JPH08300119A - Production of highly conductive copper alloy - Google Patents

Production of highly conductive copper alloy

Info

Publication number
JPH08300119A
JPH08300119A JP10972695A JP10972695A JPH08300119A JP H08300119 A JPH08300119 A JP H08300119A JP 10972695 A JP10972695 A JP 10972695A JP 10972695 A JP10972695 A JP 10972695A JP H08300119 A JPH08300119 A JP H08300119A
Authority
JP
Japan
Prior art keywords
copper
alloy
tundish
copper alloy
highly conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10972695A
Other languages
Japanese (ja)
Other versions
JP2965481B2 (en
Inventor
Masanori Kato
正憲 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP10972695A priority Critical patent/JP2965481B2/en
Publication of JPH08300119A publication Critical patent/JPH08300119A/en
Application granted granted Critical
Publication of JP2965481B2 publication Critical patent/JP2965481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE: To produce an inexpensive Ni-P-contg. highly conductive copper alloy having high quality by smooth addition of alloy additive elements at a high yield without entailing the pollution of molten copper. CONSTITUTION: An (Ni-P base alloy) or (Ni-P base alloy + metal of the m. p. lower than the m. p. of the molten copper) is used as a phosphorus compd. of Ni and is supplied to the prescribed copper melt in a tundish at the time of adjusting the copper alloy melt prior to continuous casting and thereafter, continuous casting is executed, by which the ingot of the Ni-P-contg. highly conductive copper alloy is produced. As a result, the operation with saved energy is made possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高導電性銅合金の製造
方法、とくに半導体などの高導電性が要求される電子材
料の分野などで用いられる、少なくともNiおよびPを
含有する銅合金の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy containing at least Ni and P, which is used in a method for producing a highly conductive copper alloy, particularly in the field of electronic materials such as semiconductors which require high conductivity. The present invention relates to a manufacturing method.

【0002】[0002]

【従来の技術】銅に他の金属を添加して銅合金を製造す
る一般的な方法は、銅とともに各種の金属を溶解炉内に
装入し、溶解することによって合金溶体を製造する、い
わゆるバッチ方式が採用されていた。しかしながら、一
つの炉で多種の銅合金をバッチ方式で製造する方法にあ
っては、合金溶体の種類を変更するたびに、溶解炉内を
洗浄しなければならず、このために多量の溶湯が必要と
なると共に、作業性にも問題点があった。また、この方
式では、連続して生産できず溶解炉の稼働率が低いた
め、生産性が低く、製造コストが高いという問題点もあ
った。さらに、溶解炉内では、銅と添加元素とを均一に
混合するのが難しくかつ前回操業に起因する汚染が起こ
るため、でき上がった合金溶体の品質が悪いという問題
点もあった。
2. Description of the Related Art A general method for producing a copper alloy by adding another metal to copper is to load various metals together with copper into a melting furnace and melt them to produce an alloy solution. The batch method was adopted. However, in the method of manufacturing various copper alloys by a batch method in one furnace, the inside of the melting furnace must be cleaned every time the type of alloy solution is changed, and therefore a large amount of molten metal is required. It was necessary and there was a problem in workability. Further, in this method, there is a problem that productivity is low and manufacturing cost is high because continuous operation is not possible and the operation rate of the melting furnace is low. Further, in the melting furnace, it is difficult to uniformly mix the copper and the additive element, and contamination due to the previous operation occurs, which causes a problem that the quality of the finished alloy solution is poor.

【0003】一方、銅合金を、連続式溶解炉であるシャ
フト炉で溶製することも考えられるが、溶湯の不均一性
や炉の汚染などの根本的な問題点があり、実用化されて
いない。しかし、添加元素を鋳造(連続鋳造機など)の
前段階で投入することによって合金化する分には、連続
化は十分に可能であり、とくにSnのような低融点でし
かも数百〜数千ppm レベル低含有量の合金への適用が考
えられる。上述した連続化対応の技術として、湯溜り
(タンディッシュ)の上流側に湯道(樋)を設け、この
湯道を通じて固体状態の合金成分を添加する装置(特開
昭63−62829号公報参照)や、その湯溜りと湯道
との間に加熱炉(高周波炉)を設け、上記と同様に湯道
に添加剤投入路を通じて添加する装置(特開昭63−6
2830号公報参照)などが提案されている。
On the other hand, it is possible to melt a copper alloy in a shaft furnace which is a continuous melting furnace, but there are fundamental problems such as non-uniformity of molten metal and contamination of the furnace, and it has been put to practical use. Absent. However, alloying by adding the additive element in the pre-stage of casting (such as a continuous casting machine) is sufficiently possible to achieve alloying, especially with a low melting point like Sn and hundreds to thousands. It can be applied to alloys with low ppm level content. As a technique for dealing with the above-mentioned continuity, a device is provided in which a runner (gutter) is provided on the upstream side of a basin (tundish), and an alloy component in a solid state is added through this runner (see JP-A-63-62829). ) Or a heating furnace (high frequency furnace) provided between the basin and the runner, and an apparatus for adding the additive to the runner through an additive feeding path (JP-A-63-6).
No. 2830) are proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、高導電性銅合金を連続的に製造する際、添
加元素によっては含有量制御が困難なものもあった。例
えば、Niを含有する銅合金の場合、Niの融点は1455
℃と、銅のそれ (1085℃) に比べてかなり高く、Cu −
30wt%Ni, Cu −50wt%Ni母合金にしても、その融
点はそれぞれ1200℃以上, 1300℃以上であるから、これ
を上記各従来技術の下で普通に添加したのでは均一かつ
円滑な合金添加が望めない。また、Pの添加を考えた場
合、このPは低密度、低沸点の元素だから、単体での添
加は不可能であり、一般には、ショット化したCu −P
母合金の形で添加されるのが普通である。
However, in the above-mentioned prior art, when continuously producing a highly conductive copper alloy, it was difficult to control the content depending on the additive element. For example, in the case of a copper alloy containing Ni, the melting point of Ni is 1455.
℃, much higher than that of copper (1085 ℃), Cu-
Even with 30 wt% Ni and Cu-50 wt% Ni mother alloys, their melting points are 1200 ° C. and 1300 ° C., respectively. Can not be expected to be added. Further, when considering the addition of P, since P is an element having a low density and a low boiling point, it is impossible to add it as a simple substance, and in general, shot Cu-P is used.
It is usually added in the form of a master alloy.

