JPS6241828B2 - - Google Patents

Info

Publication number
JPS6241828B2
JPS6241828B2 JP8236181A JP8236181A JPS6241828B2 JP S6241828 B2 JPS6241828 B2 JP S6241828B2 JP 8236181 A JP8236181 A JP 8236181A JP 8236181 A JP8236181 A JP 8236181A JP S6241828 B2 JPS6241828 B2 JP S6241828B2
Authority
JP
Japan
Prior art keywords
copper
cast iron
stopper
molten
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8236181A
Other languages
Japanese (ja)
Other versions
JPS57195560A (en
Inventor
Kyoji Uzuka
Minoru Kamata
Masayuki Aihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8236181A priority Critical patent/JPS57195560A/en
Publication of JPS57195560A publication Critical patent/JPS57195560A/en
Publication of JPS6241828B2 publication Critical patent/JPS6241828B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting

Description

【発明の詳細な説明】 本発明は銅含有鋳鉄鋳物の改良された製造方法
に関するものである。 従来、片状黒鉛鋳鉄や球状黒鉛鋳鉄に対して、
0.2ないし1.5%程度の銅を含有せしめることによ
り基地組織のパーライト化を促進させ、これら鋳
鉄の強度や硬度等の機械的性質の向上を計ること
は周知であり、一般に、溶解炉中に原料の一部と
して銅または銅合金を配合したり、あるいは取鍋
内の鋳鉄溶湯に対して銅または銅合金を添加する
方法が実施されている。 しかしながら、これら従来の方法はいずれも溶
解炉や取鍋単位のかなり大量の鋳鉄溶湯に対して
銅を添加するため、目的とする銅含有鋳鉄をある
程度まとめて生産する必要があり、この銅を含有
する鋳鉄を少量生産する場合には、余分に銅を含
有した鋳鉄が残るため、鋳型に注入できず、捨湯
しなければならないことが生じたり、銅や溶解エ
ネルギーの無だに加え、生産性が著しく低下する
ものであつた。 特に溶解炉中に原料の一部として銅を添加した
場合には、銅を含有しない鋳鉄に材質を切換える
までに、多量の銅で汚染された鋳鉄が残留するた
め、この問題はさらに深刻となる。また、鋳鉄の
材質の面でも材質切換時にどうしても多少銅によ
つて汚染された鋳鉄が注湯されるための不良が発
生したり、特に取鍋中の鋳鉄に銅を添加した場合
には、比重の高い銅が取鍋下部に濃縮され易いた
めに、均一な銅の溶解がなされず、鋳型間および
鋳型内における銅の含有量ならびに材質がきわめ
て不安定となり易いものであつた。 ところで、鋳物工業も近年ますます生産規模が
増大し、機械化や合理化が進められているが、特
に保持炉や自動注湯機が普及してくると共に、こ
の鋳物材質の切換はますます困難となり、特定の
材質のみの生産に限定しない限り、これらの導入
の目的である生産性が逆に著しく低下する事態も
生じている。 また、最近合理的な生産方式として、混流方式
あるいはカンバン方式といつた少量多品種生産が
鋳物工業でも採用されるようになつてきている
が、かかる場合には極端にいえば鋳型1枠毎に鋳
物材質を切換える必要があるわけで、従来の方法
では対応が全く不可能であつた。 本発明は従来のかかる問題点にかんがみ、溶解
炉、保持炉、自動注湯機および取鍋等の鋳鉄溶湯
を保持する容器内の鋳鉄溶湯に対して銅を添加す
ることはせず、ストツパー式自動注湯機を採用
し、これらの容器からの鋳鉄溶湯をこれに受け入
れ、その出湯用樋部の先端部にあるストツパー近
傍の鋳鉄溶湯中に銅を添加するとともに、その銅
の添加を自動注湯機のストツパーの開閉に連動さ
せて行なうことによつて、前記従来の方法の問題
点が一挙に解決されることを確認し、完成された
ものである。 すなわち、本発明は総断面積が3〜100mm2であ
る長尺の銅材を、ストツパー式自動注湯機の出湯
用樋部の先端部にあるストツパー近傍の鋳鉄溶湯
中に、そのストツパーの開閉に連動させて供給
し、得られた銅含有鋳鉄溶湯を鋳型内に注入する
ことを特徴とする銅含有鋳鉄鋳物の製造方法に関
するものである。 これを添付図面に基づいて具体的に説明する
と、図面は本発明の方法を実施するための装置の
概略図を示したものであつて、1は長尺の銅材1
0を巻いたリールであり、これから2のピンチロ
ール式の供給機によつて銅材を引出し、自動注湯
機4の出湯用樋部5の先端部にあるロツド状スト
ツパー6の近傍の鋳鉄溶湯7に対して連続的かつ
強制的に銅を添加し、この銅添加された鋳鉄溶湯
8は鋳型9に入る。 本発明において鋳鉄に銅を添加する目的は従来
と特に異なるものではないので、通常、鋳鉄に対
して添加されている銅材であれば、新銅、故銅あ
るいは銅合金などいかなる品位のものも本発明に
使用することができる。なお、この銅材としては
安定かつ容易に入手することができ、ピンチロー
ル式の供給機によつて供給可能な長尺ものであれ
ばよく、その長尺ものの断面形状は円形、角状等
いずれであつてもよい。比較的多量の銅を溶解さ
せるためには、比表面積が大きい複雑な断面形状
の方が好ましいが、一般的には円形の断面を有す
る線材が経済的に有利に入手でき、ピンチロール
式の供給線による送り出しにも適しているので、
これの単線またはより線が用いられる。 本発明に使用されるこのような長尺ものの銅材
については、前記した一定範囲の断面積を有する
ものであることが重要とされる。すなわち、銅材
の鋳鉄溶湯中への溶解速度は使用する銅材の断面
形状、断面積、および添加本数等によつて変化す
ることのほか、鋳鉄の温度や流速等によつても大
きく影響されるので、鋳鉄溶湯の温度や流速に応
じて、必要量の銅が十分溶解できるように銅材の
断面形状、断面積および添加本数を選定したの
ち、所定量の銅が添加されるような供給速度で銅
材を供給することになる。通常、注湯直前の鋳鉄
溶湯の温度は1320℃より1450℃までの範囲であ
り、鋳鉄の流速は特に大型の鋳物を除けば大体1
Kg/秒〜10Kg/秒の範囲であるが、これら範囲内
において銅の溶解に最も適した条件すなわち温度
が1450℃で鋳鉄の流速が1Kg/秒程度の場合で
も、銅材の総断面積が3mm2以下(線材で直径が約
2mm以下)になると所定量の銅を添加するために
はかなり高速の供給を行わなければならなくな
る。しかも、銅材は一般に軟質のため、線材の直
径が2mm以下になるとピンチロールによる送り出
しが困難となるので、銅材の総断面積を3mm2以上
と規定した。一方、この銅材は総断面積が100mm2
以上のものであると、その供給速度を著しく低下
させなければ溶解しなくなるため、それ以上断面
積を増加させても銅材の溶解速度がむしろ低下す
る現象が見られ、取扱上も銅材の剛性が高すぎる
ために、ピンチロールによる供給が困難となるこ
とから銅材の総断面積の上限を100mm2とした。 銅材の供給本数はピンチロールまたは供給機の
数を増すことによつて増加することは可能である
が、実際には2本ないし3本程度が限度である。
もちろん、銅材をより線とすることによつて、さ
らに供給本数を増すことは可能であり、いずれも
本発明の範囲に含まれる。 より線を使用する場合、個々の単線が2mm以下
