulfur oxo acid-based reducing additive is supplied, and the ORP is controlled within an appropriate range, so that the mercury concentration in the liquid phase of the absorption liquid is reduced.
  • the mercury concentration in the absorption liquid is suppressed, and the mercury concentration in the purified gas is set to a predetermined threshold value or less.
  • the oxidizing additive is supplied.
  • the sulfur oxoacid-based reducing additive when the value of the oxidation-reduction potential measured by the oxidation-reduction potentiometer is less than 50 mV, the oxidizing additive is supplied from the oxidizing additive supply unit.
  • the oxidized mercury ions collected in the absorption liquid are prevented from being reduced to become metallic mercury, and mercury is not re-scattered and stable desulfurization can be continued.
  • the sulfur oxoacid-based reducing additive when the absorption liquid in the absorption tower of the wet flue gas desulfurization apparatus is in a peroxidized state and the oxidation-reduction potential exceeds the upper limit of the appropriate range, the sulfur oxoacid-based reducing additive is supplied. By doing so, an excessive oxidation reaction can be suppressed and the oxidation-reduction potential can be controlled within an appropriate range.
  • FIG. 1 is a schematic diagram illustrating a wet flue gas desulfurization apparatus according to a first embodiment.
  • FIG. 2 is a diagram showing the desulfurization test results.
  • FIG. 3 is a schematic diagram illustrating a wet flue gas desulfurization apparatus according to a second embodiment.
  • FIG. 4 is a schematic diagram illustrating a wet flue gas desulfurization apparatus according to a third embodiment.
  • FIG. 1 is a schematic diagram illustrating a wet flue gas desulfurization apparatus according to a first embodiment.
  • a wet flue gas desulfurization apparatus (hereinafter referred to as “desulfurization apparatus”) 10 ⁇ / b>
  • a according to the present embodiment includes sulfur in gas (hereinafter referred to as “exhaust gas”) 12 discharged from a boiler (not shown).
  • ORP meter an oxidation-reduction potential meter that measures an oxidation-reduction potential (ORP, hereinafter referred to as “ORP” in the present embodiment) of the absorbing liquid 14.
  • a sulfur oxo acid-based reducing additive including sulfur oxo acid and a salt of sulfur oxo acid
  • the control device 50 when the measured value of the ORP meter 18 exceeds the upper limit of the appropriate range of the ORP, the sulfur oxo acid-based reducing additive 19 is supplied, and the measured value of the ORP meter 18 is ORP. It adjusts so that it may enter in an appropriate range (for example, 50 mV or more and 200 mV or less).
  • the sulfur oxoacid-based reducing additive 19 is supplied into the absorbing liquid reservoir 11b, but it may be supplied to the absorbing liquid 14.
  • a of desulfurization apparatuses which concern on a present Example are the desulfurization apparatuses of the lime gypsum method,
  • limestone slurry aqueous solution which dissolved limestone powder in water
  • the temperature in an apparatus is 50 degreeC, for example It has become.
  • the exhaust gas 12 contains trace amounts of harmful substances such as mercury in addition to nitrogen oxides and sulfur oxides, as a method of removing mercury in the exhaust gas 12, smoke is removed in the upstream process of the denitration apparatus.
  • a high-temperature exhaust gas in the road is sprayed with a chlorinating agent, and mercury is oxidized (chlorinated) on the denitration catalyst to form water-soluble mercury chloride, which is removed by dissolving it in the absorbent 14 with the desulfurization apparatus 10A. is doing.
  • the absorption liquid 14 for example, limestone slurry is supplied from the absorption liquid supply unit 25 to the absorption liquid storage unit 11 b in the tower bottom of the absorption tower 11.
  • Absorbent solution 14 supplied to the absorption liquid storage portion 11b via a circulation line L 11 is sent to a plurality of spraying section 15a of the absorption tower 11, jetting fluid 14a from the spraying section 15a toward the top portion side It is ejected in the form of a liquid column.
  • the circulation line L 11 is provided with a liquid feed pump P. By liquid feed pump P is driven, the absorption liquid 14 is fed to the spray unit 15a from the circulation line L 11.
  • Exhaust gas 12 is introduced into the absorption tower 11 from a gas introduction part 13.
  • the exhaust gas 12 introduced into the absorption tower 11 rises in the absorption tower 11 and comes into gas-liquid contact with the jet liquid 14a ejected from the spray section 15a toward the tower top side.
  • the exhaust gas 12 and the jet liquid 14a are in gas-liquid contact, sulfur oxide and mercury chloride in the exhaust gas 12 are absorbed by the absorbing liquid 14, and thus are separated from the exhaust gas 12 and removed.
  • the exhaust gas 12 purified by the absorption liquid 14 is discharged from the exhaust gas duct 31 on the tower top side of the absorption tower 11 as the purified gas 32 and is discharged to the outside from a chimney (not shown).
  • the limestone slurry that has absorbed SO x in the exhaust gas 12 is oxidized by the air 17 supplied into the absorption liquid storage section 11b at the bottom of the tower, and the reaction expressed by the following reaction formula (2) with the air 17 is performed.
  • SO x in the exhaust gas 12 is captured in the absorption tower 11 in the form of gypsum (CaSO 4 .2H 2 O).
  • the limestone slurry as the absorbing liquid 14 is obtained by pumping up the limestone slurry stored in the absorbing liquid storage section 11b at the bottom of the absorption tower 11, and the absorption of the pumped limestone slurry is used.
  • gypsum CaSO 4 .2H 2 O
  • the limestone slurry mixed with this gypsum is referred to as an absorbent.
  • the solid-liquid separator 22 separates the gypsum 23, which is a solid in the desulfurization waste water 14A, and the liquid separation liquid 14B.
  • the solid-liquid separator 22 for example, a belt filter, a centrifugal separator, a decanter type centrifugal sedimentator, or the like is used. Therefore, the desulfurization waste water 14A discharged from the absorption tower 11 is separated into the solid gypsum 23 and the liquid separation liquid 14B by the solid-liquid separator 22.
  • mercury chloride in the desulfurization waste water 14 ⁇ / b> A that is a part of the absorption liquid 14 is separated from the liquid together with the gypsum 23 while being adsorbed on the gypsum 23.
  • the separated gypsum 23 is discharged outside the system (outside the system).
  • the ORP of the absorbent 14 in the absorbent reservoir 11b is measured by the ORP meter 18, and the appropriate range of ORP is maintained.
  • the ORP meter 18 includes an ORP electrode installed in the absorbing liquid 14 and a measurement unit that measures the ORP based on a measurement signal from the ORP electrode. The ORP value measured by the measuring unit is sent to the control device 50.
  • the ORP electrode may be provided at any location in the absorbent reservoir 11b as long as the ORP of the absorbent 14 can be measured.
  • an ORP electrode can be installed in the circulation line L 11 for circulating the absorbing liquid 14 to measure the ORP of the circulating absorbing liquid 14.
  • the lower limit value of the ORP is set to 50 mV because if it is less than 50 mV, the absorbing solution 14 becomes a reducing region, mercury ions are reduced to become metallic mercury, and mercury is scattered again, which is not preferable.
  • the appropriate range of ORP means that a part of oxidized mercury ions collected in the absorption liquid 14 is prevented from becoming metallic mercury, and there is no re-scattering of mercury, and the absorption liquid 14 is an ORP range in which mercury ions are taken into the gypsum 23 side and no accumulation of mercury ions in the absorption liquid 14 occurs, and is determined for each plant.
  • the appropriate range of ORP is in the range of 50 mV to 200 mV, preferably in the range of 50 mV to 150 mV, more preferably in the range of 80 mV to 150 mV, and even more preferably in the range of 100 mV to 150 mV. is there.
  • the appropriate range of ORP varies from plant to plant and also depending on the operating conditions. Therefore, the appropriate range of ORP is obtained in advance during trial operation. Moreover, since the appropriate range of the ORP may change due to changes in the type of fuel supplied to the boiler and fluctuations in the load on the boiler operation, when the change in the type of fuel supplied to the boiler and the load on the boiler operation change Alternatively, an appropriate range of ORP may be obtained each time. In operation of the plant, an optimum value of one ORP is selected and operated within an appropriate range of ORP.
  • the ORP of the absorption liquid 14 rapidly increases.
  • the ORP appropriate range of the absorbent 14 is 50 mV or more and 200 mV or less
  • the sulfur oxo acid-based reducing additive 19 is stored in the absorbent.
  • the supply amount is adjusted so that the value measured by the ORP meter 18 falls within the appropriate range of ORP (50 mV or more and 200 mV or less).
  • ORP of the absorption liquid 14 can be controlled within an appropriate range.
  • This operation control is performed by the control device 50.
  • the control device 50 supplies from the reducing additive supply unit 20 into the absorption liquid storage unit 11b based on the ORP value of the absorption liquid 14 in the absorption liquid storage unit 11b of the absorption tower 11 measured by the ORP meter 18.
  • the supply amount of the reducing additive 19 is adjusted.
  • the operation control of the control device 50 may be performed automatically, or may be performed manually by an operator.
  • Reducing additive supply unit 20 is provided with a drug supply line L 21 that is inserted into the side wall of the absorption liquid storage portion 11b. Reducing additive supply unit 20 supplies a reducing additive 19 to the absorbent liquid storage unit 11b via the drug supply line L 21.
  • the reducing additive supply unit 20 may have any configuration as long as the reducing additive 19 can be supplied into the absorption liquid storage unit 11b.
  • the reducing additive supply unit 20, circulation line L 11, separated liquid returning line L 14 or from the absorption solution supply unit 25 to the line connecting the absorption liquid storage portion 11b, the connected agent supply line L 21, May be provided.
  • the absorbing liquid 14 is in a peroxidized state, for example, the exhaust gas condition varies depending on the combustion state of the boiler, and the oxygen in the exhaust gas
  • the sulfur oxide (SO x ) concentration in the exhaust gas becomes lower than expected and oxidizes sulfurous acid.
  • the required amount of oxygen (O 2 ) for the reduction is reduced, or when the foaming property of the absorbing liquid 14 becomes very high due to organic substances (for example, fatty acids and phthalic acids) mixed with coal. .