【0005】この点に関し、高導電性銅合金として必要
な微細なNi−P化合物の析出を実現するのに、もし、
Cu −Ni母合金とCu −P母合金とを併用するとすれ
ば、NiとPの量比制御に乱れが生じ、析出物の組成,
量, 大きさがばらつき、特性が安定しない。その上、溶
解すべきCu 量(母合金として添加すべきCu の相対
量)が多くなる。その結果、母合金溶解による溶銅温度
の低下を招き、その分を保障するための余分の熱エネル
ギーが必要となり、円滑な合金添加を阻害するという問
題点があった。
In this regard, in order to realize the precipitation of fine Ni-P compounds required as a highly conductive copper alloy,
If a Cu-Ni master alloy and a Cu-P master alloy are used together, the control of the Ni / P quantity ratio is disturbed, and the composition of the precipitate,
The quantity and size vary and the characteristics are not stable. Moreover, the amount of Cu to be melted (the relative amount of Cu to be added as a master alloy) is increased. As a result, the molten copper temperature is lowered due to melting of the mother alloy, and extra heat energy is required to ensure that amount, which hinders smooth alloy addition.

【0006】本発明の主たる目的は、均質な高導電性銅
合金の有利な製造方法を提案することにある。本発明の
他の目的は、合金添加元素の高歩留りと円滑な添加を通
じて、他の純銅製品の汚染を招くことなしに、高品質で
安価なNi−P含有高導電性銅合金を製造することにあ
る。本発明のさらに他の目的は、鋳型の直前での効果的
な添加を通じて微少添加成分の均質添加を実現すると共
に、熱的にも有利な銅合金製造技術の確立を図ることに
ある。
The main object of the present invention is to propose an advantageous process for the production of a homogeneous, highly conductive copper alloy. Another object of the present invention is to produce a high-quality and inexpensive Ni-P-containing high-conductivity copper alloy without causing contamination of other pure copper products through high yield and smooth addition of alloying additive elements. It is in. Still another object of the present invention is to achieve the homogeneous addition of minutely added components through effective addition immediately before the mold and to establish a thermally advantageous copper alloy production technique.

【0007】[0007]

