JP2021179001A - Method for producing metal alloy - Google Patents

Method for producing metal alloy Download PDF

Info

Publication number
JP2021179001A
JP2021179001A JP2020085390A JP2020085390A JP2021179001A JP 2021179001 A JP2021179001 A JP 2021179001A JP 2020085390 A JP2020085390 A JP 2020085390A JP 2020085390 A JP2020085390 A JP 2020085390A JP 2021179001 A JP2021179001 A JP 2021179001A
Authority
JP
Japan
Prior art keywords
dilute
per
dilute element
metal material
metal alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020085390A
Other languages
Japanese (ja)
Other versions
JP7394017B2 (en
Inventor
慎介 坂東
Shinsuke Bando
拓矢 今村
Takuya Imamura
洋輔 原
Yosuke Hara
裕士 石野
Yuji Ishino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2020085390A priority Critical patent/JP7394017B2/en
Priority to TW110111348A priority patent/TWI761155B/en
Priority to KR1020210055442A priority patent/KR20210141355A/en
Priority to CN202110511319.0A priority patent/CN113667847A/en
Publication of JP2021179001A publication Critical patent/JP2021179001A/en
Priority to KR1020230046231A priority patent/KR20230051460A/en
Priority to JP2023095652A priority patent/JP2023113911A/en
Application granted granted Critical
Publication of JP7394017B2 publication Critical patent/JP7394017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/004Copper alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method for producing a metal alloy with improved uniformity of its physical properties.SOLUTION: The present invention discloses a method for producing a metal alloy containing a sparse element, including the step of fluidizing a molten metal material in one direction while blending the metal material with a sparse element. In the blending step, when a desired level of the sparse element in the metal alloy is defined as D, the amount of the sparse element per second, M1, is controlled to below twice the theoretical addition amount of the sparse element per second, M2, calculated from the level D and a flow rate F per second of the metal material flowing in the one direction.SELECTED DRAWING: None

Description

本発明は、金属合金の製造方法に関する。 The present invention relates to a method for producing a metal alloy.

従来より、金属合金分野においては少量の添加元素を含有させることで、当該元素を添加後の金属合金の物性を向上させることがある。例えば、特許文献1には、結晶を微細化して折り曲げ性及びエッチング性に優れたフレキシブルプリント基板用銅合金箔を得るために、銅に対して、P、Ti、Sn、Ni、Be、Zn、In及びMgの群から選ばれる1種以上の添加元素を合計で0.003〜0.825質量%含有させることが開示されている。 Conventionally, in the field of metal alloys, by containing a small amount of an additive element, the physical properties of the metal alloy after the addition of the element may be improved. For example, in Patent Document 1, P, Ti, Sn, Ni, Be, Zn, and Z. It is disclosed that one or more additive elements selected from the group of In and Mg are contained in a total amount of 0.003 to 0.825% by mass.

特開2017−141501号公報Japanese Unexamined Patent Publication No. 2017-141501

ところで、上記のような添加元素を少量含有する金属合金(希薄金属合金)は、その製造工程において、添加元素を含有させる前の溶融した状態の金属材料(以下、溶融金属材料とも称す)を、一方向に流動させながら当該溶融金属材料に添加元素を添加させる工程を含むことがある。具体的には、例えば、添加元素を含有させる前の母材としての金属材料を溶融する溶融炉から、当該溶融炉で溶融した溶融金属材料を、少量の添加元素を添加しながら、樋を通じてタンディッシュ炉内に供給し、タンディッシュ炉から鋳造設備へ導き鋳造することで例えばインゴットとして得ることができる(連続鋳造)。そして、このような方法で添加元素を含有する金属合金を製造することで、添加元素を母材中に均一に含有させることができるとともに、銅合金を連続的に効率よく製造することができる。
しかし、近年、金属合金を部品として含む製品では、より高度な性能が要求されており、それに伴い、当該金属合金おいても高いレベルでの物性の均一性が求められている。金属合金の物性の均一性を高めるためには添加元素の添加量をより均一にすることが挙げられるが、特に鉄や銅などの冶金分野では例えば900質量ppm以下の元素の添加により製品の物性が変動するので添加量のばらつきを低減させることが重要となる。
By the way, a metal alloy containing a small amount of an additive element (dilute metal alloy) as described above is a metal material in a molten state (hereinafter, also referred to as a molten metal material) before containing the additive element in the manufacturing process. It may include a step of adding an additive element to the molten metal material while flowing in one direction. Specifically, for example, from a melting furnace that melts a metal material as a base material before containing an additive element, a molten metal material melted in the melting furnace is tanned through a gutter while adding a small amount of the additive element. It can be obtained as, for example, an ingot by supplying it into a dish furnace, guiding it from the tundish furnace to a casting facility, and casting it (continuous casting). Then, by producing the metal alloy containing the additive element by such a method, the additive element can be uniformly contained in the base material, and the copper alloy can be continuously and efficiently produced.
However, in recent years, products containing metal alloys as parts are required to have higher performance, and accordingly, the metal alloys are also required to have a high level of uniformity in physical properties. In order to improve the uniformity of the physical properties of metal alloys, it is necessary to make the amount of added elements more uniform. Especially in the field of metallurgy such as iron and copper, the physical properties of products are obtained by adding elements of 900 mass ppm or less, for example. Therefore, it is important to reduce the variation in the amount of addition.

