WO1993022085A1 - Method of obtaining double-layered cast piece - Google Patents

Method of obtaining double-layered cast piece Download PDF

Info

Publication number
WO1993022085A1
WO1993022085A1 PCT/JP1993/000530 JP9300530W WO9322085A1 WO 1993022085 A1 WO1993022085 A1 WO 1993022085A1 JP 9300530 W JP9300530 W JP 9300530W WO 9322085 A1 WO9322085 A1 WO 9322085A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
tundish
nozzle
immersion nozzle
pool
Prior art date
Application number
PCT/JP1993/000530
Other languages
French (fr)
Japanese (ja)
Inventor
Eiichi Takeuchi
Masafumi Zeze
Takashi Sawai
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP93909414A priority Critical patent/EP0596134A1/en
Publication of WO1993022085A1 publication Critical patent/WO1993022085A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/007Continuous casting of metals, i.e. casting in indefinite lengths of composite ingots, i.e. two or more molten metals of different compositions being used to integrally cast the ingots
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires

Definitions

  • molten steel of different composition is injected into molten steel pools separated vertically by a DC magnetic field zone provided in or below the mold, and the surface layer and the inner layer have different compositions.
  • the present invention relates to a method of manufacturing a multilayer piece made of steel. Background art
  • the present inventors have divided a series of strand pools into upper and lower parts using various types of DC magnetic fields, and injected molten steel having a different composition into each of them by a separate immersion nozzle.
  • Japanese Patent Application Laid-Open No. 63-108947 discloses a technique of using a magnetic flux band having a uniform density in one piece width direction from one side of a long side forming a piece to the other side.
  • Japanese Patent Application Laid-Open No. 309436/1991 a technique using a magnetic flux band parallel to the pulling-out direction of a piece is disclosed.
  • Japanese Patent Application Laid-Open No. 63-108947 has already proposed a method of adjusting the composition by adding a wire to molten steel in a molten steel boule. In some cases, the composition did not become perfect.
  • Japanese Patent Application Laid-Open No. 3-243245 has proposed a technique for stirring and mixing a solute added by a wire with an electromagnetic stirrer to make the solute concentration uniform.
  • a wire 12A is added at the point where the wire 12A enters the molten metal surface, using a refractory guide tube 23 so that the powder layer 16 does not directly contact the wire 12A.
  • the temperature of that part decreases and the molten steel solidifies and adheres to the periphery of the welding guide tube 23, which may hinder operation.
  • the concentration of the components after the dissolution of the wire 12A is not sufficiently achieved, ⁇ one circumferential direction or ⁇ one piece length direction However, it is not possible to produce homogeneous multilayer pieces.
  • This technology takes a deoxidizing agent and adds it to the confined flow of metal flowing from the bevel into a ⁇ shape, and also prevents the continuous operation from being hindered by the improper deposition of the high-melting oxide of the additive treatment agent.
  • This technology supplies the treating agent to the ladle nozzle through the central through-passage of the stopper rod.
  • the reaction product between the molten metal and the solute enriched by the wire addition during the wire addition, and the reaction product between the nozzle constituent material and the solute enriched by the wire addition are generated in the nozzle.
  • the contact time between the nozzle constituents and these reaction products is short because the flow rate of the molten metal passing through the nozzle is high, and the deposition of these reaction products on the nozzle wall is not significant.
  • the molten metal flow flows out of the discharge end of the short nozzle through the atmosphere to the ⁇ type liquid surface, and falls to the liquid surface of the mold. Due to the limitation, the treating agent cannot be added in a large amount and in a uniform concentration. Disclosure of the invention
  • the present invention has been made in view of the above-mentioned problems, and has an advantage in that the composition of molten metal such as molten steel used in the process can be easily adjusted, and the production cost can be drastically reduced.
  • the purpose is to provide a method of construction.
  • Another object of the present invention is to provide a method for producing a multilayer piece in which the concentration distribution of the components of the outer layer and the inner layer is uniform and can be continuously produced without interruption.
  • the present invention firstly injects, for example, a molten steel into a molten metal pool composed of a ⁇ type and a damper bar by means of short and long nozzles provided in the lower part of the tan dish, and A magnet provided at a fixed distance from the meniscus in the manufacturing direction forms a DC magnetic field zone acting over the entire width of the piece to divide the molten steel up and down to form a continuous strand pool. I do. Therefore, the tip of each of the short nozzle and long nozzle is immersed in each pool.
  • an alloy wire for component adjustment is added to one or both of the immersion nozzles, sufficiently dissolved in the immersion nozzle, and mixed to adjust to a predetermined concentration.
  • the molten steel whose concentration has been uniformly adjusted as described above is discharged into each pool. Subsequently, the molten steel is rapidly cooled and solidified to form a multilayer piece having a uniform concentration in which the surface layer and the inner layer are composed of the respective metal species. .
  • Molten steel in the tundish should be one type of component.
  • a DC magnetic field zone should be provided in the mold to separate the molten steel into upper and lower pools in the mold.
  • An inert gas such as Ar gas is blown into the molten metal flow in the nozzle from the wire addition port at the tip of the stopper or from the upper part of the nozzle wall, and finely dispersed in the fluid, so that the inside of the nozzle is immersed throughout the length of the immersion nozzle This suppresses the adhesion and deposition of the reaction product of the dissolved substance and the molten metal and the reaction product of the material constituting the nozzle on the nozzle wall, thereby preventing the flow resistance in the nozzle from increasing.
  • the nozzle length is long, the lower part of the nozzle is immersed in the molten metal, and when the direction of the flow path is changed at the nozzle tip, the flow resistance of the entire nozzle increases, and Injection of inert gas into the immersion nozzle is extremely effective in continuous operation for a long time, because the injection of molten metal into the immersion nozzle tends to be hindered.
  • two tundishes into which the same type of molten metal is injected are arranged, and a short nozzle or a long nozzle is separately provided in each tundish. You may.
  • FIG. 1 is an overall schematic diagram of a partial cross section showing an embodiment of the present invention.
  • FIG. 2 is a partially enlarged sectional view of FIG.
  • FIG. 3 is a schematic sectional view showing a main part of another embodiment of the present invention.
  • FIG. 4 is a schematic sectional view showing a main part of another embodiment of the present invention.
  • FIG. 5 is a schematic sectional view showing a main part of another embodiment of the present invention.
  • FIG. 6 is a schematic sectional view showing a main part of another embodiment of the present invention.
  • FIG. 7 is a schematic sectional view showing a main part of a conventional example.
  • FIG. 8 is a schematic sectional view showing a main part of another conventional example.
  • FIG. 9 is a diagram showing the concentration distribution of Ti in a section of the present invention
  • c Fig. 10 is a diagram showing the concentration distribution of Ti in a section of the prior art
  • c Fig. 11 shows the measurement of the Ti concentration
  • FIG. 5 is a sectional view of a half piece showing a position where the cutting is performed.
  • FIG. 1 schematically shows the whole of an apparatus for carrying out the present invention, in which a magnet 2 is disposed below a mold 1 and the magnet perpendicularly extends in the machine direction (A).
  • DC magnetic flux is applied in the direction across the thickness of the piece to form a static magnetic field zone 2 A, and an upper molten metal pool 1 A and a lower molten metal pool 1 B are formed in the mold.
  • a tundish 3 for storing, for example, molten metal 13 is arranged at the upper part of the mold 1, and a short immersion nozzle 4 opening into the upper pool 1 A and a long immersion nozzle 4 opening into the lower pool IB are provided at the bottom of the tundish.
  • An immersion nozzle 5 is provided.
  • the figure shows a state in which an additive alloy wire 12 is fed into the short nozzle 4 in order to adjust the composition of the molten steel to be injected into the upper pool 1.
  • reference numeral 6 denotes a tundish stopper of the short nozzle 4, which has a through-hole 6A for the alloy wire 12 and opens and closes a tandem opening 3A as shown in detail in FIG.
  • a seal mechanism 8 including an inert gas filling chamber 8A, a labyrinth seal 8B, and the like is provided.
  • 9 is a straightening machine for wire drawing
  • 10 is an alloy wire feeding device
  • the reference numeral 11 is a caller.
  • the short nozzle 4 is formed so as to be integrated with the bottom of the tundish at the tundish opening 3A, and is connected to the inert gas inlet 18 as necessary.
  • a connecting porous refractory 17 is provided.
  • the stopper is opened, and molten steel 13 in the evening dish 3 is poured into the molten steel pool.
  • the static magnetic field zone 2A is formed to form the upper and lower molten steel pools 1A and 1B, and then the alloy wire 12 is fed into the short nozzle 4.
  • the alloy wire 12 is melted and mixed in the short nozzle 4, adjusted to a predetermined concentration, and discharged to the upper pool 1A.
  • the average melting speed of the alloy wire 12 is f
  • the diameter of the wire is d
  • the addition speed of the wire is V
  • the stopper is in a state where the opening of the tundish is closed.
  • the distance from the tip of the stopper 6 to the meniscus 14 B in the mold is L M
  • the distance from the tip of the stopper 6 to the immersion nozzle discharge port 4 A is L N
  • the distance from the meniscus 16 to the DC magnetic field zone is L M.
  • the length of the long nozzle 5 for pouring the inner layer molten metal 13A that is, the distance from the tip of the stopper 7 to the nozzle discharge hole 5A is the distance L of the center position 2B of the static electromagnetic band. It should be longer.
  • the surface melt 14 in the upper pool solidifies to form a solidified shell 14A, and the melt for the inner layer is sequentially formed.
  • 13A is also solidified to form a solidified shell 13B, and a multilayer piece having an outer layer 14A and an inner layer 13B having a uniform concentration distribution is finally pulled out from the mold.
  • the amount of the inert gas, for example, the Ar gas blown into the pouring nozzle is desirably in the range of 0.1 to 15.0_ ⁇ / min. That is, a structure that is stable for a long time in this range becomes possible.
  • the alloy wire 12 is fed into the long nozzle 5 through the stopper 7 in the apparatus shown in FIG. 1 to form the inner layer molten metal 15 having a uniform concentration of the added alloy, and the surface layer 13 is formed.
  • This is an example of manufacturing a double-sided piece composed of B and an inner layer 15A to which an alloy is added.
  • Fig. 4 shows that the alloy wire 12 is sent to the short nozzle 4 and the alloy wire 12A is sent to the long nozzle 5 via stoppers 6 and 7, respectively.
  • An example is shown in which a multi-layered piece composed of a surface layer 14A and an inner layer 15A to which alloys are added is manufactured.
  • Figures 5 and 6 show the tundish separated into a tundish 3A for storing the melt 13a and a tundish 3B for storing the melt 13b, and the short nozzle 4 and the long nozzle respectively.
  • Fig. 5 shows an example in which an alloy wire 12 is supplied to molten steel 13b to form an inner layer molten metal
  • Fig. 6 shows an example in which alloy wires 12 are formed in molten metals 13a and 13b.
  • 12A is supplied to form a melt 14 for the surface layer and a melt 15 for the inner layer.
  • the alloy wire may be supplied only to the melt 13a.
  • Providing a tundish for each layer as described above allows more effective adjustment of the amount of molten metal in each molten metal pool, and is also advantageous when pouring different metals into each layer. .
  • the molten steel of the inner layer components shown in Table 1 and stored in a single tundish were mixed with a continuous copper machine with a long side of 1200 thighs and a short side of 250 gangs and a damper bar.
  • Band 2A (DC magnetic field center position 2B) was formed, and the pool was divided into upper and lower parts in the manufacturing direction.
  • the ⁇ piece extraction speed ( ⁇ forming speed) Vc was set to O.AmZ.
  • the flow rate was controlled by adjusting the opening of each stopper so that the flow rate of molten steel for the surface layer was 3.36 kg / sec and the flow rate of molten steel for the inner layer was 11.04 kg / sec.
  • a wire having an A content of 70% was added into the nozzle at a rate of 1.44 gZ seconds.
  • the A content of the obtained piece was 0.032% by weight as shown in Table 1.
  • the multilayered piece was stably formed for 120 minutes, but the A concentration in the surface layer was uniform in both the circumferential direction and the lengthwise direction, and no entrainment of powder was observed. (Unit: wt%)
  • a direct current magnetic field is installed at the bottom of a continuous copper mold to form a continuous piece with a long side of 1500 min and a short side of 200 ⁇ , and the molten steel pool in the continuous strand is divided into two pools in the manufacturing direction. Then, the same ultra-low carbon steel was supplied to each pool with nozzles of different lengths, and solidification and drawing were performed.
  • the molten steel to be injected into each pool is stored in two tundishes, and the nozzle for injecting the molten steel into the lower pool corresponding to the inner layer has a through hole and a sealing mechanism as shown in Fig. 5.
  • a wire (Ti content 70%) encapsulating a Ti alloy was added by the stopper 7 at a rate of 38.9 g Z seconds.
  • the center position 2B of the DC magnetic field was 60 cm below the meniscus 13C, the direction of the magnetic flux was the thickness direction of the piece, and the magnetic flux density at the center position was 5500 gauss. 7.75 kg / sec. Of molten metal for the surface layer while adjusting at a speed of 1 mZ-Adjust the opening of the stems 6 and 7 so that the molten steel pouring rate of the inner layer is 27.25 kg / sec. And controlled.
  • the boundary between the upper and lower pools was located at the center of the DC magnetic field zone due to the solidification rate inside the mold of this connector, and the surface layer thickness was 20 mm.
  • Ar gas was added in an amount of 1 £ Z together with the wire from the tip of the dropper of the nozzle to which the wire was added.
  • the construction was stable for 120 minutes and completely built all the ferrous steel.
  • the circumferential concentration distribution of Ti in the inner eyebrow thus manufactured is As shown in FIG. 9, 0.1% was consistent with the concentration estimated from the above manufacturing conditions, and was constant in the length direction.
  • FIG. 11 shows locations where the Ti concentration distribution was measured on the cross section of the piece.
  • a structure was produced under the same conditions as in Example 12 except that no Ar gas was added. As a result, about 55 minutes after the start of the production, the supply of molten steel to the inner nozzle to which the Ti wire was added was reduced, and it became difficult to maintain the predetermined 27.25 KgZ seconds. As a result, mixing occurs between the upper pool and the lower pool.- The Ti concentration in the inner layer was obtained from about 55 minutes after the start of the production. 80 minutes after the start of construction, supply of molten steel for the inner layer became impossible, and the structure was interrupted. ( After completion of the construction, the inside of the nozzle was inspected, and the refractory of the nozzle and Ti reacted. The product was observed to adhere and accumulate on the nozzle wall.
  • Example 1-2 Production was performed under the same conditions as in Example 1-2. However, as shown in Fig. 7, the wire 1 was added from the inner powder layer toward the inner pool without passing through the stopper. Here, the wire is coated with iron and adjusted to melt for the first time in the inner layer.
  • the Ti concentration measurement position was as shown in FIG. 11, and the wire addition position was as indicated by 24 in the figure. Industrial applicability
  • the molten steel having the same base composition is melted without previously melting the molten steel having the two different compositions.
  • a wire is added from the tundish stopper, melted and uniformly mixed in the dipping nozzle, and mixed into the specified molten steel pool.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