【課題を解決するための手段】上述した課題を克服し、
上掲の目的を達成するための手段として、本発明では、
以下に述べる要旨構成にかかる各製造方法を提案する。 (1) NiおよびPを含有する銅合金の融体を連続鋳造し
て高導電性銅合金を製造するに当たり、溶銅をタンディ
ッシュ内に収容すると共に、そのタンディッシュ内溶銅
中に、NiおよびPをNi−P化合物の形態にて添加
し、その後、連続鋳造することを特徴とする高導電性銅
合金の製造方法。但し、上記Ni−P化合物としては、
Ni−P母合金又はNi−P母合金と溶銅温度よりも融
点の低い金属との化合物を用いる。 (2) Ni−P含有銅合金の融体を連続鋳造して高導電性
銅合金を製造するに当たり、溶銅をタンディッシュ内に
収容すると共に、そのタンディッシュ内に、Ni−P化
合物、Zr,Mg またはSi からなる活性金属との銅母
合金を銅で包囲したもの、In,Sn,CdまたはPb
からなる低融点金属、およびZn , Sb, AlまたはA
gからなるその他の金属を、融体もしくは線, ショット
のいずれかの状態にて、間欠的にもしくは連続的に添加
し、その後、連続鋳造することを特徴とする高導電性銅
合金の製造方法。 (3) 少なくとも 0.1〜2.0 wt%Niと0.02〜0.4 wt%P
を含有し、さらにIn,Sn,CdおよびPb のうちか
ら選ばれる1種以上の低融点金属を0.03〜3.0wt%含有
し、さらに必要に応じてZn,Sb , AlおよびAgの
いずれか少なくとも1種からなる添加成分を0.03〜3.0
wt%含有し、残部が実質的にCu からなる高導電性銅合
金の製造に当たり、NiおよびPについては、Ni−P
母合金を銅製チューブ、銅条もしくは銅箔で包囲したも
のを用い、低融点金属については融体を用い、そして、
他の添加成分については、線またはショットの形にした
ものを用い、それぞれをタンディッシュ内に間欠的にも
しくは連続的に投入または供給することにより添加し、
その後、連続鋳造することを特徴とする高導電性銅合金
の製造方法。 (4) なお、上記Ni−P母合金は、Pを5〜25wt%含
有し、残部Niからなる成分組成のものを用いることが
好ましい。
[Means for Solving the Problems] Overcoming the above-mentioned problems,
As means for achieving the above object, the present invention is
Each manufacturing method according to the gist configuration described below is proposed. (1) When continuously casting a melt of a copper alloy containing Ni and P to produce a highly conductive copper alloy, while containing molten copper in a tundish, the molten copper in the tundish contains Ni. And P are added in the form of a Ni-P compound, and then continuously cast, which is a method for producing a highly conductive copper alloy. However, as the above Ni-P compound,
A Ni-P master alloy or a compound of a Ni-P master alloy and a metal having a melting point lower than the molten copper temperature is used. (2) In producing a highly conductive copper alloy by continuously casting a melt of a Ni-P-containing copper alloy, while containing molten copper in the tundish, the tundish contains the Ni-P compound and Zr. , Mg or Si, which is a copper mother alloy with an active metal surrounded by copper, In, Sn, Cd or Pb
Low melting point metal consisting of Zn, Sb, Al or A
A method for producing a highly conductive copper alloy, characterized in that other metal consisting of g is added intermittently or continuously in the state of either melt, wire or shot, and then continuous casting . (3) At least 0.1 to 2.0 wt% Ni and 0.02 to 0.4 wt% P
And 0.03 to 3.0 wt% of one or more low melting point metal selected from In, Sn, Cd and Pb, and at least one of Zn, Sb, Al and Ag, if necessary. 0.03 to 3.0 added ingredients consisting of seeds
In producing a highly conductive copper alloy containing wt% and the balance substantially Cu, Ni and P are Ni-P.
Use a copper tube, copper strip or copper foil that surrounds the mother alloy, use a melt for low melting point metal, and
For other additive components, those in the form of lines or shots are used, and each is added by intermittently or continuously charging or supplying into the tundish,
After that, continuous casting is performed, and a method for producing a highly conductive copper alloy. (4) It is preferable to use the Ni-P master alloy having a component composition containing 5 to 25 wt% of P and the balance being Ni.

【0008】[0008]

【作用】本発明における特徴の1つは、連続鋳造に先立
つ銅合金溶湯の調整に際し、所定の銅融体に、Niのリ
ン化合物として(Ni−P母合金)または(Ni−P母
合金+溶銅温度より融点の低い金属)を用い、これをタ
ンディッシュ内に供給して連続鋳造することにより、N
i−P含有高導電性銅合金インゴットを製造するように
した点の構成にある。
One of the features of the present invention is that when a molten copper alloy is prepared prior to continuous casting, it is added to a predetermined copper melt as a Ni compound (Ni-P master alloy) or (Ni-P master alloy). N) by using a metal having a melting point lower than the molten copper temperature) and supplying this into the tundish to continuously cast N
The point is that the i-P-containing highly conductive copper alloy ingot is manufactured.

【0009】また、本発明にかかる高導電性銅合金製造
方法の他の特徴は、タンディッシュ内への各成分元素の
添加を、各々の元素の特徴に応じ、以下のような異なる
別個の方法で行うことにある。それは主として、熱経済
上および均質合金化という観点から検討されたものであ
る。
Another feature of the method for producing a high-conductivity copper alloy according to the present invention is that the addition of each component element into the tundish is carried out in the following different and separate methods depending on the characteristics of each element. To do in. It was mainly studied from the viewpoint of thermo-economics and homogeneous alloying.