そこで、本発明は一実施態様において、物性の均一性をより向上させることが可能な金属合金の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide, in one embodiment, a method for producing a metal alloy capable of further improving the uniformity of physical properties.

本発明の金属合金の製造方法は一実施態様において、希薄元素を含有する金属合金の製造方法であって、溶融状態の金属材料を一方向に流動させながら当該金属材料に希薄元素を添加する工程を含み、前記金属合金中の希薄元素の所望する濃度を濃度Dとするとき、前記添加する工程において、前記希薄元素の1秒間の添加量M1が、前記濃度Dと、前記一方向に流動する前記金属材料の1秒当たりの流量Fとを用いて算出される、前記希薄元素の1秒当たりの理論添加量M2の2倍未満になるように調整する。 In one embodiment, the method for producing a metal alloy of the present invention is a method for producing a metal alloy containing a dilute element, and is a step of adding the dilute element to the metal material while flowing the molten metal material in one direction. When the desired concentration of the dilute element in the metal alloy is the concentration D, in the step of adding the dilute element, the addition amount M1 of the dilute element per second flows in the same direction as the concentration D. It is adjusted so as to be less than twice the theoretical addition amount M2 per second of the dilute element calculated by using the flow rate F per second of the metal material.

本発明によれば、物性の均一性をより向上させることが可能な金属合金の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a metal alloy capable of further improving the uniformity of physical properties.

以下、本発明の実施形態(以下、「本実施形態」という。)を詳細に説明するが、本発明は本実施形態に限定されるものではない。
本実施形態の金属合金の製造方法は、溶融状態の金属材料(希薄元素を添加する前の金属合金)を一方向に流動させながら、当該金属材料に希薄元素を添加する工程を含む。そして、本実施形態では、金属合金の希薄元素の所望する濃度を濃度Dとするとき、添加する工程において、希薄元素の1秒間の添加量M1が、濃度Dと、一方向に流動する金属材料の1秒当たりの流量Fとを用いて算出される、希薄元素の1秒当たりの理論添加量M2の2倍未満になるように調整する。
Hereinafter, embodiments of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present invention is not limited to the present embodiment.
The method for producing a metal alloy of the present embodiment includes a step of adding a dilute element to the metal material while flowing the molten metal material (the metal alloy before adding the dilute element) in one direction. Then, in the present embodiment, when the desired concentration of the dilute element of the metal alloy is set to the concentration D, in the step of adding the dilute element, the addition amount M1 of the dilute element per second is the concentration D and the metal material flowing in one direction. It is adjusted so as to be less than twice the theoretical addition amount M2 per second of the dilute element calculated by using the flow rate F per second.

本実施形態において、金属合金とは、希薄元素が添加されたものであれば特に限定されず任意の合金とすることができ、金属合金の態様は、インゴット、合金条、合金箔、金属合金片、等任意にすることができる。また、希薄元素とは、金属合金中に10〜900質量ppmの濃度で含まれている任意の元素とすることができ、より具体的には、そのような濃度で含まれる元素において、金属合金中でむらが生じた場合に金属合金の物性の均一性に影響を及ぼすものとすることができる。具体的な希薄元素としては、P、Ag、Fe、Ca、Zr、Cr、Ti、Sn、Ni、Be、Zn、In、Mg、V、Mo、W、Ba、Sr及びYが挙げられる。
また、希薄元素が添加される金属としては、特に限定されず、金属単体(不可避不純物を含む場合もある)や、上記の希薄元素以外の元素が添加された金属合金、とすることもでき、具体的には例えば、銅、カルシウム銅、クロム銅が挙げられる。
In the present embodiment, the metal alloy is not particularly limited as long as it is an alloy to which a dilute element is added, and any alloy can be used, and the mode of the metal alloy is an ingot, an alloy strip, an alloy foil, or a metal alloy piece. , Etc. can be arbitrary. Further, the dilute element can be any element contained in the metal alloy at a concentration of 10 to 900 mass ppm, and more specifically, the element contained in such a concentration is a metal alloy. When unevenness occurs in the metal alloy, it can affect the uniformity of the physical properties of the metal alloy. Specific dilute elements include P, Ag, Fe, Ca, Zr, Cr, Ti, Sn, Ni, Be, Zn, In, Mg, V, Mo, W, Ba, Sr and Y.
Further, the metal to which the dilute element is added is not particularly limited, and may be a simple substance of a metal (which may contain unavoidable impurities) or a metal alloy to which an element other than the above dilute element is added. Specific examples thereof include copper, calcium copper and chromium copper.