A method of producing a double-layered cast piece by injecting molten metals (13A, 14) of different compositions into molten metal pools (1A, 1B) which are separated vertically from each other by a DC magnetic field zone (2A) provided in a casting mold (1), which method comprises inserting an alloy wire (12) into a shorter immersion nozzle (4), which is provided on a continuous casting tundish (3), through a through bore in a tundish stopper (6) to melt the wire (12), mix the resultant molten alloy with a molten metal (13) in the nozzle (4) and produce a molten metal (4) of a uniform concentration, supplying this molten metal (4) from a discharge port of the shorter nozzle (4) to an upper molten metal pool (1A) while supplying a molten metal (13) as it is from a longer immersion nozzle (5) provided in the continuous casting tundish (3) to a lower molten metal pool (1B), and cooling and solidifying the molten metals in these pools into a double-layered cast piece.

Description

明 細 書 複層铸片铸造方法 技術分野  Description Multilayer monolithic manufacturing method Technical field
本発明は、 鋼の連続铸造において、 铸型内, あるいは铸型下方に 設けた直流磁場帯によって上下に分離された溶鋼プールのそれぞれ に異なる組成の溶鋼を注入し、 表層と内層が異なる組成の鋼からな る複層铸片の铸造方法に関する。 背景技術  In the present invention, in continuous steel making, molten steel of different composition is injected into molten steel pools separated vertically by a DC magnetic field zone provided in or below the mold, and the surface layer and the inner layer have different compositions. The present invention relates to a method of manufacturing a multilayer piece made of steel. Background art
従来本発明者らは、 種々のタイプの直流磁界を用い、 連铸のス ト ラン ド · プールを上下に区分けして、 その各々に異なる組成の溶鋼 を別々の浸漬ノズルによって注入し、 これら 2鋼種の混合を最小に して、 表層と内層が別々の成分の鋼からなる複層铸片の製造方法を 提案し、 実施してきた。  Conventionally, the present inventors have divided a series of strand pools into upper and lower parts using various types of DC magnetic fields, and injected molten steel having a different composition into each of them by a separate immersion nozzle. We have proposed and implemented a method of manufacturing multi-layer pieces with the surface layer and the inner layer made of steel with different components while minimizing the mixing of steel types.
たとえば、 特開昭 63— 108947号公報では、 铸片を形成する長辺の 片側から他の側へ向かう铸一片幅方向に均一な密度を持った磁束帯を 用いる技術、 特開昭 63— 100549号公報では、 铸片の引き抜き方向と 平行な磁束帯を用いる技術、 さらに特開平 4 一 309436号公報では、 引き抜き方向に対して垂直の铸片断面において、 その断面中心から 断面周辺にわき出るような、 あるいはその逆の断面周辺から断面中 心に吸い込まれるような構成の直流磁界を用いた製造方法をそれぞ れ提案した。  For example, Japanese Patent Application Laid-Open No. 63-108947 discloses a technique of using a magnetic flux band having a uniform density in one piece width direction from one side of a long side forming a piece to the other side. In Japanese Patent Application Laid-Open No. 309436/1991, a technique using a magnetic flux band parallel to the pulling-out direction of a piece is disclosed. We have also proposed manufacturing methods using a DC magnetic field with a configuration that is drawn from the periphery of the cross section to the center of the cross section, or vice versa.
しかしながらこれらのプロセスでは、 原則として 2種類の溶鋼を 転炉, 電気炉, レー ドル, 真空脱ガス装置等の成分調整機能を持つ た溶鋼で溶製して、 これらを別々に連铸機まで輸送したのち 2台の タンディ ッシュにそれぞれ注入し、 さらに各々のタンディ ッシュに 設けられた浸漬ノズルを用いて、 2種類の溶鐧をそれぞれ鐯型内の 上下溶鐧プールに洪耠し、 連鐃鐯造工程を経て引き抜き、 複層鐯片 を製造するものであった。 However, in these processes, in principle, two types of molten steel are smelted using converters, electric furnaces, ladle, vacuum degassing equipment, etc., and transported separately to a continuous machine. After that two Inject into each tundish, and then use the immersion nozzles provided in each tundish to flood the two types of melt into the upper and lower melt pools in the mold, respectively, and pull out through the continuous cycling process It was intended to produce multilayer pieces.
このように 2種類の溶鐦を別々に溶製することは、 単層の連鑲鐃 片を製造すべく構成され、 種々の改善が行われてきた製造工場にお いては大きな生産効率の低下を引き起こすこともしばしばで、 本プ 口セスの基本的な問題として抜本的な改善を求められていた。  In this way, the two types of ingots are separately melted, which is configured to produce a single-layered piece of cycline, and greatly reduces production efficiency in a manufacturing plant where various improvements have been made. It often caused drastic improvements as a fundamental problem of this process.
この問題に対しては、 すでに特開昭 63— 108947号公報の中で、 成 分を溶鐧ブール中の溶鋼にワイヤー添加して調整する方法を提案し たが、 この場合には必ずしも、 均一な組成にならないことがあった。  To solve this problem, Japanese Patent Application Laid-Open No. 63-108947 has already proposed a method of adjusting the composition by adding a wire to molten steel in a molten steel boule. In some cases, the composition did not become perfect.
この問題を改善するために、 特開平 3— 243245号公報において、 ワイヤーにて添加された溶質を電磁攪拌装置によって攪拌, 混合し て、 溶質濃度の均一化をはかる技術が提案された。  In order to improve this problem, Japanese Patent Application Laid-Open No. 3-243245 has proposed a technique for stirring and mixing a solute added by a wire with an electromagnetic stirrer to make the solute concentration uniform.
ところが一股に、 緣型内の溶鐧湯面より溶質をそのままワイヤー にして、 あるいは鉄などの金属によって被覆されたワイヤーによつ て添加する場合には、 第 7図に示すように何の手段も講じないと、 铸型 1内のパウダー層 16, あるいはパウダー層 16の溶融部分を通過 する際に、 このパウダーの 部が'ワイヤー 12Aに付着し、 これが再 溶融したパウダー 22となって溶鐧 13A , 15の溶鐧プール内に引き込 まれ、 铸片内部の欠陷に繋がることが予見された。 なお 21はワイヤ 一の周りに凝固したパウダー 20の周辺に付着した鋼の凝固層である。 第 8図に示すように、 ワイヤ一 12Aが溶鐧湯面に突入する箇所に、 耐火物製のガイ ド管 23を用い、 パウダー層 16がワイヤー 12Aと直接 接しないようにしてワイヤー 12Aを添加する方法も考えられるが、 実際にはその部分の温度が低下して溶鐧ガイ ド管 23の周囲に溶鋼が 凝固、 付着し、 操業に支障をきたすことも発生した。 さらに仮にこのパウダー層 16の問題が解決したと しても、 ワイヤ 一 12 Aが溶解した後の成分濃度の均一化が十分に図られない場合に は、 铸片周方向でも、 铸片長さ方向でも均質な複層铸片を製造する ことはできない。 However, when the solute is directly converted into a wire from the molten metal surface in the mold or added by a wire coated with a metal such as iron, as shown in Fig. 7, If no measures are taken, this powder will adhere to the wire 12A when passing through the powder layer 16 or the molten portion of the powder layer 16 in the mold 1, and this will become the remelted powder 22 and melt.鐧 It was predicted to be drawn into the melting pool of 13A and 15 and to lead to a defect inside the piece. Reference numeral 21 denotes a solidified layer of steel adhered to the periphery of the powder 20 solidified around the wire. As shown in Fig. 8, a wire 12A is added at the point where the wire 12A enters the molten metal surface, using a refractory guide tube 23 so that the powder layer 16 does not directly contact the wire 12A. However, in practice, the temperature of that part decreases and the molten steel solidifies and adheres to the periphery of the welding guide tube 23, which may hinder operation. Further, even if the problem of the powder layer 16 is solved, if the concentration of the components after the dissolution of the wire 12A is not sufficiently achieved, 铸 one circumferential direction or 铸 one piece length direction However, it is not possible to produce homogeneous multilayer pieces.
