JP7193261B2 - 湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、及びこの湿式排煙脱硫装置の制御装置を備えた遠隔監視システム - Google Patents

湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、及びこの湿式排煙脱硫装置の制御装置を備えた遠隔監視システム Download PDF

Info

Publication number
JP7193261B2
JP7193261B2 JP2018133127A JP2018133127A JP7193261B2 JP 7193261 B2 JP7193261 B2 JP 7193261B2 JP 2018133127 A JP2018133127 A JP 2018133127A JP 2018133127 A JP2018133127 A JP 2018133127A JP 7193261 B2 JP7193261 B2 JP 7193261B2
Authority
JP
Japan
Prior art keywords
time
absorbent
flue gas
concentration
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018133127A
Other languages
English (en)
Other versions
JP2020011163A (ja
Inventor
誠 小久保
仁 須藤
信弥 金森
駿 郡司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018133127A priority Critical patent/JP7193261B2/ja
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to KR1020217000224A priority patent/KR20210018431A/ko
Priority to EP19834294.1A priority patent/EP3804839A4/en
Priority to RU2020142584A priority patent/RU2759855C1/ru
Priority to PCT/JP2019/027308 priority patent/WO2020013220A1/ja
Priority to MYPI2021000048A priority patent/MY196819A/en
Priority to CN201980046216.2A priority patent/CN112423863A/zh
Priority to US17/258,035 priority patent/US20210275964A1/en
Priority to TW108124462A priority patent/TWI720539B/zh
Publication of JP2020011163A publication Critical patent/JP2020011163A/ja
Application granted granted Critical
Publication of JP7193261B2 publication Critical patent/JP7193261B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/12Methods and means for introducing reactants
    • B01D2259/126Semi-solid reactants, e.g. slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/502Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Automation & Control Theory (AREA)
  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)
  • Gas Separation By Absorption (AREA)