  • the peroxidation state is monitored as in any one of 1) to 3) below.
  • the ORP of the absorbing liquid 14 is measured by the ORP meter 18. For example, when an ORP of 50 mV or more and 200 mV or less is set as an appropriate range of ORP, when the ORP of the absorbent 14 exceeds the upper limit of 200 mV of the appropriate range of ORP, for example, about 300 mV to 1000 mV, it is in a peroxidized state. It is judged. 2) The coloring degree of the gypsum slurry which is the absorption liquid 14 is confirmed.
  • Absorbing solution extracted from the circulation line L 11 for the gypsum separation (desulfurization effluent) 14A it is visually confirmed or colorimeter its coloring degree.
  • the gypsum slurry is colored, for example, black or brown, it is considered that a heavy metal ion contained in the exhaust gas, for example, manganese oxide in which manganese is oxidized, is generated, so it is determined to be in a peroxidized state. Is done. 3)
  • the degree of coloring of the gypsum 23 after dehydration in the solid-liquid separator 22 is confirmed.
  • the degree of coloring of the gypsum 23 is confirmed visually or by a colorimeter.
  • the gypsum 23 is colored black or brown, it is considered that manganese oxide is generated, and thus it is determined that the gypsum 23 is in a peroxidized state.
  • the sulfur oxo acid-based reducing additive 19 used in this example is a conventionally known reducing additive (for example, silicon-based, oil-based, fatty acid-based, mineral oil-based, alcohol-based, amide-based, phosphate ester-based, metal Soap-based antifoaming agents, alcohol and glycerin) have different properties.
  • a conventionally known reducing additive for example, silicon-based, oil-based, fatty acid-based, mineral oil-based, alcohol-based, amide-based, phosphate ester-based, metal Soap-based antifoaming agents, alcohol and glycerin
  • a conventionally known reducing additive for example, silicon-based, oil-based, fatty acid-based, mineral oil-based, alcohol-based, amide-based, phosphate ester-based, metal Soap-based antifoaming agents, alcohol and glycerin
  • the sulfur oxo acid-based reducing additive is represented by ions, it is represented by the following general formula (A).
  • the valence x of [S] is computed from a following formula (B).
  • a sulfur oxoacid-based reducing additive having a valence x of 2, 3, or 4 is desirable.
  • Formula (A) x (2z ⁇ n) / y
  • a drug such as thiosulfuric acid, metabisulfurous acid, dithionite or the like can be used.
  • sodium thiosulfate Na 2 S 2 O 3
  • sodium metabisulfite Na 2 S 2 O 5
  • sodium dithionite Na At least one of 2 S 2 O 4
  • at least two kinds of sodium thiosulfate Na 2 S 2 O 3
  • sodium metabisulfite Na 2 S 2 O 5
  • sodium dithionite Na 2 S 2 O 4
  • the sulfur oxo acid-based reducing additive 19 has good reducing properties and is easily decomposed in the absorbing solution 14. Further, when the sulfur oxo acid-based reducing additive 19 is oxidized, it becomes sulfite ions. This sulfite ion is present in the absorption liquid 14 in the lime gypsum method, and therefore, even when the sulfur oxo acid-based reducing additive 19 is supplied, the function of desulfurization is not deteriorated.
  • Examples of other reducing agents among the sulfur oxoacid-based agents include sodium sulfite (Na 2 SO 3 ) and sodium bisulfite (NaHSO 3 ).
  • sodium sulfite Na 2 SO 3
  • sodium bisulfite NaHSO 3
  • these chemicals are consumed in advance in the absorption liquid 14 and become less reducible in the peroxidized state. As a result, these agents cannot exhibit the effect of suppressing oxidation due to the addition of a small amount, so that they are not suitable as the reducing additive 19 of this example.
  • the sulfur oxo acid-based reducing additive 19 those having a small valence of [S] are preferable.
  • the reason why a small valence of [S] is good is, for example, sodium thiosulfate (Na 2 S 2 O 3 ), sodium metabisulfite (Na 2 S 2 O 5 ), sodium dithionite (Na 2). This will be described below with reference to the reaction mechanism when S 2 O 4 ) is used.
  • Sodium thiosulfate (Na 2 S 2 O 3 ) has a bivalent [S] valence.
  • the dissociation formula of sodium thiosulfate is as follows. Na 2 S 2 O 3 ⁇ 2Na + S 2 O 3 2- (I) S 2 O 3 2- + 3H 2 O ⁇ 2HSO 3 - + 4H + + 4e - ⁇ (II)
  • Sodium dithionite (Na 2 S 2 O 4 ) has a trivalent valence of [S].
  • the dissociation formula of sodium dithionite is as follows. Na 2 S 2 O 4 ⁇ 2Na + S 2 O 4 2- (III) S 2 O 4 2- + 2H 2 O ⁇ 2HSO 3 - + 2H + + 2e - ⁇ (IV)
  • Sodium metabisulfite (Na 2 S 2 O 5 ) has a valence of [S] of 4.
  • the dissociation formula of sodium metabisulfite is as follows. Na 2 S 2 O 5 ⁇ 2Na + S 2 O 5 2- (V) S 2 O 5 2- + H 2 O ⁇ 2HSO 3 - ⁇ (VI)
  • Function I is that it is possible to reduce the peroxide material accumulated in the high ORP operation in the absorbent 14. This is because if the peroxide substance is accumulated in the absorbing solution, it cannot be adjusted within the appropriate range of ORP only by the amount of oxidized air.
  • the dissociation formula of oxygen (O 2 ) is the following formula (VII). 4OH ⁇ ⁇ 2H 2 O + O 2 + 4e ⁇ (VII)
  • Dissociation formulas of sodium thiosulfate (Na 2 S 2 O 3 ) are the above-described formulas (I) and (II).
  • Formula (II) shows an equilibrium formula in which sulfur oxoacid ions (here, S 2 O 3 2 ⁇ ) are hydrolyzed to become HSO 3 ⁇ + 4H + .
  • the amount of oxo acid (here, sodium thiosulfate (Na 2 S 2 O 3 )) added becomes small. Therefore, the sulfur oxo acid-based reducing additive 19 preferably has a small [S] valence. Therefore, among the sulfur oxo acid-based reducing additives 19, sodium thiosulfate (Na 2 S 2 O 3 ) having a small [S] valence of 2 is a preferable reducing additive.
  • the upper limit of the valence of [S] of the sulfur oxoacid-based reducing additive is preferably tetravalent, and the range of the valence of [S] of the sulfur oxoacid-based reducing additive is from 2 to 4 It is preferable to make it below the value. It is necessary that the valence of [S] be equal to or stronger than that of tetravalent sulfurous acid, be water-soluble and coexist as ions, and need not be in a range that does not cause further oxidation inhibition. Because.
  • FIG. 2 is a diagram showing the desulfurization test results. As shown in FIG. 2, when the liquid phase mercury concentration at the high ORP of 500 mV is 100%, the liquid phase mercury concentration after the sodium thiosulfate is added and lowered to 200 mV is reduced to 3%. 97% removed. Further, assuming that the re-scattered mercury concentration when the high ORP is 500 mV is 100%, the re-scattered mercury concentration after the sodium thiosulfate is added and reduced to 200 mV is reduced to 10%, and 90% is removed. .
  • the desulfurization apparatus 10A for example, when the exhaust gas 12 from the coal fired boiler is introduced into the absorption tower 11 from the gas introduction unit 13, the effluent 14a and the exhaust gas 12 of the absorbing liquid 14 of the circulating limestone slurry And SO 2 in the exhaust gas 12 is removed by the absorbing liquid 14.
  • a predetermined amount of air 17 is supplied into the absorption liquid storage section 11b of the absorption tower 11, and the absorption liquid 14 is adjusted to have an appropriate ORP (for example, 150 mV).
  • the sulfur oxo acid-based reducing additive 19 is supplied from the reducing additive supply unit 20 into the absorption liquid storage unit 11b in the absorption tower 11, and the amount of supply is within an appropriate range of the ORP measured by the ORP meter 18 (for example, 50 mV or more and 200 mV or less). Adjust so that Note that when the measured value by the ORP meter 18 falls within the ORP appropriate range (for example, 50 mV or more and 200 mV or less), the supply of the reducing additive 19 is stopped.
  • the desulfurization apparatus 10A has a sulfur oxoacid-based reducibility when the absorption liquid 14 in the absorption liquid storage section 11b of the absorption tower 11 is in a peroxidized state and exceeds the upper limit of the appropriate range of ORP.
  • the ORP can be lowered and the ORP of the absorbent 14 can be controlled within an appropriate range.
  • the absorbing solution is not in a peroxidized state, preventing re-scattering of mercury, and preventing oxidation from tetravalent selenium to hexavalent selenium. Further, corrosion due to the generation of Mn scale is suppressed, and a stable desulfurization apparatus can be operated.
  • the sulfur oxo acid-based reducing additive 19 since the sulfur oxo acid-based reducing additive 19 is used, even if it is subsequently decomposed, it becomes sulfite ions and the like, so that the desulfurization function can be lowered. No. Further, unlike the case where a reducing agent (for example, silicon-based, oil-based, etc.) as proposed in the prior art remains as it is, the reducing additive 19 does not remain due to decomposition, and a high-purity gypsum can be obtained.
  • a reducing agent for example, silicon-based, oil-based, etc.
  • FIG. 3 is a schematic view showing a wet flue gas desulfurization apparatus according to the present embodiment.
  • symbol is attached
  • the desulfurization apparatus 10B according to the present embodiment has a mercury meter 40 installed in the vicinity of the exhaust gas duct 31 that discharges the purified gas 32 in the desulfurization apparatus 10A of the first embodiment.
  • the sulfur oxo acid-based reducing additive 19 such as sodium thiosulfate as in Example 1
  • the ORP in the ORP meter 18 is adjusted within an appropriate range
  • the exhaust is discharged from the absorption tower 11.
  • the mercury concentration in the purified gas 32 is measured with a mercury meter 40.
  • the sulfur oxo acid-based reducing additive 19 is further supplied so that the value of the mercury meter 40 is made equal to or lower than the predetermined threshold value.