この問題に対処する手段として、 前述のように特開平 3 - 243245 号公報に示す電磁攪拌によって成分濃度の均一化をはかることも不 可能ではないが、 直流磁界帯に影響するような位置で攪拌する場合 には、 成分の分離がうま く いかない事態も発生する。  As a means to cope with this problem, it is not impossible to equalize the component concentration by electromagnetic stirring as described in JP-A-3-243245 as described above, but stirring at a position that affects the DC magnetic field band is not impossible. In some cases, the separation of components may not be successful.
一方、 铸型に注入する溶融金属に、 注湯ノズル内にてワイヤー状 の処理剤を添加する技術については特開昭 51— 32432号公報に開示 されているところである。  On the other hand, a technique for adding a wire-like treating agent in a pouring nozzle to molten metal injected into a mold is disclosed in Japanese Patent Application Laid-Open No. Sho 51-32432.
この技術は脱酸剤等をとりベから铸型に流れる金属の拘束流に添 加するため、 また添加処理剤の高融点酸化物の不当な堆積による連 続作業の阻害を防ぐために、 ワイヤー状の処理剤をス ト ッパーロッ ドの中央貫通路に通してとりべのノズル内に供給する技術である。 そして、 この技術ではワイヤー添加の際の溶融金属とワイヤー添 加によって富化した溶質間の反応生成物や、 ノズル構成物質とヮィ ヤー添加によって富化した溶質間の反応生成物は、 ノズル内を通過 する溶融金属の流速が大きいために、 ノズル構成物質とこれらの反 応生成物との接触時間が短く、 これらの反応生成物のノズル壁面へ の堆積は顕著でないとしている。  This technology takes a deoxidizing agent and adds it to the confined flow of metal flowing from the bevel into a 铸 shape, and also prevents the continuous operation from being hindered by the improper deposition of the high-melting oxide of the additive treatment agent. This technology supplies the treating agent to the ladle nozzle through the central through-passage of the stopper rod. In this technology, the reaction product between the molten metal and the solute enriched by the wire addition during the wire addition, and the reaction product between the nozzle constituent material and the solute enriched by the wire addition, are generated in the nozzle. The contact time between the nozzle constituents and these reaction products is short because the flow rate of the molten metal passing through the nozzle is high, and the deposition of these reaction products on the nozzle wall is not significant.
従って、 この技術では溶融金属流が短いノズルの吐出端から大気 を通って铸型液面へ流出落下のでワイヤー状の処理剤と溶融金属流 との該処理剤の溶解量及び溶解、 混合時間が制限され、 該処理剤を 多量にかつ溶解濃度を均一にするように添加することができない。 発明の開示 Therefore, in this technique, the molten metal flow flows out of the discharge end of the short nozzle through the atmosphere to the 液 type liquid surface, and falls to the liquid surface of the mold. Due to the limitation, the treating agent cannot be added in a large amount and in a uniform concentration. Disclosure of the invention
本発明は、 上記課題に鑑みなされたもので、 プロセスに使用する 溶鋼などの溶融金属の成分調整を簡易ならしめ、 抜本的な製造コス トの低减, および品質の向上を図る複層鍀片の铸造方法を提供する ことを目的とする。  SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has an advantage in that the composition of molten metal such as molten steel used in the process can be easily adjusted, and the production cost can be drastically reduced. The purpose is to provide a method of construction.
更に本発明は外層, 内層の構成成分の濃度分布が均一でしかも中 断なく連続して铸造できる複層铸片の铸造方法を提供することを目 的とする。  Another object of the present invention is to provide a method for producing a multilayer piece in which the concentration distribution of the components of the outer layer and the inner layer is uniform and can be continuously produced without interruption.
上記目的を達成するため、 本発明は先ずタンデイ ツシュ下部に設 けた短尺及び長尺ノズルにより铸型とダミ一バーで構成した溶融金 属プールに例えば溶綱を注入し、 かつ、 铸型下部の、 メニスカスか ら铸造方向に向つて一定の距離に設けた磁石によつて铸片幅全体に 亘つて作用する直流磁界帯を形成して上記溶鋼を上下に分断して連 铸ス トランドプールを形成する。 従って各プールには短尺ノズル及 び長尺ノズルの各々の先端部が浸漬した状態となる。  In order to achieve the above object, the present invention firstly injects, for example, a molten steel into a molten metal pool composed of a 铸 type and a damper bar by means of short and long nozzles provided in the lower part of the tan dish, and A magnet provided at a fixed distance from the meniscus in the manufacturing direction forms a DC magnetic field zone acting over the entire width of the piece to divide the molten steel up and down to form a continuous strand pool. I do. Therefore, the tip of each of the short nozzle and long nozzle is immersed in each pool.
次いで一方又は双方の浸漬ノズル内に成分調整用合金ワイヤーを 添加し、 該浸漬ノズル内で十分溶解し、 混合させて所定の濃度に調 整する。  Next, an alloy wire for component adjustment is added to one or both of the immersion nozzles, sufficiently dissolved in the immersion nozzle, and mixed to adjust to a predetermined concentration.
このように均一に濃度調整された溶鋼を各プール内に吐出せしめ- 続いて該溶鋼を急冷 · 凝固して表層と内層がそれぞれの金属種から 構成される均一濃度の複層铸片を铸造する。  The molten steel whose concentration has been uniformly adjusted as described above is discharged into each pool. Subsequently, the molten steel is rapidly cooled and solidified to form a multilayer piece having a uniform concentration in which the surface layer and the inner layer are composed of the respective metal species. .
このように、 本発明者は複層铸片を铸造するに当り、  Thus, the present inventor, when producing a multilayer piece,
(1) タンディ ッシュ内の溶鋼を一種類の成分とすること、 は) 直流磁界帯を铸型に設けて溶鐧を铸型内で上下のプールに分 断すること、  (1) Molten steel in the tundish should be one type of component. A) A DC magnetic field zone should be provided in the mold to separate the molten steel into upper and lower pools in the mold.
(3) 各プールに溶鋼を注入するために長尺, 短尺の浸漬ノズルを 使用するごと、 (4) 複層成分とするための所望の添加合金を浸漬ノズル内で十分 に溶解, 混合せしめて添加合金濃度の均一化を図ること、 (3) Each time a long or short immersion nozzle is used to inject molten steel into each pool, (4) The desired additive alloy to be made into a multilayer component is sufficiently dissolved and mixed in the immersion nozzle to make the additive alloy concentration uniform.
等が必要であり、 更に、 本発明を確実に実施するために  Etc. are necessary, and in order to reliably implement the present invention,
(5) 浸漬ノズル内に不活性ガスを注入すること、  (5) injecting an inert gas into the immersion nozzle;
が重要である。 is important.
Arガスなどの不活性ガスをス ト ッパー先端のワイヤーの添加口、 又はノズル壁上部からノズル内の溶融金属流れに吹込み、 流体内で 微細に分散することによって浸漬ノズル全長に亘つてノズル内部で 溶解した物質と溶融金属との反応生成物やそれらのノズル構成材料 との相互反応物質のノズル壁面への付着堆積を抑制し、 ノズル内流 動抵抗の増加を防止するのである。  An inert gas such as Ar gas is blown into the molten metal flow in the nozzle from the wire addition port at the tip of the stopper or from the upper part of the nozzle wall, and finely dispersed in the fluid, so that the inside of the nozzle is immersed throughout the length of the immersion nozzle This suppresses the adhesion and deposition of the reaction product of the dissolved substance and the molten metal and the reaction product of the material constituting the nozzle on the nozzle wall, thereby preventing the flow resistance in the nozzle from increasing.