Description

本開示は、湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、及びこの湿式排煙脱硫装置の制御装置を備えた遠隔監視システムに関する。
湿式排煙脱硫装置では、ボイラ等の燃焼装置で発生した排ガスを脱硫装置の吸収塔内に導入し、吸収塔を循環する吸収液と気液接触させる。気液接触の過程で、吸収液中の吸収剤(例えば、炭酸カルシウム)と排ガス中の二酸化硫黄(SO)とが反応することにより、排ガス中のSOは吸収液に吸収され、排ガスからSOが除去(排ガスが脱硫)される。一方、SOを吸収した吸収液は落下して、吸収塔下方の貯留タンク内に溜められる。貯留タンクには吸収剤が供給され、供給された吸収剤で吸収性能を回復した吸収液は循環ポンプによって吸収塔の上方に供給され、排ガスとの気液接触(SOの吸収)に供せられる。吸収液を循環させる循環ポンプは消費電力が大きいため、従来は、消費電力の抑制を目的として、吸収塔に流入する排ガスの流量と排ガス中のSO濃度等に基づいて必要となる吸収液の循環流量を計算し、循環ポンプの運転台数の制御が行われている。
特許文献1の湿式排煙脱硫装置は、脱硫装置の運転モデルに基づいて脱硫装置の現在の脱硫性能を同定し、燃焼装置及び脱硫装置の運転データと燃焼装置の負荷要求信号とから、将来の運転データと吸収塔から流出する排ガス中の将来のSO濃度の予測値とを求め、将来のSO濃度の予測値に基づいて吸収液の循環流量を制御している。
特許第2984933号公報
しかしながら、特許文献1の湿式排煙脱硫装置では、燃焼装置の負荷要求信号から線形回帰によって将来の運転データを予測し、この将来の運転データから将来のSO濃度を予測しているため予測性能が低いといった問題点があった。
上述の事情に鑑みて、本開示の少なくとも1つの実施形態は、湿式排煙脱硫装置の吸収塔において吸収液を循環させるための循環ポンプの運転条件を適切に調節することができる湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、及びこの湿式排煙脱硫装置の制御装置を備えた遠隔監視システムを提供することを目的とする。
(1)本発明の少なくとも1つの実施形態に係る湿式排煙脱硫装置の制御方法は、
吸収塔と、
前記吸収塔内に吸収液を循環させるための少なくとも1つの循環ポンプと
を備え、
前記吸収塔内において、燃焼装置で発生した排ガスと前記吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御方法であって、
前記燃焼装置の排ガスの流量を含む運転データ及び前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データと、将来の吸収塔出口における二酸化硫黄濃度との関係について機械学習により第1学習モデルを構築するステップと、
前記第1学習モデルを用いて、第1時間における前記吸収液の循環流量と、前記第1時間よりも将来の時間である第2時間において前記吸収塔から流出する流出ガス中の二酸化硫黄濃度の予測値との間の第1関係テーブルを作成するステップと、
前記第1関係テーブルに基づいて、前記第2時間における前記流出ガス中の二酸化硫黄濃度が予め設定された設定値以下となるような前記第1時間における前記吸収液の循環流量を決定するステップと、
前記第1時間において、前記決定された循環流量に基づいて前記少なくとも1つの循環ポンプの運転条件を調節するステップと
を含む。
上記(1)の方法によると、燃焼装置の運転データ及び湿式排煙脱硫装置の吸収液の循環流量を含む運転データから、第1時間における吸収液の循環流量と、第1時間よりも将来の時間である第2時間において吸収塔から流出する流出ガス中の二酸化硫黄濃度との間の第1関係テーブルを作成することにより、実際の運転データから将来の二酸化硫黄濃度を直接予測しているので、将来の二酸化硫黄濃度の予測性能を向上した第1関係テーブルを得ることができ、この第1関係テーブルに基づいて、第2時間における流出ガス中の二酸化硫黄濃度が予め設定された設定値以下となるような第1時間における吸収液の循環流量を決定して、第1時間において、決定された循環流量に基づいて少なくとも1つの循環ポンプの運転条件を調節するので、循環ポンプの運転条件を適切に調節することができる。
また、上記(1)の方法によると、燃焼装置の運転データ及び湿式排煙脱硫装置の吸収液の循環流量を含む運転データと、将来の吸収塔出口における二酸化硫黄濃度との関係について機械学習により構築された第1学習モデルを用いて第1関係テーブルを作成するので、迅速に第1関係テーブルを作成することができる。
(2)いくつかの実施形態では、上記(1)の方法において、
前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データは、
任意の時間における前記流出ガス中の二酸化硫黄濃度と、
前記第2時間から前記第1時間を差し引いた時間間隔だけ前記任意の時間よりも過去の時間における前記吸収液の循環流量と
を含む。
上記(2)の方法によると、任意の時間における流出ガス中の二酸化硫黄濃度と、第2時間から第1時間を差し引いた時間間隔だけ任意の時間よりも過去の時間における吸収液の循環流量とを含む実際の運転データから将来の二酸化硫黄濃度を直接予測しているので、将来の二酸化硫黄濃度の予測性能を向上することができる。
(3)いくつかの実施形態では、上記(1)または(2)の方法において、
湿式排煙脱硫装置は、前記流出ガス中の二酸化硫黄濃度を測定するためのガス分析計をさらに備え、
前記第2時間において取得された前記ガス分析計による分析結果と、前記第2時間における前記流出ガス中の二酸化硫黄濃度の前記予測値とを比較するステップをさらに含む。
上記(3)の方法によると、ガス分析計による分析結果と二酸化硫黄濃度の予測値とが大きく乖離している場合には、プロセス中に何らかの異常が発生している可能性があるので、プロセス中の異常を早期に検出することができる。
(4)いくつかの実施形態では、上記(3)の方法において、
前記第1関係テーブルを作成後、前記分析結果と前記流出ガス中の二酸化硫黄濃度の前記予測値との差に基づいて、前記燃焼装置の運転データ及び前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データと、将来の吸収塔出口における二酸化硫黄濃度との関係について機械学習により前記第1学習モデルを再構築し、該再構築された第1学習モデルを用いて前記第1関係テーブルを作成するステップをさらに備える。
上記(4)の方法によると、ガス分析計による分析結果と流出ガス中の二酸化硫黄濃度の予測値との差が大きくなった場合には、燃焼装置の運転データ及び湿式排煙脱硫装置の吸収液の循環流量を含む運転データから機械学習により第1学習モデルを再構築し、再構築された第1学習モデルを用いて第1関係テーブルを作成し直すことにより、将来の二酸化硫黄濃度の予測性能をさらに向上した第1関係テーブルを得ることができる。
(5)いくつかの実施形態では、上記(1)~(4)のいずれかの方法において、
前記湿式排煙脱硫装置は、前記吸収液に含まれる吸収剤のスラリーである吸収剤スラリーを前記吸収塔へ供給するための吸収剤スラリー供給部をさらに備え、
前記燃焼装置の排ガスの流量を含む運転データ及び前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データと将来の吸収剤の濃度との関係について機械学習により第2学習モデルを構築するステップと、
前記第2学習モデルを用いて、第3時間における前記吸収塔への前記吸収剤スラリーの供給量と、前記第3時間よりも将来の時間である第4時間における前記吸収液中の前記吸収剤の濃度の予測値との間の第2関係テーブルを作成するステップと、