【0010】(1) Ni−P母合金の投入方法 本発明において、Ni, Pについては、Ni−P母合金
の形態にして用いる。即ち、脆い組成のNi−P化合物
のインゴットを製造し、それを粉砕・分級し、その一定
量をパッキング機を介して銅製チューブ内に充填したも
の、銅条を使ってチューブ状のものを製造しつつ充填し
たもの、または銅箔で包囲したものを、タンディッシュ
内に定ピッチ投入機を使って直接かつ一定間隔で間欠的
に投入する。あるいは、インゴット粉砕物の代わりにシ
ョットの形で投入してもよいが、銅で包囲したものを用
いる方が望ましい。 (2) 低融点金属の供給方法 In,Sn,CdおよびPb 等(いずれもmp=350 ℃
以下) については、これらの金属の地金を溶解炉にて溶
解し、その融体を流調弁を介して一定流量にコントロー
ルして、タンディッシュ内に直接、パイプにて流送して
添加する。但し、厳しい含有量制御を要求される、例え
ば微量添加の場合は、線の形で連続投入する方が好まし
い。即ち、加工した線材をボビンから定速ローラーを用
いて、樋または直接、タンディッシュ内に添加する。 (3) その他の金属の供給方法 Zn,Sb , AlおよびAg(mp=350 〜1000℃) に
ついては、これらの金属を線に加工し、またはショット
に加工したものを、ボビンから定速ローラーを用いる
か、分級して定量ベルトフィーダーを使って、樋または
直接、タンディッシュ内に添加する。
(1) Method of charging Ni-P master alloy In the present invention, Ni and P are used in the form of Ni-P master alloy. That is, an ingot of a Ni-P compound having a brittle composition is produced, crushed and classified, and a certain amount of the ingot is filled into a copper tube through a packing machine, and a tubular product is produced using a copper strip. Then, the one filled while being surrounded by the copper foil or the one surrounded by the copper foil is directly and intermittently charged into the tundish at a constant interval using a constant pitch feeder. Alternatively, the crushed ingot may be charged in the form of shots, but it is preferable to use one surrounded by copper. (2) Method of supplying low melting point metal In, Sn, Cd, Pb, etc. (all are mp = 350 ° C.
For the following), the metal ingots of these metals are melted in a melting furnace, the melt is controlled to a constant flow rate through a flow control valve, and added directly by piping into a tundish. To do. However, when a strict content control is required, for example, in the case of a small amount addition, it is preferable to continuously feed in the form of a line. That is, the processed wire is added from a bobbin to a gutter or directly into a tundish using a constant speed roller. (3) Method of supplying other metals For Zn, Sb, Al and Ag (mp = 350 to 1000 ° C.), these metals are processed into wire or shot, and then the bobbin is moved to a constant speed roller. Use or classify and add into the gutter or directly into the tundish using a metering belt feeder.

【0011】この点、従来は、NiについてはCu −(1
5wt%) Ni母合金の形態で、PについてはCu -(15wt%)
P母合金(≒1000℃) の形態とし、これらのインゴット
を溶解炉中に供給する方法、また、Snの如き低融点金
属(mp:232 ℃) については、線材の形態で溶解炉ま
たは樋に連続供給することにしており、また、供給(添
加)の位置は、溶解炉か、タンディッシュの上流側の加
熱炉か、さらにその上流側の湯道(樋)のところであ
る。即ち、従来法に従う限り、添加位置の下流側には必
ず加熱手段を有するので、熱量不足はほとんど問題にさ
れず、それ故に低融点金属の場合は線材、NiおよびP
についてはそれぞれCu との母合金の形態で充分であ
る。
In this respect, conventionally, Cu has a Cu- (1
5 wt%) In the form of Ni mother alloy, P is Cu- (15 wt%)
P master alloy (≈1000 ° C) is used, and these ingots are fed into the melting furnace. For low melting point metals such as Sn (mp: 232 ° C), the melting furnace or gutter is used in the form of wire. Continuous supply is performed, and the position of supply (addition) is at the melting furnace, the heating furnace on the upstream side of the tundish, or the runner (gutter) on the upstream side. That is, as long as the conventional method is followed, since the heating means is always provided on the downstream side of the addition position, insufficient heat quantity is hardly a problem, and therefore in the case of a low melting point metal, the wires, Ni and P are used.
For the above, the form of the master alloy with Cu is sufficient.

【0012】しかしながら、本発明のように、連続鋳造
機に直結される非加熱式のタンディッシュに添加する場
合、従来技術のようには十分に熱補償ができないので、
各合金成分の添加の形態に省エネルギーという観点から
の工夫が必要である。
However, when added to a non-heated tundish directly connected to a continuous casting machine as in the present invention, heat compensation cannot be sufficiently performed as in the prior art,
It is necessary to devise the form of addition of each alloy component from the viewpoint of energy saving.

【0013】そこで、本発明においては、添加成分に応
じて上述したような添加手段を採用することにしたので
ある。即ち、 NiおよびPについては、Cu 母合金とすることな
く、Ni−P母合金の形態にすることで、第1に、余分
な銅の使用(Cu−Ni, Cu−P母合金の場合)を回避し
て、その溶解熱を不用にし、第2に、図1に示す状態図
に明らかなように、Ni−P共晶合金の融点の低さ(≒
880 ℃) を利用することにより、溶銅中への速やかな均
一拡散を確保して高品質化を実現し、さらに、こうした
対処によって、溶銅の過熱度( Super Heat) を下げ、品
質の安定化およびコストの低下を実現することにしたの
である。
Therefore, in the present invention, it is decided to adopt the above-mentioned addition means depending on the added components. That is, for Ni and P, by using the form of Ni-P master alloy instead of Cu master alloy, firstly, the use of extra copper (in the case of Cu-Ni, Cu-P master alloy) Secondly, the heat of fusion is made unnecessary, and secondly, as is apparent from the phase diagram shown in FIG. 1, the low melting point of the Ni—P eutectic alloy (≈
(880 ℃) ensures rapid uniform diffusion into the molten copper to achieve high quality, and by taking such measures, the superheat of the molten copper is lowered and the quality is stabilized. And to reduce costs.