本発明のように、 ノズル長さが長く、 ノズル下部が溶融金属に浸 潰され、 更にノズル先端において流路の方向が変更しているよ な 場合にはノズル全体の流動抵抗が増加し、 プールへの注湯の阻害が 発生し易いので、 浸漬ノズル内に不活性ガスを吹込むことにより長 時間の連铸操業において極めて大きな効果を奏する。  As in the present invention, when the nozzle length is long, the lower part of the nozzle is immersed in the molten metal, and when the direction of the flow path is changed at the nozzle tip, the flow resistance of the entire nozzle increases, and Injection of inert gas into the immersion nozzle is extremely effective in continuous operation for a long time, because the injection of molten metal into the immersion nozzle tends to be hindered.
なお、 本発明では各プールへの流量の調整を円滑に行うために、 同種の溶融金属を注入したタンディ ッ シュを 2台配置し、 それぞれ のタンディ ッシュに短尺ノズル或いは長尺ノズルを別々に設けても よい。  In the present invention, in order to smoothly adjust the flow rate to each pool, two tundishes into which the same type of molten metal is injected are arranged, and a short nozzle or a long nozzle is separately provided in each tundish. You may.
この場合、 異種金属を各タンデイ ツシュに注入しても勿論良く、 そして更に成分調整を必要とするプールに連通する浸漬ノズルに、 添加合金ワイヤーを送り込むのである。 図面の簡単な説明  In this case, it is of course possible to inject a different kind of metal into each tande dish, and then feed the additive alloy wire to the immersion nozzle communicating with the pool requiring further component adjustment. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の一実施例を示す部分断面全体概略図である。 第 2図は第 1図の部分拡大断面図である。 第 3図は本発明の他の実施例の主要部を示す断面概略図である。 第 4図は本発明の他の実施例の主要部を示す断面概略図である。 第 5図は本発明の他の実施例の主要部を示す断面概略図である。 第 6図は本発明の他の実施例の主要部を示す断面概略図である。 第 7図は従来例の主要部を示す断面概略図である。 FIG. 1 is an overall schematic diagram of a partial cross section showing an embodiment of the present invention. FIG. 2 is a partially enlarged sectional view of FIG. FIG. 3 is a schematic sectional view showing a main part of another embodiment of the present invention. FIG. 4 is a schematic sectional view showing a main part of another embodiment of the present invention. FIG. 5 is a schematic sectional view showing a main part of another embodiment of the present invention. FIG. 6 is a schematic sectional view showing a main part of another embodiment of the present invention. FIG. 7 is a schematic sectional view showing a main part of a conventional example.
第 8図は他の従来例の主要部を示す断面概略図である。  FIG. 8 is a schematic sectional view showing a main part of another conventional example.
第 9図は本発明における铸片断面の Tiの濃度分布を示す図である c 第 10図は従来例における铸片断面の Tiの濃度分布を示す図である c 第 11図は Ti濃度を測定した位置を示す铸片断面図である。 発明を実施するための最良の形態 Fig. 9 is a diagram showing the concentration distribution of Ti in a section of the present invention c Fig. 10 is a diagram showing the concentration distribution of Ti in a section of the prior art c Fig. 11 shows the measurement of the Ti concentration FIG. 5 is a sectional view of a half piece showing a position where the cutting is performed. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
第 1図は本発明を実施する装置の全体を概略的に示したもので、 鋅型 1の下部に磁石 2を配設し、 該磁石によって铸造方向 (A ) に 垂直な方向、 即ち、 铸片の厚みを横切る方向に直流磁束を付与して 静磁場帯 2 Aを形成し、 铸型内に上溶融金属プール 1 Aと下溶融金 属プール 1 Bを構成する。 铸型 1の上部には例えば溶鐧 13を貯溜す るタンディ ッシュ 3を配置し、 該タンディ ッシュ底部に、 上プール 1 A内に開口する短尺浸漬ノズル 4 と下プール I B内に開口する長 尺浸漬ノズル 5を設ける。  FIG. 1 schematically shows the whole of an apparatus for carrying out the present invention, in which a magnet 2 is disposed below a mold 1 and the magnet perpendicularly extends in the machine direction (A). DC magnetic flux is applied in the direction across the thickness of the piece to form a static magnetic field zone 2 A, and an upper molten metal pool 1 A and a lower molten metal pool 1 B are formed in the mold. A tundish 3 for storing, for example, molten metal 13 is arranged at the upper part of the mold 1, and a short immersion nozzle 4 opening into the upper pool 1 A and a long immersion nozzle 4 opening into the lower pool IB are provided at the bottom of the tundish. An immersion nozzle 5 is provided.
該図では上プール 1 に注入する溶鋼の成分を調整するために、 添 加合金ヮィャ一 12を短尺ノズル 4内に送り込む状態を示している。 図中 6 は短尺ノズル 4のタンディ ッシュ · ス トッパーで、 第 2図で 詳細に示すように合金ワイヤー 12の貫通孔 6 Aを有し、 かつタンデ イ ツシュ開口部 3 Aを開閉する。 ス トッパー 6の上部に不活性ガス 封入室 8 A、 ラビリンスシール 8 Bなどで構成されたシール機構 8 が設けられている。 9は伸線用矯正機、 10は合金ワイヤー送出し装 置、 11はコ ィ.ラ ーであ る。 The figure shows a state in which an additive alloy wire 12 is fed into the short nozzle 4 in order to adjust the composition of the molten steel to be injected into the upper pool 1. In the figure, reference numeral 6 denotes a tundish stopper of the short nozzle 4, which has a through-hole 6A for the alloy wire 12 and opens and closes a tandem opening 3A as shown in detail in FIG. Above the stopper 6, a seal mechanism 8 including an inert gas filling chamber 8A, a labyrinth seal 8B, and the like is provided. 9 is a straightening machine for wire drawing, 10 is an alloy wire feeding device The reference numeral 11 is a caller.
又、 第 2 図に示すよ う に短尺ノ ズル 4 はタ ンディ ッ シ ュ開口部 3A においてタ ンディ ッ シュ底部と一体になるよ う に構成されており、 必要により不活性ガス注入口 18に連結するポーラ ス耐火物 17が設け られる。  As shown in FIG. 2, the short nozzle 4 is formed so as to be integrated with the bottom of the tundish at the tundish opening 3A, and is connected to the inert gas inlet 18 as necessary. A connecting porous refractory 17 is provided.
以上の装置において、 铸型 1 と ダミ ーバー (図示せず) との間に 溶鋼プールを形成したのちス ト ッパーを開放して夕 ンディ ッ シュ 3 内の溶鋼 13を上記溶鋼プールに注湯し、 所定の湯溜り深さ になった と き、 静磁場帯 2 Aを形成して上下溶鋼プール 1 A , 1 Bを構成し , しかる後に合金ワイヤー 12を短尺ノ ズル 4 内へ送り込む。 合金ワ イ ヤー 12は短尺ノ ズル 4 内で溶解, 混合され、 所定の濃度に調整され て上プール 1 Aに吐出される。  In the above apparatus, after forming a molten steel pool between the mold 1 and a damper (not shown), the stopper is opened, and molten steel 13 in the evening dish 3 is poured into the molten steel pool. When the depth reaches the predetermined pool depth, the static magnetic field zone 2A is formed to form the upper and lower molten steel pools 1A and 1B, and then the alloy wire 12 is fed into the short nozzle 4. The alloy wire 12 is melted and mixed in the short nozzle 4, adjusted to a predetermined concentration, and discharged to the upper pool 1A.
このよ う に上プール 1 A内で添加合金濃度調整溶鋼 14、 即ち表層 用溶湯を形成する には次の式(1 )及び(2)の関係を満す必要がある。  Thus, in order to form the molten alloy 14 with the adjusted alloy concentration in the upper pool 1A, that is, the molten metal for the surface layer, it is necessary to satisfy the following equations (1) and (2).
L N < L + L M ( 1 )  L N <L + L M (1)
L N > ( V X d ) / 2 f (2)  L N> (V X d) / 2 f (2)