前記第2関係テーブルに基づいて、前記第4時間における前記吸収剤の濃度が予め設定された設定範囲内となるような前記第3時間における前記吸収剤スラリーの供給量を決定するステップと、
前記第3時間において、前記決定された吸収剤スラリーの供給量に基づいて前記吸収剤スラリー供給部を制御するステップと
をさらに備える。
上記(5)の方法によると、燃焼装置の運転データ及び湿式排煙脱硫装置の吸収液の循環流量を含む運転データから、第3時間における吸収塔への吸収剤スラリーの供給量と、第3時間よりも将来の時間である第4時間における吸収液中の吸収剤の濃度との間の第2関係テーブルを作成することにより、実際の運転データから将来の吸収剤の濃度を直接予測しているので、将来の吸収剤の濃度の予測性能を向上した第2関係テーブルを得ることができ、この第2関係テーブルに基づいて、第4時間における吸収剤の濃度が予め設定された設定範囲内となるような第3時間における吸収剤スラリーの供給量を決定して、第3時間において、決定された吸収剤スラリーの供給量に基づいて吸収剤スラリー供給部を制御することにより、吸収剤の濃度の変動を抑制することができるので、吸収剤の過剰消費を抑えるとともに適切な循環流量で吸収液を循環することができる。
また、上記(5)の方法によると、燃焼装置の運転データ及び湿式排煙脱硫装置の吸収液の循環流量を含む運転データと、将来の吸収剤の濃度との関係について機械学習により構築された第2学習モデルを用いて第2関係テーブルを作成するので、迅速に第2関係テーブルを作成することができる。
(6)いくつかの実施形態では、上記(5)の方法において、
前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データは、
任意の時間における前記吸収剤の濃度と、
前記第4時間から前記第3時間を差し引いた時間間隔だけ前記任意の時間よりも過去の時間における前記吸収剤スラリーの供給量と
を含む。
上記(6)の方法によると、任意の時間における吸収剤の濃度と、第4時間から第3時間を差し引いた時間間隔だけ任意の時間よりも過去の時間における吸収剤スラリーの供給量とを含む実際の運転データから将来の吸収剤の濃度を直接予測しているので、将来の吸収剤の濃度の予測性能を向上することができる。
(7)いくつかの実施形態では、上記(6)の方法において、
前記吸収剤の濃度は、マスバランス計算によるシミュレーションモデルを用いて算出される。
吸収剤の濃度を検出するためのセンサーは一般的に高価であるため、このようなセンサーを設けると湿式排煙脱硫装置のコストが上昇してしまう。しかし、上記(7)の方法によると、マスバランス計算によるシミュレーションモデルを用いて吸収剤の濃度を算出できるので、高価なセンサーが不要になり、湿式排煙脱硫装置のコストの上昇を抑制することができる。
(8)いくつかの実施形態では、上記(5)~(7)のいずれかの方法において、
前記第3時間から前記第4時間までの間隔は、前記第1時間から前記第2時間までの間隔よりも短い。
流出ガス中の二酸化硫黄濃度の変化は、吸収液循環流量増加、排ガスとの気液接触、二酸化硫黄濃度の低下という順序のように、複数のステップを経るのに対して、吸収剤の濃度の変化は、吸収剤スラリーの供給、吸収剤濃度の増加という順序のように、必要なステップ数が少ない。そのため、吸収剤の濃度の制御に比べて二酸化硫黄濃度の制御の遅れが大きい。しかし、上記(8)の方法によると、第3時間から第4時間までの時間を、第1時間から第2時間までの時間よりも短くすることで、制御遅れの影響を適切に考慮することができるので、将来の吸収剤の濃度の予測性能をさらに向上することができる。
(9)本発明の少なくとも1つの実施形態に係る湿式排煙脱硫装置の制御装置は、
吸収塔と、
前記吸収塔内に吸収液を循環させるための少なくとも1つの循環ポンプと
を備え、
前記吸収塔内において、燃焼装置で発生した排ガスと前記吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御装置であって、
前記燃焼装置の排ガスの流量を含む運転データ及び前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データと、将来の吸収塔出口における二酸化硫黄濃度との関係について機械学習により学習モデルを構築する第1学習モデル構築部と、
前記学習モデルを用いて、第1時間における前記吸収液の循環流量と、前記第1時間よりも将来の時間である第2時間において前記吸収塔から流出する流出ガス中の二酸化硫黄濃度の予測値との間の第1関係テーブルを作成する第1関係テーブル作成部と、
前記第1関係テーブルに基づいて、前記第2時間における前記流出ガス中の二酸化硫黄濃度が予め設定された設定値以下となるような前記第1時間における前記吸収液の循環流量を決定する循環流量決定部と、
前記第1時間において、前記決定された循環流量に基づいて前記少なくとも1つの循環ポンプの運転条件を調節する循環ポンプ調節部と
を含む。
上記(9)の構成によると、燃焼装置の運転データ及び湿式排煙脱硫装置の吸収液の循環流量を含む運転データから、第1時間における吸収液の循環流量と、第1時間よりも将来の時間である第2時間において吸収塔から流出する流出ガス中の二酸化硫黄濃度との間の第1関係テーブルを作成することにより、実際の運転データから将来の二酸化硫黄濃度を直接予測しているので、将来の二酸化硫黄濃度の予測性能を向上した第1関係テーブルを得ることができ、この第1関係テーブルに基づいて、第2時間における流出ガス中の二酸化硫黄濃度が予め設定された設定値以下となるような第1時間における吸収液の循環流量を決定して、第1時間において、決定された循環流量に基づいて少なくとも1つの循環ポンプの運転条件を調節するので、循環ポンプの運転条件を適切に調節することができる。
(10)いくつかの実施形態では、上記(9)の構成において、
前記湿式排煙脱硫装置は、前記吸収液に含まれる吸収剤のスラリーである吸収剤スラリーを前記吸収塔へ供給するための吸収剤スラリー供給部をさらに備え、
前記燃焼装置の排ガスの流量を含む運転データ及び前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データと将来の吸収剤の濃度との関係について機械学習により第2学習モデルを構築する第2学習モデル構築部と、
前記第2学習モデルを用いて、第3時間における前記吸収塔への前記吸収剤スラリーの供給量と、前記第3時間よりも将来の時間である第4時間における前記吸収液中の前記吸収剤の濃度の予測値との間の第2関係テーブルを作成する第2関係テーブル作成部と、
前記第2関係テーブルに基づいて、前記第4時間における前記吸収剤の濃度が予め設定された設定範囲内となるような前記第3時間における前記吸収剤スラリーの供給量を決定する吸収剤スラリー供給量決定部と、
前記第3時間において、前記決定された吸収剤スラリーの供給量に基づいて前記吸収剤スラリー供給部を制御する吸収剤スラリー供給制御部と
をさらに備える。
上記(10)の構成によると、燃焼装置の運転データ及び湿式排煙脱硫装置の吸収液の循環流量を含む運転データから、第3時間における吸収塔への吸収剤スラリーの供給量と、第3時間よりも将来の時間である第4時間における吸収液中の吸収剤の濃度との間の第2関係テーブルを作成することにより、実際の運転データから将来の吸収剤の濃度を直接予測しているので、将来の吸収剤の濃度の予測性能を向上した第2関係テーブルを得ることができ、この第2関係テーブルに基づいて、第4時間における吸収剤の濃度が予め設定された設定範囲内となるような第3時間における吸収剤スラリーの供給量を決定して、第3時間において、決定された吸収剤スラリーの供給量に基づいて吸収剤スラリー供給部を制御することにより、吸収剤の濃度の変動を抑制することができるので、吸収剤の過剰消費を抑えるとともに適切な循環流量で吸収液を循環することができる。