  • the predetermined threshold value for mercury can be, for example, a reference value for mercury emission from a chimney.
  • the control device 50 further uses, for example, sodium thiosulfate as a reducing agent.
  • the sulfur oxo acid-based reducing additive 19 may be supplied to prevent re-scattering of mercury.
  • FIG. 4 is a schematic view showing a wet flue gas desulfurization apparatus according to the present embodiment.
  • symbol is attached
  • the desulfurization apparatus 10 ⁇ / b> C according to the present embodiment is the same as the desulfurization apparatus 10 ⁇ / b> A according to the first embodiment, in which the oxidizing additive 51 is supplied to the absorbent 14 or the absorbent reservoir 11 b.
  • the oxidizing additive 51 is supplied from the oxidizing additive supplying unit 52. Supply.
  • This operation control is performed by the control device 50.
  • the control device 50 measures the ORP value of the absorbent 14 in the absorbent reservoir 11b of the absorption tower 11 using the ORP meter 18, and absorbs the absorbent from the oxidizing additive supply unit 52 based on the measured ORP value.
  • the supply amount of the oxidizing additive 51 supplied into the storage part 11b is adjusted. This operation control may be performed automatically, or may be performed manually by an operator.
  • Oxidizing additive supply unit 52 is provided with a drug supply line L 22 that is inserted into the side wall of the absorption liquid storage portion 11b. Oxidizing additive supply unit 52 supplies the oxidizing additive 51 to the absorbent liquid storage unit 11b via the drug supply line L 22.
  • the oxidizing additive supply unit 52 may have any configuration as long as the oxidizing additive 51 can be supplied into the absorption liquid storage unit 11b. For example, the oxidizing additive supply unit 52 connects the drug supply line L 22 connected to the circulation line L 11 , the separation liquid return line L 14 or the line connecting the absorption liquid supply unit 25 into the absorption liquid storage unit 11 b. You may have.
  • the oxidizing additive supply unit 52 connected absorption liquid 14 flowing in the circulation line L 11, separated liquid 14B through the separated liquid return line L 14 or from the absorption solution supply unit 25, the absorbent liquid storage unit 11b the absorption liquid 14 flowing in the line which supplies the oxidizing additive 51 through the drug supply line L 22.
  • the ORP When the ORP is lowered by the supply of the sulfur oxoacid-based reducing additive 19 and becomes a reduction region of less than 50 mV, some of the oxidized mercury ions are reduced to metallic mercury, and the mercury is re-scattered. Will occur. Therefore, the oxidizing additive 51 is supplied from the oxidizing additive supply unit 52, and the ORP is controlled within an appropriate range of ORP (for example, 50 mV or more and 200 mV or less).
  • the oxidizing additive 51 in this embodiment for example, an oxo acid-based oxidizing agent such as hydrogen peroxide, persulfuric acid and hypochlorous acid can be exemplified. Since these oxidizing additives 51 are also decomposed (reduced by absorbed SO 2 (sulfite ions)) in the absorbent 14 in the absorbent reservoir 11b of the absorption tower and do not remain in the gypsum 23. ,preferable.
  • the ejection part is in the form of a liquid column tower in which an absorbing liquid that absorbs sulfur oxide in exhaust gas is ejected upward from a spray nozzle or the like to drop liquid droplets.
  • the present invention is not limited to this.
  • the present invention may be of a spray tower type in which the ejection portion drops as a droplet, for example, directly from a spray nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

 排ガス中の硫黄酸化物を吸収液14で除去する吸収塔11と、硫黄酸化物を吸収した吸収液を貯留する吸収液貯留部11bと、吸収液14の酸化還元電位を計測する酸化還元電位計18と、吸収液14又は吸収液貯留部11b内に硫黄オキソ酸系の還元性添加剤19を供給する還元性添加剤供給部20と、酸化還元電位計18により計測された吸収液14の酸化還元電位の計測値に基づいて還元性添加剤供給部20を制御する制御装置50と、を備え、制御装置50は、酸化還元電位の計測値が、酸化還元電位の適正範囲の上限を超えた場合、還元性添加剤供給部20を制御して、硫黄オキソ酸系の還元性添加剤19を供給する。

Description

湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法
 本発明は、湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法に関する。
 例えば火力発電所等で重油や石炭等を燃焼して発生する排ガス中の硫黄酸化物を除去する脱硫設備としては、吸収塔において排ガスとスラリー状の吸収液(石灰石などのカルシウム化合物よりなるもの)とを接触させて、排ガス中の硫黄酸化物をスラリー状の吸収液に吸収し、接触後の該スラリー状吸収液を酸化して固液分離することにより石膏を副生する湿式排煙脱硫装置が広く普及している。
 この場合の排ガス中の硫黄酸化物のうち主となる成分である二酸化硫黄(SO2)は、反応により吸収液に吸収され、排ガス中の酸素や外部から供給される酸素と反応し、石膏を生成する。
 ところで、排ガスは、酸素濃度が低く、排ガス中の酸素量では亜硫酸カルシウムから石膏への酸化が充分に行われない。このため、湿式排煙脱硫装置は、系外から酸素を含む気体を吸収液中に通気し石膏の生成を促進させる。酸素を含む気体の通気流量が少ない場合、未酸化の亜硫酸カルシウムの濃度が増加するため、吸収剤である炭酸カルシウムの溶解の阻害、脱硫の性能の低下等の不具合を生ずる。
 一方、亜硫酸カルシウムから石膏への転化率を高めに維持しようとすれば、ボイラ負荷変動等を考慮して前記酸素を含む気体を過剰に供給せざるを得ず、ランニングコストの増大およびS26やS28等の過酸化物の生成要因となり排水のCOD(Chemical Oxygen Demand)の増大につながる。従って、酸素を含む気体の通気流量を適正範囲内に調整することが必要である。
 亜硫酸カルシウムの酸化に係る酸素を含む気体の通気流量を調整する制御方法に関しては酸化還元電位(以下、「ORP」と称す)によるものが知られている。すなわち、従来のORPによる通気流量の制御方法はORPと亜硫酸濃度の相関関係を求めた結果から予めORPの設定値を決定し、吸収液のORPを連続的に検出した信号とORPの設定値との偏差信号により通気流量を制御するものであった。