こ ゝ で、 合金ワ イ ヤー 12の平均溶解速度を f , 該ワ イ ヤーの径を d , 該ワイヤーの添加速度を Vと し、 タ ンディ ッ シュ開口部を閉塞 した状態でのス ト ッパー 6 の先端から铸型内のメ ニスカス 14 B まで の距雜を L M , 該ス ト ッパー 6 の先端から浸漬ノ ズル吐出孔 4 Aま での距離を L N , メ ニスカス 16から直流磁界帯の中心位置 2 B まで の距雜を L とする。 Here, the average melting speed of the alloy wire 12 is f, the diameter of the wire is d, the addition speed of the wire is V, and the stopper is in a state where the opening of the tundish is closed. The distance from the tip of the stopper 6 to the meniscus 14 B in the mold is L M , the distance from the tip of the stopper 6 to the immersion nozzle discharge port 4 A is L N , and the distance from the meniscus 16 to the DC magnetic field zone is L M. Let L be the distance to the center position 2B of the.
なお、 内層用溶湯 13 Aを注湯する長尺ノ ズル 5 の長さ、 即ち、 ス ト ッパー 7 の先端からノ ズル吐出孔 5 Aまでの距離は静電磁帯中心 位置 2 Bの距雜 Lより長ければよい。  The length of the long nozzle 5 for pouring the inner layer molten metal 13A, that is, the distance from the tip of the stopper 7 to the nozzle discharge hole 5A is the distance L of the center position 2B of the static electromagnetic band. It should be longer.
以上のよ う に して溶鐧 13を鐯型 1 に注湯する と上プールにおける 表層用溶湯 14が凝固して凝固シェル 14 Aを形成し、 順次内層用溶湯 13Aも凝固して凝固シェル 13 Bを形成し、 最終的には均一な濃度分 布をもった外層 14Aと内層 13 Bからなる複層铸片が鐯型から引抜か れる。 When the melt 13 is poured into the mold 1 as described above, the surface melt 14 in the upper pool solidifies to form a solidified shell 14A, and the melt for the inner layer is sequentially formed. 13A is also solidified to form a solidified shell 13B, and a multilayer piece having an outer layer 14A and an inner layer 13B having a uniform concentration distribution is finally pulled out from the mold.
又、 注湯ノズル内に吹込む不活性ガス、 例えば Arガスの量は 0. 1 〜15. 0 _β /分の範囲が望ましい。 即ち、 この範囲で長時間安定した 鑲造が可能となる。  Further, the amount of the inert gas, for example, the Ar gas blown into the pouring nozzle is desirably in the range of 0.1 to 15.0_β / min. That is, a structure that is stable for a long time in this range becomes possible.
第 3図に示す実施例は第 1図の装置において合金ワイヤー 12を長 尺ノズル 5内へス トッパー 7を介して送り込み、 添加合金の濃度を 均一にした内層用溶湯 15を形成し、 表層 13 Bと合金が添加された内 層 15Aからなる複匿鋅片を製造する例である。  In the embodiment shown in FIG. 3, the alloy wire 12 is fed into the long nozzle 5 through the stopper 7 in the apparatus shown in FIG. 1 to form the inner layer molten metal 15 having a uniform concentration of the added alloy, and the surface layer 13 is formed. This is an example of manufacturing a double-sided piece composed of B and an inner layer 15A to which an alloy is added.
第 4図は合金ワイヤー 12を短尺ノズル 4に、 合金ワイヤー 12Aを 長尺ノズル 5にそれぞれ、 ストッパー 6, 7を介して送り込み、 添 加合金の濃度を均一にした表層用溶湯 14と内層用溶湯 15を形成し、 それぞれに合金が添加された表層 14Aと内層 15Aからなる複層鐃片 を製造する例を示す。  Fig. 4 shows that the alloy wire 12 is sent to the short nozzle 4 and the alloy wire 12A is sent to the long nozzle 5 via stoppers 6 and 7, respectively. An example is shown in which a multi-layered piece composed of a surface layer 14A and an inner layer 15A to which alloys are added is manufactured.
第 5図及び第 6図はタンディ ッシュを溶鐧 13 aを貯溜するタンデ ィ ッシュ 3 Aと溶鐦 13 bを貯溜するタンディ ッシュ 3Bに分離し、 そ れぞれに短尺ノズル 4 と長尺ノズル 5を設けた例を示し、 第 5図は 溶鋼 13 bに合金ワイヤー 12を供給して内層用溶湯 15を形成した例で あり、 第 6図は溶鐧 13 a及び 13 bに合金ワイヤー 12, 12Aを供給し て表層用溶湯 14及び内層用溶湯 15を形成した例である。 勿論溶鐧 13 aのみに合金ワイヤーを供給してもよい。  Figures 5 and 6 show the tundish separated into a tundish 3A for storing the melt 13a and a tundish 3B for storing the melt 13b, and the short nozzle 4 and the long nozzle respectively. Fig. 5 shows an example in which an alloy wire 12 is supplied to molten steel 13b to form an inner layer molten metal 15, and Fig. 6 shows an example in which alloy wires 12 are formed in molten metals 13a and 13b. This is an example in which 12A is supplied to form a melt 14 for the surface layer and a melt 15 for the inner layer. Of course, the alloy wire may be supplied only to the melt 13a.
このように各屢毎にタンディ ッシュを設けると、 各溶融金属プ一 ルへの溶湯の量をより効果的に調整することができ、 又各層に異種 金属を注湯する場合にも好都合である。  Providing a tundish for each layer as described above allows more effective adjustment of the amount of molten metal in each molten metal pool, and is also advantageous when pouring different metals into each layer. .
なお、 第 5図及び第 6図の例においても、 第 1図の例と同様にス トッパー上端部の合金ワイヤー送入口ゃノズル壁などから不活性ガ スを溶湯に吹込み、 溶湯中に微細分散させることによって、 ノズル 内壁への付着物堆積を少くするとともに、 铸片周方向, 铸造方向に 均一な濃度分布をもつた複層铸片を安定して铸造することができる, 実施例 In the examples shown in FIGS. 5 and 6, as in the example shown in FIG. By spraying the molten metal into the molten metal and finely dispersing it in the molten metal, deposits on the inner wall of the nozzle are reduced, and a multi-layered piece having a uniform concentration distribution in the circumferential direction and in the forming direction is stabilized. Example that can be built
実施例 1 Example 1
第 1図で示す如く、 1合のタンディ ッシュに貯溜した第 1表に示 す内層成分の溶鋼を長辺が 1200腿, 短辺が 250匪の連続铸造機銅铸 型とダミ一バーとで形成した溶鋼プールに所定の深さまで注入し、 铸型内のメニスカス 14Bから 0.63m 下方 (距離 L) に铸片の幅方向 に均一な 5000ガウスの磁束密度をもつ直流磁界を印加して直流磁界 帯 2 A (直流磁界中心位置 2 B) を形成し、 上記プールを铸造方向 に上部及び下部に分断した。  As shown in Fig. 1, the molten steel of the inner layer components shown in Table 1 and stored in a single tundish were mixed with a continuous copper machine with a long side of 1200 thighs and a short side of 250 gangs and a damper bar. Inject into the formed molten steel pool to a predetermined depth and apply a DC magnetic field with a uniform magnetic flux density of 5000 gauss in the width direction of the piece 铸 0.63 m below (distance L) from meniscus 14B in the mold. Band 2A (DC magnetic field center position 2B) was formed, and the pool was divided into upper and lower parts in the manufacturing direction.
铸片の表層 O厚み Dを 25mmとするため、 下記式(3) から铸片引抜 き速度 (铸造速度) Vc を O.AmZ分とした。  铸 In order to make the surface layer O thickness D of the piece 25 mm, from the following formula (3), the 铸 piece extraction speed (铸 forming speed) Vc was set to O.AmZ.
D = 0.020X (L/Vc ) 1/2 (3)  D = 0.020X (L / Vc) 1/2 (3)
このような铸造を行うため表層用の溶鋼流量を 3.36Kgノ秒, 内層 用の溶鋼流量を 11.04KgZ秒となるよう各ス トッパーの開度を調整 して流量を制御した。 表層用溶鋼が短尺浸漬ノズル 4を通過する際. 該ノズル内に A £含有量 70%のヮィヤーを 1.44gZ秒の割合で添加 した。 この結果、 得られた铸片の A 含有量は第 1表に示すように 0.032重量%となった。  To achieve such a structure, the flow rate was controlled by adjusting the opening of each stopper so that the flow rate of molten steel for the surface layer was 3.36 kg / sec and the flow rate of molten steel for the inner layer was 11.04 kg / sec. When the surface molten steel passes through the short immersion nozzle 4, a wire having an A content of 70% was added into the nozzle at a rate of 1.44 gZ seconds. As a result, the A content of the obtained piece was 0.032% by weight as shown in Table 1.
又、 A ワイヤーを添加する際、 短尺ノズル内部に Agガスを 0.5 i Z分の速度で添加した。  When adding the A wire, Ag gas was added to the inside of the short nozzle at a rate of 0.5 iZ.