【0014】 また、Sn, Pb、場合によってはZnを含
めて低融点金属については、 融体の状態にてタンディ
ッシュ内もしくは樋に直接流送することで、熱エネルギ
ーの無駄な消費と溶銅温度の低下を防ぐようにする。
Further, for low melting point metals including Sn, Pb, and Zn in some cases, by directly sending the low melting point metal into the tundish or the trough in a molten state, wasteful consumption of heat energy and molten copper Try to prevent the temperature from dropping.

【0015】 そして、その他の、主としてmp=35
0 〜1000℃の金属(Sb, Al, Ag, etc.) については、従
来どおり線状またはショットの形態に加工して供給する
ことにしたのである。
And other, mainly mp = 35
Metals (Sb, Al, Ag, etc.) at 0 to 1000 ℃ were processed and supplied in the form of linear or shot as before.

【0016】本発明方法では、以上のように構成するこ
とで、純銅, 特に無酸銅ベースの銅合金を高生産性と低
コストを同時に実現して製造することができる。特に、
連続鋳型直前のタンディッシュで添加供給するから、溶
銅汚染の機会がなく、OFC操業への切替えも容易であ
る。
With the method of the present invention, with the above-mentioned structure, pure copper, especially a copper alloy based on acid-free copper can be manufactured at the same time with high productivity and low cost. In particular,
Since it is added and supplied in the tundish immediately before the continuous mold, there is no opportunity for copper contamination, and it is easy to switch to OFC operation.

【0017】[0017]

【実施例】図2は、本発明製造方法の実施に用いる溶銅
連続鋳造装置の要部を示すものである。この装置によっ
て銅合金を製造するには、まず、図示しない溶解炉から
の溶銅1を、樋2を通じてタンディッシュ3内に供給
し、そして、その溶銅1を注湯ノズル4を介して連続鋳
造機の水冷鋳型5内に連続鋳造する。そうすると、前記
連鋳鋳型5内で凝固を始めた銅の鋳片は、散水式の2次
冷却帯を経て、落下しながらピンチロールに達して引き
抜かれ、さらに所定の長さに切断されて銅鋳片(ケー
ク)が得られる。
EXAMPLE FIG. 2 shows an essential part of a molten copper continuous casting apparatus used for carrying out the manufacturing method of the present invention. In order to manufacture a copper alloy by this apparatus, first, molten copper 1 from a melting furnace (not shown) is fed into a tundish 3 through a gutter 2 and the molten copper 1 is continuously fed through a pouring nozzle 4. Continuous casting is performed in the water-cooled mold 5 of the casting machine. Then, the copper slab that has started to solidify in the continuous casting mold 5 passes through the water spray type secondary cooling zone, reaches the pinch roll while being dropped, is withdrawn, and is further cut into a predetermined length to form a copper. A slab (cake) is obtained.

【0018】上記の装置を使って、下記の組成の銅合金
を製造した例につき説明する。 A.鋳造溶銅 1.0 wt%Ni−0.2 wt%P銅合金 0.32wt%Ni−0.08wt%P−0.1 wt%In銅合金 0.2 wt%Ni−0.05wt%P−2.0 wt%Sn銅合金 1.0 wt%Ni−0.2 wt%P−1.0 wt%Zn銅合金 0.32wt%Ni−0.08wt%P−0.1 wt%Ag銅合金
An example of producing a copper alloy having the following composition using the above apparatus will be described. A. Cast molten copper 1.0 wt% Ni-0.2 wt% P copper alloy 0.32 wt% Ni-0.08 wt% P-0.1 wt% In copper alloy 0.2 wt% Ni-0.05 wt% P-2.0 wt% Sn copper alloy 1.0 wt% Ni -0.2 wt% P-1.0 wt% Zn copper alloy 0.32 wt% Ni-0.08 wt% P-0.1 wt% Ag copper alloy