 しかしながら、例えばボイラの燃焼状態によっては、排ガス中の酸素(O2)濃度が相関関係から外れて高くなる場合、または硫黄酸化物(SO2)の濃度が相関関係から外れて低くなる場合がある。このような場合、湿式排煙脱硫装置の吸収液貯留部に導入する酸化用の空気の通気流量を零としても、吸収塔内の排ガスと吸収液との接触によって起こる自然酸化により、硫黄酸化物の吸収により生成した亜硫酸が十分に酸化される。さらに吸収塔内の排ガスと吸収液の接触によって起こる自然酸化により、吸収液が過酸化状態となり、所望のORPに制御できない、という問題がある。
 例えばORPを適正値で制御するように設計した場合でも、ORPが200~1000mVと非常に高い値で不安定に推移し過酸化状態になる事で、排ガス中に含まれる重金属イオンである例えばマンガンが酸化された酸化マンガンの生成により、石膏の着色の問題や、マンガンスケールの発生に起因して、pH計の誤作動の問題、ノズル閉塞の問題および固液分離機の目詰まりの問題等が発生する。また、吸収液中のセレンが4価のセレン(Se4+)の状態から除去の難しい6価のセレン(Se6+)の状態となると共に、吸収液中に過硫酸等が生成することにより、吸収液は排水処理基準を維持することができず、別途後処理が必要となる、という問題がある。
 このため、従来においては、吸収液の酸化還元電位をORP計で計測し、該酸化還元電位に応じて酸素を含む気体の供給量を調整し、該酸化還元電位が酸素を含む気体の供給量による調整範囲を超えて高くなった場合に、該吸収液に酸化抑制剤(シリコン系、油脂系、脂肪酸系、鉱油系、アルコール系、アミド系、リン酸エステル系、金属せっけん系の消泡剤、アルコールおよびグリセリン)を供給して該酸化還元電位を調整することの提案がある(特許文献1)。
特開2003-340238号公報
 しかしながら、特許文献1で提案する酸化抑制剤を用いてORPを調整する場合では、酸化抑制剤が過剰に供給されると、湿式脱硫装置での酸化阻害を引き起こすという問題がある。また、石膏に酸化抑制剤が混入することで、石膏の純度や白色度を低下させたりして、副生物である石膏の品質を下げる可能性がある。
 また、酸化抑制剤として、例えば有機物を入れる場合には、投入した有機物がそのまま吸収液中に残留するので好ましくない。
 また、酸化抑制剤を投入してORPを制御する場合、この酸化抑制剤を多量に投入した結果、その後酸化用の空気を投入しても酸化ができないような場合が発生する。
 本発明は、前記課題に鑑みてなされたものであって、例えば吸収液貯留部に供給する酸化用の空気の量を零にした場合でも、設定したORPに制御することができる湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法を提供することを目的とする。
 本発明の一つの見地の湿式排煙脱硫装置によると、排ガス中の硫黄酸化物を吸収液で除去する吸収塔と、前記硫黄酸化物を吸収した吸収液を貯留する吸収液貯留部と、前記吸収液の酸化還元電位を計測する酸化還元電位計と、前記吸収液又は前記吸収液貯留部内に硫黄オキソ酸系の還元性添加剤を供給する還元性添加剤供給部と、前記酸化還元電位計により計測された前記吸収液の前記酸化還元電位の計測値に基づいて前記還元性添加剤供給部を制御する制御装置と、を備え、前記制御装置は、前記酸化還元電位の計測値が、前記酸化還元電位の適正範囲の上限を超えた場合、前記還元性添加剤供給部を制御して、前記硫黄オキソ酸系の還元性添加剤を供給することを特徴とする。
 本湿式排煙脱硫装置によれば、酸化還元電位が酸化還元電位の適正範囲の上限を超えて、酸化還元電位の制御が困難となる場合、酸化還元電位を下げる添加剤として、硫黄オキソ酸系の還元性添加剤を供給するので、酸化還元電位を適正範囲内に調整することができる。この結果、吸収液は過酸化の状態ではなくなり、ガス中に含まれる重金属イオンである、例えばマンガンが酸化された酸化マンガンの生成による石膏の着色の問題、ノズル閉塞の問題、固液分離器の目詰まりの問題が解消され、さらには4価のセレンから6価のセレンへの酸化の促進が防止され、安定した脱硫装置の運転を行うことができる。
 好ましくは、前記硫黄オキソ酸系の還元性添加剤の価数が、2価以上4価以下であることを特徴とする。
 前記硫黄オキソ酸系の還元性添加剤の価数を、2価以上4価以下とすることで、酸化還元電位を下げる作用が確実となり、酸化還元電位を適正範囲内に調整することができる。
 好ましくは、前記硫黄オキソ酸系の還元性添加剤が、チオ硫酸ナトリウム、メタ重亜硫酸ナトリウム及び亜ジチオン酸ナトリウムの少なくとも1つであることを特徴とする。
 前記硫黄オキソ酸系の還元性添加剤が、チオ硫酸ナトリウム、メタ重亜硫酸ナトリウム及び亜ジチオン酸ナトリウムの少なくとも1つであるので、その後分解されても、亜硫酸イオンとなり、脱硫の機能の低下が防止される。
 好ましくは、前記酸化還元電位の適正範囲が50mV以上200mV以下であることを特徴とする。
 酸化還元電位の適正範囲を50mV以上200mV以下とすることで、吸収液内に捕集されている酸化された水銀イオンの大部分が石膏側に取り込まれ、石膏とともに系外に排出されるため、吸収液中での水銀イオンの蓄積がなく、金属水銀となるのが防止され、水銀の再飛散を防止することができる。
 好ましくは、前記吸収塔に接続され、前記吸収塔を通過した浄化ガスを排出する排ガスダクトと、前記排ガスダクトに設置され、前記吸収塔から排出される浄化ガス中の水銀濃度を計測する水銀計と、を備え、前記制御装置は、前記水銀計の値が所定閾値を超える場合に、前記還元性添加剤供給部を制御して、前記硫黄オキソ酸系の還元性添加剤を供給することを特徴とする。
 浄化ガス中の水銀濃度が所定の閾値を超える場合には、前記硫黄オキソ酸系の還元性添加剤を供給し、ORPを適正範囲内に制御することで、吸収液の液相の水銀濃度を低下させ、吸収液から水銀が飛散するのを抑制し、浄化ガス中の水銀濃度を所定の閾値以下とする。
 好ましくは、前記吸収液又は前記吸収液貯留部内に、酸化性添加剤を供給する酸化性添加剤供給部を備え、前記制御装置は、前記硫黄オキソ酸系の還元性添加剤を供給した結果、前記酸化還元電位計で計測した吸収液の計測値が50mV未満の場合、前記酸化性添加剤供給部を制御して、酸化性添加剤を供給することを特徴とする。
 硫黄オキソ酸系の還元性添加剤を供給した結果、前記酸化還元電位計で計測した吸収液の計測値が50mV未満の場合、前記酸化性添加剤供給部から酸化性添加剤を供給することで、吸収液内に捕集されている酸化された水銀イオンが還元されて金属水銀となるのが防止され、水銀は再飛散せず安定した脱硫を継続することができる。
 本発明のもう一つの見地の湿式排煙脱硫装置の運転方法によると、排ガス中の硫黄酸化物を吸収液により除去する際、前記吸収液の酸化還元電位が適正範囲の上限を超えた場合、硫黄オキソ酸系の還元性添加剤を供給し、前記酸化還元電位を適正範囲内に調整することを特徴とする。
 本湿式排煙脱硫装置の運転方法によれば、酸化還元電位が適正範囲の上限を超えて、酸化還元電位の制御が困難となる場合、酸化還元電位を下げる添加剤として、硫黄オキソ酸系の還元性添加剤を供給するので、酸化還元電位を適正範囲内に調整することができる。
 好ましくは、前記硫黄オキソ酸系の還元性添加剤の価数が、2価以上4価以下であることを特徴とする。
 前記硫黄オキソ酸系の還元性添加剤の価数を、2価以上4価以下とすることで、酸化還元電位を下げる作用が確実となり、酸化還元電位を適正範囲内に調整することができる。
 好ましくは、前記硫黄オキソ酸系の還元性添加剤が、チオ硫酸ナトリウム、メタ重亜硫酸ナトリウム及び亜ジチオン酸ナトリウムの少なくとも1つであることを特徴とする。
 前記硫黄オキソ酸系の還元性添加剤が、チオ硫酸ナトリウム、メタ重亜硫酸ナトリウム及び亜ジチオン酸ナトリウムの少なくとも1つであるので、その後分解されても、亜硫酸イオンとなり、脱硫の機能の低下が防止される。
 好ましくは、前記酸化還元電位の適正範囲が50mV以上200mV以下であることを特徴とする。
 酸化還元電位の適正範囲を50mV以上200mV以下とすることで、吸収液内に捕集されている酸化された水銀イオンの大部分が石膏側に取り込まれ、石膏とともに排出されるため、吸収液中での水銀イオンの蓄積がなく、金属水銀となるのが防止され、水銀の再飛散を防止することができる。
 好ましくは、吸収塔から排出される浄化ガス中の水銀濃度を計測し、計測の結果所定の閾値を超える場合に、前記硫黄オキソ酸系の還元性添加剤を供給し、水銀濃度を所定の閾値以下とすることを特徴とする。
 浄化ガス中の水銀濃度が所定の閾値を超える場合には、前記硫黄オキソ酸系の還元性添加剤を供給し、ORPを適正範囲内に制御することで、吸収液の液相の水銀濃度を低下させ、吸収液中の水銀の再飛散を抑制し、浄化ガス中の水銀濃度を所定の閾値以下とする。
 好ましくは、前記硫黄オキソ酸系の還元性添加剤を供給した結果、計測した吸収液の酸化還元電位の値が50mV未満の場合、酸化性添加剤を供給することを特徴とする。
 硫黄オキソ酸系の還元性添加剤を供給した結果、前記酸化還元電位計で計測した酸化還元電位の値が50mV未満の場合、前記酸化性添加剤供給部から酸化性添加剤を供給することで、吸収液内に捕集されている酸化された水銀イオンが還元されて金属水銀となるのが防止され、水銀は再飛散せず安定した脱硫を継続することができる。
 本発明によれば、湿式排煙脱硫装置の吸収塔内での吸収液が過酸化状態となり、酸化還元電位が適正範囲の上限を超えた場合に、硫黄オキソ酸系の還元性添加剤を供給することで過剰な酸化反応を抑制し、酸化還元電位を適正範囲内に制御することができる。
図1は、実施例1に係る湿式排煙脱硫装置を示す概略図である。 図2は、脱硫試験結果を示す図である。 図3は、実施例2に係る湿式排煙脱硫装置を示す概略図である。 図4は、実施例3に係る湿式排煙脱硫装置を示す概略図である。
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、本発明の下記の実施例により本発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施例を適宜組み合わせて構成することが可能である。
 本発明の実施例1に係る湿式排煙脱硫装置について、図面を参照して説明する。図1は、実施例1に係る湿式排煙脱硫装置を示す概略図である。図1に示すように、本実施例に係る湿式排煙脱硫装置(以下「脱硫装置」という)10Aは、ボイラ(図示せず)から排出されるガス(以下「排ガス」という)12中の硫黄酸化物を吸収液14で除去する吸収塔11と、吸収塔11の側壁11aに設けられ、排ガス12を導入するガス導入部13と、吸収塔11の下方に設けられて、排ガス12中の硫黄酸化物を吸収した吸収液14を貯留する吸収液貯留部11bと、吸収液貯留部11bから吸収液14を循環させる循環ラインL11と、吸収塔11の中間近傍に設けられ、循環ラインL11により供給された吸収液14を、噴霧部(例えばノズル)15aにより噴出液14aとして上方に噴出させる噴出部15と、吸収液貯留部11b内に、吹込み部(例えばノズル)16aから空気17を供給する空気導入部16と、吸収液14の酸化還元電位(Oxidation-reduction Potential;ORP、以下本実施例では「ORP」という)を計測する酸化還元電位計(以下本実施例では「ORP計」という)18と、吸収液14又は吸収液貯留部11b内に、硫黄オキソ酸系の還元性添加剤(硫黄オキソ酸と硫黄オキソ酸の塩を含む)19を供給する還元性添加剤供給部20と、制御装置50と、を備え、ORP計18の計測値がORPの適正範囲の上限を超えた場合、硫黄オキソ酸系の還元性添加剤19を供給し、ORP計18の計測値がORPの適正範囲(例えば50mV以上200mV以下)内に入るように調整する。なお、本実施例では、吸収液貯留部11b内に硫黄オキソ酸系の還元性添加剤19を供給するようにしているが、吸収液14に供給するようにしても良い。脱硫装置10Aは、循環ラインL11に介装された吸収液14を送液する送液ポンプP、排ガス12中のミストを除去するデミスタ30および浄化ガス32を排出する排ガスダクト31と、循環ラインL11に接続された、吸収液14の一部を抜き出す排出ラインL12と、吸収塔11の吸収液貯留部11bから循環ラインL11、排出ラインL12を介して抜き出した吸収液(以下「脱硫排水」という)14Aから石膏23を固液分離する固液分離機22と、石膏を排出する石膏排出ラインL13と、石膏23が分離された分離液14Bを吸収液貯留部11bに戻す分離液戻しラインL14と、を備える。