本実施形態の金属合金の製造方法では、より詳細には、母材としての、希薄元素を添加する前の金属材料を溶融する溶融炉と、当該溶融炉で溶融した金属材料(以下、溶融した金属材料を溶融金属材料とも称す)が一方向に通る樋と、当該樋を通じて溶融金属材料が供給されるタンディッシュ炉と、当該タンディッシュ炉から溶融金属材料が導かれる鋳造装置とを備える製造装置を用いることができる。また、当該製造装置は、樋と連通して鉛直方向上方側に延在する添加路と、当該添加路の鉛直方向上方側の開口部にその先端が位置するベルトコンベアと、を備えることができる。
したがって、このような製造装置を用いた場合には、溶融金属材料を樋中を一方向に(樋の一方から他方へ)流動させながら、添加路の鉛直方向上方側の開口部に対して、ベルトコンベアを用いて搬送した希薄元素を、当該ベルトコンベアの先端より落下させて投入することで、当該溶融金属材料に対して希薄元素を添加することができる。
In the method for producing a metal alloy of the present embodiment, more specifically, a melting furnace for melting a metal material as a base material before adding a dilute element and a metal material melted in the melting furnace (hereinafter, melted). A manufacturing apparatus including a gutter through which a metal material is also referred to as a molten metal material), a tundish furnace in which the molten metal material is supplied through the gutter, and a casting device in which the molten metal material is guided from the tundish furnace. Can be used. Further, the manufacturing apparatus can be provided with an addition path that communicates with the gutter and extends upward in the vertical direction, and a belt conveyor whose tip is located at the opening on the upper side in the vertical direction of the addition path. ..
Therefore, when such a manufacturing apparatus is used, the molten metal material is allowed to flow in the gutter in one direction (from one side of the gutter to the other) with respect to the opening on the upper side in the vertical direction of the addition path. The dilute element can be added to the molten metal material by dropping the dilute element conveyed by the belt conveyor from the tip of the belt conveyor and charging the dilute element.

なお、上記の製造装置において、溶融炉は、例えば低周波誘導炉とすることができ、また、無酸素状態で溶融されることが好ましい。
樋は、筒状の通路とすることができ、樋を通る溶融金属材料が酸化することを防止するために、樋内部に窒素ガスなどの不活性ガスを充満(樋内部の下方に溶融金属材料が流れ、その材料上の空間に充満)させることが好ましい。
添加路は、樋と連通する鉛直方向上方側(傾斜していてもよい)に延在する筒状の通路とすることができ、当該添加路の鉛直方向上方側の開口部を有する。ベルトコンベアにより搬送された希薄元素が落下して添加路の内部に入りやすくするために、当該開口部が広がるような形状をしていたり、または、開口部に漏斗が取り付けられていてもよい。
ベルトコンベアは、希薄元素を自動的に搬送するために用いることができ、搬送された希薄元素が、ベルトコンベアの先端より落下して添加路の開口部に投入される。定量的にベルトコンベアで希薄元素を搬送し投入させるため、当該ベルトコンベアは、希薄元素が落下する前後の重さを測定可能な計量機能を有することが好ましい。このような計量機能を有するベルトコンベアは、例えば希薄元素の単位時間当たりの所定の量が投入されるように、ベルト上に載せられた希薄元素の質量変化量を計測することで、希薄元素の投入を調整することができ、具体的には、実際の投入量(質量変化量)が所定の量を超えた場合には、ベルトコンベアによる搬送が一定時間停止することで、希薄元素の投入を調整することができる。
タンディッシュ炉では、溶融金属材料が溜められる炉であり、撹拌されつつ、不純物などを取り除くことができる。希薄元素は、本実施形態では樋を通る溶融金属材料に対して添加することが好ましいが、タンディッシュ炉内の溶融金属材料に対して添加することを妨げない。
鋳造設備は、タンディッシュ炉から一定量の溶融金属材料が導かれ、冷却されることで、金属合金をインゴットとして製造することができる。
In the above manufacturing apparatus, the melting furnace can be, for example, a low frequency induction furnace, and it is preferable that the melting furnace is melted in an oxygen-free state.
The gutter can be a tubular passage, and the inside of the gutter is filled with an inert gas such as nitrogen gas to prevent the molten metal material passing through the gutter from oxidizing (the molten metal material below the inside of the gutter). Flows and fills the space on the material).
The addition path can be a cylindrical passage extending vertically upward (may be inclined) communicating with the gutter, and has an opening on the vertical upper side of the addition path. In order for the dilute element conveyed by the belt conveyor to fall and easily enter the inside of the addition path, the opening may be widened or a funnel may be attached to the opening.
The belt conveyor can be used to automatically convey the dilute element, and the transferred dilute element falls from the tip of the belt conveyor and is charged into the opening of the addition path. In order to quantitatively transport and input the dilute element by the belt conveyor, it is preferable that the belt conveyor has a measuring function capable of measuring the weight before and after the dilute element falls. A belt conveyor having such a measuring function can measure the amount of change in the mass of the dilute element placed on the belt so that a predetermined amount of the dilute element is input per unit time, for example. The charging can be adjusted. Specifically, when the actual charging amount (mass change amount) exceeds a predetermined amount, the transfer by the belt conveyor is stopped for a certain period of time to charge the dilute element. Can be adjusted.
The tundish furnace is a furnace in which molten metal materials are stored, and impurities and the like can be removed while being stirred. In the present embodiment, the dilute element is preferably added to the molten metal material passing through the gutter, but it does not prevent the addition to the molten metal material in the tundish furnace.
In the casting equipment, a certain amount of molten metal material is introduced from a tundish furnace and cooled to produce a metal alloy as an ingot.