【0019】B.連続鋳造 (1) 低周波誘導炉で電気銅を10 T/Hで溶解し、溶銅を樋
2を通じてタンディッシュ3に移送(温度1180℃, O2
10ppm 以下に制御) し、さらに注湯ノズル4を通じて連
鋳鋳型5内に注入し、178 mm×635 mmの断面をもつケー
クを 165mm/min の引抜速度で連続鋳造した。このと
き、本発明法に従い、タンディッシュ3上部の投入口6
より20wt%PのNi−P母合金(銅合金)のインゴット
を粉砕し、銅チューブに57g入れたもの(以下、「Ni−
P粉入り銅チューブ」という)を1秒間隔で投入した。
得られた連鋳ケークの長さ方向の成分変動を調査したと
ころ、表1に示すとおり、許容範囲を十分に満足するも
のが得られた。しかも、鋳造欠陥や表面欠陥等はほとん
ど観察されなかった。 (2) 上記(1) と同じ条件の連続鋳造において、Ni−P合
金粉91g入りの「Ni−P粉入り銅チューブ」を5秒間隔
で投入し、さらに別の溶解炉7で溶解したIn融体を、温
度 200℃, ポンプ流送の圧力0.8 kg/cm2に保ちながら、
流調弁8を通じて 180g/分の速度でタンディッシュ3
内に注入して、上記銅合金を調整し、連続鋳造した
が、表1に示すように、品質, 作業性ともとくに問題は
なく、しかも円滑な鋳造ができた。 (3) 上記(1) と同じ条件の連続鋳造に際し、Ni−P合金
粉57g入りの「Ni−P粉入り銅チューブ」を5秒間隔で
投入し、さらに別の炉で溶解したSn融体を、温度 300
℃, ポンプ流送の圧力1kg/cm2に保ちつつ、流調弁8を
通じて3.6 kg/分の速度でタンディッシュ3内に注入し
て、上記銅合金を調整し、その後、連続鋳造したが、
表1に示すとおり、品質, 作業性ともとくに問題はな
く、しかも円滑な鋳造ができた。 (4) 上記(1) と同じ条件の連続鋳造に際し、Ni−P合金
粉57g入りの「Ni−P粉入り銅チューブ」を1秒間隔で
投入し、さらに10mmφのZn線を投入口からピンチロール
により 3.2m/分の速度でタンディッシュ3内に投入し
て、上記銅合金を調整し、その後、連続鋳造したが、
品質, 作業性ともに問題はなく、かつ円滑な鋳造ができ
た。 (5) 上記(1) と同じ条件の連続鋳造に際し、Ni−P合金
粉91g入りの「Ni−P粉入り銅チューブ」を5秒間隔で
投入し、さらに3mmφのAg線を投入口からピンチロール
により2.3 m/分の速度でタンディッシュ3内に投入し
て、上記銅合金を調整し、その後、連続鋳造したが、
品質, 作業性ともに問題はなく、かつ円滑な鋳造ができ
た。
B. Continuous casting (1) Electrolytic copper is melted at 10 T / H in a low frequency induction furnace and the molten copper is transferred to the tundish 3 through the gutter 2 (temperature 1180 ° C, O 2
Then, the cake was injected into the continuous casting mold 5 through the pouring nozzle 4 to continuously cast a cake having a cross section of 178 mm × 635 mm at a drawing speed of 165 mm / min. At this time, according to the method of the present invention, the charging port 6 on the upper part of the tundish 3
20 wt% P Ni-P mother alloy (copper alloy) ingot was crushed and put in a copper tube (57 g) (hereinafter referred to as "Ni-
P-containing copper tube ”) was charged at 1 second intervals.
As a result of investigating the variation of the component in the length direction of the obtained continuous cast cake, as shown in Table 1, it was found that the allowable range was sufficiently satisfied. Moreover, casting defects and surface defects were hardly observed. (2) In continuous casting under the same conditions as in (1) above, a "Ni-P powder-containing copper tube" containing 91 g of Ni-P alloy powder was charged at intervals of 5 seconds and melted in another melting furnace 7. While maintaining the melt at a temperature of 200 ° C and a pumping pressure of 0.8 kg / cm 2 ,
Tundish 3 at a speed of 180 g / min through flow control valve 8
The copper alloy was poured into the inside of the container to adjust the copper alloy, and continuous casting was performed. As shown in Table 1, there was no particular problem in terms of quality and workability, and smooth casting was possible. (3) During continuous casting under the same conditions as in (1) above, the Sn melt melted in another furnace by introducing a “Ni-P powder-containing copper tube” containing 57 g of Ni-P alloy powder at 5 second intervals. The temperature of 300
℃, while keeping the pumping pressure of 1 kg / cm 2 , while pouring into the tundish 3 through the flow regulating valve 8 at a rate of 3.6 kg / min to prepare the above copper alloy, and then continuously casting,
As shown in Table 1, there were no particular problems in terms of quality and workability, and smooth casting was possible. (4) During continuous casting under the same conditions as in (1) above, insert "Ni-P powder-containing copper tube" containing 57 g of Ni-P alloy powder at 1 second intervals, and pinch a 10 mmφ Zn wire from the charging port. It was thrown into the tundish 3 at a speed of 3.2 m / min by a roll to adjust the copper alloy, and then continuously cast,
There was no problem in quality and workability, and smooth casting was possible. (5) When performing continuous casting under the same conditions as in (1) above, insert "Ni-P powder-containing copper tube" containing 91 g of Ni-P alloy powder at 5 second intervals, and then pinch a 3 mmφ Ag wire from the charging port. It was put into the tundish 3 at a speed of 2.3 m / min by a roll to adjust the copper alloy, and then continuously cast,
There was no problem in quality and workability, and smooth casting was possible.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、円
滑な連続鋳造を通じて、高純度のNi, P含有高導電性
銅合金を高生産性, 低コストで製造することができる。
とりわけ、Ni−P含有銅合金を、溶銅の過熱度を高く
することなく、しかもタンディッシュ内に直接供給する
ことで添加できるので、溶銅の汚染が少なく、かつ省エ
ネルギーな操業が可能である。
As described above, according to the present invention, it is possible to produce a high-purity Ni, P-containing highly conductive copper alloy with high productivity and low cost through smooth continuous casting.
In particular, the Ni-P-containing copper alloy can be added by directly supplying it into the tundish without increasing the degree of superheat of the molten copper, so that the molten copper is less contaminated and energy-saving operation is possible. .

