JP6631162B2 - 複層鋳片の連続鋳造方法及び連続鋳造装置 - Google Patents

複層鋳片の連続鋳造方法及び連続鋳造装置 Download PDF

Info

Publication number
JP6631162B2
JP6631162B2 JP2015213678A JP2015213678A JP6631162B2 JP 6631162 B2 JP6631162 B2 JP 6631162B2 JP 2015213678 A JP2015213678 A JP 2015213678A JP 2015213678 A JP2015213678 A JP 2015213678A JP 6631162 B2 JP6631162 B2 JP 6631162B2
Authority
JP
Japan
Prior art keywords
molten steel
tundish
magnetic field
pool
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015213678A
Other languages
English (en)
Other versions
JP2017080788A (ja
Inventor
原田 寛
寛 原田
悠衣 伊藤
悠衣 伊藤
真士 阪本
真士 阪本
笹井 勝浩
勝浩 笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015213678A priority Critical patent/JP6631162B2/ja
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to PCT/JP2016/082286 priority patent/WO2017073784A1/ja
Priority to CN201680063320.9A priority patent/CN108348989B/zh
Priority to US15/771,834 priority patent/US10987730B2/en
Priority to TW105135276A priority patent/TWI633954B/zh
Priority to CA3003574A priority patent/CA3003574C/en
Priority to BR112018008552-9A priority patent/BR112018008552B1/pt
Priority to KR1020187013029A priority patent/KR102138156B1/ko
Priority to EP16860012.0A priority patent/EP3369495A4/en
Publication of JP2017080788A publication Critical patent/JP2017080788A/ja
Application granted granted Critical
Publication of JP6631162B2 publication Critical patent/JP6631162B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/007Continuous casting of metals, i.e. casting in indefinite lengths of composite ingots, i.e. two or more molten metals of different compositions being used to integrally cast the ingots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