の直径であつても、その総断面積が3mm2〜100mm2
の範囲であれば、本発明の範囲に含まれることは
いうまでもない。 本発明における銅材の添加位置は、ストツパー
式自動注湯機の出湯用樋部の先端部にあるストツ
パー近傍の鋳鉄溶湯中であつて、そのストツパー
の開閉に連動させて供給することが必要で、その
ことによつて添加した銅材が自動注湯機の本体の
湯溜りや樋部の本体側の鋳鉄溶湯中に拡散し、こ
れらが銅によつて汚染されたり、鋳鉄に余分の銅
が添加されるのを防止する。その結果、銅を含有
する鋳鉄と含有しない鋳鉄との作り分けを容易に
するほか、多種類の材質の鋳物を少量ずつ自動的
に切り替えて生産することを可能にする。 つぎに銅材の供給速度については、供給機の性
能に応じて最も確実に供給でき、容易に制御でき
る速度が好ましく、通常1m/分ないし50m/分
の範囲が適当であるが、これは添加すべき銅の
量、使用される銅材の断面形状、総断面積、供給
本数等の条件によつて必然的に決定されるもので
ある。 なお、銅材を鋳鉄溶湯に供給するに当つて、銅
材の溶解を促進させるために、銅材を高周波で予
備加熱したり、鋳鉄溶湯中で振動させながら銅材
を供給したりすることもできる。 また長尺の材料を連続的に送り出す方式で、か
つこれが電気的に容易に制御できるので、添加量
の調節が極めて容易に変更できるので、種々の銅
含有量の製品を任意に生産することができる。 さらにまた、鋳鉄の流速に比例して一定の割合
で銅を添加することができるので、銅の偏析が少
なくなり、鋳型間および鋳型内の銅の含有量なら
びに材質が極めて均一なものとなる。 本発明の方法は、片状黒鉛鋳鉄や球状黒鉛鋳鉄
をはじめ、各種の鋳鉄に対して銅を添加する場合
に適用され、上述したようなすぐれた効果が得ら
れる。 つぎに具体的実施例をあげるが、これは単なる
一例にすぎず、本発明はこれに限定されるもので
はない。 実施例 JIS 5502のA号Y形供試材とほぼ類似した形状
の供試材をこめ合せた鋳込重量が40Kgの自動車用
ホイールハブの鋳型を生砂で造型し、10枠用意し
たのち、加圧式ストツパー付自動注湯機内の3.8
%C、2.5%Si、0.01%S、0.4%Mn、および
0.035%Mgなる組成の球状黒鉛鋳鉄溶湯を上記鋳
型に13秒で注入した(FCD45)。 つぎに図面に示したように、自動注湯機の出湯
用樋部の先端部にあるロツド状ストツパーの近傍
に直径6mmの純銅の線材を供給機によつて、毎分
6.5mの速度で添加しながら、この溶湯を鋳型に
注入した(FCD70)。この場合、銅の線材の供給
速度は予めダイヤルによつて調節し、供給の開始
と停止はストツパーロツドの開閉と連動させた。 以上の操作を交互にくり返すことによつて、1
枠毎にFCD45とFCD70を作り分けることができ
た。10枠の鋳型から取出された供試材について得
られた機械的性質と銅含有量の結果を表に示し
た。完全に1枠毎に材質を切換えることが可能な
こと、および極めて品質的にも安定していること
が明らかである。なお、FCD45の場合に若干の
銅の混入が認められるが、実用上問題の無い範囲
であり、またこれは銅材をロツド状ストツパーか
ら離れた湯溜り側の位置に添加したためで、添加
位置を鋳型への注湯流もしくは鋳型湯口部側にず
らすことによつて容易に回避することができる。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for manufacturing copper-containing cast iron castings. Conventionally, compared to flake graphite cast iron and spheroidal graphite cast iron,
It is well known that containing about 0.2 to 1.5% copper promotes pearlite formation in the base structure and improves the mechanical properties such as strength and hardness of cast iron. Methods have been implemented in which copper or copper alloys are blended as part of the cast iron, or copper or copper alloys are added to the molten cast iron in a ladle. However, in all of these conventional methods, copper is added to a fairly large amount of molten cast iron in a melting furnace or ladle, so it is necessary to produce the desired copper-containing cast iron in bulk. When producing small quantities of cast iron, excess copper-containing cast iron remains, which means that it cannot be poured into the mold and must be discarded.In addition to wasting copper and melting energy, it also reduces productivity. was significantly reduced. In particular, if copper is added as part of the raw materials in the melting furnace, this problem becomes even more serious because by the time the material is switched to copper-free cast iron, a large amount of copper-contaminated cast iron remains. . In addition, when changing the material of cast iron, defects may occur due to pouring of cast iron that is contaminated with copper to some extent, and especially when copper is added to the cast iron in the ladle, the specific gravity Since high copper content tends to be concentrated at the bottom of the ladle, uniform copper dissolution is not achieved, and the copper content and material between and within the molds tend to become extremely unstable. By the way, in recent years, the production scale of the foundry industry has been increasing, and mechanization and rationalization are progressing. However, as holding furnaces and automatic pouring machines become more widespread, it becomes increasingly