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、Ni−P合金状態図である。FIG. 1 is a Ni—P alloy phase diagram.

【図2】図2は、連続鋳造装置の部分模式図である。FIG. 2 is a partial schematic view of a continuous casting device.

【符号の説明】[Explanation of symbols]

1 溶銅 2 樋 3 タンディッシュ 4 注湯ノズル 5 連鋳鋳型 6 投入口 7 溶解炉 8 流調弁 1 molten copper 2 gutter 3 tundish 4 pouring nozzle 5 continuous casting mold 6 inlet 7 melting furnace 8 flow control valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 NiおよびPを含有する銅合金の融体を
連続鋳造して高導電性銅合金を製造するに当たり、溶銅
をタンディッシュ内に収容すると共に、そのタンディッ
シュ内溶銅中に、NiおよびPをNi−P化合物の形態
にて添加し、その後、連続鋳造することを特徴とする高
導電性銅合金の製造方法。
1. When producing a highly conductive copper alloy by continuously casting a melt of a copper alloy containing Ni and P, the molten copper is contained in a tundish and the molten copper in the tundish is placed in the molten tundish. , Ni and P are added in the form of a Ni-P compound, and then continuous casting is performed, and a method for producing a highly conductive copper alloy.
【請求項2】 NiおよびPを含有する銅合金の融体を
連続鋳造して高導電性銅合金を製造するに当たり、溶銅
をタンディッシュ内に収容すると共に、そのタンディッ
シュ内に、Ni−P化合物、Zr,Mg またはSi から
なる活性金属の銅母合金を銅で包囲したもの、In,S
n,CdまたはPb からなる低融点金属、およびZn ,
Sb , AlまたはAgからなるその他の金属を、融体も
しくは線, ショットのいずれかの状態にて、間欠的にも
しくは連続的に添加し、その後、連続鋳造することを特
徴とする高導電性銅合金の製造方法。
2. When continuously casting a melt of a copper alloy containing Ni and P to produce a highly conductive copper alloy, molten copper is accommodated in a tundish, and Ni- is contained in the tundish. A copper master alloy of an active metal composed of a P compound, Zr, Mg or Si, surrounded by copper, In, S
a low melting point metal composed of n, Cd or Pb, and Zn,
Highly conductive copper characterized by intermittently or continuously adding another metal consisting of Sb, Al or Ag in any state of melt, wire or shot, and then continuously casting Alloy manufacturing method.
【請求項3】 少なくとも 0.1〜2.0 wt%Niと0.02〜
0.4 wt%Pを含有し、さらにIn,Sn,CdおよびP
b のうちから選ばれる1種以上の低融点金属を0.03〜3.
0 wt%含有し、さらに必要に応じてZn,Sb , Alお
よびAgのいずれか少なくとも1種からなる添加成分を
0.03〜3.0 wt%含有し、残部が実質的にCu からなる高
導電性銅合金の製造に当たり、 NiおよびPについては、Ni−P母合金を銅製チュー
ブ、銅条もしくは銅箔で包囲したものを用い、低融点金
属については融体を用い、そして、他の添加成分につい
ては、線またはショットの形にしたものを用い、それぞ
れをタンディッシュ内に間欠的にもしくは連続的に投入
または供給することにより添加し、その後、連続鋳造す
ることを特徴とする高導電性銅合金の製造方法。
3. At least 0.1-2.0 wt% Ni and 0.02-
Containing 0.4 wt% P, and further containing In, Sn, Cd and P
0.03 to 3. One or more low melting point metals selected from b.
0 wt%, and if necessary, an additive component consisting of at least one of Zn, Sb, Al and Ag.
In producing a highly conductive copper alloy containing 0.03 to 3.0 wt% and the balance being substantially Cu, for Ni and P, a Ni-P mother alloy is surrounded by a copper tube, copper strip or copper foil. For the low melting point metal, use the melt, and for the other additive components, use the ones in the form of lines or shots, and intermittently or continuously feed or supply each into the tundish. The method for producing a high-conductivity copper alloy, comprising:
【請求項4】 上記Ni−P母合金は、Pを5〜25wt
%含有し、残部Niからなる成分組成のものを用いるこ
とを特徴とする請求項1〜3のいずれか1に記載の製造
方法。
4. The Ni-P master alloy contains 5 to 25 wt% of P.
%, And the component composition consisting of the balance Ni is used, and the manufacturing method according to claim 1.
JP10972695A 1995-05-08 1995-05-08 Method for producing highly conductive copper alloy Expired - Lifetime JP2965481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10972695A JP2965481B2 (en) 1995-05-08 1995-05-08 Method for producing highly conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10972695A JP2965481B2 (en) 1995-05-08 1995-05-08 Method for producing highly conductive copper alloy