本発明は、鋳片表層部と内部の濃度が異なる複層状の鋳片を鋳造する連続鋳造方法および連続鋳造装置に関する。
表層と内層の成分組成が異なる複層状の鋳片を製造する試みは古くから行われている。例えば、特許文献1に開示された方法があげられる。特許文献1には、長さの異なる二本の浸漬ノズルを鋳型内にある溶融金属のプールに挿入し、それぞれの吐出口を深さが異なる位置に設け、さらに異種の溶融金属間に直流磁場を利用して両金属の混合を防止しながら複層鋳片を製造する方法が開示されている。
しかしながら、上記方法では成分組成が異なる二種類の溶鋼を用いるため、二種類の溶鋼を同じタイミングで別々に溶製し、連続鋳造プロセスに搬送し、また、それぞれの溶鋼の中間保持容器として、タンディッシュをそれぞれ準備する必要がある。また、表層溶鋼と内層溶鋼で注入流量が大きく異なるため、1ヒート毎の必要溶鋼量が大きく異なり、通常の製鋼工場で実現するのは困難であった。
そこで、より簡便に鋳片の表層と内層の成分組成が異なる鋳片を鋳造する方法として、大きく分けて2つの方法が検討されている。ひとつは、鋳型内幅方向に一様な磁束密度分布を有する直流磁場を厚み方向に印加することで得られる電磁制動を利用して、その直流磁場帯の上方にワイヤー、あるいは連続鋳造用パウダーに何がしかの合金元素を含有させ連続的に供給することで鋳片表層を改質する方法が検討されている。
鋳型内にワイヤー等で元素を添加する方法を開示したものとして、例えば特許文献2があげられる。この方法では、鋳型内のメニスカス部よりも少なくとも200mm下方に鋳型内溶鋼を遮断する直流磁場を設けるとともに、上方の溶鋼あるいは下部の溶鋼に所定元素を添加するとともに、元素を添加した溶鋼を撹拌することを特徴とする連続鋳造による複層鋼板の製造方法である。
連続鋳造用パウダーになにがしかの元素を含有させ連続的に供給する、あるいは、パウダー層の上方から連続的にパウダーと反応しにくい金属粉あるいは金属粒を供給することによって溶鋼に元素を添加する方法として、例えば、特許文献3に開示された方法があげられる。この方法では、合金元素を含有させた連鋳用パウダーを用い、連続鋳造鋳型内の上部に電磁撹拌装置を設置して鋳型内上部溶鋼の水平断面内で合金元素を溶解・混合する撹拌流を形成し、その下方に幅方向に直流磁場を鋳片の厚み方向に印加して溶鋼中に直流磁場帯を形成し、かつ、その直流磁場帯の下方に浸漬ノズルにより溶鋼を供給して鋳造することで、合金元素の鋳片表層部の濃度が内層に比べて高い複層状の鋳片を製造する方法である。
なお、非特許文献1には、直流磁場として0.2〜0.3Tの磁場を印加することで、表層/内層の分離が図れることが開示されている。
しかしながら、鋳型内では上部にパウダー層が存在し、かつ周囲から冷却され、さらに矩形断面形状となるため、過剰な撹拌を行うことができず、濃度の均一化が図りにくい。また、ストランド上部と下部に供給する溶鋼量を独立に制御しないため、上下プール間での溶鋼混合が避けられず、分離度の高い鋳片を製造しにくいという課題があった。
また、一つの取鍋、一つのタンディッシュにて連続鋳造用溶鋼を供給して形成する複層鋳片として従来知られていたものは、以上説明したとおり、表層の成分含有量が内層よりも高くなる成分組成のものであり、内層の成分含有量が表層よりも高くなる成分組成のものであって実現可能な方法については提案されていない。
Cが0.003%以下で、更にTiあるいはNbを添加してCとNを固定した鋼はIF鋼(Interstitial free鋼)と称せられ、自動車用鋼板等として広く用いられている。IF鋼は、冷間圧延後に溶融亜鉛めっきを施すことが多い。Tiを用いてCとNを固定したIF鋼は、溶融亜鉛めっきに際して加工性に有害なΓ相が生成しやすく、このために、溶融亜鉛めっき後の成形加工に際して、溶融亜鉛めっき相が粉となって剥がれ落ちる、いわゆるパウダリング現象が発生しやすい。鋳片表層部と内部の濃度が異なる複層鋳片であって、内層のTi含有量がIF鋼として必要な量を具備し、一方で表層のTi含有量が少ない複層鋳片を製造することができれば、Ti添加のIF鋼であってパウダリング現象の発生を防止できるので好ましい。
特開昭63−108947号公報 特開平3−243245号公報 特開平8−290236号公報
E.Takeuchi, M.Zeze, H.Tanaka, H.Harada and S.Mizoguchi: Ironmaking and Steelmaking, 24(1997),257.
本発明は上記課題を解決するためになされたものであり、一つの取鍋、一つのタンディッシュにて連続鋳造用溶鋼を供給し、鋳片内層部の合金元素濃度が表層部よりも高くなる複層状の連続鋳造鋳片を鋳造する連続鋳造方法および連続鋳造装置を提供することを目的としている。
本発明は、
(1)鋳片の表層と内層の成分組成が異なる複層鋳片を製造する方法であって、タンディッシュの底部に、表層溶鋼用浸漬ノズルと内層溶鋼用浸漬ノズルを配置し、取鍋からタンディッシュ内に溶鋼が注入される位置を取鍋注入流位置とし、タンディッシュ幅方向において、取鍋注入流位置、表層溶鋼用浸漬ノズル位置、内層溶鋼用浸漬ノズル位置をこの順番で配置し、これら2つの浸漬ノズルの間にタンディッシュ堰を設置し、該タンディッシュ堰は溶鋼浸漬部に開口面積率が20%以上75%以下の開口を有し、
鋳型幅方向全幅にわたって厚み方向に直流磁場を印加する直流磁場発生装置を配置し、当該直流磁場発生装置によって形成される直流磁場帯をはさんだストランドの上部を上側溶鋼プール、下部を下側溶鋼プールとし、前記表層溶鋼用浸漬ノズルから上側溶鋼プールに溶鋼を供給し、内層溶鋼用浸漬ノズルから下側溶鋼プールに溶鋼を供給し、
前記タンディッシュ堰にて区分された取鍋溶鋼注入側を第1領域、その反対側を第2領域とし、第2領域側のタンディッシュ内溶鋼に対して所定の元素あるいはその合金を連続的に添加し濃度を調整することで、取鍋溶鋼ならびに取鍋溶鋼とは異なる成分組成からなる2種類の溶鋼をタンディッシュ内で保持しつつ、第1領域に収容された溶鋼を表層溶鋼用浸漬ノズルから上側溶鋼プールに供給し、第2領域に収容された溶鋼を内層溶鋼用浸漬ノズルから下側溶鋼プールに供給し、
当該2つの浸漬ノズルそれぞれから、それぞれの溶鋼プール中で凝固によって消費される溶鋼量を鋳型内に供給することを特徴とする複層鋳片の連続鋳造方法。
(2)下側溶鋼プールに供給する溶鋼量はタンディッシュのヘッドと内層溶鋼用浸漬ノズルのスライディングノズルの開度と溶鋼流量の関係を用いて、溶鋼界面位置を直流磁場帯内に制御しつつ、表層溶鋼用浸漬ノズルから上側溶鋼プールに供給する供給量については鋳型内湯面レベルが一定となるように制御することを特徴とする(1)記載の複層鋳片の連続鋳造方法。
(3)前記直流磁場帯の上方の鋳型内湯面近傍において水平断面内で旋回流を形成することを特徴とする(1)又は(2)に記載の複層鋳片の連続鋳造方法。
(4)前記第2領域において溶鋼に撹拌力を付与することを特徴とする(1)乃至(3)の何れか一項に記載の複層鋳片の連続鋳造方法。
(5)鋳片の表層と内層の成分組成が異なる複層鋳片を製造する装置であって、取鍋からの溶鋼を保持するタンディッシュの底部に、表層溶鋼用浸漬ノズルと内層溶鋼用浸漬ノズル鋳造幅よりも短い間隔で併設され、取鍋からタンディッシュ内に溶鋼が注入される位置を取鍋注入流位置とし、タンディッシュ幅方向において、取鍋注入流位置、表層溶鋼用浸漬ノズル位置、内層溶鋼用浸漬ノズル位置をこの順番で配置し、これら2つの浸漬ノズルの間にタンディッシュ堰が設置されており、該タンディッシュ堰は溶鋼浸漬部に開口面積率が20%以上75%以下の開口を有し、タンディッシュ堰で区分された取鍋溶鋼注入反対側の領域の溶鋼に成分を添加する成分添加装置を有し、
鋳型内では湯面近傍において水平断面内で旋回流を形成する電磁撹拌装置と、その下方に鋳型幅方向全体にわたって厚み方向に直流磁場を印加する直流磁場発生装置を備え、当該直流磁場発生装置によって形成される直流磁場帯をはさんだストランドの上部を上側溶鋼プール、下部を下側溶鋼プールとし、前記表層溶鋼用浸漬ノズルから上側溶鋼プールに溶鋼を供給し、前記内層溶鋼用浸漬ノズルから下側溶鋼プールに溶鋼を供給する構造とすることを特徴とする複層鋳片の連続鋳造装置。
本発明により、取鍋は1つ、タンディッシュは1つで連続鋳造用溶鋼を供給し、タンディッシュで溶鋼の領域を2つに分け、一方の領域への成分添加により取鍋から供給される母溶鋼とは異なる成分組成の溶鋼に成分調整しつつ母溶鋼との混合をタンディッシュ内、鋳型内で安定して防止することができ、表層厚み、表層濃度が鋳片全幅にわたって均一で、かつ、鋳片の表層と内層の成分組成が異なり、内層のみに高歩留で成分が添加された複層鋳片の製造が可能となる。
本方法は添加する成分についての制約は少なく、Ti、SiやCだけでなく、Mn,P,S,B,Nb,Al,Cu,Ni,Moに加えて、強脱酸、強脱硫元素であるCa,Mg,REM等、鋼中に含有する元素を添加することができ、鋳片の表層成分を変えることで鋼材の新たな機能を比較的簡便な方法で可能となった。