か、 る複層铸片は 120分にわたって安定して铸造されたが、 表層 の A 濃度は铸片周方向, 铸造長さ方向とも均一であり、 パウダー の巻込みも全く認められなかった。 (単位:重量%) The multilayered piece was stably formed for 120 minutes, but the A concentration in the surface layer was uniform in both the circumferential direction and the lengthwise direction, and no entrainment of powder was observed. (Unit: wt%)
Figure imgf000012_0001
実施例 2
Figure imgf000012_0001
Example 2
長辺が 1500min, 短辺が 200ππηの連鋒铸片を铸造するための連铸銅 铸型の下部に直流磁界を設置して、 連铸ストランド内の溶鋼プール を铸造方向に上下 2プールに分断し、 それぞれのプールに同一の極 低炭素鋼をそれぞれ長さの異なるノズルにて供給しつつ、 凝固、 引 き抜きを行った。 ここで、 各プールに注入する溶鋼は 2台のタンデ ィ ッシュに狞溜され、 内層に相当する下部プールに溶鋼を注入する ノズルには第 5図に示したような貫通孔とシール機構をもったス ト ッパー 7によって、 Ti合金を封入したワイヤー (Ti含有量 70 % ) を 38. 9 g Z秒の速度で添加した。  A direct current magnetic field is installed at the bottom of a continuous copper mold to form a continuous piece with a long side of 1500 min and a short side of 200ππη, and the molten steel pool in the continuous strand is divided into two pools in the manufacturing direction. Then, the same ultra-low carbon steel was supplied to each pool with nozzles of different lengths, and solidification and drawing were performed. Here, the molten steel to be injected into each pool is stored in two tundishes, and the nozzle for injecting the molten steel into the lower pool corresponding to the inner layer has a through hole and a sealing mechanism as shown in Fig. 5. A wire (Ti content 70%) encapsulating a Ti alloy was added by the stopper 7 at a rate of 38.9 g Z seconds.
直流磁界の中心位置 2 Bはメニスカス 13 Cから 60cm下方にあり、 磁束の方向は铸片の厚み方向で中心位置の磁束密度は 5500ガウスで あった。 1 mZ分の速度で铸造しつつ、 表層用の溶鐧を 7. 75Kg/秒- 内層用の溶鋼の注湯量は 27. 25Kg/秒になるようにス トツバ一 6, 7の開度を調整し、 制御した。 この連铸機の铸型内部の凝固速度に より、 直流磁界帯の中央.に、 上下プールの境界が位置し、 表層厚は 20mmとなった。 一  The center position 2B of the DC magnetic field was 60 cm below the meniscus 13C, the direction of the magnetic flux was the thickness direction of the piece, and the magnetic flux density at the center position was 5500 gauss. 7.75 kg / sec. Of molten metal for the surface layer while adjusting at a speed of 1 mZ-Adjust the opening of the stems 6 and 7 so that the molten steel pouring rate of the inner layer is 27.25 kg / sec. And controlled. The boundary between the upper and lower pools was located at the center of the DC magnetic field zone due to the solidification rate inside the mold of this connector, and the surface layer thickness was 20 mm. One
ここで、 ワイヤーを添加するノズルのス ドッパー先端からワイヤ 一とともに Arガスを 1 £ Z分の量添加した。 铸造は 120分にわたつ て安定して行われ、 全ての獰鋼を完全に铸造した。  Here, Ar gas was added in an amount of 1 £ Z together with the wire from the tip of the dropper of the nozzle to which the wire was added. The construction was stable for 120 minutes and completely built all the ferrous steel.
このようにして铸造された铸片内眉の Tiの铸片周方向濃度分布は 第 9図に示すように 0. 1 %と、 上記铸造条件から推定される濃度と —致し、 また、 長さ方向で一定であった。 The circumferential concentration distribution of Ti in the inner eyebrow thus manufactured is As shown in FIG. 9, 0.1% was consistent with the concentration estimated from the above manufacturing conditions, and was constant in the length direction.
なお、 第 11図は铸片断面における Tiの濃度分布を測定した箇所を 示す。  FIG. 11 shows locations where the Ti concentration distribution was measured on the cross section of the piece.
実施例 3 Example 3
Arガスを添加しない以外は、 実施例一 2 と同等の条件で鐯造を行 つた。 その結果、 铸造開始後約 55分で Tiワイヤ一を添加している内 層ノズルの溶鋼供給量が低下し、 所定の 27. 25KgZ秒を維持するこ とが困難になつた。 そのため上プールと下プール間で混合が発生し- 内層の Ti濃度は铸造開始後約 55分までで得られた铸片内層の均一 Ti 濃度の 0. 1 %から 0. 03〜0. 21 %までばらつく こ ととなり、 また鐯造 開始後 80分には内層用の溶鋼供給ができなくなり、 構造を中断した ( 铸造終了後、 ノズルの内部を調査したところ、 ノズルの耐火物と Ti が反応した生成物がノズル壁面に付着、 堆積しているのが観察され た。 A structure was produced under the same conditions as in Example 12 except that no Ar gas was added. As a result, about 55 minutes after the start of the production, the supply of molten steel to the inner nozzle to which the Ti wire was added was reduced, and it became difficult to maintain the predetermined 27.25 KgZ seconds. As a result, mixing occurs between the upper pool and the lower pool.- The Ti concentration in the inner layer was obtained from about 55 minutes after the start of the production. 80 minutes after the start of construction, supply of molten steel for the inner layer became impossible, and the structure was interrupted. ( After completion of the construction, the inside of the nozzle was inspected, and the refractory of the nozzle and Ti reacted. The product was observed to adhere and accumulate on the nozzle wall.
比較例 1 Comparative Example 1
実施例一 2 と同等の条件で铸造を行った。 ただし、 ワイヤ一は第 7図に示すようにス トツバ二を通さず鐯型内パウダー層から内層プ ールに向けて添加した。 ここで、 ワイヤーは鉄で被覆されており内 層で初めて溶解するように調整されたものである。  Production was performed under the same conditions as in Example 1-2. However, as shown in Fig. 7, the wire 1 was added from the inner powder layer toward the inner pool without passing through the stopper. Here, the wire is coated with iron and adjusted to melt for the first time in the inner layer.
铸造は安定して行われ、 完铸したものの、 铸造後の铸片を調査し たところ、 第 10図に示すように铸片周方向で大幅に内層 Ti濃度のば らつきが測定された。 一  Although the structure was stable and completed, the flakes after the structure were examined. As shown in Fig. 10, a large variation in the inner layer Ti concentration was measured in the circumferential direction of the flake. One
また、 铸片内部にはワイヤー添加の際にメニスカスにて巻き込ま れたと思われるパウダーが多量検出された。  In addition, a large amount of powder, which was thought to have been caught in the meniscus when the wire was added, was detected inside the piece.
Ti濃度測定位置は第 11図に示すとおりであり、 又ワイヤー添加位 置は図中 24で示す所であつた。 産業上の利用可能性 The Ti concentration measurement position was as shown in FIG. 11, and the wire addition position was as indicated by 24 in the figure. Industrial applicability
以上詳述したごとく、 本発明は複層铸片を連続铸造するに当たり . 予め 2種類の組成の溶鋼を溶製することなく、 同種類のベースとな る組成の溶鋼を溶製し、 内層あるいは表層、 もしく は両方の溶鋼が タンディ ッシュから铸型内に注入される際に、 タンディッシュのス トッパーからワイヤーを添加して浸漬ノズル内でこれを溶解, 均一 混合して所定の溶鋼プール内に注入することによって、 目的とする 溶鋼成分に容易に調整することが可能となり、 かつパウダーの巻き 込みもなぐなり、 安定して長時間铸造することができるので、 複層 铸片の製造コス トの低減, および铸片品質の向上を図ることができ  As described in detail above, in the present invention, when continuously forming a multi-layered piece, the molten steel having the same base composition is melted without previously melting the molten steel having the two different compositions. When the surface layer or both of the molten steel are injected into the mold from the tundish, a wire is added from the tundish stopper, melted and uniformly mixed in the dipping nozzle, and mixed into the specified molten steel pool. By injecting into powder, it is possible to easily adjust to the desired molten steel composition, and also to reduce the entrainment of powder, and to stably produce for a long period of time. And improve chip quality.

