JP6736029B2 - Method for manufacturing alloy castings - Google Patents

Method for manufacturing alloy castings Download PDF

Info

Publication number
JP6736029B2
JP6736029B2 JP2016145778A JP2016145778A JP6736029B2 JP 6736029 B2 JP6736029 B2 JP 6736029B2 JP 2016145778 A JP2016145778 A JP 2016145778A JP 2016145778 A JP2016145778 A JP 2016145778A JP 6736029 B2 JP6736029 B2 JP 6736029B2
Authority
JP
Japan
Prior art keywords
alloy
raw material
casting
molten metal
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016145778A
Other languages
Japanese (ja)
Other versions
JP2018015767A (en
Inventor
佑典 大島
佑典 大島
中本 稔
稔 中本
清高 宇都宮
清高 宇都宮
西川 太一郎
太一郎 西川
和弘 南条
和弘 南条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016145778A priority Critical patent/JP6736029B2/en
Publication of JP2018015767A publication Critical patent/JP2018015767A/en
Application granted granted Critical
Publication of JP6736029B2 publication Critical patent/JP6736029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、合金鋳造材の製造方法に関する。 The present invention relates to a method for manufacturing an alloy casting material.

従来、銅合金線などの合金線が電線の導体などに利用されている(例えば、特許文献1,2)。特許文献1,2は、連続鋳造材を素材とし、押出や圧延、伸線などの塑性加工を施すことで、所定の線径の銅合金線を製造することを開示する。連続鋳造法として、特許文献1では、合金溶湯を水平方向に引き出して鋳造線材を製造する横型連続鋳造法を開示する。 Conventionally, alloy wires such as copper alloy wires have been used as conductors of electric wires (for example, Patent Documents 1 and 2). Patent Documents 1 and 2 disclose that a copper alloy wire having a predetermined wire diameter is manufactured by subjecting a continuous cast material to a material and subjecting it to plastic working such as extrusion, rolling, and wire drawing. As a continuous casting method, Patent Document 1 discloses a horizontal continuous casting method in which a molten alloy is drawn in a horizontal direction to manufacture a cast wire rod.

特開2015−021138号公報JP, 2005-021138, A 特開2010−084163号公報JP, 2010-084163, A

鋳造欠陥を低減して、表面性状に優れる合金鋳造材を工業的に量産できることが望まれる。
電線の導体などに利用する銅合金線では、特許文献1,2に記載されるように、線径が0.1mm(100μm)以下といった超極細線が要望されている。このような超極細線を工業的に量産するためには、最終線径に至るまでに行う塑性加工中に素材が断線し難いことが望まれる。
It is desirable to be able to industrially mass-produce an alloy cast material having excellent surface properties by reducing casting defects.
As described in Patent Documents 1 and 2, ultra-fine wires having a wire diameter of 0.1 mm (100 μm) or less are required for copper alloy wires used as conductors of electric wires. In order to industrially mass-produce such ultrafine wires, it is desired that the material is unlikely to break during the plastic working performed until reaching the final wire diameter.

ここで、上述の横型連続鋳造法では、代表的には、原料を溶解して溶湯を作製する溶解炉と、溶解炉からの溶湯を保持し、外周面の底部側に鋳型が設けられた保持炉とを備える鋳造装置が利用される。鋳造線材の製造に伴って保持炉内の溶湯は減少する。そのため、鋳造線材の製造量が所定量になったら、溶解炉から保持炉に所定量の注湯を行うことで、連続鋳造を継続できる。注湯量は、保持炉に残存する溶湯の湯面高さが予め設定した基準湯面高さを満たすように設定する。本発明者らは、このような連続鋳造において溶解炉から保持炉への注湯量を比較的多くして鋳造線材を作製して、上述のような超極細線の素材とすることを検討した。注湯量を例えば保持炉の保持可能量の半量から1/3程度の量とすれば、注湯量が多いため注湯回数を低減でき、作業性に優れる。しかし、このような大量の注湯を間欠的に行って得られた鋳造線材を超極細線の素材とすると、最終線径に至るまでの塑性加工中に断線が生じ易いとの知見を得た。また、素材とした鋳造線材は、ブローホールや表面疵などの鋳造欠陥があり、表面性状に劣る部分を局所的に有するとの知見を得た。 Here, in the above-mentioned horizontal continuous casting method, typically, a melting furnace that melts raw materials to produce a molten metal, holds the molten metal from the melting furnace, and holds a mold provided on the bottom side of the outer peripheral surface. A casting apparatus including a furnace is used. The molten metal in the holding furnace decreases as the cast wire is manufactured. Therefore, when the production amount of the cast wire rod reaches a predetermined amount, continuous casting can be continued by pouring a predetermined amount of molten metal from the melting furnace into the holding furnace. The pouring amount is set so that the level of the molten metal remaining in the holding furnace satisfies the preset standard level. The inventors of the present invention have studied the use of the ultrafine wire as described above by producing a cast wire rod by relatively increasing the amount of molten metal poured from the melting furnace to the holding furnace in such continuous casting. When the pouring amount is, for example, about half to one-third of the holding amount of the holding furnace, the pouring frequency can be reduced because the pouring amount is large, and the workability is excellent. However, when a cast wire rod obtained by intermittently pouring such a large amount of metal was used as a material for ultrafine wire, it was found that a wire breakage easily occurred during plastic working until reaching the final wire diameter. .. In addition, it was found that the cast wire rod used as a material had casting defects such as blowholes and surface defects, and locally had a portion with poor surface quality.

そこで、表面性状に優れる合金鋳造材を製造できる合金鋳造材の製造方法を提供することを目的の一つとする。 Then, it aims at providing the manufacturing method of the alloy casting material which can manufacture the alloy casting material excellent in surface property.

本開示の一態様に係る合金鋳造材の製造方法は、
溶解保持炉に保持される所定の組成の合金から構成される合金溶湯に、前記所定の組成となるように固体原料を連続的に供給しながら前記所定の組成の合金鋳造材を連続的に製造する工程を備え、
前記溶解保持炉内の湯面における1分間当たりの最大変動量が基準湯面高さの10%以内となるように、前記固体原料の供給速度と鋳造速度とを制御する。
A method for manufacturing an alloy casting material according to an aspect of the present disclosure,
Continuous production of an alloy casting material having the above-mentioned predetermined composition while continuously supplying a solid raw material so that the above-mentioned predetermined composition is obtained, to a molten alloy formed of an alloy having a predetermined composition held in a melting and holding furnace. Equipped with a process
The supply rate and the casting rate of the solid raw material are controlled so that the maximum fluctuation amount per minute on the molten metal surface in the melting and holding furnace is within 10% of the reference molten metal surface height.

上記の合金鋳造材の製造方法は、表面性状に優れる合金鋳造材を製造できる。 The above method for producing an alloy cast material can produce an alloy cast material having excellent surface properties.

実施形態の合金鋳造材の製造方法の実施に利用する鋳造装置の一例を示す模式説明図である。It is a schematic explanatory drawing which shows an example of the casting apparatus utilized for enforcing the manufacturing method of the alloy casting material of embodiment. 実施形態の合金鋳造材の製造方法の実施に利用する鋳造装置の別の例を示す模式説明図である。It is a schematic explanatory view which shows another example of the casting apparatus utilized for implementation of the manufacturing method of the alloy casting material of embodiment.

本発明者らは、上述の塑性加工中に断線が生じ易い鋳造材について、線表面に鋳造欠陥が有る部分は、上述の注湯時期及びその近傍で製造された部分に多いとの知見を得た。また、注湯時期及びその近傍では、注湯時に酸素などの雰囲気ガスを巻き込んで鋳造材中に含有ガス量が多くなったり、異物を含んだりし易いとの知見を得た。このことから、上記鋳造欠陥が局所的に生じ易い原因の一つとして、以下のように考えられる。溶解炉から保持炉に大量の注湯を間欠的に行うと、溶湯を導入する際の勢いによって、巻き込んだガスや追加する溶湯自体が保持炉の鋳型近くにまで到達する可能性がある。この場合、上記ガスや追加する溶湯の含有によって不適切な温度となった溶湯や、上記ガスを巻き込んだままの溶湯が局所的、かつ一時的に生じて鋳型から出されて、ブローホールや、湯温変動に起因して生成された異物などを含有する鋳造材が得られ易いと考えられる。上記異物としては、上記ガス、溶湯中の不可避不純物、保持炉の内壁の構成材料などが反応してできた生成物(例、酸化物)などが挙げられる。内壁の構成材料を含む異物は、上述のように大量の注湯によって保持炉内の湯面が大きく変動し、内壁の一部では溶湯との接触状態と非接触状態とを繰り返すことで上記内壁が損傷して生成されると考えられる。以上のことから、連続鋳造に際し、上記鋳造欠陥の発生を低減するには、間欠的に大量の注湯を行うのではなく、保持炉内での大きな湯面変動や大きな湯温変動が生じないように原料を供給することが好ましいとの知見を得た。
本発明は、上記の知見に基づくものである。
The present inventors have obtained the knowledge that, with respect to the above-mentioned cast material that is easily broken during plastic working, there are many casting defects on the wire surface in the above-mentioned pouring timing and the portion manufactured in the vicinity thereof. It was Further, it has been found that, at the pouring time and its vicinity, it is easy to involve an atmospheric gas such as oxygen during pouring to increase the amount of gas contained in the cast material and to easily include foreign matter. From this, the following is considered as one of the causes that the casting defect is likely to occur locally. If a large amount of molten metal is intermittently poured from the melting furnace to the holding furnace, the entrained gas and the additional molten metal itself may reach near the mold of the holding furnace due to the momentum when the molten metal is introduced. In this case, the molten metal having an inappropriate temperature due to the inclusion of the above-mentioned gas and the additional molten metal, and the molten metal in which the above-mentioned gas is engulfed locally and temporarily generated from the mold, blowholes, It is considered that it is easy to obtain a cast material that contains foreign matter and the like generated due to fluctuations in the hot water temperature. Examples of the foreign matter include the above gases, inevitable impurities in the molten metal, products (eg, oxides) produced by the reaction of the constituent materials of the inner wall of the holding furnace, and the like. The foreign matter including the constituent material of the inner wall is largely changed by the large amount of molten metal as described above, and the molten metal surface in the holding furnace is largely changed, and a part of the inner wall repeats the contact state with the molten metal and the non-contact state with the inner wall. Are thought to be produced by damage. From the above, in continuous casting, in order to reduce the occurrence of the casting defects, a large amount of molten metal is not intermittently poured, but a large fluctuation of the molten metal surface in the holding furnace or a large fluctuation of the molten metal temperature does not occur. It was found that it is preferable to supply the raw materials as described above.
The present invention is based on the above findings.