(11)本発明の少なくとも1つの実施形態に係る遠隔監視システムは、
上記(9)または(10)のいずれかの湿式排煙脱硫装置の制御装置と、
前記湿式排煙脱硫装置の制御装置に電気的に接続された遠隔監視装置と
を備える。
上記(11)の構成によると、湿式排煙脱硫装置の制御状態を遠隔監視することができる。
本開示の少なくとも1つの実施形態によれば、燃焼装置の運転データ及び湿式排煙脱硫装置の吸収液の循環流量を含む運転データから、第1時間における吸収液の循環流量と、第1時間よりも将来の時間である第2時間において吸収塔から流出する流出ガス中の二酸化硫黄濃度との間の第1関係テーブルを作成することにより、実際の運転データから将来の二酸化硫黄濃度を直接予測しているので、将来の二酸化硫黄濃度の予測性能を向上した第1関係テーブルを得ることができ、この第1関係テーブルに基づいて、第2時間における流出ガス中の二酸化硫黄濃度が予め設定された設定値以下となるような第1時間における吸収液の循環流量を決定して、第1時間において、決定された循環流量に基づいて少なくとも1つの循環ポンプの運転条件を調節するので、循環ポンプの運転条件を適切に調節することができる。
本開示の一実施形態に係る湿式排煙脱硫装置の制御装置を含む湿式排煙脱硫装置の構成模式図である。 本開示の一実施形態に係る遠隔監視システムの構成模式図である。 本開示の一実施形態に係る湿式排煙脱硫装置の制御方法のフローチャートである。 流出ガス中のSO濃度の予測値と、ガス分析計によるSO濃度の測定値と、SO濃度の予測値の真値とのそれぞれの推移を示すグラフである。 本開示の一実施形態に係る湿式排煙脱硫装置の制御方法において作成される第1関係テーブルの一例を模式的に示す図である。 本開示の一実施形態に係る湿式排煙脱硫装置の制御方法において作成される第2関係テーブルの一例を模式的に示す図である。 本開示の一実施形態に係る湿式排煙脱硫装置の制御装置の変形例の構成模式図である。
以下、図面を参照して本発明のいくつかの実施形態について説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。
図1に示されるように、湿式排煙脱硫装置10は、ボイラ等の燃焼装置1で発生した排ガスを脱硫するためのものである。湿式排煙脱硫装置10は、燃焼装置1と配管2を介して連通する吸収塔11と、吸収塔11内を循環する吸収液の循環用配管3に設けられた複数(例えば3つ)の循環ポンプ12a,12b,12cと、吸収液に含まれる吸収剤である炭酸カルシウム(CaCO)のスラリー(吸収剤スラリー)を吸収塔11内に供給するための吸収剤スラリー供給部13と、吸収液中の石膏を回収するための石膏回収部14とを備えている。吸収塔11には、後述する動作で脱硫された排ガスが吸収塔11から流出ガスとして流出するための流出配管16が設けられ、流出配管16には、流出ガス中のSO濃度を測定するためのガス分析計17が設けられている。
吸収剤スラリー供給部13は、吸収剤スラリーを製造するための吸収剤スラリー製造設備21と、吸収剤スラリー製造設備21と吸収塔11とを連通する吸収剤スラリー供給用配管22と、吸収剤スラリー供給用配管22を流通する吸収剤スラリーの流量を制御するための吸収剤スラリー供給量制御弁23とを備えている。石膏回収部14は、石膏分離器25と、石膏分離器25と吸収塔11とを連通する石膏スラリー抜き出し用配管26と、石膏スラリー抜き出し用配管26に設けられた石膏スラリー抜き出し用ポンプ27とを備えている。
湿式排煙脱硫装置10には、湿式排煙脱硫装置10の制御装置15が設けられている。制御装置15は、燃焼装置1及び湿式排煙脱硫装置10の各種運転データ(例えば、様々な部位における温度や圧力、各種流体の流量等)を取得するための種々の検出器を含む運転データ取得部20と電気的に接続された運転データ受信部30を備えている。運転データ取得部20には、ガス分析計17が含まれている。
制御装置15は、運転データ受信部30に電気的に接続された第1学習モデル構築部38と、第1学習モデル構築部38に電気的に接続された第1関係テーブル作成部31と、第1関係テーブル作成部31に電気的に接続された循環流量決定部32と、循環流量決定部32に電気的に接続された循環ポンプ調節部33とを備えている。循環ポンプ調節部33は、循環ポンプ12a,12b,12cのそれぞれに電気的に接続されている。
制御装置15はさらに、運転データ受信部30に電気的に接続された第2学習モデル構築部39と、第2学習モデル構築部39に電気的に接続された第2関係テーブル作成部35と、第2関係テーブル作成部35に電気的に接続された吸収剤スラリー供給量決定部36と、吸収剤スラリー供給量決定部36に電気的に接続された吸収剤スラリー供給制御部37とを備えている。吸収剤スラリー供給制御部37は、吸収剤スラリー供給量制御弁23に電気的に接続されている。
図2には、湿式排煙脱硫装置10(図1参照)の制御状態を遠隔監視する遠隔監視システム40の構成を示している。遠隔監視システム40は、燃焼装置1(図1参照)及び湿式排煙脱硫装置10(図1参照)を構成する各機器の分散制御システム(DCS)41と、DCS41に電気的に接続されるとともに制御装置15を搭載したエッジサーバー42と、クラウド又はバーチャルプライベートネットワーク(VPN)を介してエッジサーバー42に電気的に接続されたデスクトップパソコンやタブレット型コンピュータ等のような遠隔監視装置43とを備えている。通常はエッジサーバー42から離れた場所に存在する遠隔監視装置43によって、湿式排煙脱硫装置10の制御状態を遠隔監視することができる。
次に、燃焼装置1で発生した排ガスを湿式排煙脱硫装置10が脱硫する動作について説明する。
図1に示されるように、燃焼装置1で発生した排ガスは、配管2を流通して吸収塔11に流入し、吸収塔11内を上昇する。循環ポンプ12a~12cの少なくとも1台が稼働することによって吸収液が循環用配管3を流通して吸収塔11に流入し、吸収塔11内において吸収液が流下する。吸収塔11内で流下した吸収液は、吸収塔11内に溜まり、循環ポンプ12a~12cによって吸収塔11から流出し、循環用配管3を流通する。このようにして、吸収液は吸収塔11内を循環する。
吸収塔11内では、上昇する排ガスと流下する吸収液とが気液接触する。排ガスに含まれるSOは、以下の反応式
SO+CaCO+2HO+1/2O→CaSO・2HO+CO
のように、吸収液中のCaCOと反応して、石膏(CaSO・2HO)が吸収液中に析出する。
このようにして、排ガス中のSOの一部が吸収液中に石膏として除去されるので、すなわち排ガスが脱硫されるので、流出配管16を介して吸収塔11から流出する流出ガス中のSO濃度は、配管2を介して吸収塔11に流入する排ガス中のSO濃度よりも低くなっている。吸収塔11から流出した流出ガスは、流出配管16を流通して大気中に放出されるが、その途中でガス分析計17によってSO濃度が測定され、その測定結果が制御装置15の運転データ受信部30に伝送される。
流出ガス中のSO濃度は、吸収液中のCaCO濃度に大きな変動がなければ、吸収塔11内を循環する吸収液の循環流量が増加するほど低下する傾向がある。後述する制御方法によって制御装置15が循環ポンプ12a~12cの稼働台数を制御することで循環流量を制御することにより、流出ガス中のSO濃度を制御すること、例えば予め設定された設定値以下となるように流出ガス中のSO濃度を制御することができる。