また、本実施形態の製造方法により製造された金属合金が、インゴットの場合には、上記の鋳造装置を経ることで得ることができ、また、本実施形態の製造方法により製造された金属合金が、合金条や合金箔等の場合には、本実施形態の金属合金の製造方法は、特に限定されず公知の加工工程を含むことができる。 Further, in the case of an ingot, the metal alloy produced by the production method of the present embodiment can be obtained through the above-mentioned casting apparatus, and the metal alloy produced by the production method of the present embodiment can be obtained. In the case of alloy strips, alloy foils and the like, the method for producing a metal alloy of the present embodiment is not particularly limited and may include a known processing step.

ここで、本実施形態では、上述のように、溶融金属材料に希薄元素を添加する工程において、希薄元素の1秒間の添加量M1が、濃度D(インゴットの希薄元素の所望する濃度)と、一方向に流動する溶融金属材料の1秒当たりの流量Fとを用いて算出される、希薄元素の1秒当たりの理論添加量M2の2倍未満になるように調整される。 Here, in the present embodiment, as described above, in the step of adding the dilute element to the molten metal material, the addition amount M1 of the dilute element per second is the concentration D (desired concentration of the dilute element of the ingot). It is adjusted to be less than twice the theoretical addition amount M2 per second of the dilute element calculated by using the flow rate F per second of the molten metal material flowing in one direction.

なお、「希薄元素の1秒間の添加量M1」とは、実際に、溶融金属材料に対して添加した希薄元素についての1秒間の質量を指す。
また「希薄元素の1秒当たりの理論添加量M2」とは、金属合金の希薄元素の所望する濃度Dと、一方向に流動する溶融金属材料の1秒当たりの流量Fとを用いて算出され、換言すれば、金属合金中の希薄元素の濃度を所望の濃度Dにするために算出される、溶融金属材料に対して添加する希薄元素についての1秒当たりの質量である。つまり、希薄元素をそのまま(単体で)溶融金属材料に添加する場合には、インゴットの希薄元素の濃度Dは、D=M2/(F+M2)で導き出すことができ、希薄元素の1秒当たりの理論添加量M2は、M2=D×F/(1−D)となる。したがって、希薄元素の1秒間の添加量M1は、M1<2×M2=2×D×F/(1−D)となる。
また、希薄元素の添加を、後述のように希釈された希釈粒子を用いて行う場合には、希釈粒子の希薄元素の濃度を濃度dとするとき、金属合金の希薄元素の濃度Dは、D=M2/(F+M2/d)で導き出すことができ、希薄元素の1秒当たりの理論添加量M2は、M2=D×F/(1−D/d)となる。したがって、希薄元素の1秒間の添加量M1は、M1<2×M2=2×D×F/(1−D/d)となる。
上記の溶融金属材料の流量Fは、任意の方法で行うことができる。
The "dilute element addition amount M1 per second" actually refers to the mass of the dilute element added to the molten metal material for one second.
Further, the "theoretical addition amount M2 of the dilute element per second" is calculated by using the desired concentration D of the dilute element of the metal alloy and the flow rate F per second of the molten metal material flowing in one direction. In other words, it is the mass per second of the dilute element added to the molten metal material, which is calculated to bring the concentration of the dilute element in the metal alloy to the desired concentration D. That is, when the dilute element is added to the molten metal material as it is (single substance), the concentration D of the dilute element in the ingot can be derived by D = M2 / (F + M2), and the theory of the dilute element per second. The addition amount M2 is M2 = D × F / (1-D). Therefore, the addition amount M1 of the dilute element per second is M1 <2 × M2 = 2 × D × F / (1-D).
Further, when the dilute element is added using diluted particles as described later, when the concentration of the dilute element of the diluted particles is the concentration d, the concentration D of the dilute element of the metal alloy is D. It can be derived by = M2 / (F + M2 / d), and the theoretical addition amount M2 of the dilute element per second is M2 = D × F / (1-D / d). Therefore, the addition amount M1 of the dilute element per second is M1 <2 × M2 = 2 × D × F / (1-D / d).
The flow rate F of the molten metal material can be performed by any method.

そして、本実施形態において、希薄元素の1秒間の添加量M1を、希薄元素の1秒当たりの理論添加量M2の2倍未満になるように調整することにより、得られた金属合金の希薄元素の濃度のばらつきを低減し、物性の均一性をより向上させることできる。
すなわち、1秒間の添加量M1が1秒当たりの理論添加量M2の2倍を超える場合には、溶融金属材料中において希薄元素の濃度が大きくなりすぎた部分が生じ得る。また同時に、1秒間の添加量M1が多すぎた場合には、次の1秒間での希薄元素の添加量M1が0になるように調整したり、或いは、次の数秒間にわたって、希薄元素の添加量M1を継続的に低減するように調整したりすることとなるが、そのように添加量M1が低減することで、溶融金属材料中において、上記のように希薄元素の濃度が大きくなりすぎた部分に加えて、希薄元素の濃度が低くなりすぎた部分が生じ得る。したがって、希薄元素の1秒間の添加量M1を、1秒当たりの理論添加量M2の2倍未満になるように調整することにより、溶融金属材料中のこのような希薄元素のむらが低減されるので、金属合金中の希薄元素の濃度のばらつきを低減することができる。
Then, in the present embodiment, the dilute element of the metal alloy obtained by adjusting the addition amount M1 of the dilute element per second to be less than twice the theoretical addition amount M2 per second of the dilute element. It is possible to reduce the variation in the concentration of the element and further improve the uniformity of the physical properties.
That is, when the addition amount M1 per second exceeds twice the theoretical addition amount M2 per second, a portion in the molten metal material in which the concentration of the dilute element becomes too large may occur. At the same time, if the addition amount M1 per second is too large, the addition amount M1 of the dilute element in the next 1 second may be adjusted to 0, or the dilute element may be added over the next few seconds. It is necessary to adjust the addition amount M1 so as to be continuously reduced, but by reducing the addition amount M1 in this way, the concentration of the dilute element becomes too large in the molten metal material as described above. In addition to the above-mentioned parts, there may be parts where the concentration of dilute elements is too low. Therefore, by adjusting the addition amount M1 of the dilute element per second to be less than twice the theoretical addition amount M2 per second, the unevenness of such the dilute element in the molten metal material can be reduced. , It is possible to reduce the variation in the concentration of dilute elements in the metal alloy.

ここで、本実施形態のインゴットの製造方法において、希薄元素の1秒間の添加量M1が、1秒当たりの理論添加量M2の2倍未満になるように調整する方法としては、下記の方法が挙げられる。
すなわち、希薄元素の1秒間の添加量M1を1秒当たりの理論添加量M2の2倍未満になるように調整する方法としては、金属合金の製造装置において、樋中を流動する溶融金属材料中に、添加路を通じて投入するためのベルトコンベアのベルト幅(ベルトの進行方向に直交する方向の長さ)を比較的小さくする方法が挙げられる。すなわち、ベルトコンベアのベルト幅が大きい場合には、幅方向に広く希薄元素が載った状態で搬送され、それにより、希薄元素が、ベルトコンベアの先端から添加路の開口部に一度に多く落下し、添加量が多くなる傾向(先端から、幅方向に並んだ希薄元素が一度に多く落下する傾向)がある。しかし、ベルト幅を小さくすることにより、ベルトコンベアの先端から添加路の開口部に落下する希薄元素を小さくすることができ、希薄元素の1秒間の添加量M1を調整しやすくすることができる。
Here, as a method for adjusting the addition amount M1 of the dilute element per second to be less than twice the theoretical addition amount M2 per second in the method for producing the ingot of the present embodiment, the following method is used. Can be mentioned.
That is, as a method of adjusting the addition amount M1 of the dilute element per second to be less than twice the theoretical addition amount M2 per second, in the molten metal material flowing in the trough in the metal alloy manufacturing apparatus. In addition, there is a method of relatively reducing the belt width (length in the direction orthogonal to the traveling direction of the belt) of the belt conveyor for feeding through the addition path. That is, when the belt width of the belt conveyor is large, it is conveyed with the dilute element widely placed in the width direction, so that a large amount of the dilute element falls from the tip of the belt conveyor to the opening of the addition path at one time. , There is a tendency for the amount of addition to be large (a large number of dilute elements lined up in the width direction fall from the tip at once). However, by reducing the belt width, the dilute element falling from the tip of the belt conveyor to the opening of the addition path can be reduced, and the addition amount M1 of the dilute element per second can be easily adjusted.

また、上記方法以外の方法としては、希薄元素が後述のように粒子状である場合には、希薄元素の粒子径を比較的小さくする方法が挙げられる。希薄元素の粒子径を小さくすることにより、希薄元素が、ベルトコンベアの先端から添加路の開口部に落下する際、粒子径が小さいので少しずつ落下することとなり(先端から、希薄元素が一度に多く落下しせず)、希薄元素の1秒間の添加量M1を調整しやすくすることができる。 Further, as a method other than the above method, when the dilute element is in the form of particles as described later, a method of relatively reducing the particle size of the dilute element can be mentioned. By reducing the particle size of the dilute element, when the dilute element falls from the tip of the belt conveyor to the opening of the addition path, the particle size is small, so the dilute element falls little by little (from the tip, the dilute element at once). It is possible to easily adjust the addition amount M1 of the dilute element per second (without dropping a lot).

さらに、上記方法以外の方法としては、ベルトコンベアを用いて搬送した希薄元素を落下させて投入する際、添加路の開口部に対して、気体、より好ましくは窒素ガスなどの不活性ガスを吹き込む方法が挙げられる。具体的には、希薄元素を、樋中を流動する溶融金属材料中に、添加路を通じて投入する際、添加路内には、溶融金属材料の熱により上昇気流が発生し得、それにより希薄元素の添加路内での落下にむらが生じるおそれがある。しかし、添加路の開口部に対して気体を吹き込むことにより、より安定して希薄元素を落下させることができる。また、特に、本実施形態において、不活性ガスを樋内に充満させた状態で材料を流動させた場合には、当該ガスが添加路内を逆流するおそれがあることから、添加路の開口部に対して、気体を吹き込むことにより、より安定して希薄元素を落下させることができる。また、不活性ガスを用いた場合には、希薄元素の酸化を防止することもできる。 Further, as a method other than the above method, when the dilute element conveyed by the belt conveyor is dropped and charged, a gas, more preferably an inert gas such as nitrogen gas, is blown into the opening of the addition path. The method can be mentioned. Specifically, when a dilute element is introduced into a molten metal material flowing in a trough through an addition path, an updraft may be generated in the addition path due to the heat of the molten metal material, thereby causing the dilute element. There is a risk of unevenness in the fall in the addition path. However, by blowing a gas into the opening of the addition path, the dilute element can be dropped more stably. Further, in particular, in the present embodiment, when the material is flowed with the inert gas filled in the gutter, the gas may flow back in the addition path, so that the opening of the addition path. On the other hand, by blowing a gas, the dilute element can be dropped more stably. In addition, when an inert gas is used, oxidation of dilute elements can be prevented.

以上、本実施形態における、希薄元素の1秒間の添加量M1を、1秒当たりの理論添加量M2の2倍未満になるように調整する方法を例示したが、本実施形態のインゴットの製造方法において調整する方法は、上記に限らず任意の方法を採用することができ、また、調整する方法は、上記の方法のいずれか1つまたは組み合わせて採用することができる。 As described above, the method of adjusting the addition amount M1 of the dilute element per second to be less than twice the theoretical addition amount M2 per second in the present embodiment has been exemplified. The method for adjusting is not limited to the above, and any method can be adopted, and the method for adjusting can be adopted by any one of the above methods or a combination thereof.

ところで、本実施形態において、希薄元素の添加は、粒子状である希薄元素を用いて行うことが好ましい。粒子状の希薄元素を用いることにより、適切に希薄元素の1秒間の添加量M1を調整しやすくすることができ、また、希釈粒子を用いることにより、投入量が嵩増しされ、希薄元素の1秒間の添加量M1をさらに調整しやすくすることができる。また、希薄元素の例えば酸化などの化学変化を抑制し、希薄元素の取り扱い性も向上させることができる。 By the way, in the present embodiment, it is preferable to add the dilute element by using the dilute element in the form of particles. By using the dilute element in the form of particles, it is possible to appropriately adjust the addition amount M1 of the dilute element per second, and by using the diluted particles, the input amount is increased and the amount of the dilute element 1 is increased. It is possible to make it easier to adjust the addition amount M1 per second. In addition, it is possible to suppress chemical changes such as oxidation of dilute elements and improve the handleability of dilute elements.

なお、粒子径としては、2.0〜4.0mmであることが好ましい。なお粒子径は、体積平均粒子径であり体積粒子径分布の50%の値(D50)を指す。
粒子径が2.0mm未満では、溶融金属材料に対して速やかに溶解させられる点で有利であるが、搬送において塊になりやすく、1秒間の添加量M1を調整しにくい傾向がある。また、粒子径が1.0mm未満では、酸化するおそれがあったり、気流の影響を受けるおそれが生じる。一方、粒子径が4.0mmを超えると、取り扱いが容易であるが、1秒間の添加量M1を調整しにくい傾向がある。
The particle size is preferably 2.0 to 4.0 mm. The particle size is a volume average particle size and refers to a value (D 50) of 50% of the volume particle size distribution.
If the particle size is less than 2.0 mm, it is advantageous in that it can be quickly dissolved in the molten metal material, but it tends to be agglomerated during transportation, and it tends to be difficult to adjust the addition amount M1 per second. Further, if the particle size is less than 1.0 mm, there is a risk of oxidation or the possibility of being affected by the air flow. On the other hand, when the particle size exceeds 4.0 mm, it is easy to handle, but it tends to be difficult to adjust the addition amount M1 per second.

また、希釈粒子としては、特に限定されないが、希薄元素の濃度dが50質量%以下であるものが好ましく、より好ましくは20質量%以下である。このような範囲にすることにより、投入量を嵩増して1秒間の添加量M1を調整することができる。 The diluted particles are not particularly limited, but those having a dilute element concentration d of 50% by mass or less are preferable, and more preferably 20% by mass or less. By setting it in such a range, the input amount can be increased and the addition amount M1 per second can be adjusted.

さらに、金属合金が希薄元素以外の添加元素を含む場合には、本実施形態において希薄元素以外の添加元素の添加は、希薄元素の添加方法のように添加路を用いて添加したり、溶融炉で溶融させる材料自体が当該添加元素を含むものとしたり、或いは、タンディッシュ炉内に添加元素を添加することにより、行うことができる。 Further, when the metal alloy contains an additive element other than the dilute element, in the present embodiment, the additive element other than the dilute element may be added by using an addition path as in the method of adding the dilute element, or a melting furnace. The material itself to be melted in the above can be made to contain the additive element, or can be carried out by adding the additive element in the tundish furnace.

以上、本発明の実施形態を説明したが、本発明の金属合金の製造方法は、上記例に限定されることは無く、適宜変更を加えることができる。 Although the embodiment of the present invention has been described above, the method for producing a metal alloy of the present invention is not limited to the above example and can be appropriately modified.

本発明によれば、物性の均一性をより向上させることが可能な金属合金の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a metal alloy capable of further improving the uniformity of physical properties.

Claims (2)

希薄元素を含有する金属合金の製造方法であって、
溶融状態の金属材料を一方向に流動させながら当該金属材料に希薄元素を添加する工程を含み、
前記金属合金中の希薄元素の所望する濃度を濃度Dとするとき、
前記添加する工程において、前記希薄元素の1秒間の添加量M1が、前記濃度Dと、前記一方向に流動する前記金属材料の1秒当たりの流量Fとを用いて算出される、前記希薄元素の1秒当たりの理論添加量M2の2倍未満になるように調整する、金属合金の製造方法。
A method for manufacturing a metal alloy containing a dilute element.
Including the step of adding a dilute element to the metal material while flowing the molten metal material in one direction.
When the desired concentration of the dilute element in the metal alloy is the concentration D,
In the step of adding the dilute element, the addition amount M1 of the dilute element per second is calculated by using the concentration D and the flow rate F of the metal material flowing in one direction per second. A method for producing a metal alloy, which is adjusted so as to be less than twice the theoretical addition amount M2 per second.
前記添加する工程において、
溶融状態の前記金属材料は不活性ガスを充満させた樋内を一方向に流動し、
前記希薄元素の添加は、前記樋と連通し鉛直方向上方側に延在する添加路の、鉛直方向上方側の開口部に、ベルトコンベアを用いて搬送した前記希薄元素を当該ベルトコンベアの先端より落下させて投入することにより行う、請求項1に記載の金属合金の製造方法。
In the adding step,
The molten metal material flows in one direction in the gutter filled with the inert gas.
The dilute element is added by using a belt conveyor to convey the dilute element to the opening on the upper side in the vertical direction of the addition path that communicates with the gutter and extends upward in the vertical direction from the tip of the belt conveyor. The method for manufacturing a metal alloy according to claim 1, which is carried out by dropping and throwing in.
JP2020085390A 2020-05-14 2020-05-14 Metal alloy manufacturing method Active JP7394017B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020085390A JP7394017B2 (en) 2020-05-14 2020-05-14 Metal alloy manufacturing method
TW110111348A TWI761155B (en) 2020-05-14 2021-03-29 Manufacturing method of metal alloy
KR1020210055442A KR20210141355A (en) 2020-05-14 2021-04-29 Manufacturing method of metal alloy
CN202110511319.0A CN113667847A (en) 2020-05-14 2021-05-11 Method for producing metal alloy
KR1020230046231A KR20230051460A (en) 2020-05-14 2023-04-07 Manufacturing method of metal alloy
JP2023095652A JP2023113911A (en) 2020-05-14 2023-06-09 Method for producing metal alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020085390A JP7394017B2 (en) 2020-05-14 2020-05-14 Metal alloy manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023095652A Division JP2023113911A (en) 2020-05-14 2023-06-09 Method for producing metal alloy

Publications (2)

Publication Number Publication Date
JP2021179001A true JP2021179001A (en) 2021-11-18
JP7394017B2 JP7394017B2 (en) 2023-12-07

Family

ID=78511003

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020085390A Active JP7394017B2 (en) 2020-05-14 2020-05-14 Metal alloy manufacturing method
JP2023095652A Pending JP2023113911A (en) 2020-05-14 2023-06-09 Method for producing metal alloy

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023095652A Pending JP2023113911A (en) 2020-05-14 2023-06-09 Method for producing metal alloy

Country Status (4)

Country Link
JP (2) JP7394017B2 (en)
KR (2) KR20210141355A (en)
CN (1) CN113667847A (en)
TW (1) TWI761155B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719346A (en) * 1980-07-10 1982-02-01 Showa Alum Corp Method for adding metal with low melting point to molten aluminum
JPS6362829A (en) * 1986-09-02 1988-03-19 Mitsubishi Metal Corp Apparatus for producing alloy melt
JPS63503229A (en) * 1986-05-01 1988-11-24 アルフォーム アロイズ リミテッド Continuous production of alloys
JPH038537A (en) * 1989-06-02 1991-01-16 Fujikura Ltd Apparatus for adding alloy element
JPH08300119A (en) * 1995-05-08 1996-11-19 Nikko Kinzoku Kk Production of highly conductive copper alloy
JP2012061507A (en) * 2010-09-17 2012-03-29 Furukawa Electric Co Ltd:The Copper alloy ingot and method for production thereof
JP2017087229A (en) * 2015-11-04 2017-05-25 新日鐵住金株式会社 Casting device, and method for production of cast slab

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747689B2 (en) * 2005-06-08 2011-08-17 三菱マテリアル株式会社 Continuous production method of copper alloy
JP5224363B2 (en) * 2007-11-30 2013-07-03 古河電気工業株式会社 Method and apparatus for preparing components of molten metal during continuous casting
JP5053242B2 (en) * 2007-11-30 2012-10-17 古河電気工業株式会社 Method and apparatus for producing copper alloy material
WO2013122069A1 (en) * 2012-02-14 2013-08-22 Jx日鉱日石金属株式会社 High-purity titanium ingots, manufacturing method therefor, and titanium sputtering target
WO2015093333A1 (en) * 2013-12-17 2015-06-25 三菱マテリアル株式会社 Method for producing ca-containing copper alloy
KR20160030777A (en) * 2014-09-11 2016-03-21 엠케이전자 주식회사 Silver alloy bonding wire and manufacturing method thereof
JP6294376B2 (en) 2016-02-05 2018-03-14 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6490259B2 (en) * 2017-09-04 2019-03-27 Dowaエレクトロニクス株式会社 Method for producing Fe powder or alloy powder containing Fe
JP6717356B2 (en) * 2018-03-27 2020-07-01 日立金属株式会社 Method for producing metal particles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719346A (en) * 1980-07-10 1982-02-01 Showa Alum Corp Method for adding metal with low melting point to molten aluminum
JPS63503229A (en) * 1986-05-01 1988-11-24 アルフォーム アロイズ リミテッド Continuous production of alloys
JPS6362829A (en) * 1986-09-02 1988-03-19 Mitsubishi Metal Corp Apparatus for producing alloy melt
JPH038537A (en) * 1989-06-02 1991-01-16 Fujikura Ltd Apparatus for adding alloy element
JPH08300119A (en) * 1995-05-08 1996-11-19 Nikko Kinzoku Kk Production of highly conductive copper alloy
JP2012061507A (en) * 2010-09-17 2012-03-29 Furukawa Electric Co Ltd:The Copper alloy ingot and method for production thereof
JP2017087229A (en) * 2015-11-04 2017-05-25 新日鐵住金株式会社 Casting device, and method for production of cast slab

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本伸銅協会, 「銅および銅合金の基礎と工業技術」, vol. 改訂版 第1刷, JPN7022004323, 31 October 1994 (1994-10-31), JP, pages 13 - 15, ISSN: 0005011887 *

Also Published As

Publication number Publication date
TWI761155B (en) 2022-04-11
KR20210141355A (en) 2021-11-23
JP2023113911A (en) 2023-08-16
JP7394017B2 (en) 2023-12-07
CN113667847A (en) 2021-11-19
TW202202636A (en) 2022-01-16
KR20230051460A (en) 2023-04-18

Similar Documents

Publication Publication Date Title
JPWO2009051184A1 (en) Copper alloy wire manufacturing method
JP7167646B2 (en) Method of adding alloy to molten steel
JP2023002625A (en) Copper alloy ingot, copper alloy foil, and method for producing copper alloy ingot
JP2021179001A (en) Method for producing metal alloy
JP7173152B2 (en) Manufacturing method and manufacturing apparatus for titanium alloy ingot
JP4179180B2 (en) Method and apparatus for continuous casting of molten metal
JP4653140B2 (en) Melting method of metal ingot by electron beam melting
JP6736029B2 (en) Method for manufacturing alloy castings
JP4475166B2 (en) Method for continuous casting of molten metal
CN106435092B (en) A kind of Adding Way of esr process aluminium powder
JP5652953B2 (en) Melting furnace for melting metal and method for melting alloy ingot using the same
JP6252534B2 (en) Method of using cold iron source during hot metal processing and hot metal processing equipment
JPH08300119A (en) Production of highly conductive copper alloy
JPH08120366A (en) Method for continuously casting titanium cast slab
JPH01205039A (en) Method for melting high melting point active metal alloy
CN117737344A (en) Large-specification continuous casting round billet core feeding method
JP2021123748A (en) Solution casting method for titanium alloy
JP2022026393A (en) Titanium-based ingot manufacturing method
JPS61221313A (en) Component adjusting method for molten iron
JP2002194419A (en) Method for adding bismuth into molten steel
JPH10226811A (en) Treatment of molten iron
PL234038B1 (en) Method for producing wires with reduced oxygen content
JPS58117841A (en) Apparatus for adding alloy to esr furnace
JP2013023726A (en) Method for producing copper-iron alloy
JPS60238411A (en) Method for adding alloying element to flow of molten metal during transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R151 Written notification of patent or utility model registration

Ref document number: 7394017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151