 本実施例に係る脱硫装置10Aは、石灰石膏法の脱硫装置であり、吸収液14として例えば石灰石スラリー(水に石灰石粉末を溶解させた水溶液)が用いられ、装置内の温度は例えば50℃となっている。
 ここで、排ガス12には、窒素酸化物や硫黄酸化物の他に水銀等の有害物質が微量に含まれるので、排ガス12中の水銀を除去する方法として、脱硝装置の前流工程で、煙道中の高温の排ガスに、塩素化剤を噴霧し、脱硝触媒上で水銀を酸化(塩素化)させて水溶性の塩化水銀にし、これを、脱硫装置10Aで吸収液14に溶解させることにより除去している。
 吸収液14として、例えば石灰石スラリーが、吸収液供給部25から吸収塔11の塔底部内の吸収液貯留部11bに供給される。吸収液貯留部11bに供給された吸収液14は、循環ラインL11を介して吸収塔11内の複数の噴霧部15aに送られ、この噴霧部15aから塔頂部側に向かって噴出液14aが液柱状に噴出される。循環ラインL11には、送液ポンプPが設けられている。送液ポンプPが駆動されることで、循環ラインL11から噴霧部15aに吸収液14が送られる。吸収塔11には、ガス導入部13から排ガス12が導入される。吸収塔11に導入された排ガス12は、吸収塔11内を上昇して、塔頂部側に向かって噴霧部15aから噴出する噴出液14aと気液接触する。排ガス12と噴出液14aとが気液接触することにより、排ガス12中の硫黄酸化物及び塩化水銀は、吸収液14により吸収されるので、排ガス12から分離されるとともに除去される。吸収液14により浄化された排ガス12は、浄化ガス32として吸収塔11の塔頂部側の排ガスダクト31より排出され、図示しない煙突から外部に放出される。
 吸収液14として石灰石スラリーを用いた場合、吸収塔11の内部において、排ガス12中の亜硫酸ガスSO2は石灰石スラリーと下記反応式(1)で表される反応を生じる。
 SO2+CaCO3→CaSO3+CO2・・・(1)
 さらに、排ガス12中のSOを吸収した石灰石スラリーは、塔底部の吸収液貯留部11b内に供給される空気17により酸化処理され、空気17と下記反応式(2)で表される反応を生じる。
 CaSO3+1/2O2+2H2O→CaSO4・2H2O・・・(2)
 このようにして、排ガス12中のSOは、吸収塔11において石膏(CaSO・2HO)の形で捕獲される。
 また、上記のように、吸収液14としての石灰石スラリーは、吸収塔11の塔底部の吸収液貯留部11bに貯留した石灰石スラリーを揚水したものが用いられるが、この揚水される石灰石スラリーの吸収液14中には、脱硫装置10Aの稼働に伴い、反応式(1)、(2)により石膏(CaSO・2HO)が混合される。以下では、この石膏が混合された石灰石スラリーを吸収液とよぶ。
 吸収塔11内で脱硫に用いる吸収液14は、循環ラインL11により、循環再利用されると共に、この循環ラインL11に接続された排出ラインL12を介して、その一部が脱硫排水14Aとして外部に排出されて、別途固液分離機22に送られ、ここで脱水処理される。
 固液分離機22は、脱硫排水14A中の固形物である石膏23と液体分の分離液14Bとを分離するものである。固液分離機22としては、例えばベルトフィルタ、遠心分離機、デカンタ型遠心沈降機等が用いられる。よって、吸収塔11から排出された脱硫排水14Aは、固液分離機22により固形物の石膏23と液体の分離液14Bとに分離される。この分離の際、吸収液14の一部である脱硫排水14A中の塩化水銀は石膏23に吸着された状態で、該石膏23とともに液体と分離される。分離した石膏23は、システム外部(系外)に排出される。
 一方、固液分離機22からの分離液14Bは、分離液戻しラインL14を介して返送水として、吸収塔11の吸収液貯留部11b内に供給される。
 本実施例では、吸収液貯留部11bの吸収液14のORPをORP計18により計測しており、ORPの適正範囲を維持するようにしている。このORP計18は、吸収液14中に設置されたORP電極と、ORP電極の測定信号をもとにORPを計測する計測部とを有する。計測部で計測されたORPの値は、制御装置50に送られる。ORP電極は、吸収液14のORPを計測できれば、吸収液貯留部11b内のいずれの場所に設けられていてもよい。また、吸収液14を循環させる循環ラインL11内にORP電極を設置して、循環する吸収液14のORPを計測することもできる。
 ここで、ORPの下限値を50mVとするのは、50mV未満では、吸収液14が還元領域となり、水銀イオンが還元され金属水銀となり水銀の再飛散があるので、好ましくないからである。
 ここで、ORPの適正範囲とは、吸収液14内に捕集されている酸化された水銀イオンの一部が金属水銀となるのが防止され、水銀の再飛散がないこと、また、吸収液14中への水銀イオンが石膏23側に取り込まれ、吸収液14中での水銀イオンの蓄積がないORPの範囲であり、プラント毎に決定している。
 一般的には、ORPの適正範囲として、50mV以上200mV以下の範囲、好適には50mV以上150mV以下の範囲、より好適には80mV以上150mV以下の範囲、さらに好適には100mV以上150mV以下の範囲である。
 なお、ORPの適正範囲は、プラント毎に、また運転条件によっても変動するので、試運転の際にORPの適正範囲を予め求めておくようにする。また、ボイラに供給する燃料の種類の変更およびボイラ運転の負荷変動により、ORPの適正範囲が変更する場合もあるので、ボイラに供給する燃料の種類の変更およびボイラ運転の負荷が変動する際にも、ORPの適正範囲をその都度求めるようにしてもよい。
 なお、プラントの運転に際しては、ORPの適正範囲の中で、最適な1つのORPの値を選定して操業するようにしている。
 ところで、例えば吸収液貯留部11bに供給する酸化用の空気17の供給量を零にしても吸収液14が過酸化状態となった場合には、吸収液14のORPが急激に上昇することとなる。
 例えば吸収液14のORPの適正範囲が、50mV以上200mV以下の場合、このORPの適正範囲の上限の200mVを超えるとき、本実施例では、硫黄オキソ酸系の還元性添加剤19を吸収液貯留部11b内に供給し、その供給量を、ORP計18で計測した値がORPの適正範囲(50mV以上200mV以下)内になるように調整している。これにより、吸収液14のORPを適正範囲内に制御することができる。
 この運転制御は、制御装置50により行う。制御装置50は、ORP計18により計測された、吸収塔11の吸収液貯留部11bの吸収液14のORPの値に基づいて吸収液貯留部11b内に還元性添加剤供給部20から供給する還元性添加剤19の供給量を調整する。なお、この制御装置50の運転制御は自動で行うようにしてもよいし、運転作業員が手動により行うようにしてもよい。還元性添加剤供給部20は、吸収液貯留部11bの側壁に挿入された薬剤供給ラインL21を備えている。還元性添加剤供給部20は、薬剤供給ラインL21を介して還元性添加剤19を吸収液貯留部11b内に供給する。還元性添加剤供給部20は、還元性添加剤19を吸収液貯留部11b内に供給できる限り、いかなる構成を有していてもよい。例えば、還元性添加剤供給部20は、循環ラインL11、分離液戻しラインL14、もしくは吸収液供給部25から吸収液貯留部11b内に接続するラインに、接続された薬剤供給ラインL21を備えていてもよい。この場合は、還元性添加剤供給部20は、循環ラインL11を流れる吸収液14、分離液戻しラインL14を流れる分離液14B、もしくは吸収液供給部25から吸収液貯留部11b内に接続するラインを流れる吸収液14に、薬剤供給ラインL21を介して還元性添加剤19を供給する。
 ここで、吸収液貯留部11b内に供給する酸化空気17の量を零にしても吸収液14が過酸化状態となる条件は、例えばボイラの燃焼状態によって排ガス条件が変動し、排ガス中の酸素(O2)濃度が想定より高くなる場合、計画よりも低いS(硫黄)分を含む燃料を焚いた時に、排ガス中の硫黄酸化物(SOx)濃度が想定より低くなり、亜硫酸を酸化するための酸素(O2)の必要量が減少した場合、または石炭に混合される有機物(例えば脂肪酸類およびフタル酸類等)により、吸収液14の発泡性が非常に高くなる場合等が想定される。
 ここで、過酸化状態であることは、以下1)から3)のいずれかのように監視される。
1)吸収液14のORPをORP計18により計測する。例えばORPが50mV以上200mV以下をORPの適正範囲として設定する場合、吸収液14のORPがORPの適正範囲の上限の200mVを超え、例えば300mVから1000mV程度となっているときには、過酸化状態であると判断される。
2)吸収液14である石膏スラリーの着色度合いが確認される。石膏分離のために循環ラインL11から抜き出した吸収液(脱硫排水)14Aの、その着色度合いを目視又は色度計により確認される。
 石膏スラリーが例えば黒又は茶色に着色されている場合は、排ガス中に含まれる重金属イオンである、例えばマンガンが酸化された酸化マンガンが生成していると考えられるため、過酸化状態であると判断される。
3)固液分離機22での脱水後の石膏23の着色度合いが確認される。吸収液14の一部を脱硫排水14Aとして抜出して、例えば脱水した後、石膏23の着色度合いを目視又は色度計により確認される。
 石膏23が黒又は茶色に着色されている場合、酸化マンガンが生成していると考えられるため、過酸化状態であると判断される。
 本実施例で用いる硫黄オキソ酸系の還元性添加剤19は、従来公知の還元性添加剤(例えばシリコン系、油脂系、脂肪酸系、鉱油系、アルコール系、アミド系、リン酸エステル系、金属せっけん系の消泡剤、アルコールおよびグリセリン)とは、その性質が異なる。
 本発明に係る湿式排煙脱硫装置の還元剤として求められる条件としては、還元性が良好であることは勿論、吸収液14中に残留しにくいことが求められる。
 ここで、硫黄オキソ酸系の還元性添加剤をイオンで表記すると、下記一般式(A)で示される。そして、[S]の価数xは、下記式(B)から算出される。本発明では、価数xが2、3又は4である、硫黄オキソ酸系の還元性添加剤であることが望ましい。
 S(y)(z) n-・・・式(A)
 x=(2z-n)/y・・・式(B)
 このような条件に合致する硫黄オキソ酸系の還元性添加剤19は、例えばチオ硫酸、メタ重亜硫酸、亜ジチオン酸等の薬剤を用いることができる。具体的には、硫黄オキソ酸塩としてナトリウム塩とする場合には、例えばチオ硫酸ナトリウム(Na223)、メタ重亜硫酸ナトリウム(Na225)及び亜ジチオン酸ナトリウム(Na224)の少なくとも1つを例示することができるが、これらに限定されるものではない。なお、チオ硫酸ナトリウム(Na223)、メタ重亜硫酸ナトリウム(Na225)、亜ジチオン酸ナトリウム(Na224)の少なくとも2種類を配合するようにしてもよい。