吸収塔11内で吸収液中に析出した石膏は、石膏スラリーとして石膏スラリー抜き出し用ポンプ27によって吸収塔11から抜き出され、石膏スラリーは、石膏スラリー抜き出し用配管26を流通して石膏分離器25に流入する。石膏分離器25において石膏と水とが分離されて、石膏は回収され、水は、図示しない排水設備に送られる。
吸収液中のCaCOは、SOと反応して石膏となるので、排ガスの脱硫が行われるに従い、吸収液中のCaCO濃度は低下する。後述する制御方法によって制御装置15は吸収剤スラリー供給量制御弁23の開度を制御し、吸収剤スラリー製造設備21で製造された吸収剤スラリーを、吸収剤スラリー供給用配管22を介して吸収塔11内に供給する。これにより、吸収液中のCaCO濃度が予め設定された設定範囲内となり、排ガスの脱硫中におけるCaCO濃度の大きな変動が抑制される。
次に、制御装置15による湿式排煙脱硫装置10の制御方法について説明する。
図3に、制御装置15による湿式排煙脱硫装置10の制御方法の概略を示す。ステップS1において燃焼装置1及び湿式排煙脱硫装置10の各種運転データを収集した後、ステップS2において、各種運転データと、吸収塔11から流出する流出ガス中の将来のSO濃度との関係について機械学習により第1学習モデルを構築する。次に、ステップS3において、構築された第1学習モデルを用いて、後述する第1関係テーブルを作成する。続くステップS4において、第1関係テーブルに基づいて、流出ガス中のSO濃度が予め設定された設定値以下となる吸収液の循環流量を決定し、ステップS5において、決定された循環流量に基づいて循環ポンプ12a~12cの運転条件を調節する。これにより、予め設定された設定値以下となるように流出ガス中のSO濃度が制御される。
また、ステップS1の後、ステップS2~S5とは別に、ステップS12において、各種運転データと、吸収液中の将来のCaCO濃度との関係について機械学習により第2学習モデルを構築する。次に、ステップS13において、構築された第2学習モデルを用いて、後述する第2関係テーブルを作成する。続くステップS14において、第2関係テーブルに基づいて、CaCO濃度が予め設定された設定範囲内となる吸収剤スラリーの供給量を決定し、ステップS15において、吸収剤スラリー供給部13を制御すること、すなわち吸収剤スラリー供給量制御弁23の開度を制御することにより、決定された供給量で吸収剤スラリーを吸収塔11内に供給する。これにより、吸収液中のCaCO濃度が予め設定された設定範囲内となり、排ガスの脱硫中におけるCaCO濃度の大きな変動が抑制される。
次に、制御装置15による湿式排煙脱硫装置10の制御方法の各ステップについて詳細に説明する。
ステップS1では、図1に示されるように、燃焼装置1及び湿式排煙脱硫装置10の各種運転データを運転データ取得部20が取得した後、取得された各種運転データが制御装置15に伝送されて運転データ受信部30が受信することで、制御装置15が各種運転データを収集する。前述したように、運転データ取得部20はガス分析計17を含んでいるので、各種運転データは流出ガス中のSO濃度を含んでいる。
ステップS2では、第1学習モデル構築部38は、制御装置15が収集した各種運転と、流出ガス中の将来のSO濃度との関係について機械学習により第1モデルを構築する。ステップS3では、構築された第1学習モデルを用いて、第1関係テーブル作成部31は、第1時間における吸収液の循環流量と、第1時間よりも将来の時間である第2時間において流出ガス中のSO濃度の予測値との相関である第1関係テーブルを作成する。機械学習により構築された第1学習モデルを用いて第1関係テーブルを作成するので、迅速に第1関係テーブルを作成することができる。
第1関係テーブルにおいて、吸収液の循環流量と流出ガス中のSO濃度の予測値とは時間が異なり、吸収液の循環流量を現在の値とすると、流出ガス中のSO濃度の予測値は、例えば現在から数分後のSO濃度の予測値となる。このため、各種運転データには少なくとも、任意の時間における流出ガス中のSO濃度と、第2時間から第1時間を差し引いた時間間隔だけ任意の時間よりも過去の時間における吸収液の循環流量とが含まれている。任意の時間における流出ガス中のSO濃度と、第2時間から第1時間を差し引いた時間間隔だけ任意の時間よりも過去の時間における吸収液の循環流量とを含む実際の運転データから将来のSO濃度を直接予測しているので、将来のSO濃度の予測性能を向上することができる。尚、第1時間と第2時間との間隔が短いほど、将来のSO濃度の予測性能は向上する。このため、第1時間と第2時間との間隔は、吸収液の循環流量の変化に起因して流出ガス中のSO濃度が変化するまでに要する時間と、ガス分析計17がSO濃度を測定するのに要する時間との和とすることが好ましい。
図4には、第1時間と第2時間との間隔を、吸収液の循環流量の変化に起因して流出ガス中のSO濃度が変化するまでに要する時間と、ガス分析計17がSO濃度を測定するのに要する時間との和とした場合における、SO濃度の予測値の推移(a)と、ガス分析計17によるSO濃度の測定値の推移(b)と、SO濃度の真値の推移(c)とを示している。それぞれのグラフにおいて、右側ほど過去の値であり、一番左側が最新値である。ガス分析計17によるSO濃度の測定値の最新値は第1時間における値であり、SO濃度の予測値の最新値は第2時間における値である。ガス分析計17によるSO濃度の測定値の最新値と、SO濃度の真値の最新値との間隔(i)が、ガス分析計17がSO濃度を測定するのに要する時間、すなわち計測遅れに相当し、SO濃度の真値の最新値と、SO濃度の予測値の最新値との間隔(ii)が、吸収液の循環流量の変化に起因して流出ガス中のSO濃度が変化するまでに要する時間に相当する。
図5に、第1関係テーブルの一例を示す。この実施形態では第1関係テーブルは、横軸に流出ガス中のSO濃度の予測値をとるとともに縦軸に吸収液の循環流量をとったグラフとして表されているが、必ずしもこのような形態である必要はなく、マトリックスや数式等の形態であってもよい。ステップS4では、循環流量決定部32は、この第1関係テーブルに基づいて、将来における流出ガス中のSO濃度が予め設定された設定値SVとなる吸収液の循環流量Qを決定する。
ステップS5では、図1に示されるように、循環ポンプ調節部33は、決定された循環流量Q以上になるように循環ポンプ12a~12cの稼働台数を決定し、決定された稼働台数の循環ポンプが稼働するようにする。例えば、3台の循環ポンプ12a~12cそれぞれの稼働時の供給量が同じ場合には、3段階の循環流量の調節が可能である。循環ポンプの台数を増やせば、より細かな循環流量の調節が可能となる。また、例えば、3台の循環ポンプ12a~12cそれぞれの稼働時の供給量が互いに異なる場合には、稼働させる循環ポンプの組み合わせによって最大6段階の循環流量の調節が可能である。さらに、例えば、3台の循環ポンプ12a~12cそれぞれが供給量を調節可能であれば、より細かな循環流量の調節が可能となる。
尚、循環流量の調節は、循環ポンプの台数制御によって行うことに限定するものではない。供給量を調節可能な1台の循環ポンプを用いて、循環流量決定部32によって決定された循環流量となるように循環ポンプの供給量を調節するようにしてもよい。
このように、吸収塔11内を循環する吸収液の循環流量を調節することにより、将来における流出ガス中のSO濃度が予め設定された設定値以下となるように制御することができるが、このためには、吸収液中のCaCO濃度に大きな変動がないことが必要である。このため、この実施形態では、前述したように、ステップS2~S5とは別に、ステップS12~S15によって、吸収液中のCaCO濃度が予め設定された設定範囲内となるように制御している。次に、ステップS12~S15それぞれを詳細に説明する。