最初に本発明の実施形態の内容を列記して説明する。
(1)本発明の一態様に係る合金鋳造材の製造方法は、
溶解保持炉に保持される所定の組成の合金から構成される合金溶湯に、前記所定の組成となるように固体原料を連続的に供給しながら前記所定の組成の合金鋳造材を連続的に製造する工程を備え、
前記溶解保持炉内の湯面における1分間当たりの最大変動量が基準湯面高さの10%以内となるように、前記固体原料の供給速度と鋳造速度とを制御する。
First, the contents of the embodiments of the present invention will be listed and described.
(1) A method for manufacturing an alloy cast material according to one aspect of the present invention comprises:
Continuous production of an alloy casting material having the above-mentioned predetermined composition while continuously supplying a solid raw material so that the above-mentioned predetermined composition is obtained, to a molten alloy formed of an alloy having a predetermined composition held in a melting and holding furnace. Equipped with a process
The supply rate and the casting rate of the solid raw material are controlled so that the maximum fluctuation amount per minute on the molten metal surface in the melting and holding furnace is within 10% of the reference molten metal surface height.

「連続的に供給する」とは、固体原料の供給が途切れる時間を実質的に含まないように供給する常時供給形態の他、間欠的な供給を高頻度に行う頻繁供給形態を含む。頻繁供給形態では、上述の湯面における1分間当たりの最大変動量(以下、湯面変動幅と呼ぶことがある)が上述の特定の範囲を満たすという条件の下で、固体原料の供給が途切れる時間が非常に短くなるように、例えば1分未満となるように供給する。
「基準湯面高さ」は、溶解保持炉の保持可能量、実際に保持しておく予定量、合金鋳造材の製造量などに応じて設定する値である。
“Continuously supplying” includes a constant supply mode in which the solid raw material is supplied so as not to substantially include a time period in which the supply of the solid material is interrupted, and a frequent supply mode in which intermittent supply is frequently performed. In the frequent supply mode, the supply of the solid raw material is interrupted under the condition that the maximum fluctuation amount per minute on the above-mentioned molten metal surface (hereinafter sometimes referred to as molten metal fluctuation range) satisfies the above-mentioned specific range. The time is very short, for example less than 1 minute.
The "standard molten metal surface height" is a value that is set according to the amount that can be held in the melting and holding furnace, the amount that is actually to be held, the production amount of alloy castings, and the like.

上記の合金鋳造材の製造方法は、原料の溶解及び溶湯の保持が可能な溶解保持炉を用いて、この炉内に保持する合金溶湯に固体原料を供給する。そして、固体原料を炉内で溶解して新しい合金溶湯を作製追加しながら、同じ炉内から連続的に出湯して、合金鋳造材を連続的に製造する。固体原料の供給では、上述の大量の注湯に起因するガスの巻き込み・湯温変動・湯面変動が実質的に生じない。また、上記の合金鋳造材の製造方法では、湯面変動幅が特定の範囲を満たすように固体原料の供給速度と鋳造速度とを制御するため、固体原料の供給に伴う湯面変動や湯温変動を十分に小さくできる、好ましくは実質的に無くすことができる。例えば、後述する溶解保持炉の底部側に鋳型を有する場合でも、鋳型近くの湯温変動を小さくできる。従って、上記の合金鋳造材の製造方法は、鋳造欠陥を低減でき、表面性状に優れる合金鋳造材を製造できる。また、上記の合金鋳造材の製造方法は、上記表面性状に優れる合金鋳造材を連続的に製造可能であり、工業的量産に適する。更に、上記の合金鋳造材の製造方法によって得られた合金鋳造材を例えば極細線の素材にすると伸線途中で断線し難く、上記の合金鋳造材の製造方法は、極細線などといった塑性加工材の工業的量産性の向上に寄与する。 In the method for producing an alloy casting material described above, a melting and holding furnace capable of melting the raw material and holding the molten metal is used, and the solid raw material is supplied to the molten alloy held in the furnace. Then, while the solid raw material is melted in the furnace to prepare and add a new molten alloy, the molten alloy is continuously discharged from the same furnace to continuously produce the alloy casting material. In the supply of the solid raw material, the gas entrainment, the fluctuation of the hot water temperature, and the fluctuation of the molten metal surface caused by the above-mentioned large amount of pouring are substantially not caused. Further, in the above-mentioned method for producing an alloy cast material, since the supply rate of the solid raw material and the casting rate are controlled so that the variation level of the molten metal fills a specific range, the variation of the molten metal surface and the temperature of the molten metal accompanying the supply of the solid material are controlled. Fluctuations can be sufficiently small, preferably substantially eliminated. For example, even when the mold is provided on the bottom side of the melting and holding furnace, which will be described later, fluctuations in hot water temperature near the mold can be reduced. Therefore, the above method for producing an alloy cast material can reduce casting defects and produce an alloy cast material having excellent surface properties. In addition, the above-mentioned method for producing an alloy cast material is capable of continuously producing the alloy cast material having excellent surface properties, and is suitable for industrial mass production. Furthermore, if the alloy cast material obtained by the method for producing the alloy cast material described above is made of, for example, an ultrafine wire material, it is difficult to break the wire during drawing, and the method for producing the alloy cast material described above is a plastic work material such as an ultrafine wire. Contribute to the improvement of industrial mass productivity.

(2)上記の合金鋳造材の製造方法の一例として、
前記固体原料として、前記所定の組成の合金における母相金属となる母相原料と、添加元素となる添加原料とを準備して、それぞれを独立して供給する形態が挙げられる。
(2) As an example of the method for producing the above alloy casting material,
As the solid raw material, there is a mode in which a parent phase raw material which becomes a parent phase metal in the alloy having the predetermined composition and an additive raw material which becomes an additional element are prepared and supplied independently.

上記形態は、固体原料を母相原料と添加原料とに独立させており、固体原料を所定の組成の合金材とする場合に比較して、固体原料の準備が容易である。また、母相原料の供給速度と添加原料の供給速度とを独立して制御可能であり、所定の組成を満たすように供給速度を調整し易い。 In the above embodiment, the solid raw material is independent of the matrix raw material and the additive raw material, and the preparation of the solid raw material is easier than when the solid raw material is an alloy material having a predetermined composition. Further, the feed rate of the mother phase raw material and the feed rate of the additive raw material can be controlled independently, and the feed rate can be easily adjusted so as to satisfy a predetermined composition.

(3)上記の合金鋳造材の製造方法の一例として、
前記所定の組成の合金は、銅合金である形態が挙げられる。
(3) As an example of the method for producing the above alloy casting,
The alloy having the predetermined composition may be a copper alloy.

上記形態は、超極細の銅合金線の素材などに適した合金鋳造材を製造できる。 According to the above-mentioned form, an alloy cast material suitable for a material of a superfine copper alloy wire can be manufactured.

(4)上記の合金鋳造材の製造方法の一例として、
前記固体原料は、線材、粒状材、及び板材から選択される1種以上である形態が挙げられる。
(4) As an example of the method for producing the above alloy casting material,
The solid raw material may be in the form of one or more kinds selected from wire rods, granular materials, and plate materials.

上記形態において固体原料を線材や板材とする場合、コイル状に巻き取った線材や板材の繰出速度などを調整することで供給速度を容易にかつ精度よく調整できる。線材や板材を利用すれば、上述の常時供給形態を行える。上記形態において固体原料を粒状材とする場合、市販の粉粒体供給装置などを利用することで供給速度を容易にかつ精度よく調整できる。粒状材を利用する場合には、後述するように頻繁供給形態が利用し易い。 When the wire rod or plate material is used as the solid raw material in the above-described embodiment, the supply speed can be adjusted easily and accurately by adjusting the feeding speed of the wire rod or plate material wound in a coil shape. If a wire or plate is used, the above-mentioned constant supply form can be performed. When the solid raw material is a granular material in the above embodiment, the supply rate can be easily and accurately adjusted by using a commercially available powdery or granular material supply device. When using the granular material, the frequent supply form is easy to use as described later.