Claims

請 求 の 範 囲 The scope of the claims
1 . 連続铸造铸型内、 もしく は铸型下方に設けた直流磁界帯によ つて上下に分断される溶融金属プールの各々に溶融金属を供給して. 表層と内層とから成る複層铸片を製造する複層铸片铸造方法におい て、 1. Molten metal is supplied to each of the molten metal pools separated vertically by a DC magnetic field zone provided in the continuous structure or below the mold. The multilayer structure consisting of a surface layer and an inner layer In the multi-layered / single piece manufacturing method for manufacturing pieces,
前記铸型の上方に配設した連铸タンディ ッシュに短尺浸漬ノズル と長尺浸漬ノズルを設け、 前記短尺浸漬ノズルを経由して上溶融金 属プール内に溶融金属を供給し、 かつ、 前記長尺浸漬ノズルを経由 して下溶融金属プール内に溶融金属を供給するに際し、 上記連铸タ ンディ ッシュの 2個の溶融金属吐出孔に着脱自在に設けたタンディ ッ シュ · ス トツパーのいずれか一方のス トッパーの中央部に貫通孔 を設け、 該貫通孔に合金ワイヤーを挿入して該合金ワイヤーを前記 浸漬ノズル内で溶解させて目的とする組成の溶融金属を一方の溶融 金属プールで製造し、 かつ他方のタンデイ ツシュの溶融金属吐出孔 から溶融金属を浸漬ノズルを経由して他方の溶融金属プールに供給 することにより複層铸片を製造することを特徴とする複層铸片製造 方法。  A short immersion nozzle and a long immersion nozzle are provided on a continuous tundish disposed above the mold, and the molten metal is supplied into the upper molten metal pool via the short immersion nozzle; and When supplying molten metal into the lower molten metal pool via the shaking immersion nozzle, either one of the tundish stoppers detachably provided in the two molten metal discharge holes of the continuous tundish A through-hole is provided in the center of the stopper, and an alloy wire is inserted into the through-hole, and the alloy wire is melted in the immersion nozzle to produce a molten metal having a desired composition in one molten metal pool. And producing a multilayer piece by supplying the molten metal from the molten metal discharge hole of the other metal to the other molten metal pool through a dipping nozzle. Piece manufacturing method.
2 . 前記タンディ ッシュス ト ッパーの両方の中央部に貫通孔を設 け、 該貫通孔に添加すべき 2種類の合金ワイヤーを各々挿入して各 浸漬ノズル内で溶解させて目的とする組成の溶融金属を各溶融金属 プールで製造する請求の範囲 1記載の方法。  2. A through-hole is provided at the center of both ends of the tundish stopper, and two types of alloy wires to be added are inserted into the through-hole and melted in each immersion nozzle to melt the desired composition. The method of claim 1 wherein the metal is produced in each molten metal pool.
3 . 前記合金ワイヤーを挿入する浸漬ノズル内に不活性ガスを供 給する請求の範囲 1又は 2記載の方法。  3. The method according to claim 1, wherein an inert gas is supplied into an immersion nozzle into which the alloy wire is inserted.
4 . 連続铸造铸型内、 もしく は铸型下方に設けた直流磁界帯によ つて上下に分断される溶融金属プールの各々に溶融金属を供給して 表層と内層とから成る複層铸片を製造する複層铸片铸造方法におい て、 4. A multi-layer piece consisting of a surface layer and an inner layer by supplying molten metal to each of the molten metal pools separated vertically by a DC magnetic field zone provided in the continuous structure mold or below the mold. To manufacture multi-layer flakes hand,
前記铸型の上方に配設した 2台の連铸タンディ ッシュに同種類の 組成の溶融金属をそれぞれのタンディ ッシュに分注し、 一方のタン  A molten metal of the same composition is dispensed into two tundishes arranged above the mold and dispensed into each tundish.
c ディ ッシュから短尺浸漬ノズルを経由して上溶融金属プール内に溶 融金属を供給し、 又他方のタンデイ ツシュから長尺浸漬ノズルを経 由して下溶融金属プール内に溶融金属を供給するに際し、 上記 2台 の連铸タンディ ッシュの溶融金属吐出孔に着脱自在に設けたタンデ イ ツシュ ' ス ト ッパーのいずれか一方のス ト ッパーの中央部に貫通 孔を設け、 該貫通孔に合金ワイヤーを挿入して該合金ワイヤーを前 記浸漬ノズル内で溶解させて目的とする組成の溶融金属を一方の溶 融金属プールで製造し、 かつ他方のタンディ ッシュの溶融金属吐出 孔から溶融金属を浸漬ノズルを経由して他方の溶融金属プールに供 耠することにより複層铸片を製造することを特徴とする複層铸片铸 造方法。  c Supply the molten metal from the dish to the upper molten metal pool via the short immersion nozzle, and supply the molten metal from the other tandem via the long immersion nozzle to the lower molten metal pool. At this time, a through-hole is provided in the center of one of the tan dish's stoppers detachably provided in the molten metal discharge holes of the two continuous tundishes, and the through-hole is made of an alloy. A wire is inserted and the alloy wire is melted in the immersion nozzle to produce a molten metal having a desired composition in one molten metal pool, and the molten metal is discharged from a molten metal discharge hole of the other tundish. A method for producing a multilayered piece, comprising supplying the molten metal pool to the other molten metal pool through an immersion nozzle.
5 . 前記 2台の連铸タンディ ッシュに異種類の組成の溶融金属を 分注する請求の範囲 4記載の方法。  5. The method according to claim 4, wherein molten metals having different compositions are dispensed into the two connected tundishes.
6 . 前記連铸タンディ ツシュを 2台配置して各タンディ ッシュに 異種の組成の溶融金属を分注し、 かつ各連铸タンディ ッシュに設け たタンディ ッシュス トッパーの両方の中央部に貫通孔を設け、—該貫 通孔に添加すべき 2種類の合金ワイヤーを各々挿入して各浸漬ノズ ル内で溶解させて目的とする組成の溶融金属を各溶融金属プールで 製造する請求の範囲 4記載の方法。  6. Dispose molten metal of different composition to each tundish by arranging the two connected tundishes, and provide through holes in both central parts of tundish stoppers provided in each tundish. 5. The molten metal pool according to claim 4, wherein two kinds of alloy wires to be added are inserted into the through holes and melted in each dipping nozzle to produce a molten metal having a desired composition in each molten metal pool. Method.
7 . 前記合金ワイヤーを揷入する浸漬ノズル内に不活性ガスを供 給する請求の範囲 4, 5又は 6記載の方法。  7. The method according to claim 4, 5 or 6, wherein an inert gas is supplied into an immersion nozzle into which the alloy wire is introduced.
PCT/JP1993/000530 1992-04-24 1993-04-23 Method of obtaining double-layered cast piece WO1993022085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP93909414A EP0596134A1 (en) 1992-04-24 1993-04-23 Method of obtaining double-layered cast piece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4/129888 1992-04-24
JP12988892 1992-04-24