ステップS12では、第2学習モデル構築部39は、制御装置15が収集した各種運転データと、吸収塔11内の吸収液中の将来のCaCO濃度との関係について機械学習により第2学習モデルを構築する。ステップS13では、構築された第2学習モデルを用いて、第2関係テーブル作成部35は、第3時間における吸収塔11への吸収剤スラリーの供給量と、第3時間よりも将来の時間である第4時間におけるCaCO濃度の予測値との相関である第2関係テーブルを作成する。機械学習により構築された第2学習モデルを用いて第2関係テーブルを作成するので、迅速に第2関係テーブルを作成することができる。
第2関係テーブルにおいて、吸収塔11への吸収剤スラリーの供給量とCaCO濃度の予測値とは時間が異なり、吸収剤スラリーの供給量を現在の値とすると、CaCO濃度の予測値は、例えば現在から数分後のCaCO濃度の予測値となる。このため、各種運転データには少なくとも、任意の時間におけるCaCO濃度と、第4時間から第3時間を差し引いた時間間隔だけ前記任意の時間よりも過去の時間における吸収剤スラリーの供給量とが含まれている。任意の時間におけるCaCO濃度と、第4時間から第3時間を差し引いた時間間隔だけ前記任意の時間よりも過去の時間における吸収剤スラリーの供給量とを含む実際の運転データから将来のCaCO濃度を直接予測しているので、将来のCaCO濃度の予測性能を向上することができる。
この実施形態では、任意の時間におけるCaCO濃度は、マスバランス計算によるシミュレーションモデルを用いて算出された値を用いている。CaCO濃度を検出するためのセンサーは一般的に高価であるため、このようなセンサーを設けると湿式排煙脱硫装置10のコストが上昇してしまう。しかし、マスバランス計算によるシミュレーションモデルを用いてCaCO濃度を算出するようにすれば、高価なセンサーが不要になり、湿式排煙脱硫装置10のコストの上昇を抑制することができる。
尚、第3時間と第4時間との間隔が短いほど、将来のCaCO濃度の予測性能は向上する。このため、第3時間と第4時間との間隔は、吸収剤スラリーの供給量の変化に起因してCaCO濃度が変化するまでに要する時間とすることが好ましい。吸収剤スラリーの供給量の予測値の推移及び真値の推移はそれぞれ、図4のSO濃度の予測値の推移(a)及び真値の推移(c)と同様の関係になる。この実施形態では、CaCO濃度はマスバランス計算によるシミュレーションモデルを用いて算出しているが、CaCO濃度をセンサーによって測定する場合には、吸収剤スラリーの供給量の予測値の推移とセンサーによる測定値の推移と真値の推移とはそれぞれ、図4のSO濃度の各種推移(a)~(c)と同様の関係になる。
一般に、吸収塔11から流出する流出ガス中のSO濃度が変化するのに必要なステップ数は、CaCO濃度が変化するのに必要なステップ数に比べて多いため、CaCO濃度の制御に比べてSO濃度の制御の遅れが大きい。このため、第3時間から第4時間までの時間を、第1時間から第2時間までの時間よりも短くすることで、制御遅れの影響を適切に考慮することができるので、将来のCaCO濃度の予測性能をさらに向上することができる。
図6に、第2関係テーブルの一例を示す。この実施形態では第2関係テーブルは、横軸にCaCO濃度の予測値をとるとともに縦軸に吸収剤スラリーの供給量をとったグラフとして表されているが、必ずしもこのような形態である必要はなく、マトリックスや数式等の形態であってもよい。ステップS14では、吸収剤スラリー供給量決定部36は、この第2関係テーブルに基づいて、将来におけるCaCO濃度が予め設定された設定範囲R内となる吸収剤スラリーの供給量Fを決定する。
ステップS15では、図1に示されるように、吸収剤スラリー供給制御部37は、吸収剤スラリー供給用配管22を介して吸収塔11内に供給される吸収剤スラリーの供給量が、決定された吸収剤スラリーの供給量Fに近くなるように、吸収剤スラリー供給量制御弁23の開度を制御する。このように、吸収塔11への吸収剤スラリーの供給量を調節することにより、将来におけるCaCO濃度が予め設定された設定範囲内となるように制御することができる。
このように、燃焼装置1の運転データ及び湿式排煙脱硫装置10の吸収液の循環流量を含む運転データから、第1時間における吸収液の循環流量と、第1時間よりも将来の時間である第2時間において吸収塔11から流出する流出ガス中のSO濃度との間の第1関係テーブルを作成することにより、実際の運転データから将来のSO濃度を直接予測しているので、将来のSO濃度の予測性能を向上した第1関係テーブルを得ることができ、この第1関係テーブルに基づいて、第2時間における流出ガス中のSO濃度が予め設定された設定値以下となるような第1時間における吸収液の循環流量を決定して、第1時間において、決定された循環流量に基づいて循環ポンプ12a~12cの運転条件を調節するので、循環ポンプ12a~12cの運転条件を適切に調節することができる。
この実施形態では、ステップS12~S15によって吸収液中のCaCO濃度が予め設定された設定範囲内となるようにしているが、例えば、吸収液中のCaCO濃度をセンサーによって実測し、この実測値に基づいて吸収塔11への吸収剤スラリーの供給量を随時調節するようにしておけば、ステップS12~S15の各ステップを不要にすることができる。この場合、制御装置15は、第2学習モデル構築部39と第2関係テーブル作成部35と吸収剤スラリー供給量決定部36と吸収剤スラリー供給制御部37とを備えていなくてもよい。
制御装置15は、図7に示されるように、運転データ受信部30及び第1関係テーブル作成部31のそれぞれと電気的に接続された比較部34を備え、比較部34は、第1関係テーブルを作成後、第2時間において取得されたガス分析計17による分析結果と第2時間における流出ガス中のSO濃度の予測値との差が、例えば予め設定した閾値以上となったら、各種運転データと流出ガス中の将来のSO濃度との関係について機械学習により第1学習モデルを再構築し、再構築された第1学習モデルを用いて第1関係テーブルを作成し直すようにしてもよい。これにより、将来のSO濃度の予測性能をさらに向上した第1関係テーブルを得ることができる。
また、図7の構成において、第1関係テーブルを作成後、第2時間において取得されたガス分析計17による分析結果と第2時間における流出ガス中のSO濃度の予測値との差が閾値以上となる場合には、プロセス中に何らかの異常が発生している可能性がある。この場合、その可能性を知らせる警報等を、例えば遠隔監視装置43(図2参照)に表示することにより、プロセス中の異常を早期に検出することができる。
この実施形態では、SOの吸収剤としてCaCOを用いているが、CaCOに限定するものではない。SOの吸収剤として、例えば水酸化マグネシウム(Mg(OH))等を用いることもできる。
1 燃焼装置
2 配管
3 循環用配管
10 湿式排煙脱硫装置
11 吸収塔
12a 循環ポンプ
12b 循環ポンプ
12c 循環ポンプ
13 吸収剤スラリー供給部
14 石膏回収部
15 制御装置
16 流出配管
17 ガス分析計
21 吸収剤スラリー製造設備
22 吸収剤スラリー供給用配管
23 吸収剤スラリー供給量制御弁
25 石膏分離器
26 石膏スラリー抜き出し用配管
27 石膏スラリー抜き出し用ポンプ
30 運転データ受信部
31 第1関係テーブル作成部
32 循環流量決定部
33 循環ポンプ調節部
34 比較部
35 第2関係テーブル作成部
36 吸収剤スラリー供給量決定部
37 吸収剤スラリー供給制御部
38 第1学習モデル構築部
39 第2学習モデル構築部
40 遠隔監視システム
41 分散制御システム(DCS)
42 エッジサーバー
43 遠隔監視装置