(5)上記の合金鋳造材の製造方法の一例として、
前記固体原料を前記溶解保持炉の前記湯面側で溶解するように供給し、
前記溶解保持炉の底部側に設けられた鋳型から水平方向に出湯して、前記合金鋳造材を連続的に製造する形態が挙げられる。
(5) As an example of a method for manufacturing the above alloy casting material,
The solid raw material is supplied so as to be melted on the molten metal side of the melting and holding furnace,
An example is a mode in which the alloy casting material is continuously produced by tapping in a horizontal direction from a mold provided on the bottom side of the melting and holding furnace.

上記形態は、上述の横型連続鋳造法を利用する形態といえる。上記形態は、固体原料が溶解した直後であり、組成や湯温などが不安定な可能性がある過渡溶湯が生じても、この過渡溶湯の存在領域を湯面側、つまり溶解保持炉の底部側に設けられた鋳型から十分に離れた位置にできる。そのため、鋳型近くの合金溶湯には、固体原料に起因する湯温変動が生じ難い、好ましくは実質的に生じない。従って、上記形態は、表面性状に優れる合金鋳造材を生産性よく製造できる。 The said form can be said to be a form which utilizes the horizontal continuous casting method mentioned above. The above-mentioned form is immediately after the solid raw material is melted, and even if a transient molten metal whose composition or hot water temperature may be unstable occurs, the region where this transient molten metal exists is on the molten metal surface side, that is, the bottom of the melting and holding furnace. The position can be sufficiently separated from the mold provided on the side. Therefore, in the molten alloy near the mold, the fluctuation of the molten metal temperature due to the solid raw material is unlikely to occur, and preferably does not substantially occur. Therefore, in the above-mentioned form, an alloy casting material having excellent surface properties can be manufactured with high productivity.

(6)上記の合金鋳造材の製造方法の一例として、
前記溶解保持炉の上側に設けられた鋳型から前記合金溶湯を上方に引き出して、前記合金鋳造材を連続的に鋳造し、
前記固体原料は、前記溶解保持炉内における前記鋳型近傍の領域とは仕切られた領域に供給する形態が挙げられる。
(6) As an example of the method for producing the above alloy casting material,
Withdrawing the molten alloy upward from the mold provided on the upper side of the melting and holding furnace, continuously casting the alloy casting material,
The solid raw material may be supplied to a region in the melting and holding furnace which is separated from a region near the mold.

上記形態は、上引き型連続鋳造法を利用する形態といえる。この形態では、鋳型が湯面側にあるといえ、鋳造に直接利用される合金溶湯が湯面側に位置することになる。そのため、固体原料を湯面に向かって供給して湯面側で溶解する構成では、上述の組成や湯温などが不安定な恐れがある過渡溶湯が生じた場合、過渡溶湯も鋳型近傍の領域に存在することになる。しかし、上記形態では、上記鋳型近傍の領域とは仕切られた領域を固体原料の供給領域とするため、鋳型近くの合金溶湯には、上記固体原料の供給領域近くに存在し得る過渡溶湯に起因する湯温変動が生じ難い、好ましくは実質的に生じない。従って、上記形態は、表面性状に優れる合金鋳造材を生産性よく製造できる。 The above-mentioned form can be said to be a form using the up-drawing continuous casting method. In this form, it can be said that the mold is on the melt surface side, but the molten alloy directly used for casting is located on the melt surface side. Therefore, in the configuration in which the solid raw material is supplied toward the molten metal surface and melted on the molten metal surface side, when the above-mentioned composition, the molten metal temperature, or the like may cause an unstable molten metal, the transient molten metal also has a region near the mold. Will exist in. However, in the above-mentioned embodiment, since the region partitioned from the region in the vicinity of the mold is the supply region of the solid raw material, the molten alloy near the mold is caused by the transient molten metal that may exist near the supply region of the solid raw material. Fluctuations in the hot water temperature are unlikely to occur, and preferably do not substantially occur. Therefore, in the above-mentioned form, an alloy casting material having excellent surface properties can be manufactured with high productivity.

[本発明の実施形態の詳細]
以下、図1,図2を適宜参照して、本発明の実施形態の形態を具体的に説明する。図1,図2では、説明の便宜上、過渡溶湯13と鋳型近くの合金溶湯15とを二点鎖線で仮想的に示すが、実際には明確な境界はない。
[実施形態1]
(製造方法の概要)
実施形態の合金鋳造材の製造方法は、溶解保持炉3に保持される所定の組成の合金から構成される合金溶湯10を溶解保持炉3内から出湯して、所定の組成の合金鋳造材1を連続的に製造する工程を備える。実施形態1の合金鋳造材の製造方法は、所定の組成となるように固体原料100を連続的に供給しながら連続鋳造することを特徴の一つとする。特に、溶解保持炉3内の湯面10fができるだけ変動しないように、また、出湯口(図1,図2では鋳型4)近くに存在して鋳造に直接利用される合金溶湯10(図1,図2では鋳型4近くの合金溶湯15)の温度ができるだけ変動しないように固体原料100の供給量と合金鋳造材1の製造量とを調整する。定量的には、溶解保持炉3内の湯面における1分間当たりの最大変動量が基準湯面高さHの10%以内となるように、固体原料100の供給速度と合金鋳造材1の製造速度とを制御する。この制御によって、固体原料100から作製する合金溶湯の製造量と、合金溶湯10から作製する合金鋳造材1の製造量とをできるだけ等しくすることを目指す。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be specifically described with reference to FIGS. 1 and 2 as appropriate. 1 and 2, the transient molten metal 13 and the molten alloy 15 near the mold are virtually shown by a chain double-dashed line for convenience of description, but there is actually no clear boundary.
[Embodiment 1]
(Outline of manufacturing method)
In the method for manufacturing an alloy casting material according to the embodiment, the molten alloy 10 that is held in the melting and holding furnace 3 and is made of an alloy having a predetermined composition is tapped from the melting and holding furnace 3 to form the alloy casting material 1 having a predetermined composition. Is continuously manufactured. One of the features of the method for manufacturing an alloy cast material of the first embodiment is that continuous casting is performed while continuously supplying the solid raw material 100 so as to have a predetermined composition. In particular, the molten metal surface 10f in the melting and holding furnace 3 is prevented from fluctuating as much as possible, and the molten alloy 10 (FIG. 1, FIG. In FIG. 2, the supply amount of the solid raw material 100 and the production amount of the alloy casting material 1 are adjusted so that the temperature of the molten alloy 15 near the mold 4 does not fluctuate as much as possible. Quantitatively, the supply rate of the solid raw material 100 and the alloy casting material 1 are controlled so that the maximum fluctuation amount per minute on the molten metal in the melting and holding furnace 3 is within 10% of the reference molten metal height H 0 . Control the production speed. This control aims to make the production amount of the molten alloy produced from the solid raw material 100 and the production amount of the cast alloy material 1 produced from the molten alloy 10 as equal as possible.

(製造方法を実施する設備の概要)
実施形態の合金鋳造材の製造方法を実施するには、例えば、図1,図2に示す鋳造装置2A,2Bを利用できる。鋳造装置2A,2Bはいずれも、出湯部を備える溶解保持炉3と、製造される合金鋳造材1を所定の方向に引き出す又は送り出すピンチロール5と、固体原料100を溶解保持炉3に連続的に供給可能な供給装置(ここでは二つの供給装置6,7A、又は供給装置6,7B)と、固体原料100の供給速度と合金鋳造材1の製造速度とを制御する制御装置8とを備える。鋳造装置2A,2Bでは、溶解保持炉3の出湯部に鋳型4が取り付けられている。鋳造装置2A,2Bでは、供給装置6,7A又は供給装置6,7Bによって固体原料100の供給速度が調整され、ピンチロール5の回転速度によって合金鋳造材1を引き出す速度(鋳造速度に相当)が調整される。制御装置8は、供給速度と鋳造速度とが同期するように、供給装置6,7A又は供給装置6,7Bと、ピンチロール5とを制御する。その他の詳細な構成は後述する。
(Outline of equipment for implementing the manufacturing method)
In order to carry out the method for manufacturing the alloy cast material of the embodiment, for example, the casting apparatuses 2A and 2B shown in FIGS. 1 and 2 can be used. Each of the casting apparatuses 2A and 2B continuously melts and holds the melting and holding furnace 3 having a tapping portion, a pinch roll 5 for drawing out or sending out the alloy casting material 1 to be manufactured in a predetermined direction, and a solid raw material 100 in the melting and holding furnace 3. And a control device 8 for controlling the supply speed of the solid raw material 100 and the production speed of the alloy casting 1. .. In the casting apparatuses 2A and 2B, the mold 4 is attached to the molten metal outlet of the melting and holding furnace 3. In the casting devices 2A and 2B, the feeding speed of the solid raw material 100 is adjusted by the feeding devices 6 and 7A or the feeding devices 6 and 7B, and the speed at which the alloy casting material 1 is drawn out (corresponding to the casting speed) is controlled by the rotation speed of the pinch roll 5. Adjusted. The control device 8 controls the supply devices 6 and 7A or the supply devices 6 and 7B and the pinch roll 5 so that the supply speed and the casting speed are synchronized. Other detailed configurations will be described later.