difficult to change the casting material. Unless production is limited to only specific materials, productivity, which is the purpose of introducing these materials, may be significantly reduced. In addition, recently, as a rational production method, low-volume, high-mix production such as the mixed flow method or Kanban method has been adopted in the foundry industry. It was necessary to change the casting material, which was completely impossible to do using conventional methods. In view of these conventional problems, the present invention does not add copper to the molten cast iron in containers that hold the molten cast iron, such as melting furnaces, holding furnaces, automatic pouring machines, and ladles, but uses a stopper type. An automatic pouring machine is used to receive the molten cast iron from these containers, add copper to the molten cast iron near the stopper at the tip of the tapping trough, and automatically pour the copper into the molten metal. This method was completed after confirming that the problems of the conventional method can be solved at once by interlocking the opening and closing of the stopper of the hot water machine. That is, the present invention involves placing a long copper material with a total cross-sectional area of 3 to 100 mm2 into the molten cast iron near the stopper at the tip of the tap tap of a stopper-type automatic pouring machine, by opening and closing the stopper. The present invention relates to a method for producing a copper-containing cast iron casting, characterized in that the obtained molten copper-containing cast iron is injected into a mold. To explain this in detail based on the attached drawings, the drawings show a schematic diagram of an apparatus for carrying out the method of the present invention, and 1 shows a long copper material 1.
The copper material is drawn out from the reel by the pinch roll feeder 2, and the molten cast iron near the rod-shaped stopper 6 at the tip of the tapping trough 5 of the automatic pouring machine 4. Copper is continuously and forcibly added to molten cast iron 8 to which copper is added, and the molten cast iron 8 enters a mold 9. In the present invention, the purpose of adding copper to cast iron is not particularly different from conventional ones, so any copper material that is normally added to cast iron, such as new copper, old copper, or copper alloy, can be used. It can be used in the present invention. The copper material may be a long material that is stable and easily available, and can be fed using a pinch roll feeder, and the cross-sectional shape of the long material may be circular, square, etc. It may be. In order to melt a relatively large amount of copper, a complex cross-sectional shape with a large specific surface area is preferable, but wire rods with a circular cross-section are generally economically available and can be supplied using a pinch roll method. It is also suitable for sending out by line, so