本発明の装置ならびに方法を模式的に示した図である。 タンディッシュ内の溶鋼流動状況を示す概略断面図であり、(A)は浸漬ノズルが1本でタンディッシュ堰を有しない従来の場合、(B)は浸漬ノズルが2本で間にタンディッシュ堰を有する本発明の場合である。 タンディッシュ堰の開口形状の例を示す図であり、(A)は上堰で(A−1)は(A−2)のA−A矢視断面図であり、(B)はその他の開口形状を示す。 直流磁場帯により、ストランドが2つに分割された際の凝固シェル形成、表層と内層の界面がどのように形成されるかを模式的に示した図である。 タンディッシュ堰開口の開口面積率と(A)内層分離度、(B)濃度均一性の関係について調査した結果である。 上側溶鋼プール溶鋼供給量Q1と上側溶鋼プール凝固量G1との比(Q1/G1)と(A)内層分離度、(B)濃度均一度との関係について調査した結果を示す図である。 表層厚みの鋳片幅方向分布に及ぼす電磁撹拌装置による旋回流の影響を示した図である。
以下に本発明の好ましい実施の形態を図1、4に基づいて説明する。まず、特許文献1にあるように、メニスカス17の下方の所定位置に直流磁場発生装置8を配置し、直流磁場帯14を形成する。直流磁場帯14においては、磁力線が鋳片の厚み方向に向かう直流磁場を印加し、磁束密度は鋳型幅方向にほぼ均一とする。このような直流磁場帯を形成することにより、直流磁場帯14を通過しようとする溶鋼には電磁ブレーキがかかり、直流磁場帯14上方の上側溶鋼プール15と下方の下側溶鋼プール16とが事実上遮断されることとなる。上側溶鋼プール15で凝固した凝固シェルが鋳片の表層部24を形成し、下側溶鋼プール16で凝固した凝固シェルが鋳片の内層部25を形成する。そして、直流磁場帯14部分における凝固シェルの厚さDが、鋳片の表層部24の厚さに該当する。従って、直流磁場帯14を配置するメニスカスからの高さHは、目標とする表層部の厚さD、鋳型内における凝固係数K、鋳造速度VCに基づいて定めることとなる。
そのうえで、その直流磁場帯14の上下それぞれに溶鋼を供給するために2本の浸漬ノズルを設置し、それぞれの溶鋼プールにおいて凝固する溶鋼量だけ、各浸漬ノズルから溶鋼を供給することで、表層と内層の成分組成が異なる鋳片が鋳造できる。ここで直流磁場帯とは直流磁場発生装置のコア高さと同じ範囲とする。理由はこの範囲内であれば均一な磁束密度の直流磁場が印加される。
直流磁場帯の磁束密度は、上側溶鋼プール15と下側溶鋼プール16との間の溶鋼の入れ替わりを最小限にすることのできる磁束密度を選択する。鋳片の表層と内層の成分組成が異なる複層鋳片を製造するにあたり、それぞれの溶鋼量比を計算すると、表層厚みや鋳造幅によって変化するものの、スラブ鋳造の条件であれば、内層/表層=4〜5と圧倒的に内層の流量が多い。従って、下側溶鋼プール16へ溶鋼を供給する浸漬ノズルの吐出孔から流出した溶鋼流が、鋳型内溶鋼流動現象の大きな比率を占める。この吐出流は短辺凝固シェルに衝突して下側反転流と上側反転流を形成する。この上側反転流を抑制して直流磁場帯の通過を抑止できれば、上側溶鋼プールと下側溶鋼プールの溶鋼入れ替わりを最小限とできる。直流磁場帯の磁束密度が0.3T(テスラ)以上であれば、十分に溶鋼の入れ替わりを抑止することができる。この点は、前記非特許文献1にも記載のとおりである。
磁束密度の上限は高いほど好ましいが、超電導磁石によらず直流磁場を形成するうえではおよそ1.0Tが上限となる。鋳造条件に応じて0.3T〜1Tの範囲内で適正な磁束密度の磁場を印加すればよい。
本発明では、
[1]タンディッシュ2にて取鍋1から注入された溶鋼(以下、第1溶鋼21)の一部を成分調整することで新たな溶鋼(以下、第2溶鋼22)を作り出すこと、
[2]1つのタンディッシュ内で2種類の溶鋼:第1溶鋼21、第2溶鋼22を保持すること、
[3] 第1溶鋼21、第2溶鋼22をそれぞれ、ストランド内の上側溶鋼プール15、下側溶鋼プール16それぞれの位置で凝固によって消費される量だけ鋳型内に安定して供給すること
の3つが必要となる。
先ず、本発明では、[1]タンディッシュ2で第1溶鋼21と成分組成の異なる第2溶鋼22をつくる。
図1、図2(B)に示すように、タンディッシュ底部に浸漬ノズルを配置する順番を、取鍋注入流13側から表層溶鋼用浸漬ノズル5を配置し、その下流側に内層溶鋼用浸漬ノズル6を配置し、加えて、この両者の浸漬ノズルの間にタンディッシュ堰4であって溶鋼浸漬部に開口10を有する堰を設ける。タンディッシュ堰4によってタンディッシュを複数領域に、すなわち、取鍋からの第1溶鋼21を受ける第1領域11と、第1溶鋼21にワイヤー等によって所定元素あるいはその合金を添加し成分調整を行う第2領域12の2つの領域にわける。第1領域11には、取鍋注入流13位置と表層溶鋼用浸漬ノズル5が配置され、第2領域12には内層溶鋼用浸漬ノズル6が配置される。表層溶鋼用浸漬ノズル5からは第1溶鋼21を上側溶鋼プール15へ注入する。内層溶鋼用浸漬ノズル6からは第2溶鋼22を下側溶鋼プール16へ注入する。
このようにすることで、タンディッシュ内の第1領域11では取鍋注入流13から表層溶鋼用浸漬ノズル5への溶鋼流が形成されるのに対し、タンディッシュ堰4で区画した第2領域12は図1に示すように、第2領域12に前述したように成分添加装置7によって所定の元素あるいは合金をワイヤー等によって連続的に添加して含有成分を調整し、第2溶鋼22をつくる。その結果、1つのタンディッシュ内で2種類の溶鋼:第1溶鋼21、第2溶鋼22を保持することが可能となる。
さらに、所定の元素あるいはその合金をワイヤー等によって連続的に添加し成分調整を行う第2領域12については、撹拌力を付与し濃度の均一化を図ると好ましい。そのためには、第2領域内のタンディッシュ底部からArバブリング等により撹拌を付与することで均一混合を図ることができる。さらに好ましくは、ワイヤーを添加し撹拌を付与する領域とその後方に溶鋼を鎮静化する領域を設けることができればワイヤー添加時に巻き込まれた介在物等を浮上除去することが好ましい。このようにして、鋳型下部の下側溶鋼プール16に供給する第2溶鋼22が第2領域12においてつくられる。なお、第2溶鋼22への成分添加量は第2領域内に供給される溶鋼量に応じて調整することで濃度を調整することができる。
次に、本発明では、[2]第1溶鋼と第2溶鋼のタンディッシュ内での混合を防止し、2つの溶鋼を1つのタンディッシュで安定的に保持する。
タンディッシュ内の流動は図2(A)に模式的に示すように、取鍋1から下向きに注入された取鍋注入流13がタンディッシュ内では水平に流れ、タンディッシュ底部に設けた浸漬ノズル30から下向きに流出する。即ち、タンディッシュ内の溶鋼流動は一方向の流れである。
本発明では前述のとおり、取鍋注入流13側から表層溶鋼用浸漬ノズル5を配置し、その下流側に内層溶鋼用浸漬ノズル6を配置し、表層溶鋼用浸漬ノズル5と内層溶鋼用浸漬ノズル6の間にタンディッシュ堰4を設ける。タンディッシュ堰4の湯面18より下部の溶鋼浸漬部分には開口10を設け、この開口10を通して第1領域11と第2領域12の溶鋼が流通可能となる。そして、鋳片の表層と内層の成分組成が異なる複層鋳片を製造するにあたり、それぞれの溶鋼量比を計算すると、表層厚みや鋳造幅によって変化するものの、スラブ鋳造の条件であれば、内層/表層=3〜7と圧倒的に内層の流量が多い。そのため、タンディッシュ堰4の開口10を通過して第1領域11から第2領域12へ流れる溶鋼量が多く、逆にタンディッシュ堰4の開口10を通過して第2領域12から第1領域11へと溶鋼が逆流することがない。従って、第1溶鋼と第2溶鋼のタンディッシュ内での混合を防止することが容易となる。
図3において、ドットハッチング部分がタンディッシュ堰4の溶鋼浸漬部分26のうちの堰存在部分であり、ドットハッチング部の下部の空白部分が開口10を示している。開口10の設け方としては、図3(A)に示すように堰の下方を開放していわゆる上堰とすることができる。また、図3(B)に示すような各種の開口を設けることとしても良い。堰の開口断面積を、堰配置位置における堰と平行な面におけるタンディッシュ溶鋼断面積で除した値(百分率)を、ここでは開口面積率(%)という。開口面積率を75%以下とすることにより、第1領域11と第2領域12の溶鋼の混合を有効に抑制することができ、第2領域12に添加した成分が第1領域11の第2溶鋼22に混合する可能性を低減することができる。一方、開口面積率が小さすぎると逆に成分不均一を生じることがあるが、開口面積率が20%以上であれば問題なく鋳造を行うことができる。
本発明では、図1、4に模式的に示すように、鋳型幅全体にわたって形成される直流磁場帯14によってストランドを上側溶鋼プール15と下側溶鋼プール16の2つに分割し、上側溶鋼プール15には表層溶鋼用浸漬ノズル5から第1溶鋼21を注入し、下側溶鋼プール16には内層溶鋼用浸漬ノズル6から第2溶鋼22を注入する。直流磁場帯14の位置において、鋳片の表面側には上側溶鋼プール15の溶鋼が凝固した凝固シェル(上側溶鋼プール凝固部分24)が形成されている。直流磁場帯位置における凝固シェル断面積をS1とする。この凝固シェル断面積S1が、鋳造後鋳片の表層部面積S1となる。鋳片表面積のうちの表層部面積S1以外の部分が内層部面積S2であり、S1とS2を足した値が鋳片断面積となる。上側溶鋼プールから凝固シェルとして下方に輸送される上側溶鋼プール凝固部分24の単位時間輸送量G1は、鋳造速度をVCとして、第1溶鋼、第2溶鋼の密度をρ1、ρ2とすると、
1=ρ11C
また、下側溶鋼プールで凝固して下方に輸送される下側溶鋼プール凝固部分25の単位時間輸送量G2は、
2=ρ22C
となる。合計鋳造量をGとすると、