 この硫黄オキソ酸系の還元性添加剤19は、還元性が良好であると共に、吸収液14中では、分解しやすい。また、硫黄オキソ酸系の還元性添加剤19は、酸化されると、亜硫酸イオンとなる。この亜硫酸イオンは、石灰石膏法では、その吸収液14中に存在するので、硫黄オキソ酸系の還元性添加剤19を供給した場合でも、脱硫の機能を低下させることがない。
 なお、硫黄オキソ酸系の薬剤の内で他の還元性薬剤として、例えば亜硫酸ナトリウム(Na2SO3)、重亜硫酸ナトリウム(NaHSO3)も例示することができる。しかしながら、これらの薬剤は、吸収液14内で先行消費され、過酸化の状態では還元性が弱いものとなる。その結果、これらの薬剤は、微量添加による酸化抑制効果が発揮できないので、本実施例の還元性添加剤19としては、不向きとなる。
 さらに、硫黄オキソ酸系の還元性添加剤19として、[S]の価数が小さいものが良好である。この[S]の価数として小さいものが良好である理由について、例えばチオ硫酸ナトリウム(Na223)、メタ重亜硫酸ナトリウム(Na225)、亜ジチオン酸ナトリウム(Na224)を用いた場合の反応メカニズムを参照しつつ以下説明する。
 チオ硫酸ナトリウム(Na223)は、[S]の価数が2価である。チオ硫酸ナトリウムの解離式は以下となる。
 Na223⇔2Na+S23 2-・・・(I)
 S23 2-+3H2O⇔2HSO3 -+4H++4e-・・・(II)
 亜ジチオン酸ナトリウム(Na224)は、[S]の価数が3価である。亜ジチオン酸ナトリウムの解離式は以下となる。
 Na224⇔2Na+S24 2-・・・(III)
 S24 2-+2H2O⇔2HSO3 -+2H++2e-・・・(IV)
 メタ重亜硫酸ナトリウム(Na225)は、[S]の価数が4価である。メタ重亜硫酸ナトリウムの解離式は以下となる。
 Na225⇔2Na+S25 2-・・・(V)
 S25 2-+H2O⇔2HSO3 -・・・(VI)
 ここで、還元性添加剤19の添加によりORPを適正にする観点から下記2点の機能Iおよび機能IIが特に重要となる。
 機能Iは、吸収液14中の高ORP運転で蓄積した過酸化物質を低減できることである。これは、吸収液中に過酸化物質が蓄積していると、酸化空気量のみでは、ORPの適正範囲内に調整することができないからである。
 次に、機能IIは、ORPの適正範囲(例えば50mV以上200mV以下)として、吸収液14内に捕集されている酸化された水銀イオンの大部分が石膏側に取り込まれ、石膏とともに排出されるため、吸収液中での水銀イオンの蓄積がなく、一部が金属水銀となるのが防止され、水銀の再飛散がないことである。
 ここで、吸収液14の溶存O2を還元する反応を、還元性添加剤19としてチオ硫酸ナトリウム(Na223)を用いた場合で説明する。
 酸素(O2)の解離式は、以下の式(VII)となる。
 4OH-⇔2H2O+O2+4e-・・・(VII)
 チオ硫酸ナトリウム(Na223)の解離式は、上述した式(I)、(II)である。
 (II)式は、硫黄オキソ酸イオン(ここではS23 2-)が加水分解し、HSO3 -+4H+になる平衡式を示している。
 (II)式の電位は、ネルンストの式より下記(VIII)式となる。
0=0.491-0.0391pH+0.0148log[HSO3 -2/[S23 2-]・・・(VIII)
 (II)式に示すように、右辺でH+及びe-が発生している事から、左辺では酸化反応が生じており、右辺では還元反応が生じている。ここで[H+]及び[e-]量論係数が大きいほど還元性が高く、(VIII)式で[HSO3 -2/[S23 2-]項が小さくなるので、ORPが低下、即ち還元反応の推進力が高くなる。
 このように、[S]の価数が小さいほど発生する[e-]が多くなるため、チオ硫酸ナトリウム(Na223)を用いる場合には、還元性添加剤19としての添加効果が高くなり、オキソ酸(ここではチオ硫酸ナトリウム(Na223))の添加量が少なくて済むこととなる。よって、硫黄オキソ酸系の還元性添加剤19でも[S]の価数が小さい値が好ましい。よって、硫黄オキソ酸系の還元性添加剤19の中でも、[S]の価数が2価と小さいチオ硫酸ナトリウム(Na223)が好ましい還元性添加剤となる。
 硫黄オキソ酸系の還元性添加剤の[S]の価数の上限は4価とするのが好ましく、硫黄オキソ酸系の還元性添加剤の[S]の価数の範囲は2価以上4価以下とすることが好ましい。これは、[S]の価数が4価の亜硫酸と同等又はより強い還元力を有することが必要であり、かつ水溶性でイオンとして共存でき、さらなる酸化阻害を引き起こさない範囲とする必要があるからである。[S]の価数を2価以上とするのは、[S]の価数が0価の単体硫黄は固体として析出してしまうため不適であり、さらに[S]の価数が-2価の硫化物は酸化阻害効果が大きい上、酸の共存により発生する硫化水素(H2S)は有毒かつ悪臭などの問題があり、取り扱いが容易でなく、好ましくないからである。
 以上より、前記硫黄オキソ酸系の還元性添加剤の[S]の価数を2価以上4価以下とすることで、酸化還元電位を下げる作用が確実となり、酸化還元電位を適正範囲内に調整することができる。
 [試験例]
 次に、実機の脱硫装置の吸収液の石膏スラリーを模擬した模擬スラリーと、ボイラ排ガスを模擬したSO2を含む模擬ガスを導入して、石灰石膏法による脱硫試験を行った。
 この試験の際、2価の水銀を吸収液中に所定量添加(共沈)させた。次いで、酸化剤としてMnを投入して、ORPを150mVから500mVに上昇させ、過酸化状態とした。その後、還元性添加剤としてチオ硫酸ナトリウムを微量添加し、ORPを200mVに低下させた。
 この過酸化の状態(ORP500mV)と、チオ硫酸ナトリウムを添加してORPを200mVに低下させた状態とにおける、試験装置から排出されるガス中の水銀濃度を求めた。その結果を図2に示す。
 図2は、脱硫試験結果を示す図である。図2に示すように、高ORPの500mVとなったときの液相水銀濃度を100%とすると、チオ硫酸ナトリウムを添加して200mVに低下した後の液相水銀濃度は3%に低下し、97%除去された。
 また、高ORPの500mVとなったときの再飛散水銀濃度を100%とすると、チオ硫酸ナトリウムを添加して200mVに低下した後の再飛散水銀濃度は10%に低下し、90%除去された。
 よって、本試験により、チオ硫酸ナトリウムの微量添加によりORPを200mVに低下させることで、液相水銀の蓄積量の低下と、水銀が再飛散することの抑制効果が発揮されることを確認できた。
 次に、本実施例に係る脱硫装置10Aの全体動作について説明する。
 本実施例に係る脱硫装置10Aでは、例えば石炭焚ボイラからの排ガス12がガス導入部13から吸収塔11内に導入されると、循環する石灰石スラリーの吸収液14の噴出液14aと排ガス12とが接触して、排ガス12中のSO2が吸収液14により除去される。吸収塔11の吸収液貯留部11b内に所定量の空気17が供給され、吸収液14が適正なORP(例えば150mV)となるように調節されている。このように排ガス12中の脱硫を続けて、ORP計18の計測値が安定している場合には、その状態で脱硫を継続する。これに対し、ORP計18の計測値がORPの適正範囲の上限値を超えた場合(例えばORPが200mVを超えた500mVから1000mVとなった場合)には、硫黄オキソ酸系の還元性添加剤19を還元性添加剤供給部20から吸収塔11内の吸収液貯留部11b内に供給し、その供給量を、ORP計18による計測値がORPの適正範囲(例えば50mV以上200mV以下)内になるように調整する。なお、ORP計18による計測値がORPの適正範囲(例えば50mV以上200mV以下)内になったときには、還元性添加剤19の供給を停止する。
 以上説明したように、脱硫装置10Aは、吸収塔11の吸収液貯留部11b内の吸収液14が過酸化状態となり、ORPの適正範囲の上限を超えた場合に、硫黄オキソ酸系の還元性添加剤19を供給することで、ORPを低下させて、吸収液14のORPを適正範囲内に制御することができる。
 この結果、吸収液は過酸化の状態ではなくなり、水銀の再飛散が防止されると共に、4価のセレンから6価のセレンへの酸化の促進が防止される。さらにはMnスケールの生成による腐食等も抑制され、安定した脱硫装置の運転を行うことができる。
 さらに、還元性添加剤を供給した場合でも、硫黄オキソ酸系の還元性添加剤19を用いるようにしているので、その後分解されても、亜硫酸イオン等となるので、脱硫機能を低下させることが無い。また、従来技術で提案するような還元剤(例えばシリコン系、油脂系等)がそのまま残留する場合と異なり、還元性添加剤19が分解によって残留せず、純度の高い石膏を得ることができる。
 本発明の実施例2に係る湿式排煙脱硫装置について、図面を参照して説明する。図3は、本実施例に係る湿式排煙脱硫装置を示す概略図である。なお、実施例1と同一部材については、同一符号を付してその説明は省略する。
 図3に示すように、本実施例に係る脱硫装置10Bは、実施例1の脱硫装置10Aにおいて、浄化ガス32を排出する排ガスダクト31の近傍に水銀計40を設置している。そして、実施例1のような例えばチオ硫酸ナトリウム等の硫黄オキソ酸系の還元性添加剤19を供給して、ORP計18でのORPを適正範囲内に調整した場合において、吸収塔11から排出される浄化ガス32中の水銀濃度を水銀計40で計測する。
 この計測の結果、水銀計40の計測値が所定閾値を超える場合には、硫黄オキソ酸系の還元性添加剤19をさらに供給して、水銀計40の値を所定閾値以下とするようにしている。なお、水銀の所定閾値は、例えば煙突からの水銀の排出基準値を所定閾値とすることができる。
 ORPを適正範囲内に調整した場合においても、排ガスダクト31の近傍に設けた水銀計40の計測値が所定閾値を超える場合には、制御装置50は、さらに還元剤として、例えばチオ硫酸ナトリウム等の硫黄オキソ酸系の還元性添加剤19を供給して、水銀の再飛散を防止するようにしてもよい。
 この結果、水銀の再飛散が防止され、安定した脱硫反応を行うことができる。
 本発明の実施例3に係る湿式排煙脱硫装置について、図面を参照して説明する。図4は、本実施例に係る湿式排煙脱硫装置を示す概略図である。なお、実施例1と同一部材については、同一符号を付してその説明は省略する。
 図4に示すように、本実施例に係る脱硫装置10Cは、実施例1の脱硫装置10Aにおいて、さらに吸収液14又は吸収液貯留部11b内に、酸化性添加剤51を供給する酸化性添加剤供給部52を備え、硫黄オキソ酸系の還元性添加剤19を供給した結果、ORP計18で計測したORPが50mV未満となったとき、酸化性添加剤供給部52から酸化性添加剤51を供給する。この運転制御は、制御装置50により行う。制御装置50は、ORP計18により吸収塔11の吸収液貯留部11b内の吸収液14のORPの値を計測し、計測されたORPの値に基づいて酸化性添加剤供給部52から吸収液貯留部11b内に供給する酸化性添加剤51の供給量を調整する。なお、この運転制御は自動で行うようにしてもよいし、運転作業員が手動により行うようにしてもよい。酸化性添加剤供給部52は、吸収液貯留部11bの側壁に挿入された薬剤供給ラインL22を備えている。酸化性添加剤供給部52は、薬剤供給ラインL22を介して酸化性添加剤51を吸収液貯留部11b内に供給する。酸化性添加剤供給部52は、酸化性添加剤51を吸収液貯留部11b内に供給できる限り、いかなる構成を有していてもよい。例えば、酸化性添加剤供給部52は、循環ラインL11、分離液戻しラインL14もしくは吸収液供給部25から吸収液貯留部11b内に接続するラインに、接続された薬剤供給ラインL22を備えていてもよい。この場合は、酸化性添加剤供給部52は、循環ラインL11を流れる吸収液14、分離液戻しラインL14を流れる分離液14B、もしくは吸収液供給部25から吸収液貯留部11b内に接続するラインを流れる吸収液14に、薬剤供給ラインL22を介して酸化性添加剤51を供給する。