A solid or stranded wire of this wire is used. It is important that the long copper material used in the present invention has a cross-sectional area within the above-described certain range. In other words, the dissolution rate of copper material into molten cast iron varies depending on the cross-sectional shape, cross-sectional area, and number of copper materials used, and is also greatly affected by the temperature of the cast iron, flow rate, etc. Therefore, depending on the temperature and flow rate of molten cast iron, the cross-sectional shape, cross-sectional area, and number of copper materials to be added are selected so that the required amount of copper can be sufficiently melted, and then the supply is adjusted so that the specified amount of copper is added. Copper material will be supplied at high speed. Normally, the temperature of molten cast iron just before pouring is in the range of 1320℃ to 1450℃, and the flow rate of cast iron is about 1, except for particularly large castings.
Kg/sec to 10 Kg/sec, but even if the conditions are most suitable for melting copper within these ranges, that is, the temperature is 1450℃ and the flow rate of cast iron is about 1 Kg/sec, the total cross-sectional area of the copper material is When the diameter of the wire is less than 3 mm 2 (approximately 2 mm or less in diameter for wire rods), it becomes necessary to feed the copper at a considerably high speed in order to add a predetermined amount of copper. Moreover, since copper material is generally soft, if the diameter of the wire is 2 mm or less, it will be difficult to feed it out using pinch rolls, so the total cross-sectional area of the copper material was specified to be 3 mm 2 or more. On the other hand, this copper material has a total cross-sectional area of 100mm 2
If the copper material exceeds the above, it will not melt unless the supply rate is significantly reduced, so even if the cross-sectional area is increased further, the dissolution rate of the copper material will actually decrease, and it will be difficult to handle the copper material. The upper limit of the total cross-sectional area of the copper material was set at 100 mm 2 because the rigidity was too high, making it difficult to feed it using pinch rolls. Although the number of copper materials to be supplied can be increased by increasing the number of pinch rolls or feeders, the actual limit is about two to three.
Of course, it is possible to further increase the number of wires to be supplied by making the copper material a stranded wire, and both are within the scope of the present invention. When using stranded wires, even if each single wire has a diameter of 2 mm or less, the total cross-sectional area is 3 mm 2 to 100 mm 2
It goes without saying that any range within the scope of the present invention is within the scope of the present invention. In the present invention, the copper material is added into the molten cast iron near the stopper at the tip of the tap tap of the stopper-type automatic pouring machine, and must be supplied in conjunction with the opening and closing of the stopper. As a result, the added copper material diffuses into the pool of water in the main body of the automatic pouring machine and into the molten cast iron on the main body side of the gutter, which may become contaminated with copper or cause excess copper to enter the cast iron. Prevent it from being added. As a result, in addition to making it easier to make cast iron that contains copper and cast iron that does not, it also becomes possible to automatically switch between producing castings made of various materials in small quantities. Next, regarding the feeding speed of the copper material, it is preferable to use a speed that can be fed most reliably and easily controlled depending on the performance of the feeder, and a range of 1 m/min to 50 m/min is usually appropriate, but this This is inevitably determined by