Publications (1)

Publication Number Publication Date
WO1993022085A1 true WO1993022085A1 (en) 1993-11-11

Family

ID=15020830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000530 WO1993022085A1 (en) 1992-04-24 1993-04-23 Method of obtaining double-layered cast piece

Country Status (3)

Country Link
EP (1) EP0596134A1 (en)
CA (1) CA2112585A1 (en)
WO (1) WO1993022085A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016022493A (en) * 2014-07-17 2016-02-08 新日鐵住金株式会社 Manufacturing method of continuous casting piece
JP2017080788A (en) * 2015-10-30 2017-05-18 新日鐵住金株式会社 Method and device for continuously casting double-layered cast slab
CN110512049A (en) * 2019-08-16 2019-11-29 张志华 It is a kind of complete to adapt to and refining furnace with long service life into silk machine keeps off line apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4420697C2 (en) * 1994-06-14 1997-02-27 Inst Verformungskunde Und Huet Continuous casting mold for casting a composite metal strand with a separating body for separating the cast melts of the partial strands
ATE194017T1 (en) * 1996-07-19 2000-07-15 Alusuisse Lonza Services Ag METHOD FOR GRAIN REFINING OR FINISHING OF METAL ALLOYS
CN1060695C (en) * 1997-04-15 2001-01-17 华南理工大学 Continuous and semicontinuous method preparing gradient material
JP4648312B2 (en) * 2003-06-24 2011-03-09 ノベリス・インコーポレイテッド Casting method for composite ingot
RU2510423C2 (en) * 2009-08-31 2014-03-27 Ниппон Стил Корпорейшн High-strength electroplated sheet steel
EP3290881B1 (en) * 2016-09-01 2019-08-07 Heraeus Electro-Nite International N.V. Method for feeding an optical cored wire and immersion system to carry out the method
CN107127312B (en) * 2017-06-07 2022-11-22 山东钢铁股份有限公司 Equipment and method for producing composite continuous casting billet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946698B2 (en) * 1978-11-22 1984-11-14 住友金属工業株式会社 Manufacturing method of clad steel
JPS63212052A (en) * 1987-02-26 1988-09-05 Nippon Steel Corp Production of complex material by continuous casting
JPH0475750A (en) * 1990-07-18 1992-03-10 Nippon Steel Corp Method and apparatus for continuously casting duplex layer cast slab

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946698B2 (en) * 1978-11-22 1984-11-14 住友金属工業株式会社 Manufacturing method of clad steel
JPS63212052A (en) * 1987-02-26 1988-09-05 Nippon Steel Corp Production of complex material by continuous casting
JPH0475750A (en) * 1990-07-18 1992-03-10 Nippon Steel Corp Method and apparatus for continuously casting duplex layer cast slab

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016022493A (en) * 2014-07-17 2016-02-08 新日鐵住金株式会社 Manufacturing method of continuous casting piece
JP2017080788A (en) * 2015-10-30 2017-05-18 新日鐵住金株式会社 Method and device for continuously casting double-layered cast slab
CN110512049A (en) * 2019-08-16 2019-11-29 张志华 It is a kind of complete to adapt to and refining furnace with long service life into silk machine keeps off line apparatus

Also Published As

Publication number Publication date
CA2112585A1 (en) 1993-11-11
EP0596134A1 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US3634075A (en) Introducing a grain refining or alloying agent into molten metals and alloys
TWI633954B (en) Continuous casting apparatus and continuous casting method of double layered cast piece
WO1993022085A1 (en) Method of obtaining double-layered cast piece
EP0265235B1 (en) Continuous casting of composite metal material
JP6855806B2 (en) Continuous casting method and continuous casting equipment for multi-layer slabs
US3845809A (en) Means for the continuous casting of steel
JPH0320295B2 (en)
JP2661797B2 (en) Multi-layer slab casting method
JP3456311B2 (en) Continuous casting method of multilayer slab
JP4562347B2 (en) Method and equipment for continuous casting of liquid steel
JP3988538B2 (en) Manufacturing method of continuous cast slab
JP3579568B2 (en) Stopper rod for continuous casting
JP2001232450A (en) Method for manufacturing continuous cast slab
JPH08300119A (en) Production of highly conductive copper alloy
JP2898199B2 (en) Manufacturing method of continuous cast slab
US5040594A (en) Side feed tundish apparatus and method for the alloying and rapid solidification of molten materials
JP3573096B2 (en) Manufacturing method of continuous cast slab
JPS5992151A (en) Production of free-cutting lead steel by continuous casting method
JP3426383B2 (en) Steel continuous casting method
JP7068628B2 (en) Casting method
JPS6049847A (en) Production of free-cutting lead steel by continuous casting method
JP2017030013A (en) Continuous casting method of double-layered cast slab and continuous casting apparatus
KR100351204B1 (en) Horizontal Continuous Casting Equipment for Fabrication of Metal Matrix Composites
JPS6241828B2 (en)
JP2001321907A (en) Method for producing continuous casting slab and continuous casting slab

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 1993 167978

Country of ref document: US

Date of ref document: 19931223

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1993909414

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2112585

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993909414

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993909414

Country of ref document: EP