G=G1+G2
となる。
次に、表層溶鋼用浸漬ノズル5から上側溶鋼プール15に供給する溶鋼量をQ1、内層溶鋼用浸漬ノズル6から下側溶鋼プール16に供給する溶鋼量をQ2とする。合計溶鋼量Qを
Q=Q1+Q2
とおく。タンディッシュから鋳型への溶鋼供給量合計(Q)については、メニスカス位置が一定を保持するように湯面レベル制御によって調整するので、
Q=G
が確保される。本発明では、各浸漬ノズルから各溶鋼プールに供給する溶鋼量について、
1=G1
2=G2
とすることにより、直流磁場帯を経由しての溶鋼の混合を防止し、タンディッシュの第2領域で形成した第2溶鋼の成分のままで鋳片の内層部を形成し、第1領域における第1溶鋼の成分のままで鋳片の表層部を形成することができる。
そこで本発明では、[3]これら3者の溶鋼量Q、Q1、Q2、を制御し、第1溶鋼と第2溶鋼とが直流磁場帯を通過して混合することのないように制御する。
具体的な制御方法について、図1、4を用いて説明する。
予め、適用する連続鋳造装置における鋳型内での凝固係数K(mm/min0.5)を確認しておく。メニスカス17から直流磁場帯14までの高さH、鋳造速度VCを定めることにより、直流磁場帯14における凝固シェル厚さDが
D=K√(H/VC
として求まる。求まった直流磁場帯における凝固シェル厚さDを用いて、直流磁場帯における凝固シェル断面積S1が定まり、前述の
1=ρ11C
によってG1が定まるので、
1=G1
となるように、表層溶鋼用浸漬ノズル5からの溶鋼供給量Q1を定めればよい。
直流磁場帯14の磁場形成範囲は、湯面からの高さHを中心として上下に幅を有している。そのため、Q1とQ2のバランスが若干変動しても、上側溶鋼プール15と下側溶鋼プール16の境界27が直流磁場帯14の磁場範囲内に収まるのであれば、溶鋼界面位置を直流磁場帯内に制御でき、本発明の効果を十分に発揮することができる。湯面17から直流磁場帯上限までの距離をHH、直流磁場帯下限までの距離をHLとおく。上側と下側の溶鋼プール境界27がHH又はHLにあるとき、凝固シェル厚さはそれぞれ
H=K√(HH/VC
L=K√(HL/VC
となる。上側溶鋼プールでの凝固量G1について、溶鋼プール境界がHH又はHLにあるときの値をそれぞれG1H、G1Lとすると、
1H/G1≒DH/D=√(HH/H)
1L/G1≒DL/D=√(HL/H)
となる。そして、上側溶鋼プールへの溶鋼供給量Q1が、G1H〜G1Lの範囲に入っていれば、溶鋼界面27位置を直流磁場帯内に制御でき、上側溶鋼プールと下側溶鋼プールとの溶鋼混合を抑えて十分に良好な品質とすることができる。
一定鋳造速度VC(単位時間鋳造量=G)にて引き抜きを行い、タンディッシュから鋳型内へ供給する溶鋼量がQ(=G)である状況で、まず、取鍋からタンディッシュに供給する溶鋼量がQで一定となるように制御する。タンディッシュに供給する溶鋼量をQとするための注入制御方法としては、取鍋重量を測定して時間当たり重量変化量がQとなるように注入制御を行う方法、あるいはタンディッシュ内溶鋼ヘッドが目視できる状況であれば当該溶鋼ヘッドが一定となるように注入制御を行う方法のいずれかを用いることができる。その結果、タンディッシュ内溶鋼ヘッドは一定の高さで保持される。この状態で、下側溶鋼プール16に供給される第2溶鋼の流量Q2を、
2=Q−Q1=Q−G1
となるように一定に制御する。具体的には、タンディッシュ内ヘッドを一定に保持しながら、あらかじめ定めた、スライディングノズル33b開度と流量のテーブルを用いて、規定開度を一定に保持することでQ2を一定に制御する。これだけでは、鋳型内全体に供給する溶鋼量Qに対して不足しているため、第1溶鋼21を上側溶鋼プール15に供給する表層溶鋼用浸漬ノズル5のスライディングノズル33c流量調整において、鋳型内湯面レベルが一定となるように溶鋼供給量Q1を制御する。その結果、合計流量Qとストランド上下で消費される溶鋼量Q1、Q2それぞれを制御することができ、
1=G1
とすることができる。これにより、鋳型内の上側溶鋼プール15では、供給される溶鋼量(Q1)と、凝固シェルとして排出される時間あたり輸送量(G1)がバランスするとともに、下側溶鋼プール16では、供給される溶鋼量(Q2)と凝固シェルとして排出される時間あたり輸送量(G2)がバランスする。そのため、直流磁場帯を通過して混合する溶鋼流が生じないので、図1の第1溶鋼と第2溶鋼の界面を安定的に維持することができる。Q2とQ1のバランスによって決まる第1溶鋼と第2溶鋼の界面27を直流磁場帯14の範囲内に制御する。
この際、内層溶鋼用浸漬ノズル6の流量調整に用いるスライディングノズル33b開度と流量との関係が毎回一定ではない等の課題が考えられる。そこで、鋳造スタート時を活用して、スライディングノズル33bの開度と流量特性の関係を把握し、特性を補正すればよい。まず、内層溶鋼用浸漬ノズルを経由しての第2溶鋼のみで鋳造を行う。その際においても、タンディッシュ内ヘッドを一定とし、かつ、鋳型内湯面レベルを一定に制御し、スライディングノズル33bの開度と流量との関係を調整することで、流量補正が可能となる。
鋳型内への溶鋼供給量制御方法としてあるいは、まず表層溶鋼用浸漬ノズル5のスライディングノズル33c開度と溶鋼供給量の関係を予め求めておき、表層溶鋼用浸漬ノズル5からの溶鋼供給量Q1が上側溶鋼プール凝固量G1となるようにスライディングノズル33c開度を定め、内層溶鋼用浸漬ノズル6のスライディングノズル33b流量調整については、鋳型内の湯面レベルが一定になるように制御することとしても良い。
これら3つの方法を今回新たに導入することで、取鍋は1つ、タンディッシュは1つであるが、タンディッシュでの成分添加により取鍋から供給される第1溶鋼とは異なる成分組成の第2溶鋼に成分調整しつつ、タンディッシュ内での第1溶鋼との混合を防止することができ、これら2つの溶鋼を鋳型内の異なる深さの位置に長さの異なる2つの浸漬ノズルを介してそれぞれの溶鋼量を供給しつつ、鋳型内においても2つの溶鋼の混合を防止することで、鋳片の表層と内層の成分組成が異なる複層鋳片の製造が可能となる。
なお、直流磁場帯14によってストランドを上側溶鋼プール15と下側溶鋼プール16に分割するが、前述したように直流磁場帯14よりも上の上側溶鋼プール15に供給される溶鋼量は、直流磁場帯14よりも下の下側溶鋼プール16に供給される溶鋼量と比較して少ない。そのため、上側溶鋼プール15では、十分な溶鋼攪拌ができないことがある。本発明では、鋳型内周方向全体にわたっての凝固を均一化する手段として、上側溶鋼プール15における鋳型内湯面近傍に電磁撹拌装置9を設置し、水平断面内で旋回流を付与し、溶鋼流動ならびに凝固を周方向に均一化すると好ましい。
連続鋳造においては、一つのタンディッシュ2を用い、取鍋1を取り替えながら連続して次々と鋳造することが行われる。連々鋳と呼ばれる。一つの取鍋1からの溶鋼注入が終了すると、取鍋1からの注入を停止して当該取鍋1を取り外し、タンディッシュ2の上部に別の取鍋1を設置して、新たに取鍋1からタンディッシュ2への溶鋼注入を開始する。このような取鍋交換の際、タンディッシュ2への溶鋼注入が途絶えることになる。一方、取鍋交換中にも鋳片の引き抜きは継続するので、タンディッシュ2から鋳型3への溶鋼注入は継続する。従って、取鍋交換で取鍋1からの溶鋼注入が中断している間は、タンディッシュ2内の溶鋼量が減少し、タンディッシュ2の湯面18位置(タンディッシュヘッド)が時間とともに低下することとなる。
タンディッシュヘッドが低下する際に、タンディッシュ2の第2領域12の溶鋼が第1領域11に逆流することがあると、成分添加によって溶鋼成分が増大している第2領域12の溶鋼(第2溶鋼22)が第1領域11において第1溶鋼21と混合してしまい、不都合である。
ここでは、タンディッシュの第1領域11の湯面レベル面積をST1、第2領域12の湯面レベル面積をST2と定める。それぞれの領域から各溶鋼プールへの溶鋼供給量はQ1、Q2である。取鍋1からタンディッシュ2への溶鋼注入が行われていない場合、第1領域11と第2領域12が遮断されているのであれば、第1領域11、第2領域12それぞれにおけるタンディッシュヘッドの低下速度は、それぞれQ1/ST1、Q2/ST2となる。実際には第1領域11と第2領域12を隔てるタンディッシュ堰4は開口10を有し、タンディッシュヘッド低下時においても、両領域のタンディッシュヘッドが常に一定になるように、両領域間を溶鋼が移動する。Q1/ST1>Q2/ST2であると、第1領域11の溶鋼低減が速いので、タンディッシュヘッド低下時に第2領域12から第1領域11に溶鋼が移動することになり、第1領域11で成分の混合が発生する。それに対して、Q1/ST1≦Q2/ST2であれば、タンディッシュヘッド低下時に第1領域11から第2領域12への溶鋼移動が発生するのみであり、第1領域11における成分混合は発生しない。本発明において、第1領域11から表層溶鋼、第2領域12から内層溶鋼を注入するので、Q1≦Q2であり、Q1/ST1≦Q2/ST2となるようにタンディッシュ堰4の位置を定めることは容易である。