conditions such as the amount of copper to be used, the cross-sectional shape of the copper material used, the total cross-sectional area, and the number of copper pieces to be supplied. In addition, when supplying the copper material to the molten cast iron, in order to accelerate the melting of the copper material, the copper material may be preheated with high frequency, or the copper material may be supplied while being vibrated in the molten cast iron. can. In addition, since the long material is continuously fed out and this can be easily controlled electrically, the amount of addition can be changed extremely easily, making it possible to produce products with various copper contents as desired. can. Furthermore, since copper can be added at a constant rate in proportion to the flow rate of cast iron, copper segregation is reduced, and the copper content and material between and within the molds are extremely uniform. The method of the present invention is applied when copper is added to various types of cast iron, including flaky graphite cast iron and spheroidal graphite cast iron, and the excellent effects described above can be obtained. Next, specific examples will be given, but these are merely examples, and the present invention is not limited thereto. Example A mold for an automobile wheel hub with a casting weight of 40 kg was made using raw sand, and 10 molds were prepared, which were filled with a test material with a shape similar to the JIS 5502 No. A Y-shaped test material. 3.8 in automatic pouring machine with pressurized stopper
%C, 2.5%Si, 0.01%S, 0.4%Mn, and
Molten spheroidal graphite cast iron with a composition of 0.035% Mg was poured into the mold in 13 seconds (FCD45). Next, as shown in the drawing, a pure copper wire rod with a diameter of 6 mm was placed near the rod-shaped stopper at the tip of the tap tap of the automatic pouring machine by a feeder every minute.
This molten metal was poured into the mold (FCD70), adding at a rate of 6.5 m. In this case, the feeding speed of the copper wire was adjusted in advance using a dial, and the start and stop of feeding were linked to the opening and closing of the stopper rod. By repeating the above operations alternately, 1
I was able to make FCD45 and FCD70 separately for each frame. The results of mechanical properties and copper content obtained for the test materials taken out of the 10 molds are shown in the table. It is clear that it is possible to completely change the material for each frame and that the quality is extremely stable. In addition, in the case of FCD45, a small amount of copper is found to be mixed in, but this is within a range that does not cause any practical problems, and this is because the copper material was added at a position on the sump side, away from the rod-shaped stopper. This can be easily avoided by pouring the metal into the mold or by shifting it toward the mold sprue. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の方法を実施するための装置の概
略図を示したものである。 1……長尺の銅材を巻いたリール、2……ピン
チロール式供給機、3……誘導管、4……自動注
湯機、5……出湯用樋部、6……ストツパーロツ
ド、7……鋳鉄溶湯、8……鋳鉄注湯流、9……
鋳型、10……長尺の銅材。
The drawing shows a schematic representation of an apparatus for carrying out the method of the invention. 1... Reel wound with a long copper material, 2... Pinch roll feeder, 3... Guide pipe, 4... Automatic pouring machine, 5... Tap tap trough, 6... Stopper rod, 7 ...Cast iron molten metal, 8...Cast iron pouring flow, 9...
Mold, 10...Long copper material.