Claims (11)

  1. 吸収塔と、
    前記吸収塔内に吸収液を循環させるための少なくとも1つの循環ポンプと
    を備え、
    前記吸収塔内において、燃焼装置で発生した排ガスと前記吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御方法であって、
    前記燃焼装置の排ガスの流量を含む運転データ及び前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データと、将来の吸収塔出口における二酸化硫黄濃度との関係について機械学習により第1学習モデルを構築するステップと、
    前記第1学習モデルを用いて、第1時間における前記吸収液の循環流量と、前記第1時間よりも将来の時間である第2時間において前記吸収塔から流出する流出ガス中の二酸化硫黄濃度の予測値との間の第1関係テーブルを作成するステップと、
    前記第1関係テーブルに基づいて、前記第2時間における前記流出ガス中の二酸化硫黄濃度が予め設定された設定値以下となるような前記第1時間における前記吸収液の循環流量を決定するステップと、
    前記第1時間において、前記決定された循環流量に基づいて前記少なくとも1つの循環ポンプの運転条件を調節するステップと
    を含む湿式排煙脱硫装置の制御方法。
  2. 前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データは、
    任意の時間における前記流出ガス中の二酸化硫黄濃度と、
    前記第2時間から前記第1時間を差し引いた時間間隔だけ前記任意の時間よりも過去の時間における前記吸収液の循環流量と
    を含む、請求項1に記載の湿式排煙脱硫装置の制御方法。
  3. 湿式排煙脱硫装置は、前記流出ガス中の二酸化硫黄濃度を測定するためのガス分析計をさらに備え、
    前記第2時間において取得された前記ガス分析計による分析結果と、前記第2時間における前記流出ガス中の二酸化硫黄濃度の前記予測値とを比較するステップをさらに含む、請求項1または2に記載の湿式排煙脱硫装置の制御方法。
  4. 前記第1関係テーブルを作成後、前記分析結果と前記流出ガス中の二酸化硫黄濃度の前記予測値との差に基づいて、前記燃焼装置の運転データ及び前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データと、将来の吸収塔出口における二酸化硫黄濃度との関係について機械学習により前記第1学習モデルを再構築し、該再構築された第1学習モデルを用いて前記第1関係テーブルを作成するステップをさらに備える、請求項3に記載の湿式排煙脱硫装置の制御方法。
  5. 前記湿式排煙脱硫装置は、前記吸収液に含まれる吸収剤のスラリーである吸収剤スラリーを前記吸収塔へ供給するための吸収剤スラリー供給部をさらに備え、
    前記燃焼装置の排ガスの流量を含む運転データ及び前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データと将来の吸収剤の濃度との関係について機械学習により第2学習モデルを構築するステップと、
    前記第2学習モデルを用いて、第3時間における前記吸収塔への前記吸収剤スラリーの供給量と、前記第3時間よりも将来の時間である第4時間における前記吸収液中の前記吸収剤の濃度の予測値との間の第2関係テーブルを作成するステップと、
    前記第2関係テーブルに基づいて、前記第4時間における前記吸収剤の濃度が予め設定された設定範囲内となるような前記第3時間における前記吸収剤スラリーの供給量を決定するステップと、
    前記第3時間において、前記決定された吸収剤スラリーの供給量に基づいて前記吸収剤スラリー供給部を制御するステップと
    をさらに備える、請求項1~4のいずれか一項に記載の湿式排煙脱硫装置の制御方法。
  6. 前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データは、
    任意の時間における前記吸収剤の濃度と、
    前記第4時間から前記第3時間を差し引いた時間間隔だけ前記任意の時間よりも過去の時間における前記吸収剤スラリーの供給量と
    を含む、請求項5に記載の湿式排煙脱硫装置の制御方法。
  7. 前記吸収剤の濃度は、マスバランス計算によるシミュレーションモデルを用いて算出される、請求項6に記載の湿式排煙脱硫装置の制御方法。
  8. 前記第3時間から前記第4時間までの間隔は、前記第1時間から前記第2時間までの間隔よりも短い、請求項5~7のいずれか一項に記載の湿式排煙脱硫装置の制御方法。
  9. 吸収塔と、
    前記吸収塔内に吸収液を循環させるための少なくとも1つの循環ポンプと
    を備え、
    前記吸収塔内において、燃焼装置で発生した排ガスと前記吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御装置であって、
    前記燃焼装置の排ガスの流量を含む運転データ及び前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データと、将来の吸収塔出口における二酸化硫黄濃度との関係について機械学習により学習モデルを構築する第1学習モデル構築部と、
    前記学習モデルを用いて、第1時間における前記吸収液の循環流量と、前記第1時間よりも将来の時間である第2時間において前記吸収塔から流出する流出ガス中の二酸化硫黄濃度の予測値との間の第1関係テーブルを作成する第1関係テーブル作成部と、
    前記第1関係テーブルに基づいて、前記第2時間における前記流出ガス中の二酸化硫黄濃度が予め設定された設定値以下となるような前記第1時間における前記吸収液の循環流量を決定する循環流量決定部と、
    前記第1時間において、前記決定された循環流量に基づいて前記少なくとも1つの循環ポンプの運転条件を調節する循環ポンプ調節部と
    を含む湿式排煙脱硫装置の制御装置。
  10. 前記湿式排煙脱硫装置は、前記吸収液に含まれる吸収剤のスラリーである吸収剤スラリーを前記吸収塔へ供給するための吸収剤スラリー供給部をさらに備え、
    前記燃焼装置の排ガスの流量を含む運転データ及び前記湿式排煙脱硫装置の前記吸収液の循環流量を含む運転データと将来の吸収剤の濃度との関係について機械学習により第2学習モデルを構築する第2学習モデル構築部と、
    前記第2学習モデルを用いて、第3時間における前記吸収塔への前記吸収剤スラリーの供給量と、前記第3時間よりも将来の時間である第4時間における前記吸収液中の前記吸収剤の濃度の予測値との間の第2関係テーブルを作成する第2関係テーブル作成部と
    前記第2関係テーブルに基づいて、前記第4時間における前記吸収剤の濃度が予め設定された設定範囲内となるような前記第3時間における前記吸収剤スラリーの供給量を決定する吸収剤スラリー供給量決定部と、
    前記第3時間において、前記決定された吸収剤スラリーの供給量に基づいて前記吸収剤スラリー供給部を制御する吸収剤スラリー供給制御部と
    をさらに備える、請求項9に記載の湿式排煙脱硫装置の制御装置。
  11. 請求項9または10に記載の湿式排煙脱硫装置の制御装置と、
    前記湿式排煙脱硫装置の制御装置に電気的に接続された遠隔監視装置と
    を備える遠隔監視システム。
JP2018133127A 2018-07-13 2018-07-13 湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、及びこの湿式排煙脱硫装置の制御装置を備えた遠隔監視システム Active JP7193261B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2018133127A JP7193261B2 (ja) 2018-07-13 2018-07-13 湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、及びこの湿式排煙脱硫装置の制御装置を備えた遠隔監視システム
EP19834294.1A EP3804839A4 (en) 2018-07-13 2019-07-10 A method for controlling a wet smoke desulfurization device, a device for controlling a wet smoke desulfurization device and a remote monitoring system with a device for controlling a wet smoke desulfurization device
RU2020142584A RU2759855C1 (ru) 2018-07-13 2019-07-10 Способ управления устройством мокрой десульфуризации дымовых газов, устройство для управления устройством мокрой десульфуризации дымовых газов и система дистационного мониторинга, содержащая устройство для управления устройством мокрой десульфуризации дымовых газов
PCT/JP2019/027308 WO2020013220A1 (ja) 2018-07-13 2019-07-10 湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、及びこの湿式排煙脱硫装置の制御装置を備えた遠隔監視システム
KR1020217000224A KR20210018431A (ko) 2018-07-13 2019-07-10 습식 배연 탈황 장치의 제어 방법, 습식 배연 탈황 장치의 제어 장치, 및 이 습식 배연 탈황 장치의 제어 장치를 구비한 원격 감시 시스템
MYPI2021000048A MY196819A (en) 2018-07-13 2019-07-10 Method for controlling wet flue gas desulfurization device, device for controlling wet flue gas desulfurization device, and remote monitoring system comprising device for controlling wet flue gas desulfurization device
CN201980046216.2A CN112423863A (zh) 2018-07-13 2019-07-10 湿式排烟脱硫装置的控制方法及控制装置、具备该湿式排烟脱硫装置的控制装置的远程监视系统
US17/258,035 US20210275964A1 (en) 2018-07-13 2019-07-10 Method for controlling wet flue gas desulfurization device, device for controlling wet flue gas desulfurization device, and remote monitoring system comprising device for controlling wet flue gas desulfurization device
TW108124462A TWI720539B (zh) 2018-07-13 2019-07-11 濕式排煙脫硫裝置之控制方法、濕式排煙脫硫裝置之控制裝置及具備該濕式排煙脫硫裝置之控制裝置之遠距監視系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018133127A JP7193261B2 (ja) 2018-07-13 2018-07-13 湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、及びこの湿式排煙脱硫装置の制御装置を備えた遠隔監視システム

Publications (2)

Publication Number Publication Date
JP2020011163A JP2020011163A (ja) 2020-01-23
JP7193261B2 true JP7193261B2 (ja) 2022-12-20

Family

ID=69142000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018133127A Active JP7193261B2 (ja) 2018-07-13 2018-07-13 湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、及びこの湿式排煙脱硫装置の制御装置を備えた遠隔監視システム

Country Status (9)

Country Link
US (1) US20210275964A1 (ja)
EP (1) EP3804839A4 (ja)
JP (1) JP7193261B2 (ja)
KR (1) KR20210018431A (ja)
CN (1) CN112423863A (ja)
MY (1) MY196819A (ja)
RU (1) RU2759855C1 (ja)
TW (1) TWI720539B (ja)
WO (1) WO2020013220A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111611691B (zh) * 2020-04-21 2024-05-31 大唐环境产业集团股份有限公司 基于多模态模型预测控制脱硫系统多目标优化控制方法
CN111598308B (zh) * 2020-04-24 2022-03-29 大唐环境产业集团股份有限公司 基于回归和二重pso算法解决浆液循环泵组合优化方法
CN112044243A (zh) * 2020-08-05 2020-12-08 华能国际电力股份有限公司上安电厂 火电机组脱硫装置排放指标自动控制系统及方法
CN113019086B (zh) * 2021-03-01 2022-05-17 浙江浙能技术研究院有限公司 一种脱硫增效剂的精准投加方法
JP2022157305A (ja) * 2021-03-31 2022-10-14 三菱重工業株式会社 湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、この湿式排煙脱硫装置の制御装置を備えた遠隔監視システム、情報処理装置、及び、情報処理システム
JP2022157180A (ja) * 2021-03-31 2022-10-14 三菱重工業株式会社 装置、遠隔監視システム、装置の制御方法、及び、遠隔監視システムの制御方法
CN113648801B (zh) * 2021-08-26 2022-05-31 浙江浩普智能科技有限公司 一种湿法脱硫氧化风机优化控制方法及系统
CN113648802B (zh) * 2021-09-10 2024-01-09 南方电网电力科技股份有限公司 一种火电机组的烟气脱硫诊断方法及装置
CN113898581B (zh) * 2021-09-30 2023-10-03 江苏昆仑互联科技有限公司 一种湿法脱硫罗茨风机节能控制系统及方法
CN114177747A (zh) * 2021-12-02 2022-03-15 昆岳互联环境技术(江苏)有限公司 一种基于机器学习算法的烟气脱硫二氧化硫浓度预测方法
CN114191953B (zh) * 2021-12-07 2024-02-20 国网河北能源技术服务有限公司 一种基于卷积神经网络和XGBoost的烟气脱硫脱硝控制方法
CN114653178B (zh) * 2022-04-07 2023-03-21 南方电网电力科技股份有限公司 一种脱硫塔供浆控制方法及系统
CN114741969B (zh) * 2022-04-27 2023-10-31 江南大学 基于fir-nma模型的硫回收软测量建模方法
JP2023175210A (ja) * 2022-05-30 2023-12-12 三菱重工業株式会社 湿式排煙脱硫装置の制御装置、遠隔監視システム、及び、制御方法
CN115309117B (zh) * 2022-08-04 2024-05-14 浙江大学 一种基于数据驱动的wfgd出口so2浓度预测及智能优化方法
CN115400571A (zh) * 2022-08-31 2022-11-29 华能湖南岳阳发电有限责任公司 脱硫吸收塔自动供浆方法及装置
CN115738622B (zh) * 2023-01-09 2023-05-12 常州嘉瑞特环保能源科技有限公司 一种脱硫设备的尾气排放检测系统
CN115869745B (zh) * 2023-03-08 2023-05-16 福建龙净环保股份有限公司 一种脱硫处理方法及装置
CN116236892A (zh) * 2023-03-16 2023-06-09 福建龙净环保股份有限公司 一种控制脱硫设备的方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303595A (zh) 2008-06-19 2008-11-12 浙江天蓝脱硫除尘有限公司 一种用于湿法烟气脱硫系统的开环模糊控制系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084709B2 (ja) * 1986-04-23 1996-01-24 バブコツク日立株式会社 湿式排煙脱硫制御装置
JPH0710331B2 (ja) * 1988-12-29 1995-02-08 石川島播磨重工業株式会社 排煙脱硫装置の制御方法
JP2984933B2 (ja) * 1990-03-15 1999-11-29 株式会社日立製作所 湿式排煙脱硫制御方法及び装置
JP3091247B2 (ja) * 1991-03-19 2000-09-25 バブコック日立株式会社 湿式排ガス脱硫装置の吸収塔への吸収液循環流量制御方法および制御装置
JP3202265B2 (ja) * 1991-07-08 2001-08-27 バブコック日立株式会社 湿式排煙脱硫装置の吸収塔循環流量制御方法
JPH05317643A (ja) * 1992-05-20 1993-12-03 Babcock Hitachi Kk 湿式排ガス脱硫装置の吸収液循環流量制御方法および装置
JPH06319941A (ja) * 1993-05-13 1994-11-22 Hitachi Ltd 湿式排煙脱硫制御装置及び方法
JP2538184B2 (ja) * 1993-10-22 1996-09-25 川崎重工業株式会社 湿式排煙脱硫装置の制御方法
JP3267115B2 (ja) 1995-08-25 2002-03-18 富士ゼロックス株式会社 ランダム共重合した電荷輸送性ポリエステル樹脂、及びその製造方法
WO1997027931A1 (fr) * 1996-02-01 1997-08-07 Mitsubishi Heavy Industries, Ltd. Appareil de desulfuration de gaz d'echappement
JPH09308815A (ja) * 1996-05-21 1997-12-02 Mitsui Mining Co Ltd 湿式排煙脱硫方法
JPH1066825A (ja) * 1996-08-28 1998-03-10 Chiyoda Corp 脱硫制御装置
US6402939B1 (en) * 2000-09-28 2002-06-11 Sulphco, Inc. Oxidative desulfurization of fossil fuels with ultrasound
JP5721303B2 (ja) * 2007-02-21 2015-05-20 三菱日立パワーシステムズ株式会社 排煙脱硫装置
JP5160107B2 (ja) * 2007-03-07 2013-03-13 千代田化工建設株式会社 排煙処理方法
KR102047196B1 (ko) * 2015-07-23 2019-11-20 미츠비시 히타치 파워 시스템즈 가부시키가이샤 습식 배연 탈황 장치 및 습식 배연 탈황 장치의 운전 방법
US11014041B2 (en) * 2017-03-06 2021-05-25 Ion Engineering, Llc Carbon dioxide capture system and spectroscopic evaluation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303595A (zh) 2008-06-19 2008-11-12 浙江天蓝脱硫除尘有限公司 一种用于湿法烟气脱硫系统的开环模糊控制系统

Also Published As

Publication number Publication date
EP3804839A1 (en) 2021-04-14
CN112423863A (zh) 2021-02-26
JP2020011163A (ja) 2020-01-23
RU2759855C1 (ru) 2021-11-18
TW202021658A (zh) 2020-06-16
EP3804839A4 (en) 2021-08-11
US20210275964A1 (en) 2021-09-09
MY196819A (en) 2023-05-03
TWI720539B (zh) 2021-03-01
WO2020013220A1 (ja) 2020-01-16
KR20210018431A (ko) 2021-02-17

Similar Documents

Publication Publication Date Title
JP7193261B2 (ja) 湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、及びこの湿式排煙脱硫装置の制御装置を備えた遠隔監視システム
WO2022210866A1 (ja) 装置、遠隔監視システム、装置の制御方法、及び、遠隔監視システムの制御方法
US8407027B2 (en) Online diagnostic method and online diagnostic system for geothermal generation facility
CN111905536B (zh) 一种通过脱硫吸收塔浆液ph值自动控制系统
CN111632473A (zh) 一种用于湿法脱硫浆液起泡的自动预警处置系统及方法
WO2022210827A1 (ja) 湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、この湿式排煙脱硫装置の制御装置を備えた遠隔監視システム、情報処理装置、及び、情報処理システム
WO2013024329A1 (en) A method for monitoring a cleaning of a process gas
WO2019172085A1 (ja) 脱硫装置の運転監視システム
JP2010100491A (ja) 二酸化炭素の回収装置および方法
JP2021159870A (ja) 水処理システム、水処理システムの運転管理支援システム及び水処理システムの運転方法
JP4320551B2 (ja) 軟水化装置の再生制御方法
KR101988742B1 (ko) 정삼투 공정의 제어 시스템 및 방법
JP4793645B2 (ja) ガスキャビテーション試験方法および装置
CN112326504B (zh) 一种复合脱硫装置石膏浆液密度测量方法及测量系统
JPH06238126A (ja) 湿式排煙脱硫装置の異常診断装置
JP2873037B2 (ja) 湿式排ガス脱硫装置吸収塔へのカルシウム化合物とナトリウム化合物の供給方法
JP2006250939A (ja) スクラバ液中のCaCO3含有量の決定方法及び決定するための装置
JPH1066825A (ja) 脱硫制御装置
KR101924618B1 (ko) 집진 장치 및 집진 시스템
JP2019018182A (ja) 気体分離装置及びその保守サービスシステムに用いる保守サービスサーバ
JP5138903B2 (ja) 排水処理装置及びその制御方法
JPH1176749A (ja) 排煙脱硫装置及び排煙脱硫方法
TH2101000066A (th) วิธีสำหรับการควบคุมอุปกรณ์กำจัดก๊าซซัลเฟอร์ไดออกไซด์แบบเปียก อุปกรณ์สำหรับการควบคุุมอุปกรณ์กำจัดก๊าซซัลเฟอร์ไดออกไซด์แบบเปียก และระบบเฝ้าตรวจระยะไกลซึ่งประกอบรวมด้วยอุปกรณ์สำหรับการควบคุมอุปกรณ์กำจัดก๊าซซัลเฟอร์ไดออกไซด์แบบเปียก
JPH02229525A (ja) 脱硫装置の冷却塔排水量制御装置
JP2690754B2 (ja) 湿式排ガス脱硫装置の吸収塔への吸収剤スラリの供給方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190627

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221208

R150 Certificate of patent or registration of utility model

Ref document number: 7193261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150