(固体原料)
<組成>
固体原料100の組成は、製造予定である合金鋳造材1の構成合金に応じて選択するとよい。具体的な合金として、Cuを母相金属とする銅合金(添加元素を含み、残部がCu及び不可避不純物)、Alを母相金属とするアルミニウム合金(添加元素を含み、残部がAl及び不可避不純物)などが挙げられる。
(Solid raw material)
<Composition>
The composition of the solid raw material 100 may be selected according to the constituent alloy of the alloy casting material 1 to be manufactured. As a specific alloy, a copper alloy containing Cu as a mother phase metal (containing additive elements, the balance being Cu and inevitable impurities), an aluminum alloy containing Al as a mother phase metal (containing additive elements, the balance being Al and inevitable impurities) ) And the like.

銅合金の添加元素は、Ag,Sn,Znなどから選択される1種以上の元素が挙げられる。具体的な銅合金として、Cu−Ag合金、Cu−Sn合金、Cu−Zn合金などの二元合金などが挙げられる。添加元素の含有量は、質量%で、Agは0.05%以上15%以下、Snは0.05%以上1%以下、Znは1%以上40%以下などが挙げられる。銅合金とする場合、電線の導体に用いられる銅合金線、特に線径100μm以下といった超極細線の素材に適した合金鋳造材1を製造できる。 The additive element of the copper alloy may be one or more elements selected from Ag, Sn, Zn and the like. Specific copper alloys include binary alloys such as Cu-Ag alloys, Cu-Sn alloys, and Cu-Zn alloys. The content of the additive element is% by mass, and Ag is 0.05% or more and 15% or less, Sn is 0.05% or more and 1% or less, and Zn is 1% or more and 40% or less. When a copper alloy is used, a copper alloy wire used as a conductor of an electric wire, particularly an alloy casting material 1 suitable for a material of a superfine wire having a wire diameter of 100 μm or less can be manufactured.

<形状>
固体原料100は、湯面変動幅が特定の範囲を満たすように連続的な供給が可能な適宜な形状のものが利用できる。例えば、線材、粒状材、及び板材から選択される1種以上が挙げられる。線材、粒状材、板材であれば、後述する適宜な供給装置(図1では供給装置6,7A)を用いることで供給速度を容易にかつ精度よく調整できる。種々の大きさ(線径、粒径、板厚や板幅)のものや種々の形状の線材や粒状材を利用でき、大きさや形状などを考慮して供給速度を調整することで、作製する合金溶湯の製造量と、合金鋳造材1の製造量とを等しくし易い。線材の一例として、線径5mm以上30mm以下程度の丸線が挙げられる。粒状材の一例として、平均粒径が0.5mm以上10mm以下程度の球状粒が挙げられる。市販の線材、粒状材、板材を利用できる。線材のみ、又は粒状材のみ、又は板材のみ、又は線材と粒状材との組み合せといった形状が異なる複数のものを利用できる。
<shape>
As the solid raw material 100, it is possible to use a solid raw material having an appropriate shape that can be continuously supplied so that the fluctuation range of the molten metal surface satisfies a specific range. For example, one or more kinds selected from a wire material, a granular material, and a plate material can be mentioned. If the material is a wire material, a granular material, or a plate material, the supply speed can be easily and accurately adjusted by using an appropriate supply device (supply devices 6, 7A in FIG. 1) described later. Various sizes (wire diameter, particle size, plate thickness and plate width) and various shapes of wire rods and granular materials can be used. It is manufactured by adjusting the supply speed in consideration of size and shape. It is easy to equalize the production amount of the molten alloy and the production amount of the cast alloy material 1. An example of the wire rod is a round wire having a wire diameter of 5 mm or more and 30 mm or less. Examples of the granular material include spherical particles having an average particle size of 0.5 mm or more and 10 mm or less. Commercially available wire rod, granular material, and plate material can be used. It is possible to use a plurality of materials having different shapes, such as only the wire material, only the granular material, only the plate material, or a combination of the wire material and the granular material.

線材や板材は、コイル状に巻き取ったコイル材とし、コイル材を巻き戻して繰り出し可能な供給装置、例えば図1,図2に示すような繰出ロール62,72を備える供給装置6,7Bを利用すれば、実質的に途切れることなく供給可能な常時供給形態とすることができる。図1,図2では固体原料100の一例として、コイル材(後述の母相原料160,添加原料172)を例示する。線材や板材の一端は、図1,図2に示すように合金溶湯10に浸漬させることで、確実に溶解できる。 The wire material or the plate material is a coil material wound in a coil shape, and a supply device capable of rewinding and unwinding the coil material, for example, supply devices 6 and 7B including delivery rolls 62 and 72 as shown in FIGS. If used, it is possible to provide a constant supply mode in which the supply can be performed without substantial interruption. 1 and 2, a coil material (a mother phase raw material 160 and an additional raw material 172 described later) is illustrated as an example of the solid raw material 100. One end of the wire or plate can be surely melted by immersing it in the molten alloy 10 as shown in FIGS.

粒状材を利用する場合、例えば、粒状材を貯留する貯留槽(例、ホッパーなど、図示せず)と、貯留槽からの所定量の粒状材を湯面10fに向かって導入する筒状のガイド部74と、貯留槽からの粒状材をガイド部74に搬送する搬送装置(例、市販の振動フィーダー装置など、図示せず)とを備える供給装置7Aを利用して、連続的な供給を行うことが挙げられる。ここで、粒状材を常時投入すると、粒状材の大きさにもよるが、各粒の溶解時間が比較的短いために、合金溶湯10における粒状材の供給領域近傍の成分、代表的には溶解直後で組成や湯温などが不安定な可能性がある過渡溶湯13の成分と、鋳型4近くの合金溶湯15の成分との間に大きな差が生じて、所定の組成の合金鋳造材1を安定して製造できない恐れがある。湯面変動幅が特定の範囲を満たすという条件のもと、1回の供給量をある程度大きくして高頻度に供給すれば、上述の成分の差を低減し易く、実用的であると考えられる。そこで、粒状材を利用する場合には、供給装置7Aが所定の間隔で所定量の粒状材を溶解保持炉3に供給するように制御装置8を構成するとよい。こうすることで、間欠的な供給を高頻度に行う頻繁供給形態とすることができる。湯面変動幅が特定の範囲を満たす条件のもと、貯留槽の開閉時期、搬送装置による搬送速度などを調整して、1分間当たりの粒状材の投入量(kg/分)を設定するとよい。ガイド部74の開口端74oは、図1に示すように湯面10f近くに位置するように合金溶湯10に浸漬させることで、投入した粒状材が湯面10fを波立たせることが無く、湯面10fの変動を抑制できる上に、投入した粒状材が鋳型4近くの合金溶湯15に達することを防止し易い。 When using the granular material, for example, a storage tank for storing the granular material (eg, a hopper or the like, not shown), and a cylindrical guide for introducing a predetermined amount of the granular material from the storage tank toward the molten metal surface 10f A continuous supply is performed using a supply device 7A including a part 74 and a transfer device (e.g., a commercially available vibrating feeder device (not shown)) that transfers the granular material from the storage tank to the guide part 74. It can be mentioned. Here, if the granular material is constantly charged, it depends on the size of the granular material, but since the melting time of each particle is relatively short, the components in the vicinity of the supply region of the granular material in the molten alloy 10 are typically melted. Immediately after that, a large difference occurs between the composition of the transient molten metal 13 in which the composition and the molten metal temperature may be unstable, and the composition of the molten alloy 15 near the mold 4, so that the alloy casting material 1 having a predetermined composition can be obtained. It may not be possible to manufacture stably. Under the condition that the level fluctuation range satisfies a specific range, if the one-time supply amount is increased to some extent and supplied at a high frequency, the difference between the above components can be easily reduced, and it is considered to be practical. .. Therefore, when the granular material is used, the control device 8 may be configured so that the supply device 7A supplies a predetermined amount of the granular material to the melting and holding furnace 3 at a predetermined interval. By doing so, it is possible to adopt a frequent supply mode in which intermittent supply is performed with high frequency. Under the condition that the level fluctuation range satisfies a specific range, the opening/closing timing of the storage tank, the transport speed of the transport device, etc. may be adjusted to set the amount of granular material input (kg/min) per minute. .. By immersing the open end 74o of the guide portion 74 in the molten alloy 10 so that the open end 74o is located near the molten metal surface 10f as shown in FIG. In addition to suppressing the fluctuation of the surface 10f, it is easy to prevent the charged granular material from reaching the molten alloy 15 near the mold 4.

<組成に応じた形態>
固体原料100は、所定の組成の合金における母相金属となる母相原料160と、添加元素となる添加原料170又は172とがそれぞれ独立した独立形態とすることができる。独立形態では、母相金属や添加元素から構成される市販の線材、粒状材、板材などを利用できる。そのため、固体原料100として所定の組成の合金材を利用する単独形態に比較して、独立形態では、固体原料100を容易に準備できる。また、母相原料160や添加原料170又は172として高純度のものを利用し易く、上記単独形態に比較して、不純物に起因する鋳造欠陥の発生を低減できると期待される。一例として、銅合金の合金鋳造材1を製造する場合、母相原料160として、酸素濃度が質量割合で10ppm以下といった無酸素銅から構成されるものを利用できる。更に、独立形態は、母相原料160と添加原料170又は172とをそれぞれ独立して供給できるため、原料の形状、大きさなどに応じて供給速度の制御も行い易い。母相原料160と添加原料170とで形状や大きさを異ならせることも、等しくすることも容易にできる。図1では、母相原料160がコイル線材であり、添加原料170が粒状材であり、両者の形状が異なる場合を例示する。図2では、母相原料160,添加原料172がいずれもコイル線材であり、両者の形状が等しい場合を例示する。独立形態では、母相原料160と、添加原料170又は172との合計数に応じた供給装置を用いる。
<morphology according to composition>
The solid raw material 100 may be in an independent form in which a parent phase raw material 160 which is a parent phase metal in an alloy having a predetermined composition and an additional raw material 170 or 172 which is an additional element are independent from each other. In the independent form, a commercially available wire rod, granular material, plate material or the like composed of a matrix metal and an additive element can be used. Therefore, the solid raw material 100 can be easily prepared in the independent form as compared with the single form in which an alloy material having a predetermined composition is used as the solid raw material 100. Further, it is expected that a high-purity material as the parent phase raw material 160 or the additional raw material 170 or 172 can be easily used, and the occurrence of casting defects due to impurities can be reduced as compared with the above-mentioned single form. As an example, when manufacturing the alloy casting material 1 of a copper alloy, as the mother phase raw material 160, a material composed of oxygen-free copper having an oxygen concentration of 10 ppm or less by mass can be used. Further, in the independent mode, the mother phase raw material 160 and the additive raw material 170 or 172 can be independently supplied, so that the supply rate can be easily controlled according to the shape and size of the raw material. It is easy to make the matrix raw material 160 and the additive raw material 170 different in shape and size, or equal in shape. FIG. 1 illustrates a case where the mother phase raw material 160 is a coil wire and the additive raw material 170 is a granular material, and the shapes of the two are different. In FIG. 2, the matrix raw material 160 and the additive raw material 172 are both coil wire rods, and the case where the shapes of both are the same is illustrated. In the independent mode, a supply device is used according to the total number of the mother phase raw material 160 and the additive raw material 170 or 172.

固体原料100は、所定の組成の合金から構成される線材、粒状材、板材などとする単独形態とすることができる。単独形態では供給装置を一つにできる。 The solid raw material 100 may be in a single form such as a wire rod, a granular material, or a plate material made of an alloy having a predetermined composition. In the stand-alone form, the supply device can be one.

<湯面変動幅>
基準湯面高さHは、溶解保持炉3の底面3dから、溶解保持炉3内の湯面10fまでの高さであり、溶解保持炉3の保持可能量、実際に保持しておく予定量、合金鋳造材1の製造量などに応じて適宜設定することができる。例えば、基準湯面高さHは、溶解保持炉3の内部空間の高さH(図1,図2では底面3dから開口縁までの距離)の70%以上80%以下程度などとすることができる。
<Bread level fluctuation range>
The reference molten metal height H 0 is the height from the bottom surface 3d of the melting and holding furnace 3 to the molten metal surface 10f in the melting and holding furnace 3, and the amount that can be held by the melting and holding furnace 3 will be actually held. The amount can be appropriately set depending on the amount, the production amount of the alloy casting material 1, and the like. For example, the reference molten metal surface height H 0, the height H 3 of the internal space of the melting and holding furnace 3, and the like 80% lower than about 70% or more (Fig. 1, the distance from FIG 2 the bottom 3d to the opening edge) be able to.

連続鋳造の開始前において、基準湯面高さHを満たすように溶解保持炉3に、予め設定した予定量の合金溶湯10を保持しておく。このときの合金溶湯10は、所定の組成となるように原料を用意して、溶解保持炉3で溶解することで作製できる。溶解保持炉3に予定量の合金溶湯10が満たされた状態で、固体原料100を連続的に供給できるように供給装置6,7A,7B等に配置して、連続鋳造を開始する。溶解保持炉3内の合金溶湯10は、合金鋳造材1の製造に伴って減少し、原料の供給に伴って増加する。この増減に伴って溶解保持炉3内の実際の湯面高さH10は変動する。この変動に起因して鋳造欠陥が生じることを低減するために、実施形態の合金鋳造材の製造方法は、湯面10fにおける1分間当たりの最大変動量(最大変動高さ)が基準湯面高さHの10%以内となるように、供給速度と鋳造速度とを調整する。つまり、実際の湯面高さH10が、基準湯面高さHの0.9倍の高さH以上、基準湯面高さHの1.1倍の高さH以下となるように、供給速度と鋳造速度とを調整する。鋳造装置2A,2Bを利用する場合には、制御装置8は、固体原料100の供給速度として、供給装置6に備える繰出ロール62の回転速度(母相原料160の供給速度)と、供給装置7Aに備える貯留槽の開閉時期及び搬送装置の搬送速度など(添加原料170の供給速度)又は供給装置7Bに備える繰出ロール72の回転速度(添加原料172の供給速度)とを制御する。かつ制御装置8は、鋳造速度として、ピンチロール5の回転速度(鋳造速度)を制御する。 Before the start of continuous casting, a predetermined planned amount of molten alloy 10 is held in the melting and holding furnace 3 so as to satisfy the reference molten metal surface height H 0 . The molten alloy 10 at this time can be prepared by preparing raw materials so as to have a predetermined composition and melting them in the melting and holding furnace 3. In a state where the melting and holding furnace 3 is filled with a predetermined amount of the molten alloy 10, the solid raw material 100 is arranged in the supply devices 6, 7A, 7B and the like so as to be continuously supplied, and continuous casting is started. The molten alloy 10 in the melting and holding furnace 3 decreases as the alloy casting material 1 is manufactured, and increases as the raw material is supplied. Along with this increase or decrease, the actual molten metal height H 10 in the melting and holding furnace 3 changes. In order to reduce the occurrence of casting defects due to this fluctuation, in the method for manufacturing an alloy cast material of the embodiment, the maximum fluctuation amount per minute (maximum fluctuation height) on the molten metal surface 10f is the reference molten metal surface height. The feed rate and the casting rate are adjusted so as to be within 10% of H 0 . In other words, the actual molten metal surface height H 10 is the reference bath level height H 0 of 0.9 times the height H i above, the reference molten metal surface height H 0 of 1.1 times the height H s or less and The feed rate and the casting rate are adjusted so that When using the casting devices 2A and 2B, the control device 8 controls, as the supply speed of the solid raw material 100, the rotation speed of the feeding roll 62 provided in the supply device 6 (the supply speed of the mother phase raw material 160) and the supply device 7A. The opening/closing timing of the storage tank and the transport speed of the transport device (the supply speed of the added raw material 170) or the rotation speed of the delivery roll 72 (the supply speed of the added raw material 172) provided in the supply device 7B are controlled. Moreover, the control device 8 controls the rotation speed (casting speed) of the pinch roll 5 as the casting speed.

湯面変動量は可及的に小さいことが望まれる。そのため、湯面10fにおける1分間当たりの最大変動量を基準湯面高さHの8%以内、更に5%以内、1%以内、0%とすることが好ましい。上記最大変動量を0%とするとは、湯面高さH10が実質的に変動せず、常時、基準湯面高さHとなるように供給速度及び製造量を制御することに相当する。 It is desired that the fluctuation level of the molten metal level be as small as possible. Therefore, it is preferable that the maximum fluctuation amount per minute on the molten metal surface 10f is within 8% of the standard molten metal surface height H 0 , within 5%, within 1%, and 0%. Setting the maximum fluctuation amount to 0% corresponds to controlling the supply speed and the production amount so that the molten metal height H 10 does not substantially fluctuate and always becomes the reference molten metal height H 0. ..

(鋳造装置)
図1,図2に示す鋳造装置2A,2Bは、溶解保持炉3の底部側に鋳型4が設けられて、鋳型4から水平方向に出湯して、合金鋳造材1を連続的に製造する横型連続鋳造装置を示す。図1,図2では、筒状の炉本体の外周面における底部側領域に外周面から外方に突出し、端面に鋳型4が取り付けられる筒状の出湯部を備えた断面L字状の溶解保持炉3を例示するが、溶解保持炉3の形状は適宜変更できる。また、図1,図2では、溶解保持炉3の上部が開放された状態を示すが、固体原料100の供給孔を有する蓋部(図示せず)を設けることができる。溶解保持炉3及び蓋部、鋳型4、ピンチロール5、供給装置6,7A,7B、制御装置8などは、公知の装置や市販品などを利用できる。
(Casting equipment)
The casting apparatus 2A, 2B shown in FIGS. 1 and 2 has a mold 4 provided on the bottom side of the melting and holding furnace 3 and taps horizontally from the mold 4 to continuously produce the alloy cast material 1. 1 shows a continuous casting device. In FIGS. 1 and 2, a melting and holding member having an L-shaped cross-section, which is provided with a tubular tap portion that projects outward from the outer peripheral surface in a bottom side region of the outer peripheral surface of the cylindrical furnace body and has a mold 4 attached to an end surface thereof. Although the furnace 3 is illustrated, the shape of the melting and holding furnace 3 can be changed as appropriate. 1 and 2 show the state in which the upper portion of the melting and holding furnace 3 is open, but a lid portion (not shown) having a supply hole for the solid raw material 100 can be provided. As the melting and holding furnace 3, the lid portion, the mold 4, the pinch roll 5, the feeding devices 6, 7A, 7B, the control device 8 and the like, known devices and commercial products can be used.

横型連続鋳造装置では、固体原料100を溶解保持炉3の湯面10f側で溶解するように供給すれば、鋳型4近くの合金溶湯15に、固体原料100の供給や過渡溶湯13に起因する湯温変動などが生じ難く、好ましくは実質的に生じない。固体原料100の供給領域を湯面10f側とすると、溶解直後に生じ得る過渡溶湯13の存在領域を鋳型4から離れた湯面10f側とすることができ、鋳型4側に設けられて鋳造に直接利用される合金溶湯10の存在領域と過渡溶湯13の存在領域とを十分に離隔できるからである。固体原料100は、溶解保持炉3の上方から湯面10fに向かって供給するとよい。特に、母相原料160や図2の添加原料172であるコイル線材の一端、図1の添加原料170を合金溶湯10に導くガイド部74の開口端74oは、合金溶湯10に浸漬し、湯面10f近くに位置するように、固体原料100を配置することが好ましい。 In the horizontal continuous casting device, if the solid raw material 100 is supplied so as to be melted on the side of the molten metal 10f of the melting and holding furnace 3, the molten metal caused by the supply of the solid raw material 100 and the transient molten metal 13 is supplied to the molten alloy 15 near the mold 4. Temperature fluctuations are less likely to occur, and preferably substantially not. When the supply region of the solid raw material 100 is on the molten metal surface 10f side, the existing region of the transient molten metal 13 that may occur immediately after melting can be on the molten metal surface 10f side away from the mold 4, and is provided on the mold 4 side for casting. This is because the existing region of the molten alloy 10 directly used and the existing region of the transient molten metal 13 can be sufficiently separated. The solid raw material 100 may be supplied from above the melting and holding furnace 3 toward the molten metal surface 10f. In particular, one end of the coil wire material that is the parent phase raw material 160 or the additive raw material 172 of FIG. 2 and the open end 74o of the guide portion 74 that guides the additive raw material 170 of FIG. It is preferable to arrange the solid raw material 100 so as to be located near 10f.

その他の鋳造装置として、例えば、溶解保持炉の上側に鋳型が設けられて、この鋳型から合金溶湯を上方に引き出して、合金鋳造材を連続的に鋳造する上引き型連続鋳造装置(図示せず)などを利用できる。上引き型連続鋳造装置では、代表的には、溶解保持炉の開口部を覆う蓋部に鋳型が設けられる。蓋部に固体原料の供給孔を設けるなどして、溶解保持炉の上方から湯面に向かって固体原料を供給して溶解すれば、固体原料の溶解直後に生じ得る過渡溶湯の存在領域と、鋳造に直接利用される合金溶湯の存在領域とがいずれも湯面側に位置する。このままでは鋳造に直接利用される合金溶湯に、上記過渡溶湯に起因する湯温変動などが生じ易くなる。そこで、上引き型連続鋳造装置を利用する場合には、溶解保持炉内に仕切り部(図示せず)を設けて、湯面近傍の領域を過渡溶湯の存在領域と鋳造に直接利用される鋳型近くの合金溶湯の存在領域とに仕切る。そして、溶解保持炉内における鋳型近傍の領域とは仕切られた上記過渡溶湯の存在領域に固体原料を供給することが好ましい。仕切り部は板材などとし、蓋部や溶解保持炉の内壁などによって支持することが挙げられる。仕切り部の下端が溶解保持炉の底面から基準湯面高さの1/2以下、更に1/3以下程度の位置に達するように仕切り部の長さを調整することが好ましい。また、仕切り部の形状を上記鋳型近くの合金溶湯の存在領域を囲むことが可能な形状としたり、仕切り部の幅を溶解保持炉内を分断するほどに十分に広幅としたりすることが好ましい。こうすることで、固体原料を連続的に供給しても、鋳型近くの合金溶湯に過渡溶湯に起因する湯温変動などが生じ難く、好ましくは実質的に生じない。 As another casting apparatus, for example, a mold is provided on the upper side of the melting and holding furnace, and the molten alloy is drawn upward from this mold to continuously cast an alloy casting material (not shown). ) Etc. can be used. In the up-drawing type continuous casting apparatus, a mold is typically provided in a lid portion that covers the opening of the melting and holding furnace. If the solid raw material is supplied from above the melting and holding furnace toward the molten metal surface and melted, for example, by providing a supply hole for the solid raw material in the lid portion, and a transient molten metal existence region that may occur immediately after the melting of the solid raw material, The existing region of the molten alloy directly used for casting is located on the molten metal surface side. Under this condition, the alloy melt directly used for casting is likely to have a change in the melt temperature due to the transient melt. Therefore, when using the up-drawing type continuous casting device, a partition (not shown) is provided in the melting and holding furnace, and the region near the molten metal surface is used as a region where the transient molten metal exists and the mold directly used for casting. It is partitioned into the area where the molten alloy is located nearby. Then, it is preferable to supply the solid raw material to a region where the transient molten metal is present, which is separated from the region near the mold in the melting and holding furnace. The partition part may be a plate material, and may be supported by the lid part or the inner wall of the melting and holding furnace. It is preferable to adjust the length of the partition so that the lower end of the partition reaches the position of not more than ½, and further not more than ⅓ of the reference molten metal height from the bottom of the melting and holding furnace. Further, it is preferable that the partition portion has a shape capable of enclosing a region where the molten alloy is present near the mold, or that the width of the partition portion is wide enough to divide the inside of the melting and holding furnace. By doing so, even if the solid raw material is continuously supplied, the molten metal temperature near the mold is unlikely to change due to the transient molten metal, and preferably substantially does not occur.

<その他の条件>
鋳造時の雰囲気は、大気雰囲気、COといった還元ガスを含む還元性雰囲気、アルゴンや窒素といった不活性ガスからなる不活性雰囲気などが挙げられる。大気雰囲気とすると、雰囲気制御が不要である。還元性雰囲気や不活性雰囲気とすると、合金溶湯10の酸素含有量を効果的に低減できる。銅合金などの合金溶湯10とする場合は、湯面10fを還元性のカバリング剤で覆うことができる。こうすることで、大気雰囲気であっても合金溶湯10の酸素含有量を効果的に低減できる。雰囲気制御や還元剤の利用などによって、酸素含有量の増大に起因する鋳造欠陥をより低減し易い。カバリング剤として木炭片や木炭粉などを用いれば、木炭片間などにできる隙間から固体原料100を供給できる。
<Other conditions>
Examples of the atmosphere during casting include an air atmosphere, a reducing atmosphere containing a reducing gas such as CO, and an inert atmosphere containing an inert gas such as argon or nitrogen. When the atmosphere is used, the atmosphere control is unnecessary. When the reducing atmosphere or the inert atmosphere is used, the oxygen content of the molten alloy 10 can be effectively reduced. When the molten alloy 10 such as a copper alloy is used, the molten metal surface 10f can be covered with a reducing covering agent. By doing so, the oxygen content of the molten alloy 10 can be effectively reduced even in the atmosphere. By controlling the atmosphere, using a reducing agent, and the like, it is easier to reduce casting defects due to the increase in oxygen content. If charcoal pieces or charcoal powder is used as the covering agent, the solid raw material 100 can be supplied through the gaps formed between the charcoal pieces.

(用途)
実施形態の合金鋳造材の製造方法は、長尺な線材、板材などの合金鋳造材の製造に利用できる。得られた合金鋳造材1は、伸線加工や圧延加工などの塑性加工、熱処理などを適宜施して、所定の形状、大きさの線材や板材などとして、各種の導体、接点材などの素材に利用できる。
(Use)
INDUSTRIAL APPLICABILITY The method for manufacturing an alloy cast material according to the embodiment can be used for manufacturing an alloy cast material such as a long wire rod or a plate material. The obtained alloy casting material 1 is appropriately subjected to plastic working such as wire drawing and rolling, heat treatment, etc., and used as a material such as various conductors and contact materials as a wire or plate material having a predetermined shape and size. Available.

(合金鋳造材)
実施形態の合金鋳造材の製造方法によって、所定の組成の合金鋳造材1を製造できる。合金鋳造材1は、代表的には線材又は板材が挙げられる。線材の大きさ(線径や断面積など)や形状、板材の大きさ(板厚や板幅など)は、適宜選択できる。線材の一例として、横断面形状が円形であり、直径が8mm以上30mm以下程度の丸線、横断面形状が矩形状であり、断面積が10mm以上500mm以下程度の角線などが挙げられる。所望の形状、大きさとなるように、出湯口の形状、大きさ(ここでは鋳型4の形状、大きさ、その他自由鋳造法では形状規定部材の形状、大きさ)を調整するとよい。
(Alloy casting material)
The alloy cast material 1 having a predetermined composition can be manufactured by the method for manufacturing an alloy cast material of the embodiment. The alloy casting material 1 is typically a wire rod or a plate. The size (wire diameter, cross-sectional area, etc.) and shape of the wire material, and the size (plate thickness, board width, etc.) of the plate material can be appropriately selected. Examples of the wire include a round wire having a circular cross-sectional shape and a diameter of about 8 mm to 30 mm, a rectangular wire having a cross-sectional shape of 10 mm 2 to 500 mm 2 and the like. .. It is advisable to adjust the shape and size of the tap hole (here, the shape and size of the mold 4, and the shape and size of the shape defining member in the free casting method) so that the desired shape and size can be obtained.

例えば、所定の組成の銅合金となる固体原料100を利用すれば、合金鋳造材1として銅合金鋳造材が得られる。銅合金鋳造材は、電線の導体などに利用される銅合金線の素材に利用できる。特に、この銅合金鋳造材は、鋳造欠陥が少なく表面性状に優れるため、例えば、線径が0.1mm以下、更に0.05mm以下、0.03mm以下といった超極細の銅合金線の素材に好適に利用できる。 For example, if the solid raw material 100 that becomes a copper alloy having a predetermined composition is used, a copper alloy cast material can be obtained as the alloy cast material 1. The copper alloy cast material can be used as a material of a copper alloy wire used as a conductor of an electric wire or the like. In particular, since this copper alloy cast material has few casting defects and excellent surface properties, it is suitable as a material for ultra-fine copper alloy wire having a wire diameter of 0.1 mm or less, 0.05 mm or less, 0.03 mm or less, for example. Available for

[試験例1]
銅合金の溶湯と横型連続鋳造装置とを用いて連続鋳造を行って、銅合金の鋳造材を作製した。得られた鋳造材に伸線加工を施して銅合金線(伸線材)を作製した。得られた鋳造材、伸線材の表面性状、及び伸線性を調べた。
[Test Example 1]
Continuous casting was performed using a molten copper alloy and a horizontal continuous casting device to produce a copper alloy casting material. The obtained cast material was subjected to wire drawing to produce a copper alloy wire (wire drawn material). The surface properties and wire drawability of the obtained cast material and wire drawn material were examined.

(No.1−1,1−2:注湯無し)
試料No.1−1,No.1−2の鋳造材は、上述の図1に示す溶解保持炉3及び鋳型4、供給装置6,7A、制御装置8を備える鋳造装置2Aを用いて、以下のようにして作製した。
固体原料100として、純銅線(直径8mm以上12.5mm以下)と純銀粒(平均粒径1mm以上5mm以下)とを用意した。連続鋳造の開始前、表1に示す組成の銅合金から構成される溶湯を用意して溶解保持炉3に保持した。この溶湯は、基準湯面高さHを満たす量(ここでは700kg)となるように用意した。この溶解保持炉3内の溶湯に、表1に示す組成となるように、供給装置6によって純銅線(母相原料160)を連続的に供給すると共に、供給装置7Aによって純銀粒(添加原料170)を連続的に供給する。
(No. 1-1, 1-2: No pouring)
Sample No. 1-1, No. The casting material 1-2 was produced in the following manner using the casting apparatus 2A including the melting and holding furnace 3 and the mold 4, the feeders 6 and 7A, and the controller 8 shown in FIG.
As the solid raw material 100, pure copper wire (diameter 8 mm or more and 12.5 mm or less) and pure silver grains (average particle size 1 mm or more and 5 mm or less) were prepared. Before the start of continuous casting, a molten metal composed of a copper alloy having the composition shown in Table 1 was prepared and held in the melting and holding furnace 3. This molten metal was prepared in such an amount that the standard molten metal surface height H 0 was satisfied (here, 700 kg). To the molten metal in the melting and holding furnace 3, pure copper wire (matrix raw material 160) is continuously supplied by the supply device 6 so that the composition shown in Table 1 is obtained, and pure silver grains (addition raw material 170 are supplied by the supply device 7A). ) Is continuously supplied.

この試験では、溶解保持炉3内の湯面10fにおける1分当たりの最大変動量(mm/分)が基準湯面高さH(mm)に実質的に等しくなるように、供給装置6,7A及びピンチロール5の駆動条件を調整した。そして、実際の湯面高さH10が、常時、基準湯面高さHと等しくなるように、固体原料の供給速度(1分間当たりの純銅線の繰出長さ、1分間当たりの純銀粒の投入量)と、銅合金の鋳造材の鋳造速度(1分間当たりの製造長さ)とを制御した。この試験では、線径22mmの鋳造材(丸線)を製造した。鋳造材の製造量は1000kgとした。 In this test, the supply device 6, so that the maximum fluctuation amount per minute (mm/min) on the molten metal surface 10f in the melting and holding furnace 3 becomes substantially equal to the reference molten metal surface height H 0 (mm). 7A and the driving conditions of the pinch roll 5 were adjusted. Then, the feed rate of the solid raw material (the feeding length of the pure copper wire per minute, the pure silver grain per minute, so that the actual molten metal height H 10 is always equal to the reference molten metal height H 0 And the casting speed (production length per minute) of the copper alloy casting material were controlled. In this test, a cast material (round wire) having a wire diameter of 22 mm was manufactured. The production amount of the cast material was 1000 kg.

(No.1−101,1−102:注湯有り)
試料No.1−101,1−102の鋳造材は、以下のように作製した。
原料に電気銅及び純銀粒を用意して、表1に示す組成となるように調整して溶解炉で溶解し、表1に示す組成の銅合金の溶湯を作製した。作製した銅合金の溶湯を溶解炉から保持炉に移送して保持した。この試験では、保持炉における初期保持量を700kgとし、鋳造材の製造量が250kgに達したら250kgの注湯を行うことを繰り返し行って、線径22mmの鋳造材(丸線)を製造した。注湯用の溶湯は、溶解炉で別途作製した。鋳造材の製造量は1000kgとした。
(No. 1-101, 1-102: with pouring)
Sample No. The casting materials 1-101 and 1-102 were manufactured as follows.
Electrolytic copper and pure silver particles were prepared as raw materials, adjusted so as to have the composition shown in Table 1, and melted in a melting furnace to prepare a molten copper alloy having the composition shown in Table 1. The produced molten copper alloy was transferred from the melting furnace to a holding furnace and held therein. In this test, the initial holding amount in the holding furnace was 700 kg, and when the production amount of the cast material reached 250 kg, 250 kg of molten metal was repeatedly performed to produce a cast material (round wire) having a wire diameter of 22 mm. The molten metal for pouring was separately prepared in the melting furnace. The production amount of the cast material was 1000 kg.

作製した鋳造材の表面性状を確認したところ、試料No.1−1,No.1−2の鋳造材は目視確認可能な鋳造欠陥が無かった。 When the surface properties of the produced casting material were confirmed, Sample No. 1-1, No. The cast materials of 1-2 had no visually recognizable casting defects.

作製した鋳造材に伸線加工を施して、線径28μmの伸線材を作製し、表面性状を調べた。伸線材の表面性状は、市販の渦流探傷器によって検出された探傷数(カウント)によって評価した。探傷数はキズの最大径が100μm以上か否かで大小に分けてそれぞれ調べた。また、線径28μmの伸線材の製造時に発生した断線数を調べ、伸線材の製造量(ここでは1000kg)を断線数(回)で除した値を伸線性(kg/回)として評価した。評価結果を表1に示す。 The cast material produced was subjected to wire drawing to produce a wire drawn material having a wire diameter of 28 μm, and the surface properties were examined. The surface properties of the drawn wire material were evaluated by the number of flaws (count) detected by a commercially available eddy current flaw detector. The number of flaws was divided into small and large and examined depending on whether the maximum flaw size was 100 μm or more. In addition, the number of wire breakages that occurred during the production of a wire drawing material having a wire diameter of 28 μm was examined, and a value obtained by dividing the production amount (1000 kg in this case) of the wire drawing material by the number of wire breakage (times) was evaluated as wire drawability (kg/time). The evaluation results are shown in Table 1.

Figure 0006736029
Figure 0006736029

表1に示すように、連続鋳造時に間欠的に大量の注湯を行わず、固体原料を連続的に供給すると共に、湯面高さができるだけ変動しないように供給速度と鋳造速度とを制御した試料No.1−1,No.1−2は、上述のように表面に鋳造欠陥が少なく、この試験では実質的に無く、表面性状に優れて高品質な鋳造材を製造できることがわかる。また、この鋳造材を素材として塑性加工を施すと、表面性状に優れる塑性加工材が得られることが分かる。ここでは、線径28μmという超極細の伸線材であって、表面欠陥が非常に少なく(探傷カウントが少なく)、又は実質的に無いものが得られている。この超極細の伸線材の製造に当たり、断線も非常に少ないことが分かる。ここでは、伸線性が2kg/回以上であり、大量の注湯を行った試料No.1−101,No.1−102の伸線性の8倍程度以上、更に10倍程度以上となっている。 As shown in Table 1, a large amount of molten metal was not intermittently supplied during continuous casting, the solid raw material was continuously supplied, and the supply rate and the casting rate were controlled so that the molten metal height did not fluctuate as much as possible. Sample No. 1-1, No. As for No. 1-2, there are few casting defects on the surface as described above, and it is understood that 1-2 is substantially absent in this test, and a high-quality cast material having excellent surface properties can be manufactured. Further, it is understood that when plastic working is performed using this cast material as a raw material, a plastic processed material having excellent surface properties can be obtained. Here, an ultrafine wire drawing material having a wire diameter of 28 μm and having very few surface defects (small flaw detection count) or substantially no surface defects has been obtained. It can be seen that there are very few disconnections in the production of this ultra-fine wire drawing material. Here, the wire drawability is 2 kg/time or more, and the sample No. 1-101, No. The wire drawability of 1-102 is about 8 times or more, and about 10 times or more.

上記の試験から、合金の連続鋳造に際して、固体原料を連続的に供給すると共に、湯面における1分間当たりの最大変動量ができるだけ小さくなるように、供給速度と鋳造速度とを制御することで、表面性状に優れる合金鋳造材が得られることが示された。また、この合金鋳造材は、線径100μm以下、更には50μm以下といった超極細の線材の素材に好適に利用できることが示された。更に、上記の試験から、上述の特定の制御を行うことで、Agといった添加元素が少ない場合(ここでは0.6質量%)から多い場合(ここでは2質量%)でも、断線し難く、表面性状に優れる伸線材などの塑性加工材の素材に適した合金鋳造材(ここではCu−Ag合金といった銅合金線)が得られることが示された。 From the above test, in continuous casting of the alloy, while continuously supplying the solid raw material, the supply rate and the casting rate are controlled so that the maximum fluctuation amount per minute on the molten metal surface is as small as possible, It was shown that an alloy cast material having excellent surface properties can be obtained. It was also shown that this alloy cast material can be suitably used as a material for ultrafine wire rods having a wire diameter of 100 μm or less, further 50 μm or less. Further, from the above test, by performing the above-mentioned specific control, it is difficult to break the wire even when the additive element such as Ag is small (here, 0.6 mass%) to large (here, 2 mass%), and the surface is not broken. It was shown that an alloy cast material (here, a copper alloy wire such as a Cu-Ag alloy) suitable for a material of a plastically worked material such as a drawn wire having excellent properties was obtained.

本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
例えば、試験例1において、銅銀合金の成分(Ag量)を変更したり、銅合金以外の合金に変更したりすることができる。
The present invention is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
For example, in Test Example 1, the component (Ag amount) of the copper-silver alloy can be changed, or the alloy other than the copper alloy can be changed.

1 合金鋳造材
10 合金溶湯 10f 湯面 13 過渡溶湯 15 鋳型近くの合金溶湯
2A,2B 鋳造装置
3 溶解保持炉 3d 底面 4 鋳型 5 ピンチロール
100 固体原料 160 母相原料 170,172 添加原料
6,7A,7B 供給装置 62,72 繰出ロール
74 ガイド部 74o 開口端 8 制御装置
1 alloy casting material 10 alloy molten metal 10f molten metal surface 13 transient molten metal 15 alloy molten metal near the mold 2A, 2B casting equipment 3 melting and holding furnace 3d bottom surface 4 mold 5 pinch roll 100 solid raw material 160 mother phase raw material 170,172 additive raw material 6,7A , 7B feeding device 62, 72 feeding roll 74 guide part 74o opening end 8 control device

Claims (6)

溶解保持炉に保持される所定の組成の合金から構成される合金溶湯に、前記所定の組成となるように固体原料を連続的に供給しながら前記所定の組成の合金鋳造材を連続的に製造する工程を備え、
前記固体原料は、前記所定の組成の合金における母相金属となる母相原料と、前記所定の組成の合金における添加元素となる添加原料とを備え、
前記母相原料は、線材であり、前記線材の一端を前記合金溶湯に浸漬させた状態で、前記線材を前記合金溶湯に供給し、
前記添加原料は、粒状材であり、前記粒状材を前記合金溶湯に導入するガイド部の開口端を前記合金溶湯に浸漬させた状態で、前記粒状材を前記合金溶湯に供給し、
前記溶解保持炉内の湯面における1分間当たりの最大変動量が基準湯面高さの10%以内となるように、前記固体原料の供給速度と鋳造速度とを制御する合金鋳造材の製造方法。
Continuous production of an alloy casting material having the above-mentioned predetermined composition while continuously supplying a solid raw material so that the above-mentioned predetermined composition is obtained, to a molten alloy formed of an alloy having a predetermined composition held in a melting and holding furnace. Equipped with a process
The solid raw material comprises a parent phase raw material which is a parent phase metal in the alloy of the predetermined composition, and an additive raw material which is an additive element in the alloy of the predetermined composition,
The mother phase raw material is a wire rod, and with one end of the wire rod immersed in the alloy melt, the wire rod is supplied to the alloy melt,
The additive raw material is a granular material, in a state in which the opening end of the guide portion for introducing the granular material into the molten alloy is immersed in the molten alloy, the granular material is supplied to the molten alloy,
A method for producing an alloy casting material, in which the supply rate and the casting rate of the solid raw material are controlled such that the maximum fluctuation amount per minute on the molten metal surface in the melting and holding furnace is within 10% of the standard molten metal surface height. ..
前記所定の組成の合金は、銅合金である請求項1記載の合金鋳造材の製造方法。 The method for manufacturing an alloy cast material according to claim 1 , wherein the alloy having the predetermined composition is a copper alloy. 前記銅合金は、Agを0.05質量%以上15質量%以下含むCu−Ag合金であり、 The copper alloy is a Cu-Ag alloy containing 0.05% by mass or more and 15% by mass or less of Ag,
前記母相原料は、純銅線であり、 The mother phase raw material is a pure copper wire,
前記粒状材は、純銀粒である請求項2に記載の合金鋳造材の製造方法。 The method for manufacturing an alloy cast material according to claim 2, wherein the granular material is pure silver particles.
前記線材の線径は、5mm以上30mm以下であり、The wire diameter of the wire is 5 mm or more and 30 mm or less,
前記粒状材の平均粒径は、0.5mm以上10mm以下である請求項1から請求項3のいずれか1項に記載の合金鋳造材の製造方法。 The method for producing an alloy cast material according to any one of claims 1 to 3, wherein an average particle diameter of the granular material is 0.5 mm or more and 10 mm or less.
前記固体原料を前記溶解保持炉の前記湯面側で溶解するように供給し、
前記溶解保持炉の底部側に設けられた鋳型から水平方向に出湯して、前記合金鋳造材を連続的に製造する請求項1から請求項4のいずれか1項に記載の合金鋳造材の製造方法。
The solid raw material is supplied so as to be melted on the molten metal side of the melting and holding furnace,
5. The alloy casting material according to claim 1, wherein the alloy casting material is continuously produced by tapping the molten metal in a horizontal direction from a mold provided on the bottom side of the melting and holding furnace. Method.
前記溶解保持炉の上側に設けられた鋳型から前記合金溶湯を上方に引き出して、前記合金鋳造材を連続的に鋳造し、
前記固体原料は、前記溶解保持炉内における前記鋳型近傍の領域とは仕切られた領域に供給する請求項1から請求項4のいずれか1項に記載の合金鋳造材の製造方法。
Withdrawing the molten alloy from a mold provided on the upper side of the melting and holding furnace, continuously casting the alloy casting material,
The method for producing an alloy casting material according to any one of claims 1 to 4, wherein the solid raw material is supplied to a region in the melting and holding furnace which is separated from a region near the mold.
JP2016145778A 2016-07-25 2016-07-25 Method for manufacturing alloy castings Active JP6736029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016145778A JP6736029B2 (en) 2016-07-25 2016-07-25 Method for manufacturing alloy castings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016145778A JP6736029B2 (en) 2016-07-25 2016-07-25 Method for manufacturing alloy castings

Publications (2)

Publication Number Publication Date
JP2018015767A JP2018015767A (en) 2018-02-01
JP6736029B2 true JP6736029B2 (en) 2020-08-05

Family

ID=61078992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016145778A Active JP6736029B2 (en) 2016-07-25 2016-07-25 Method for manufacturing alloy castings

Country Status (1)

Country Link
JP (1) JP6736029B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469774B2 (en) 2020-06-05 2024-04-17 株式会社宮本工業所 Method for controlling output of melting burner in casting system

Also Published As

Publication number Publication date
JP2018015767A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
EP2210687B1 (en) Method of producing a copper alloy wire
JP6736029B2 (en) Method for manufacturing alloy castings
JP2014172088A (en) Dissolved copper raw material for continuous casting
JP2023002625A (en) Copper alloy ingot, copper alloy foil, and method for producing copper alloy ingot
JP2010189678A (en) Cr-containing copper alloy wire, and method for producing the same
JP6361194B2 (en) Copper ingot, copper wire, and method for producing copper ingot
CN106350696B (en) Copper alloy material and method for producing same
JP2006312174A (en) Continuous casting method for molten metal
JP6817463B2 (en) Method for Manufacturing Mg Brass EDM Wire
TWI761155B (en) Manufacturing method of metal alloy
US11351600B2 (en) Nozzle, casting apparatus, and cast product manufacturing method
KR101859326B1 (en) Copper Alloy Manufacturing Apparatus with Automatic Raw Material Supplying Apparatus
JP6167966B2 (en) Solder ball manufacturing method and manufacturing apparatus
JP2022137332A (en) Method of producing wire rod
JP2013023726A (en) Method for producing copper-iron alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200628

R150 Certificate of patent or registration of utility model

Ref document number: 6736029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250