Publications (2)

Publication Number Publication Date
JPH08300119A true JPH08300119A (en) 1996-11-19
JP2965481B2 JP2965481B2 (en) 1999-10-18

Family

ID=14517682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10972695A Expired - Lifetime JP2965481B2 (en) 1995-05-08 1995-05-08 Method for producing highly conductive copper alloy

Country Status (1)

Country Link
JP (1) JP2965481B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069782A1 (en) 2007-11-30 2009-06-04 The Furukawa Electric Co., Ltd. Method of regulating composition of molten metal during continuous casting and apparatus therefor
WO2009069781A1 (en) 2007-11-30 2009-06-04 The Furukawa Electric Co., Ltd. Process for manufacturing copper alloy products and equipment therefor
WO2015122423A1 (en) * 2014-02-12 2015-08-20 株式会社Uacj Copper alloy material and copper alloy pipe
CN113145811A (en) * 2021-04-16 2021-07-23 鞍钢股份有限公司 High-aluminum steel aluminum adjusting device and using method
JP2021179001A (en) * 2020-05-14 2021-11-18 Jx金属株式会社 Method for producing metal alloy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069782A1 (en) 2007-11-30 2009-06-04 The Furukawa Electric Co., Ltd. Method of regulating composition of molten metal during continuous casting and apparatus therefor
WO2009069781A1 (en) 2007-11-30 2009-06-04 The Furukawa Electric Co., Ltd. Process for manufacturing copper alloy products and equipment therefor
US8176966B2 (en) 2007-11-30 2012-05-15 The Furukawa Electric Co., Ltd. Process and equipment for producing copper alloy material
US8201614B2 (en) 2007-11-30 2012-06-19 The Furukawa Electric Co., Ltd. Method and an apparatus of controlling chemical composition of a molten metal during continuous casting
WO2015122423A1 (en) * 2014-02-12 2015-08-20 株式会社Uacj Copper alloy material and copper alloy pipe
CN105992832A (en) * 2014-02-12 2016-10-05 株式会社Uacj Copper alloy material and copper alloy pipe
JPWO2015122423A1 (en) * 2014-02-12 2017-03-30 株式会社Uacj Copper alloy material and copper alloy tube
JP2021179001A (en) * 2020-05-14 2021-11-18 Jx金属株式会社 Method for producing metal alloy
CN113145811A (en) * 2021-04-16 2021-07-23 鞍钢股份有限公司 High-aluminum steel aluminum adjusting device and using method

Also Published As

Publication number Publication date
JP2965481B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
US4789022A (en) Process for continuous casting of metal ribbon
US3634075A (en) Introducing a grain refining or alloying agent into molten metals and alloys
JPH08300119A (en) Production of highly conductive copper alloy
JP2005314809A (en) Copper alloy and semisolid casting method for producing the copper alloy
WO1993022085A1 (en) Method of obtaining double-layered cast piece
US5259442A (en) Method of adding alloying materials and metallurgical additives to ingots and composite ingot
DE2031844B2 (en) Process for the production of a directionally solidified casting
KR20100071512A (en) Apparatus for continuous casting a magensium billet
CN109047685A (en) A method of preparing steel ingot
JP4518676B2 (en) Method for producing magnesium alloy member
US4220191A (en) Method of continuously casting steel
US5040594A (en) Side feed tundish apparatus and method for the alloying and rapid solidification of molten materials
JP3020127B2 (en) Adjustment of molten steel composition
RU2089334C1 (en) Method of combined continuous casting and rolling of copper and its alloys
JPS613823A (en) Worked aluminum article for deoxidation and producing device thereof
JPS63183760A (en) Method for continuously casting multiple kinds of steel slab
CN104105560A (en) A pivotable tundish and a method for continuous casting a metal alloy, use of a pivotable tundish and an elongated cast bar of a metal alloy
RU2080206C1 (en) Method of production of ingots
US5040593A (en) Side feed tundish apparatus and method for the rapid solidification of molten materials
JPS5865554A (en) Continuous casting and rolling method for alloy for electric conduction
JPS6241828B2 (en)
JPH01313165A (en) Continuous casting method partially containing semi-molten metal
JPS6313650A (en) Continuous casting for molten steel
JPS61245960A (en) Dripping type casting device
CN113278828A (en) Preparation process for homogenizing C19400 copper alloy cast ingot structure