 硫黄オキソ酸系の還元性添加剤19の供給によりORPが低下して、50mV未満の還元領域となった場合には、酸化された水銀イオンの一部が金属水銀へ還元され、水銀の再飛散が発生する。そこで、酸化性添加剤51を酸化性添加剤供給部52から供給して、ORPをORPの適正範囲(例えば50mV以上200mV以下)内に制御する。
 ここで、本実施例で酸化性添加剤51としては、例えば過酸化水素、過硫酸類および次亜塩素酸等のオキソ酸類系酸化剤を例示することができる。これらの酸化性添加剤51も、吸収塔の吸収液貯留部11b内の吸収液14中で分解(吸収されたSO2(亜硫酸イオン)によって還元)され、石膏23中に残留することがないので、好ましい。
 以上述べた実施例では、脱硫装置において、噴出部を、排ガス中の硫黄酸化物を吸収する吸収液をスプレーノズル等から上方に噴出させて、液滴を落下させる液柱塔形式としているが、本発明はこれに限定されるものではない。本発明は、噴出部が、例えばスプレーノズルからそのまま下方に液滴として落下させるスプレー塔形式のものであってもよい。
 10A~10C 湿式排煙脱硫装置(脱硫装置)
 11 吸収塔
 11a 側壁
 11b 吸収液貯留部
 12 ボイラ排ガス(排ガス)
 13 ガス導入部
 14 吸収液
 16 空気導入部
 17 空気
 18 酸化還元電位計
 19 還元性添加剤
 20 還元性添加剤供給部
 22 固液分離機
 23 石膏
 25 吸収液供給部
 40 水銀計
 51 酸化性添加剤
 52 酸化性添加剤供給部

Claims (12)

  1.  排ガス中の硫黄酸化物を吸収液で除去する吸収塔と、
     前記硫黄酸化物を吸収した吸収液を貯留する吸収液貯留部と、
     前記吸収液の酸化還元電位を計測する酸化還元電位計と、
     前記吸収液又は前記吸収液貯留部内に硫黄オキソ酸系の還元性添加剤を供給する還元性添加剤供給部と、
     前記酸化還元電位計により計測された前記吸収液の前記酸化還元電位の計測値に基づいて前記還元性添加剤供給部を制御する制御装置と、を備え、
     前記制御装置は、前記酸化還元電位の計測値が、前記酸化還元電位の適正範囲の上限を超えた場合、前記還元性添加剤供給部を制御して、前記硫黄オキソ酸系の還元性添加剤を供給することを特徴とする湿式排煙脱硫装置。
  2.  請求項1において、
     前記硫黄オキソ酸系の還元性添加剤の価数が、2価以上4価以下であることを特徴とする湿式排煙脱硫装置。
  3.  請求項1において、
     前記硫黄オキソ酸系の還元性添加剤が、チオ硫酸ナトリウム、メタ重亜硫酸ナトリウム及び亜ジチオン酸ナトリウムの少なくとも1つであることを特徴とする湿式排煙脱硫装置。
  4.  請求項1において、
     前記酸化還元電位の適正範囲が50mV以上200mV以下であることを特徴とする湿式排煙脱硫装置。
  5.  請求項1において、
     前記吸収塔に接続され、前記吸収塔を通過した浄化ガスを排出する排ガスダクトと、
     前記排ガスダクトに設置され、前記吸収塔から排出される浄化ガス中の水銀濃度を計測する水銀計と、を備え、
     前記制御装置は、前記水銀計の値が所定閾値を超える場合に、前記還元性添加剤供給部を制御して、前記硫黄オキソ酸系の還元性添加剤を供給することを特徴とする湿式排煙脱硫装置。
  6.  請求項1において、
     前記吸収液又は前記吸収液貯留部内に、酸化性添加剤を供給する酸化性添加剤供給部を備え、
     前記制御装置は、前記硫黄オキソ酸系の還元性添加剤を供給した結果、前記酸化還元電位計で計測した吸収液の計測値が50mV未満の場合、前記酸化性添加剤供給部を制御して、酸化性添加剤を供給することを特徴とする湿式排煙脱硫装置。
  7.  排ガス中の硫黄酸化物を吸収液により除去する際、前記吸収液の酸化還元電位の適正範囲の上限を超えた場合、硫黄オキソ酸系の還元性添加剤を供給し、前記酸化還元電位を適正範囲内に調整することを特徴とする湿式排煙脱硫装置の運転方法。
  8.  請求項7において、
     前記硫黄オキソ酸系の還元性添加剤の価数が、2価以上4価以下であることを特徴とする湿式排煙脱硫装置の運転方法。
  9.  請求項7において、
     前記硫黄オキソ酸系の還元性添加剤が、チオ硫酸ナトリウム、メタ重亜硫酸ナトリウム及び亜ジチオン酸ナトリウムの少なくとも1つであることを特徴とする湿式排煙脱硫装置の運転方法。
  10.  請求項7において、
     前記酸化還元電位の適正範囲が50mV以上200mV以下であることを特徴とする湿式排煙脱硫装置の運転方法。
  11.  請求項7において、
     吸収塔から排出される浄化ガス中の水銀濃度を計測し、水銀計測の結果所定閾値を超える場合に、前記硫黄オキソ酸系の還元性添加剤を供給し、水銀濃度を所定閾値以下とすることを特徴とする湿式排煙脱硫装置の運転方法。
  12.  請求項7において、
     前記硫黄オキソ酸系の還元性添加剤を供給した結果、計測した吸収液の酸化還元電位の値が50mV未満の場合、酸化性添加剤を供給することを特徴とする湿式排煙脱硫装置の運転方法。
PCT/JP2016/059690 2015-03-27 2016-03-25 湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法 WO2016158781A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680017719.3A CN107427766B (zh) 2015-03-27 2016-03-25 湿式排烟脱硫装置及湿式排烟脱硫装置的运转方法
JP2017509922A JP6522114B2 (ja) 2015-03-27 2016-03-25 湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法
RS20210027A RS61357B1 (sr) 2015-03-27 2016-03-25 Uređaj za mokro odsumporavanje dimnih gasova i način rada uređaja za mokro odsumporavanje dimnih gasova
CA2980264A CA2980264C (en) 2015-03-27 2016-03-25 Wet type flue gas desulfurization apparatus and operation method of the same
EP16772662.9A EP3275529B1 (en) 2015-03-27 2016-03-25 Wet flue gas desulfurization device and method of operating wet flue gas desulfurization device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562139392P 2015-03-27 2015-03-27
US62/139,392 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016158781A1 true WO2016158781A1 (ja) 2016-10-06

Family

ID=56974648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059690 WO2016158781A1 (ja) 2015-03-27 2016-03-25 湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法

Country Status (7)

Country Link
US (2) US9873082B2 (ja)
EP (1) EP3275529B1 (ja)
JP (1) JP6522114B2 (ja)
CN (1) CN107427766B (ja)
CA (1) CA2980264C (ja)
RS (1) RS61357B1 (ja)
WO (1) WO2016158781A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163733A1 (ja) * 2017-03-09 2018-09-13 千代田化工建設株式会社 脱硫方法および脱硫装置
JP2019126764A (ja) * 2018-01-23 2019-08-01 三菱日立パワーシステムズ株式会社 湿式排ガス脱硫装置及び湿式排ガス脱硫方法
JP2020014975A (ja) * 2018-07-23 2020-01-30 三菱日立パワーシステムズ株式会社 酸化還元電位決定装置及びそれを備える脱硫装置、並びに酸化還元電位決定方法
KR102153740B1 (ko) * 2019-04-11 2020-09-09 주식회사 우성테크 습식광촉매를 이용한 이젝터 결합형 탈취장치
JP2020203289A (ja) * 2020-09-30 2020-12-24 千代田化工建設株式会社 脱硫方法および脱硫装置
WO2021065992A1 (ja) * 2019-10-04 2021-04-08 三菱パワー株式会社 発泡抑制方法および発泡抑制システム
WO2021172083A1 (ja) * 2020-02-28 2021-09-02 三菱パワー株式会社 ろ布の目詰まり抑制方法および排煙脱硫システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115121099A (zh) * 2022-07-14 2022-09-30 西安热工研究院有限公司 一种集成式在线控制脱硫浆液氧化及废水排放装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267447A (ja) * 1998-03-20 1999-10-05 Mitsubishi Heavy Ind Ltd 排煙脱硫排水の処理方法
US20080233024A1 (en) * 2007-03-23 2008-09-25 Alstom Technology Ltd Method of mercury removal in a wet flue gas desulfurization system
JP2010269277A (ja) * 2009-05-25 2010-12-02 Babcock Hitachi Kk 脱硫装置における水銀再放出抑制方法および装置
JP2013006144A (ja) * 2011-06-23 2013-01-10 Mitsubishi Heavy Ind Ltd 排ガス処理装置及び排ガス処理装置のorp制御方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174223A (ja) * 1982-04-08 1983-10-13 Mitsubishi Heavy Ind Ltd 排ガス処理方法