Claims (1)

【特許請求の範囲】[Claims] 1 総断面積が3〜100mm2である長尺の銅材を、
ストツパー式自動注湯機の出湯用樋部の先端部に
あるストツパー近傍の鋳鉄溶湯中に、そのストツ
パーの開閉に連動させて供給し、得られた銅含有
鋳鉄材料を鋳型内に注入することを特徴とする銅
含有鋳鉄鋳物の製造方法。
1 A long copper material with a total cross-sectional area of 3 to 100 mm2 ,
The method involves supplying molten cast iron near the stopper at the tip of the tapping gutter of a stopper-type automatic pouring machine in conjunction with the opening and closing of the stopper, and injecting the obtained copper-containing cast iron material into the mold. A manufacturing method for copper-containing cast iron castings.
JP8236181A 1981-05-29 1981-05-29 Production of copper-containing cast iron casting Granted JPS57195560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8236181A JPS57195560A (en) 1981-05-29 1981-05-29 Production of copper-containing cast iron casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8236181A JPS57195560A (en) 1981-05-29 1981-05-29 Production of copper-containing cast iron casting

Publications (2)

Publication Number Publication Date
JPS57195560A JPS57195560A (en) 1982-12-01
JPS6241828B2 true JPS6241828B2 (en) 1987-09-04

Family

ID=13772434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8236181A Granted JPS57195560A (en) 1981-05-29 1981-05-29 Production of copper-containing cast iron casting

Country Status (1)

Country Link
JP (1) JPS57195560A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238444A (en) * 1985-04-12 1986-10-23 Kawasaki Heavy Ind Ltd Inprovement of cast iron material by inoculation
CN108127091A (en) * 2017-12-31 2018-06-08 苏州石川制铁有限公司 A kind of full-automatic distribution of castings production process

Also Published As

Publication number Publication date
JPS57195560A (en) 1982-12-01

Similar Documents

Publication Publication Date Title
CN105506220B (en) A kind of bismuth-containing high magnetic induction grain-oriented silicon steel adds bismuth method in smelting
US5758706A (en) Process control of compacted graphite iron production in pouring furnaces
US20120024112A1 (en) Composition and process for improved efficiency in steel making
US3845809A (en) Means for the continuous casting of steel
US4527608A (en) Method for inoculating liquid metal cast under low pressure
WO1993022085A1 (en) Method of obtaining double-layered cast piece
JPS6241828B2 (en)
CN101284305B (en) High manganese steel casting grain refinement casting technique
CN109047685A (en) A method of preparing steel ingot
US4220191A (en) Method of continuously casting steel
US4036278A (en) Process for the production of large steel ingots
CN108145099A (en) A kind of method and device for being rotatably inserted into core base and preparing large-scale compound steel ingot
US3814405A (en) Steel making apparatus
US3760862A (en) Method for casting steel ingots
JP2661797B2 (en) Multi-layer slab casting method
JPH08300119A (en) Production of highly conductive copper alloy
JPS5992151A (en) Production of free-cutting lead steel by continuous casting method
JPH06114513A (en) Wire containing metallic additive for continuous casting
RU2394664C1 (en) Method of modification of continuously cast steel
JPS6049847A (en) Production of free-cutting lead steel by continuous casting method
CN107326258A (en) A kind of following minor diameter Ductile iron bars of diameter 25mm and preparation method thereof
JPH084882B2 (en) Continuous casting method for heterogeneous small lot metal
JPS62142053A (en) Production of quasi-rimmed sulfur free-cutting steel by continuous casting method
JP3659799B2 (en) Manufacturing method of high strength cast iron
SU585220A1 (en) Method of refining metal melts