以上、述べた本発明の原理を検証するため、試験連鋳機を用いて鋳造試験を行った。試験連鋳機では、幅800mm×厚170mmの鋳片の鋳造が可能である。図1に示すように、鋳型内の湯面17レベルから75mm下方に電磁撹拌装置9のコア中心を設置し、鋳型内湯面近傍の水平断面内で最大0.6m/sの旋回流を付与した。加えて、湯面レベルからH=400mm下方を中心に幅方向に均一な磁束密度分布を有する直流磁場を鋳片の厚み方向に印加することができる直流磁場発生装置8を設けた。この直流磁場発生装置8のコア厚みが200mmのため、湯面レベルからの高さがHH=300mmからHL=500mmの範囲内にわたってほぼ同じ磁束密度の直流磁場を最大0.5T印加することができる。従って、第1溶鋼供給量Q1とG1との比(Q1/G1)が、G1H/G1≒√(HH/H)=0.87からG1L/G1≒√(HL/H)=1.12の範囲内であれば、溶鋼界面位置を直流磁場帯内に制御できるので、本発明の効果を発揮することができる。
鋳型3の上方に設けるタンディッシュ2の仕様は以下の通りである。容量は10tで、タンディッシュ2は、表層溶鋼用浸漬ノズル5と内層溶鋼用浸漬ノズル6の2つの浸漬ノズルを有し、2つの浸漬ノズルの間隔は400mmである。タンディッシュ内において、2つの浸漬ノズルの中間位置にタンディッシュ堰4を設置し、タンディッシュ堰4として図3(A)に示すような上堰を用い、開口面積率を条件によって変えた。
鋳型内に溶鋼を供給する2つの浸漬ノズルの吐出孔位置は、鋳片幅方向には幅中心をはさんでそれぞれ1/4幅位置とした。また、深さ方向には、直流磁場発生装置8によって形成される直流磁場帯14の上方に表層溶鋼用浸漬ノズル5の吐出口を設け、下方に内層溶鋼用浸漬ノズル6の吐出口を設置した。具体的には、表層溶鋼用浸漬ノズル5の吐出孔位置は湯面レベルから150mmとし、内層溶鋼用浸漬ノズル6の吐出孔位置は湯面レベルから550mmとした。ここで、鋳型内の凝固係数K値はおよそ25mm/min0.5であることを確認しており、鋳造速度VC=1m/分で鋳造した際の直流磁場発生装置8の中心までで形成される表層厚Dは約16mmである。この表層厚みから、直流磁場帯位置における凝固シェル断面積(鋳造後鋳片の表層部面積S1)が定まり、この表層部面積S1と鋳造速度から、上側溶鋼プールと下側溶鋼プールから下方に輸送される単位時間鋳造量がそれぞれG1、G2として定まり、G1、G2に等しくなるように第1溶鋼と第2溶鋼の流量(Q1、Q2)を規定することができる。
第1溶鋼21と第2溶鋼22の流量制御については、鋳造開始時に内層溶鋼用浸漬ノズル6のみで鋳造を行い、必要溶鋼流量を供給するための内層溶鋼用浸漬ノズル6のスライディングノズル33bの開度を確認した。その後、タンディッシュヘッドが一定となるように、取鍋1からの注入量を一定に制御したうえで、内層溶鋼用浸漬ノズル6からの供給溶鋼量がQ2となるようにスライディングノズル33b開度を一定で制御した。さらに、第1溶鋼21については、湯面レベルが一定となるように表層溶鋼用浸漬ノズル5のスライディングノズル33c開度調整を行い、結果として第1溶鋼21の供給量がQ1となるように制御した。
取鍋1から供給する溶鋼成分が第1溶鋼21成分であり、第1溶鋼21は低炭Alキルド鋼(Ti含有量:0質量%)である。取鍋から供給する第1溶鋼21はタンディッシュ2の第1領域11に供給され、その一部はタンディッシュ堰4の開口10を経由して第2領域12に供給される。第2領域内の第2溶鋼22は第1溶鋼21に対して、第2領域内に0.3mm厚の軟鋼板でかしめた鉄製ワイヤー(内部にTi粒を含有:212g/m)をワイヤーフィーダーにて添加した。Q1=G1となる鋳造においては添加速度3.6m/分で添加した。なお、この条件で上記Ti含有ワイヤーを添加すると、第2溶鋼に0.05%Tiを添加することに相当する。Q1とG1が相違する鋳造(下記実験2)においては、第2溶鋼中へのTi添加量が0.05%となるようにワイヤーの添加速度を調整した。
鋳片内Ti濃度分布を調査するため、表層については表面から8mm位置(表層厚みの中心)、内層については表面から40mm位置(鋳片1/4厚)について、両短辺中央、1/4幅位置の表裏面、1/2幅位置の表裏面、のそれぞれ8箇所、表層、内層あわせて合計16箇所から分析試料を採取し濃度を調査した。また、表層厚については、分析試料を採取した部位について、分析試料を採取したほぼ同じ位置で全厚みにわたってサンプルを切り出し、EPMAにて厚み方向の濃度分布を調査した。添加した元素の濃度が高くなっている厚みを求め、鋳片全厚からの差をとり、その厚みの1/2を表層厚みとした。短辺については、表面から40mmの範囲からサンプルを切り出し、EPMAにて厚み方向の濃度分布を調査した。表層濃度から内層濃度に明瞭に勾配が形成されている領域を表/内層界面とし、表面から界面までの厚みを表層厚とした。
得られた分析結果については以下の指標で表内層の分離度、内層濃度の均一性を評価した。鋳片表層濃度CO、鋳片内層濃度CI、取鍋内濃度CLとタンディッシュ内に添加した濃度CTから決まる内層分離度XIと鋳片内層濃度の平均値CMと標準偏差σから求められる濃度均一度Yを以下の式を用いて求めた。
I=(CI−CO)/(CT −CL ) −−−−(1)
Y=σ/CM −−−−(2)
具体的な実験方法について説明する。前述した本発明の原理を検証するため、以下、3つの実験を行った。
まず、実験1として、タンディッシュ堰4の開口10の形状と開口面積率を変化させる実験を行い、内層分離度XI、濃度均一度Yに及ぼす影響を調査した。なお、鋳型内の直流磁場帯14に印加する磁束密度を0.4Tとし、Q1=G1として直流磁場帯14を通過する溶鋼の発生を抑止し、鋳型内電磁撹拌装置9による撹拌流速は0.4m/sの条件とした。結果を図5に示すが、開口面積率が20%未満では溶鋼温度が低い場合には、濃度の均一性の点で課題があった。一方、開口面積率75%を超えると分離度が低下し、濃度の均一性も低下した。タンディッシュ2の第1領域11と第2領域12の間で第1溶鋼21と第2溶鋼22の混合が生じたことによる。逆に、タンディッシュ堰の開口面積率を調整し、開口面積率が20%以上75%以下とすると、内層分離度XIは0.9以上1以下、濃度均一度Yは0.1以下となり、内層分離度、濃度均一度ともに良好な鋳片をえることができた。
次に、実験2として、第1、第2溶鋼の流量バランスを変化させ、表層溶鋼用浸漬ノズル5からの溶鋼供給量Q1が、上側溶鋼プール15で凝固する鋳造量G1と相違する条件で鋳造し、内層分離度、濃度均一性に及ぼす影響を調査した。ここで、タンディッシュ堰4は開口面積率が40%となるように調整、鋳型内の直流磁場帯14に印加する直流磁場の磁束密度は0.4T、鋳型内電磁撹拌装置9による撹拌流速は0.4m/sの条件で、Q1を変化して鋳造した。結果を図6に示すが、Q1/G1=0.87〜1.12の範囲に制御した条件では、溶鋼界面位置を直流磁場帯内に制御できるので、内層分離度XIは0.9以上1以下、濃度均一度Yは0.1以下となり、内層分離度、濃度均一度ともに良好な鋳片をえることができた。一方、Q1/G1<0.87の条件では、上側溶鋼プールへの溶鋼供給量が不足して、直流磁場帯14を通過して下側溶鋼プール16から上側溶鋼プール15へ溶鋼が移動するため、鋳片の表層にも添加元素が含有される結果となった。逆に、Q1/G1>1.12の条件では、上側溶鋼プール15への溶鋼供給量が過剰で、直流磁場帯14を通過して上側溶鋼プール15から下側溶鋼プール16へ溶鋼が移動するため、下側溶鋼プール16の添加元素含有量が低下することとなった。
さらに、実験3として、鋳型内に印加する磁束密度を0.4T、表内層界面27位置を制動域内の450mm、タンディッシュ堰の開口は開口面積が40%となるように調整した条件で、上側溶鋼プール15における鋳型内電磁撹拌装置9の撹拌流速を変えて鋳造した。表層ノズル側短辺部の表層厚み、内層ノズル側短辺部の厚み、幅中央部の表層部の厚みを調査し、撹拌条件との関係を調査した。
図7には鋳型内電磁撹拌の有無による表層厚みの周方向分布の違いについて調査した結果を示した。電磁撹拌を印加しない条件では下部に溶鋼を供給するノズル側で溶鋼が停滞しやすく、表層厚みが厚くなる傾向がみられたが、0.3m/s以上の旋回流を湯面近傍で付与することで表層厚みの周方向分布を均一化することができ、好ましい。
この鋳造試験において、Q1=3.6(kg/s)、Q2=12.8(kg/s)、ST1=0.8(m2)、ST2=1.2(m2)であった。そのため、Q1/ST1≦Q2/ST2が実現できている。従って、連々鋳の取鍋交換時に取鍋からの溶鋼中が中断し、タンディッシュヘッドが低下する場合においても、タンディッシュの第1領域11から第2領域12への溶鋼移動が発生するのみであり、第1領域11の第1溶鋼21に第2溶鋼22が混合する事態は発生しない。
本方法は以上のような方法で第2溶鋼の成分調整を行うので、第2溶鋼に添加する成分についての制約は少なく、Ti、SiやCだけでなく、Mn,P,S,B,Nb,Al,Cu,Ni,Moに加えて、強脱酸、強脱硫元素であるCa,Mg,REM等、鋼中に含有する元素を添加することができる。このため、鋳片の内層成分を変えることで鋼材の新たな機能を比較的簡便な方法で可能となる。
さらに、鋳型内に2つの溶鋼を供給するにあたり、場合によっては第1溶鋼21の密度<第2溶鋼22の密度となるように複数の合金元素を添加することが好ましい。直流磁場帯をはさんで、第1溶鋼21が上方、下方に第2溶鋼22が配置されることとなるが下方の溶鋼密度が大の条件で安定であるが、逆の条件であれば密度差による対流が生じてしまうことによる。ここで、ρ:密度(kg/m3)は以下の式で算出することができる。
ρ=7000−8.0(T−1823)−80.0[%C]−83.0[%Si]−21.2[%Mn]−67.1[%P]−84.0[%S]−113.0[%Al]−29.0[%Ti]+5.4[%Nb]−14.6[%Cr]+4.8[%Ni]+3.6[%Cu]+23.0[%Mo]−46.3[%V]
ただし、式中において[元素」は各元素の含有量(質量%)、Tは溶鋼温度(K)である。
図1に模式的に示した鋳造装置で極低炭素鋼(Ti含有量:0質量%)を鋳造する実験を行った。溶鋼の溶製は、転炉出鋼後、二次精錬にて脱ガス、成分調整した。取鍋溶鋼は250tであった。
容量50tのタンディッシュ2底部に表層溶鋼用浸漬ノズル5と内層溶鋼用浸漬ノズル6の2つの浸漬ノズルを設けた。2つの浸漬ノズルの間隔は600mmである。その中間位置にタンディッシュ堰4として上堰を設置し、上堰の開口面積率は条件によって変更した。
鋳型内の湯面17レベルから100mm下方に電磁撹拌装置9のコア中心を設置し、鋳型内の上部溶鋼プール中に水平断面内で最大0.6m/sの旋回流を形成した。かつ湯面レベルから450mm下方に幅方向に均一な磁束密度分布を有する直流磁場を鋳片の厚み方向に印加することができる直流磁場発生装置8を設けた。最大0.5Tの直流磁場が印加できる。この直流磁場発生装置8のコア厚みが200mmのため、湯面レベルから350〜550mmの範囲内にわたってほぼ同じ磁束密度の直流磁場を最大0.5T印加することができる。そのため、直流磁場帯14の範囲は湯面レベルからの高さがHH=350mmからHL=550mmの範囲となる。従って、第1溶鋼供給量Q1とG1との比(Q1/G1)が、G1H/G1≒√(HH/H)=0.88からG1L/G1≒√(HL/H)=1.11の範囲内であれば、溶鋼界面27位置を直流磁場帯14内に制御できるので、本発明の効果を発揮することができる。
鋳型内に溶鋼を供給する浸漬ノズルの位置については、まず、鋳片幅方向には幅中心をはさんでそれぞれ1/4幅位置とした。また、浸漬ノズルの吐出孔位置については、深さ方向には直流磁場発生装置によって形成される制動領域(直流磁場帯14)の上側(表層溶鋼用浸漬ノズル5)部と、下側(内層溶鋼用浸漬ノズル6)にそれぞれ設置した。具体的には、表層溶鋼用浸漬ノズル5の吐出孔位置は湯面レベルから200mmとし、内層溶鋼用浸漬ノズル6の吐出孔位置は湯面レベルから600mmとした。
鋳造条件は、1200mm幅、250mm厚、鋳造速度1.5m/分で鋳造した。ここで、鋳型内の凝固係数K値はおよそ25mm/min0.5であることを確認しており、鋳型内直流磁場発生装置8の中心までで形成される表層厚は約14mmである。この表層厚みから、直流磁場帯位置における凝固シェル断面積(鋳造後鋳片の表層部面積S1)が定まり、この表層部面積S1と鋳造速度から、上側溶鋼プールと下側溶鋼プールから下方に輸送される単位時間鋳造量がそれぞれG1、G2として定まり、G1、G2に等しくなるように第1溶鋼と第2溶鋼の流量(Q1、Q2)を規定することができる。
第1溶鋼と第2溶鋼の流量制御については、鋳造開始時に第2溶鋼のみで鋳造を行い、必要溶鋼流量を供給するための内層溶鋼用浸漬ノズル6のスライディングノズル33bの開度を確認した。その後、タンディッシュヘッドが一定となるように、スライディングノズル33a流量調整によって取鍋からの注入量を一定に制御したうえで、本発明例と一部の比較例について、内層溶鋼用浸漬ノズル6からの供給溶鋼量がQ2となるようにスライディングノズル開度を一定で制御した。さらに、第1溶鋼については、湯面レベル計31で計測した湯面レベルが一定となるように表層溶鋼用浸漬ノズル5のスライディングノズル33c開度調整を行い、結果として第1溶鋼の供給量がQ1となるように制御した。
タンディッシュでの成分調整について説明する。前述したタンディッシュの第2領域12内に0.3mm厚の軟鋼板でかしめた鉄製ワイヤー(外径16mm、Ti粉含有量:452g/m)をワイヤーフィーダーにて添加速度6.6m/分で添加した。ワイヤーの添加速度は、各実施例での第2溶鋼の流量Q2に対応して、第2溶鋼に0.05%Tiを添加することに相当する。
次に、本発明の原理を検証するために行った実験内容について説明する。
◆実験1:第1、第2溶鋼の流量バランスを変化させ、Q1/G1が変化する条件で鋳造する。
◆実験2:タンディッシュ堰の開口面積率を変えて鋳造する。
◆実験3:鋳型内電磁撹拌装置の印加電流を変えて湯面近傍で形成する旋回流速を変えて鋳造する。
ここで、前述した実験において、鋳型内直流磁場発生装置8により0.5Tの直流磁場を印加した。
鋳片内Ti濃度分布を調査するため、表層については表面から7mm位置(表層厚みの中心)、内層については表面から60mm位置(鋳片1/4厚)について、両短辺中央、1/4幅位置の表裏面、1/2幅位置の表裏面、のそれぞれ8箇所、表層、内層あわせて合計16箇所から分析試料を採取し濃度を調査した。表層厚DRについては、分析試料を採取した部位について、分析試料を採取したほぼ同じ位置で全厚みにわたってサンプルを切り出し、EPMAにて厚み方向の濃度分布を調査した。添加した元素の濃度が高くなっている厚みを求め、鋳片全厚からの差をとり、その厚みの1/2を表層厚みとした。短辺については、表面から40mmの範囲からサンプルを切り出し、EPMAにて厚み方向の濃度分布を調査した。表層濃度から内層濃度に明瞭に勾配が形成されている領域を表/内層界面とし、表面から界面までの厚みを表層厚とした。
得られた分析結果については以下の指標で表内層の分離度、内層濃度の均一性を評価した。鋳片表層濃度CO、鋳片内層濃度CI、取鍋内濃度CLとタンディッシュ内に添加した濃度CTから決まる内層分離度Xと鋳片内層濃度の平均値CMと標準偏差σから求められる濃度均一度Yを以下の式を用いて求める。
=(CI−CO)/(CT −CL ) −−−−(1)
Y=σ/CM −−−−(2)
実験1、実験2、実験3、それぞれの結果を表1、表2、表3に示した。
Figure 0006631162
表1ではタンディッシュ堰として図3(A)に示す上堰を用い、上堰の深さを調整し開口面積率を全体の45%、鋳型内に印加する直流磁場の磁束密度は0.5T、鋳型内電磁撹拌装置による撹拌流速は0.4m/sの条件で、第1溶鋼供給量Q1とG1との比(Q1/G1)を変化して鋳造した。界面位置(メニスカスから界面までの距離HR)については、鋳片の表層厚DRを計測し、
R=K√(HR/VC
を逆算して求めた。
1/G1=0.88〜1.11の範囲として界面27位置が直流磁場による制動域内に制御した本発明1,2,3の条件では分離度、均一度ともに良好な結果が得られた。一方、Q1/G1>1.11にはずれた比較例1,2では、界面位置が直流磁場帯の下端位置に止まり、比較的良好な内層分離度、濃度均一性がえられたが、本発明と比較すると不十分であった。Q1/G1<0.87にはずれた比較例3,4では、界面位置が直流磁場帯上端に止まり、内層分離度X、濃度均一度Yともに不良であった。
Figure 0006631162
表2では鋳型内に印加する磁束密度を0.5T、Q1/G1=1(表/内層界面位置を制動域内の450mm)、鋳型内電磁撹拌装置による撹拌流速は0.4m/sの条件で、タンディッシュ堰として図3(A)に示す上堰を用い、開口面積率を変化して鋳造した。開口面積率が20%〜75%に調整した本発明4〜6では内層分離度、濃度均一度ともに良好な結果が得られたが、堰がない(開口面積率100%)比較例5や開口面積率が80%の比較例7、開口面積率が90%の比較例8では内層分離度、濃度均一度ともに不十分であった。また、開口面積率が少なすぎる比較例6では均一性におとる条件もあり、不適であった。
Figure 0006631162
表3では鋳型内に印加する磁束密度を0.5T、Q1/G1=1(表内層界面位置を制動域内の450mm)、図3(A)に示すタンディッシュの上堰深さを開口面積率が40%となるように調整した条件で、鋳型内電磁撹拌装置の撹拌流速を変えて鋳造した。表層溶鋼用浸漬ノズル5側短辺部の表層厚み、内層溶鋼用浸漬ノズル6側短辺部の厚み、幅中央部の表層部の厚みを調査し、撹拌条件との関係を調査した。鋳型内電磁撹拌による撹拌流を付与しない本発明9では品質上問題にはならないものの表層厚みの不均一がみられた。一方、鋳型内電磁撹拌装置による撹拌流を付与した本発明7、8ではいずれも表層溶鋼用浸漬ノズル5短辺厚、内層溶鋼用浸漬ノズル6短辺厚と幅中央部の表層厚みがほぼ同じであった。そのため、鋳型内電磁撹拌による撹拌流を付与することで表層厚みが鋳片周方向に均一になるため、好ましい。
1 取鍋
2 タンディッシュ
3 鋳型
4 タンディッシュ堰
5 表層溶鋼用浸漬ノズル
6 内層溶鋼用浸漬ノズル
7 成分添加装置
8 直流磁場発生装置
9 電磁攪拌装置
10 開口
11 第1領域
12 第2領域
13 取鍋注入流
14 直流磁場帯
15 上側溶鋼プール
16 下側溶鋼プール
17 メニスカス(湯面)
18 湯面
20 溶鋼
21 第1溶鋼
22 第2溶鋼
23 凝固シェル
24 上側溶鋼プール凝固部分(表層部)
25 下側溶鋼プール凝固部分(内層部)
26 溶鋼浸漬部分
27 界面
29 鋳片
30 浸漬ノズル
31 湯面レベル計
32 制御装置
33 流量調整装置

Claims (5)

  1. 鋳片の表層と内層の成分組成が異なる複層鋳片を製造する方法であって、タンディッシュの底部に、表層溶鋼用浸漬ノズルと内層溶鋼用浸漬ノズルを配置し、取鍋からタンディッシュ内に溶鋼が注入される位置を取鍋注入流位置とし、タンディッシュ幅方向において、取鍋注入流位置、表層溶鋼用浸漬ノズル位置、内層溶鋼用浸漬ノズル位置をこの順番で配置し、これら2つの浸漬ノズルの間にタンディッシュ堰を設置し、該タンディッシュ堰は溶鋼浸漬部に開口面積率が20%以上75%以下の開口を有し、
    鋳型幅方向全幅にわたって厚み方向に直流磁場を印加する直流磁場発生装置を配置し、当該直流磁場発生装置によって形成される直流磁場帯をはさんだストランドの上部を上側溶鋼プール、下部を下側溶鋼プールとし、前記表層溶鋼用浸漬ノズルから上側溶鋼プールに溶鋼を供給し、内層溶鋼用浸漬ノズルから下側溶鋼プールに溶鋼を供給し、
    前記タンディッシュ堰にて区分された取鍋溶鋼注入側を第1領域、その反対側を第2領域とし、第2領域側のタンディッシュ内溶鋼に対して所定の元素あるいはその合金を連続的に添加し濃度を調整することで、取鍋溶鋼ならびに取鍋溶鋼とは異なる成分組成からなる2種類の溶鋼をタンディッシュ内で保持しつつ、第1領域に収容された溶鋼を表層溶鋼用浸漬ノズルから上側溶鋼プールに供給し、第2領域に収容された溶鋼を内層溶鋼用浸漬ノズルから下側溶鋼プールに供給し、
    当該2つの浸漬ノズルそれぞれから、それぞれの溶鋼プール中で凝固によって消費される溶鋼量を鋳型内に供給することを特徴とする複層鋳片の連続鋳造方法。
  2. 下側溶鋼プールに供給する溶鋼量はタンディッシュのヘッドと内層溶鋼用浸漬ノズルのスライディングノズルの開度と溶鋼流量の関係を用いて、溶鋼界面位置を直流磁場帯内に制御しつつ、表層溶鋼用浸漬ノズルから上側溶鋼プールに供給する供給量については鋳型内湯面レベルが一定となるように制御することを特徴とする請求項1記載の複層鋳片の連続鋳造方法。
  3. 前記直流磁場帯の上方の鋳型内湯面近傍において水平断面内で旋回流を形成することを特徴とする請求項1又は請求項2に記載の複層鋳片の連続鋳造方法。
  4. 前記第2領域において溶鋼に撹拌力を付与することを特徴とする請求項1乃至3の何れか一項に記載の複層鋳片の連続鋳造方法。
  5. 鋳片の表層と内層の成分組成が異なる複層鋳片を製造する装置であって、取鍋からの溶鋼を保持するタンディッシュの底部に、表層溶鋼用浸漬ノズルと内層溶鋼用浸漬ノズル鋳造幅よりも短い間隔で併設され、取鍋からタンディッシュ内に溶鋼が注入される位置を取鍋注入流位置とし、タンディッシュ幅方向において、取鍋注入流位置、表層溶鋼用浸漬ノズル位置、内層溶鋼用浸漬ノズル位置をこの順番で配置し、これら2つの浸漬ノズルの間にタンディッシュ堰が設置されており、該タンディッシュ堰は溶鋼浸漬部に開口面積率が20%以上75%以下の開口を有し、タンディッシュ堰で区分された取鍋溶鋼注入反対側の領域の溶鋼に成分を添加する成分添加装置を有し、
    鋳型内では湯面近傍において水平断面内で旋回流を形成する電磁撹拌装置と、その下方に鋳型幅方向全体にわたって厚み方向に直流磁場を印加する直流磁場発生装置を備え、当該直流磁場発生装置によって形成される直流磁場帯をはさんだストランドの上部を上側溶鋼プール、下部を下側溶鋼プールとし、前記表層溶鋼用浸漬ノズルから上側溶鋼プールに溶鋼を供給し、前記内層溶鋼用浸漬ノズルから下側溶鋼プールに溶鋼を供給する構造とすることを特徴とする複層鋳片の連続鋳造装置。
JP2015213678A 2015-10-30 2015-10-30 複層鋳片の連続鋳造方法及び連続鋳造装置 Active JP6631162B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2015213678A JP6631162B2 (ja) 2015-10-30 2015-10-30 複層鋳片の連続鋳造方法及び連続鋳造装置
CN201680063320.9A CN108348989B (zh) 2015-10-30 2016-10-31 复层铸坯的连续铸造装置以及连续铸造方法
US15/771,834 US10987730B2 (en) 2015-10-30 2016-10-31 Continuous casting apparatus and continuous casting method for multilayered slab
TW105135276A TWI633954B (zh) 2015-10-30 2016-10-31 多層鑄片之連續鑄造裝置及連續鑄造方法
PCT/JP2016/082286 WO2017073784A1 (ja) 2015-10-30 2016-10-31 複層鋳片の連続鋳造装置及び連続鋳造方法
CA3003574A CA3003574C (en) 2015-10-30 2016-10-31 Continuous casting apparatus and continuous casting method for multilayered slab
BR112018008552-9A BR112018008552B1 (pt) 2015-10-30 2016-10-31 Aparelho de lingotamento contínuo e método de lingotamento contínuo de placa multicamada
KR1020187013029A KR102138156B1 (ko) 2015-10-30 2016-10-31 복층 주조편의 연속 주조 장치 및 연속 주조 방법
EP16860012.0A EP3369495A4 (en) 2015-10-30 2016-10-31 CONTINUOUS MANUFACTURING DEVICE AND CONTINUOUS MANUFACTURING METHOD FOR MULTILAYER PLATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015213678A JP6631162B2 (ja) 2015-10-30 2015-10-30 複層鋳片の連続鋳造方法及び連続鋳造装置

Publications (2)

Publication Number Publication Date
JP2017080788A JP2017080788A (ja) 2017-05-18
JP6631162B2 true JP6631162B2 (ja) 2020-01-15

Family

ID=58630379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015213678A Active JP6631162B2 (ja) 2015-10-30 2015-10-30 複層鋳片の連続鋳造方法及び連続鋳造装置

Country Status (9)

Country Link
US (1) US10987730B2 (ja)
EP (1) EP3369495A4 (ja)
JP (1) JP6631162B2 (ja)
KR (1) KR102138156B1 (ja)
CN (1) CN108348989B (ja)
BR (1) BR112018008552B1 (ja)
CA (1) CA3003574C (ja)
TW (1) TWI633954B (ja)
WO (1) WO2017073784A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047647B2 (ja) * 2018-07-23 2022-04-05 日本製鉄株式会社 薄スラブの連続鋳造方法
KR102171086B1 (ko) * 2018-09-28 2020-10-28 주식회사 포스코 주조 모사 장치 및 주조 모사 방법
KR102227826B1 (ko) * 2018-10-26 2021-03-15 주식회사 포스코 주조 설비 및 주조 방법
CN109604550B (zh) * 2018-12-27 2020-02-21 河南理工大学 一种镁合金垂直半连续铸造装置
CN110548843A (zh) * 2019-09-20 2019-12-10 江苏科技大学 一种用于连铸机的电磁搅拌装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH450640A (de) * 1966-09-23 1968-01-31 Concast Ag Verfahren zur Herstellung von Strängen aus Stahl im Stranggiessverfahren
JPS50145384A (ja) 1974-05-15 1975-11-21
JPS5171224A (ja) * 1974-12-18 1976-06-19 Nippon Steel Corp Bisaichuzososhikiojusurukinzokuno renzokuchuzohoho
JPS60145384A (ja) * 1984-01-09 1985-07-31 Nippon Steel Corp 疲労限度比が高い良成形性クラツド鋼板
JPS60152684A (ja) * 1984-01-19 1985-08-10 Nippon Steel Corp 疲労限度比が高い良成形性クラツド鋼板
JPS6216854A (ja) * 1985-07-15 1987-01-26 Kawasaki Steel Corp クラツド材の連続製造方法およびその装置
JPS63108947A (ja) 1986-10-24 1988-05-13 Nippon Steel Corp 複合金属材の連続鋳造方法
US4828015A (en) * 1986-10-24 1989-05-09 Nippon Steel Corporation Continuous casting process for composite metal material
JPH01271042A (ja) * 1988-04-22 1989-10-30 Nippon Steel Corp 複層鋳片の連続鋳造方法
JPH01271031A (ja) * 1988-04-22 1989-10-30 Nippon Steel Corp 複層鋳片の連続鋳造方法
JPH02138046U (ja) * 1989-04-19 1990-11-19
JPH03243245A (ja) * 1990-02-20 1991-10-30 Nippon Steel Corp 連続鋳造による複層鋼板の製造方法
JPH03281043A (ja) * 1990-03-27 1991-12-11 Nkk Corp 連続鋳造方法
JPH07115125B2 (ja) * 1991-02-25 1995-12-13 新日本製鐵株式会社 複層鋳片の連続鋳造方法
JPH04309436A (ja) * 1991-04-09 1992-11-02 Nippon Steel Corp 複層鋳片の連続鋳造方法
CA2084986C (en) * 1991-04-12 1997-02-18 Masafumi Zeze Continuous casting method of multi-layered slab
JPH05185185A (ja) * 1992-01-13 1993-07-27 Nippon Steel Corp スクラップを原料とする複合鋼鋳片
CA2112585A1 (en) * 1992-04-24 1993-11-11 Eiichi Takeuchi Process for casting double-layered slab
JP2661797B2 (ja) * 1992-04-24 1997-10-08 新日本製鐵株式会社 複層鋳片鋳造方法
JPH06262304A (ja) * 1993-03-09 1994-09-20 Nippon Steel Corp 複層金属材の連続鋳造方法
JPH06320232A (ja) * 1993-05-12 1994-11-22 Nippon Steel Corp 複合金属材料の連続鋳造方法
JPH0780600A (ja) * 1993-09-09 1995-03-28 Sumitomo Metal Ind Ltd 複合鋳片の連続製造方法
JP2771946B2 (ja) * 1994-03-22 1998-07-02 新日本製鐵株式会社 複層鋼板の連続鋳造における湯面レベル制御方法
JPH08290236A (ja) 1995-04-18 1996-11-05 Nippon Steel Corp 連鋳鋳片の製造方法
CN1060695C (zh) * 1997-04-15 2001-01-17 华南理工大学 以连续及半连续铸造方式制备梯度材料的方法
JP2001232450A (ja) * 2000-02-22 2001-08-28 Kawasaki Steel Corp 連続鋳造鋳片の製造方法
BR0105029B1 (pt) * 2000-03-09 2009-05-05 processo para a fabricação de uma placa lingotada por lingotamento contìnuo.
JP2002053932A (ja) * 2000-08-03 2002-02-19 Nippon Steel Corp めっき濡れ性及びプレス加工性の良好な高強度複層鋼板とその製造方法
JP2002346709A (ja) * 2001-05-28 2002-12-04 Sumitomo Metal Ind Ltd 連続鋳造用タンディッシュおよびそれを使用する連続鋳造方法
JP3902544B2 (ja) 2002-12-18 2007-04-11 新日本製鐵株式会社 鋼鋳片の表層改質方法、改質鋳片および加工製品
JP4653625B2 (ja) 2005-10-14 2011-03-16 新日本製鐵株式会社 溶融金属の連続鋳造用鋳型
JP2009535216A (ja) * 2006-04-25 2009-10-01 アーベーベー・アーベー 攪拌装置
CN101745627A (zh) 2008-12-18 2010-06-23 苏州有色金属研究院有限公司 多层异种铝合金同步复合铸造装置
KR101149183B1 (ko) * 2009-05-26 2012-05-25 현대제철 주식회사 불순물 혼입 방지장치
JP5769993B2 (ja) * 2011-03-23 2015-08-26 ジヤトコ株式会社 鋳造装置、鋳造方法及びマグネシウム合金ビレットの製造方法

Also Published As

Publication number Publication date
CN108348989B (zh) 2021-01-12
BR112018008552A2 (ja) 2018-10-23
TW201720548A (zh) 2017-06-16
CA3003574C (en) 2021-06-15
EP3369495A4 (en) 2019-08-07
CA3003574A1 (en) 2017-05-04
CN108348989A (zh) 2018-07-31
US10987730B2 (en) 2021-04-27
KR102138156B1 (ko) 2020-07-27
TWI633954B (zh) 2018-09-01
JP2017080788A (ja) 2017-05-18
BR112018008552B1 (pt) 2022-02-08
US20180304349A1 (en) 2018-10-25
KR20180066175A (ko) 2018-06-18
WO2017073784A1 (ja) 2017-05-04
EP3369495A1 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6631162B2 (ja) 複層鋳片の連続鋳造方法及び連続鋳造装置
RU2500500C1 (ru) Способ непрерывной разливки стали
JP6855806B2 (ja) 複層鋳片の連続鋳造方法及び連続鋳造装置
JP6515286B2 (ja) 複層鋳片の連続鋳造方法及び連続鋳造装置
KR101250101B1 (ko) 강의 연속 주조 방법 및 강판의 제조 방법
JP2015027687A (ja) 連鋳鋳片の製造方法
JP2009242912A (ja) 含Ti極低炭素鋼の溶製方法および含Ti極低炭素鋼鋳片の製造方法
JP6500682B2 (ja) 複層鋳片の連続鋳造方法及び連続鋳造装置
JP6728934B2 (ja) 溶鋼の連続鋳造方法
JP4660361B2 (ja) 一方向性電磁鋼板用鋳片とその鋳造方法
JP4516923B2 (ja) アルミキルド鋼の連続鋳造鋼片及びその製造方法
KR20190127894A (ko) 강의 연속 주조 방법
JP6801378B2 (ja) 鋼の連続鋳造用鋳型装置及びそれを用いた表層改質鋳片の製造方法
US20100278684A1 (en) Process for manufacturing stainless steel containing fine carbonitrides, and product obtained from this process
JP2004009064A (ja) 連続鋳造鋳片の製造方法
JP7047647B2 (ja) 薄スラブの連続鋳造方法
JP6728933B2 (ja) 溶鋼の連続鋳造方法
CN101921897A (zh) 一种减少高碳钢内部碳偏析的方法
JP2000273581A (ja) 極低炭素鋼の連続鋳造鋳片およびその製造方法
JP5458779B2 (ja) 鋼鋳片の連続鋳造方法
JP2016083703A (ja) 溶鋼の連続鋳造方法および連続鋳造鋳片
JPH0760408A (ja) 薄板用鋼板の製造方法
JPH0839196A (ja) 連鋳鋳片の製造方法
JPH09271910A (ja) 異鋼種の連続鋳造方法及び連続鋳造用浸漬ノズル
JPH07290195A (ja) 連鋳鋳片の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R151 Written notification of patent or utility model registration

Ref document number: 6631162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151