DE3512500A1 (de) * 1985-04-06 1986-10-09 Hölter, Heinz, Dipl.-Ing., 4390 Gladbeck Mehrstufiges hci, so(pfeil abwaerts)2(pfeil abwaerts) und no(pfeil abwaerts)x(pfeil abwaerts)-waschverfahren fuer rauchgasreinigung vorzugsweise hinter fossilen kraftwerken
US5360551A (en) * 1993-04-01 1994-11-01 Crompton & Knowles Corporation Process for color reduction of dye wastewater
JP3268127B2 (ja) * 1994-07-11 2002-03-25 三菱重工業株式会社 亜硫酸塩の酸化制御方法
JP3358926B2 (ja) * 1995-12-19 2002-12-24 三菱重工業株式会社 排煙脱硫方法における亜硫酸塩の酸化制御方法
JP3150615B2 (ja) * 1996-06-28 2001-03-26 三菱重工業株式会社 排煙脱硫処理における酸化制御方法
JP3572233B2 (ja) * 1999-06-22 2004-09-29 三菱重工業株式会社 排煙脱硫方法および排煙脱硫システム
JP3836048B2 (ja) * 2002-05-24 2006-10-18 三菱重工業株式会社 湿式排煙脱硫方法及びその装置
JP4395315B2 (ja) * 2003-04-11 2010-01-06 三菱重工業株式会社 排ガス中の水銀除去方法およびそのシステム
JP5564722B2 (ja) * 2007-02-21 2014-08-06 公立大学法人大阪府立大学 排気ガスの処理方法および処理装置
CN101254932A (zh) * 2007-02-28 2008-09-03 张家港市新中环保设备有限公司 一种镁法脱硫过程中亚硫酸镁的制备工艺
US8632742B2 (en) * 2007-12-07 2014-01-21 Nalco Company Methods of controlling mercury emission
JP2009166012A (ja) * 2008-01-21 2009-07-30 Mitsubishi Heavy Ind Ltd 石炭焚ボイラの排ガス処理システム及びその運転方法
ATE500940T1 (de) 2008-04-23 2011-03-15 Applied Materials Switzerland Sa Montierscheibe für eine drahtsägevorrichtung, drahtsägevorrichtung damit, und drahtsägeverfahren, das mit der vorrichtung durchgeführt wird
JP5554162B2 (ja) 2010-06-30 2014-07-23 三菱重工業株式会社 排ガス中の水銀処理システム
US9321025B2 (en) * 2012-05-11 2016-04-26 Alstom Technology Ltd Oxidation control for improved flue gas desulfurization performance
US9457316B2 (en) * 2012-07-12 2016-10-04 The Babcock & Wilcox Company Method for controlling compounds and conditions in a wet flue gas desulfurization (WFGD) unit
TW201412380A (zh) * 2012-08-13 2014-04-01 Albemarle Corp 濕法煙道氣脫硫中之三鹵甲烷控制
US9101882B2 (en) * 2013-11-21 2015-08-11 Mitsubishi Hitachi Power Systems, Ltd. Wet type flue-gas desulfurization apparatus and method for adjusting oxidation reduction potential of absorbent therefor
CN103736387A (zh) * 2013-12-20 2014-04-23 华北电力大学(保定) 一种湿法烟气脱硫浆液中汞再释放抑制剂及其应用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267447A (ja) * 1998-03-20 1999-10-05 Mitsubishi Heavy Ind Ltd 排煙脱硫排水の処理方法
US20080233024A1 (en) * 2007-03-23 2008-09-25 Alstom Technology Ltd Method of mercury removal in a wet flue gas desulfurization system
JP2010269277A (ja) * 2009-05-25 2010-12-02 Babcock Hitachi Kk 脱硫装置における水銀再放出抑制方法および装置
JP2013006144A (ja) * 2011-06-23 2013-01-10 Mitsubishi Heavy Ind Ltd 排ガス処理装置及び排ガス処理装置のorp制御方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018144011A (ja) * 2017-03-09 2018-09-20 千代田化工建設株式会社 脱硫方法および脱硫装置
WO2018163733A1 (ja) * 2017-03-09 2018-09-13 千代田化工建設株式会社 脱硫方法および脱硫装置
JP7026515B2 (ja) 2018-01-23 2022-02-28 三菱重工業株式会社 湿式排ガス脱硫装置及び湿式排ガス脱硫方法
JP2019126764A (ja) * 2018-01-23 2019-08-01 三菱日立パワーシステムズ株式会社 湿式排ガス脱硫装置及び湿式排ガス脱硫方法
JP2020014975A (ja) * 2018-07-23 2020-01-30 三菱日立パワーシステムズ株式会社 酸化還元電位決定装置及びそれを備える脱硫装置、並びに酸化還元電位決定方法
JP7164344B2 (ja) 2018-07-23 2022-11-01 三菱重工業株式会社 酸化還元電位決定装置及びそれを備える脱硫装置、並びに酸化還元電位決定方法
KR102153740B1 (ko) * 2019-04-11 2020-09-09 주식회사 우성테크 습식광촉매를 이용한 이젝터 결합형 탈취장치
WO2021065992A1 (ja) * 2019-10-04 2021-04-08 三菱パワー株式会社 発泡抑制方法および発泡抑制システム
WO2021172083A1 (ja) * 2020-02-28 2021-09-02 三菱パワー株式会社 ろ布の目詰まり抑制方法および排煙脱硫システム
JP2021133348A (ja) * 2020-02-28 2021-09-13 三菱パワー株式会社 ろ布の目詰まり抑制方法および排煙脱硫システム
JP7370281B2 (ja) 2020-02-28 2023-10-27 三菱重工業株式会社 ろ布の目詰まり抑制方法および排煙脱硫システム
JP2020203289A (ja) * 2020-09-30 2020-12-24 千代田化工建設株式会社 脱硫方法および脱硫装置
JP7065161B2 (ja) 2020-09-30 2022-05-11 千代田化工建設株式会社 脱硫方法および脱硫装置

Also Published As

Publication number Publication date
EP3275529B1 (en) 2020-11-11
CA2980264C (en) 2020-08-04
US9873082B2 (en) 2018-01-23
JPWO2016158781A1 (ja) 2017-11-16
JP6522114B2 (ja) 2019-05-29
EP3275529A1 (en) 2018-01-31
US20180104646A1 (en) 2018-04-19
CA2980264A1 (en) 2016-10-06
CN107427766A (zh) 2017-12-01
US20160279564A1 (en) 2016-09-29
CN107427766B (zh) 2021-06-01
RS61357B1 (sr) 2021-02-26
EP3275529A4 (en) 2018-03-28
US10322370B2 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2016158781A1 (ja) 湿式排煙脱硫装置及び湿式排煙脱硫装置の運転方法
KR102047196B1 (ko) 습식 배연 탈황 장치 및 습식 배연 탈황 장치의 운전 방법
TWI430833B (zh) Treatment of waste gas
EP2123344A1 (en) Method and apparatus for processing exhaust gas
CN101485956B (zh) 汞除去装置及汞除去方法
JP6313945B2 (ja) 海水脱硫用散気装置及びそれを備えた海水脱硫装置、並びに水質改善方法
JP6462359B2 (ja) 亜硫酸ガス含有排ガスの脱硫方法および脱硫装置
JP2020508855A (ja) 改善された煙道ガス脱硫実行のための酸化制御
US9321025B2 (en) Oxidation control for improved flue gas desulfurization performance
WO2012176635A1 (ja) 排ガス処理装置及び排ガス処理装置のorp制御方法
JP2016120438A (ja) 湿式脱硫装置及び湿式脱硫方法
WO2013118683A1 (ja) 脱硫海水処理システム
JP2010269277A (ja) 脱硫装置における水銀再放出抑制方法および装置
WO2014041951A1 (ja) 排ガス中の水銀処理システム
JP3836048B2 (ja) 湿式排煙脱硫方法及びその装置
JP6837355B2 (ja) 脱硫方法および脱硫装置
JP5591446B2 (ja) 排ガス処理方法
JP5991664B2 (ja) 排煙脱硫システム
JP3089209B2 (ja) 排煙処理設備の防食方法
JP7065161B2 (ja) 脱硫方法および脱硫装置
JP6985084B2 (ja) 硫黄酸化物を含むガスの脱硫方法および脱硫装置
WO2021172083A1 (ja) ろ布の目詰まり抑制方法および排煙脱硫システム
JP2010042354A (ja) 脱硫システム、脱硫方法、および脱硫制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509922

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016772662

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2980264

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE