JP6167966B2 - Solder ball manufacturing method and manufacturing apparatus - Google Patents
Solder ball manufacturing method and manufacturing apparatus Download PDFInfo
- Publication number
- JP6167966B2 JP6167966B2 JP2014070613A JP2014070613A JP6167966B2 JP 6167966 B2 JP6167966 B2 JP 6167966B2 JP 2014070613 A JP2014070613 A JP 2014070613A JP 2014070613 A JP2014070613 A JP 2014070613A JP 6167966 B2 JP6167966 B2 JP 6167966B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- solder
- nozzle
- solder ball
- discharged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
本発明は、はんだボールの製造方法及び製造装置に関し、特に、電子部品の接合や封止に主に使用されるはんだボールを粒径のばらつきを抑えて高収率で製造することが可能なはんだボールの製造方法及び製造装置に関する。 The present invention relates to a solder ball manufacturing method and a manufacturing apparatus, and in particular, a solder ball capable of manufacturing a solder ball mainly used for joining and sealing of electronic components in a high yield while suppressing variation in particle size. The present invention relates to a ball manufacturing method and a manufacturing apparatus.
従来からはんだボールの製造方法として、アトマイズ法、油中滴下法、水中滴下法、機械的加工法など各種の製造法が知られており、中でも電子産業に使用されるはんだボールや亜鉛粒などの製造では水中滴下法や油中滴下法が多用されている。例えば特許文献1には、水中滴下法として溶融金属をノズルなどから冷却水中に滴下して冷却凝固させることにより粒状の金属を得る方法が開示されており、金属の溶融温度、ノズル入口径及び出口径、ノズルの先端と冷却水面との距離、冷水温度などの条件を選定することにより、所望の形状や寸法を有する金属粒を形成できると記載されている。 Conventionally, various manufacturing methods such as an atomizing method, a drip method in oil, a drip method in water, and a mechanical processing method are known as solder ball manufacturing methods. Among them, solder balls and zinc grains used in the electronics industry are known. In the production, a dripping method in water and a dripping method in oil are frequently used. For example, Patent Document 1 discloses a method of obtaining granular metal by dropping molten metal into cooling water from a nozzle or the like and cooling and solidifying as a submerged dripping method. It is described that metal grains having a desired shape and size can be formed by selecting conditions such as the diameter, the distance between the tip of the nozzle and the cooling water surface, and the cold water temperature.
また、特許文献2には形状の良いはんだボールを作製するため、溶融金属の融点近くまで加熱された耐酸化性に優れた油の中に溶融金属を吐出する油中滴下法が開示されている。この油中滴下法で使用する装置は、高周波コイルを備えた溶融はんだ供給部と、その下方に位置する油で満たされたカラムとで基本的に構成されている。溶融はんだ供給部に設けられたノズルは、先端部が油面よりも下側に位置しており、このノズルからガスで加圧された溶融金属を連続的に吐出することで溶融はんだは油中で分断されると共に自身の表面張力で球形となり、カラム中を落下している間に凝固する。 Patent Document 2 discloses an in-oil dropping method in which molten metal is discharged into oil having excellent oxidation resistance that is heated to near the melting point of the molten metal in order to produce a solder ball having a good shape. . The apparatus used in this in-oil dropping method is basically composed of a molten solder supply section provided with a high-frequency coil and a column filled with oil located below. The tip of the nozzle provided in the molten solder supply section is located below the oil level, and the molten solder that is pressurized with gas is continuously discharged from this nozzle. And is spherical with its own surface tension and solidifies while falling in the column.
しかし、特許文献1に示す水中滴下法は、ノズルの先端部が水面よりも上方に離間して設けられているため溶融金属の酸化を抑えることが困難であるという問題を有している。また、溶融金属が水中に入る際、水面と衝突して水面張力を破りながら水中に入る必要があり、かつ冷水であるため一瞬にして凝固されるため、偏平粒子が多く生成されたり、粒径のばらつきが大きくなったりして、収率が低いという問題を有している。 However, the underwater dropping method shown in Patent Document 1 has a problem that it is difficult to suppress the oxidation of the molten metal because the tip of the nozzle is spaced apart from the water surface. Also, when molten metal enters the water, it needs to enter the water while colliding with the water surface and breaking the water surface tension, and since it is cold water, it solidifies in an instant, so many flat particles are generated, As a result, there is a problem that the yield is low.
一方、特許文献2の油中滴下法は、水中滴下法に比べて真円度の高いはんだボールを製作することができるものの、カラム中では油が局所的に加熱されるため油の温度分布が不均一となり、これによって発生する対流の影響を受けてノズルから吐出された溶融金属の分断が不安定となり、はんだボールの粒度分布が広くなって所望の粒径を有するはんだボールの収率が低くなるという問題を抱えていた。 On the other hand, the in-oil dropping method of Patent Document 2 can produce solder balls with higher roundness than the underwater dropping method, but the oil is locally heated in the column, so the temperature distribution of the oil is It becomes non-uniform, and the division of the molten metal discharged from the nozzle is unstable due to the influence of the convection generated thereby, the particle size distribution of the solder balls is widened, and the yield of solder balls having a desired particle size is low. Had the problem of becoming.
本発明は上記した従来の油中滴下法が抱える問題点に鑑みてなされたものであり、加熱された油の対流による不安定なはんだボールの生成を抑えて粒径のばらつきの少ないはんだボールを安定的に製造可能なはんだボールの製造方法及び製造装置を提供することを目的とする。 The present invention has been made in view of the problems of the conventional oil-in-oil dropping method described above, and suppresses the generation of unstable solder balls due to convection of heated oil, thereby reducing solder particle diameter variation. An object of the present invention is to provide a solder ball manufacturing method and a manufacturing apparatus that can be stably manufactured.
上記目的を達成するため、本発明のはんだボールの製造方法は、不活性ガスで加圧された溶融状態のはんだ原料を油中で滴下してはんだボールを製造する方法であって、該油の液面から深さ40mmまでの範囲内であって且つ熱による対流が実質的に生じない油中の位置で該はんだ原料を吐出することを特徴としている。 In order to achieve the above object, a method for producing a solder ball according to the present invention is a method for producing a solder ball by dripping a molten solder material pressurized with an inert gas in oil. It is characterized in that the solder raw material is discharged at a position in the oil within a range from the liquid surface to a depth of 40 mm where convection due to heat does not substantially occur.
また、本発明に係る油中滴下装置は、不活性ガスで加圧された溶融状態のはんだ原料を吐出するノズルと、該吐出したはんだ原料の油中滴下が行われるカラムとからなる油中滴下装置であって、該ノズルの先端部は該カラム内の油の液面から深さ40mmまでの油中に配されており、且つ下方に向けて縮径して部分的に油中に浸漬する切頭円錐部とその下端部から下方に延在する円筒部とからなる対流抑制部材によって囲まれていることを特徴としている。 The oil dropping apparatus according to the present invention includes a nozzle that discharges a molten solder material pressurized with an inert gas and a column in which the discharged solder material is dropped in oil. It is an apparatus, and the tip of the nozzle is arranged in the oil up to a depth of 40 mm from the oil level in the column, and is reduced in diameter downward and partially immersed in the oil. It is characterized by being surrounded by a convection suppressing member comprising a truncated cone portion and a cylindrical portion extending downward from the lower end portion thereof.
本発明によれば、従来の油中滴下法に比べて粒径のばらつきが少ないはんだボールを極めて高い収率で製造することが可能になる。 According to the present invention, it is possible to produce solder balls with a very high yield with less variation in particle size as compared with conventional oil-in-drop methods.
以下、図1を参照しながら本発明の油中滴下装置の一具体例について説明する。この本発明の一具体例の油中滴下装置は、窒素ガスなどの不活性ガスで加圧された溶融状態のはんだ原料を下方に向けて吐出する好適には石英で形成されるノズル10と、このノズル10から吐出したはんだ原料を油中で滴下させてはんだボールの形成を行うカラム20とから主に構成される。
Hereinafter, a specific example of the in-oil dropping device of the present invention will be described with reference to FIG. The in-oil dropping device according to one specific example of the present invention includes a
具体的に説明すると、ノズル10はその周囲に高周波コイル11が巻き付けられており、ノズル10から吐出させるはんだ原料が溶融状態になるように加熱している。ノズル10の上部には圧力調整手段12を備えたガス供給配管13が接続しており、このガス供給配管13を介して図示しないガス供給源から窒素ガスなどの不活性ガスが所定圧で供給される。これにより一定の吐出圧で溶融状態のはんだ原料をノズル10の孔から吐出させることができる。
More specifically, the
上記ノズル10の下側に位置するカラム20は、ノズル10から吐出したはんだ原料が油中で球状になって沈降する間に凝固してはんだボールが形成されるように、例えば高さ1300〜1800mm、内径100〜300mm程度の縦長の円筒形状を有している。このカラム20内の油をはんだ原料の融点近くまで加熱するため、カラム20の上部にはヒーター21が巻き付けられている。カラム20の下部はヒーター21が巻き付けられておらず、低温部となっている。ヒーター21が巻きついている部分の更に上部は、上記したノズル10が収納できるように拡径部20aを介して例えば高さ150〜200mm、内径300〜400mm程度の大径部20bが設けられている。
The
このカラム10内の大径部20bの高さの約1/3程度まで油が満たされており、ノズル10の先端部が油中に浸漬している。ノズル10は、上下方向に移動自在な高さ調整手段14に取り付けられており、ノズル10の先端部の位置を上下方向に調節して所望の高さに設定できるようになっており、ノズル10の先端部が、カラム10内の油の液面から深さ40mmまでの油中に位置するように調整されている。この高さ調整手段14の具体的な機構については特に限定するものではなく、例えば軸方向を垂直して回動自在に設置したネジ部に把持部材を螺合させ、この把持部材にノズル10を把持させる機構を挙げることができる。
The oil is filled up to about 1/3 of the height of the large-
ノズル10の先端部は、更に油中において、熱によって生じる油の対流を抑制する対流抑制部材22によって全周囲を囲まれている。この対流抑制部材22は、下方に向けて縮径して部分的に油中に浸漬する切頭円錐部22aと、その下端部から油中において下方に延在する円筒部22bとからなる。切頭円錐部22aの上端部は、カラム10内の油の液面よりも約50mm上方で大径部20bの内径に取り付けられており、ここから鉛直方向に対して好適には20〜60°の角度で傾斜している。切頭円錐部22aの下端部に接続している円筒部22bの内径は10〜50mmが好ましい。
The entire tip of the
このようなロート状の対流抑制部材22によってノズル10の先端部を囲むことによって、ノズル10の先端部の位置を熱による対流が実質的に生じない液面から深さ40mmまでの油中に配することとの相乗効果によって、溶融金属をノズル10から吐出する際、油の対流による振動などの悪影響を最小限に抑えることができ、ノズル10から糸状に吐出される溶融金属が分断されるときの安定性を向上させることができる。これによりカラム20内を沈降するはんだボールBの粒径のばらつきを抑えることができ、所望の粒径のはんだボールの収率が格段に向上する。更に、外観・形状の不良率の発生が低くなる。
By surrounding the tip portion of the
次に、上記した油中滴下装置を用いて油中滴下法ではんだボールを製造する方法について説明する。最初に、油中滴下装置に装入する合金インゴットの作製について説明する。先ず、所定のはんだ原料の組成となるように各原料金属を秤量する。この際、原料金属のサイズが不均一で大きな塊がないことを確認してグラファイト坩堝に投入する。原料金属のサイズが不均一で大きな塊がある場合、融点の高い金属が融解しづらく、溶け残りが発生する恐れがあるからである。なお、酸化しづらい主としてAu固溶体とGe固溶体、またはAu固溶体とSn固溶体からなるはんだ原料を用いるのがより好ましい。これにより、従来に比べてより高収率かつ高品質のはんだボールを作製することができる。 Next, a method for producing solder balls by the in-oil dropping method using the above-described in-oil dropping apparatus will be described. First, the production of an alloy ingot to be charged into the oil dropping device will be described. First, each raw material metal is weighed so as to have a predetermined solder raw material composition. At this time, it is confirmed that the size of the raw material metal is non-uniform and there is no large lump, and it is put into a graphite crucible. This is because when the size of the raw metal is uneven and there are large lumps, the metal having a high melting point is difficult to melt, and there is a possibility that unmelted metal may be generated. It is more preferable to use a solder raw material mainly composed of an Au solid solution and a Ge solid solution, or an Au solid solution and an Sn solid solution, which are difficult to oxidize. Thereby, it is possible to produce a solder ball with higher yield and higher quality than conventional.
原料金属の入った坩堝を高周波炉にセットし、上方から溶融金属の酸化を防止するため不活性ガスを流す。次に合金投入量や各金属の融点を考慮し、その融点よりも200℃程度高い温度になるようにコイルに電流を流して加熱する。その際、ガラス棒で適宜溶融金属を撹拌しながら金属の溶融状態を確認し、均一に溶融したら高周波の電源を切り、速やかにグラファイト坩堝から取り出し、ノズルの形状に合った鋳型に流し込む。十分に冷却した後、金属が固まったことを確認して鋳型から取り出す。これにより、油中滴下装置用の合金インゴットが得られる。 A crucible containing raw metal is set in a high frequency furnace, and an inert gas is flowed from above to prevent oxidation of the molten metal. Next, in consideration of the amount of alloy input and the melting point of each metal, the coil is heated by passing an electric current so that the temperature is about 200 ° C. higher than the melting point. At this time, the molten state of the metal is confirmed while stirring the molten metal appropriately with a glass rod. When the molten metal is uniformly melted, the power of the high frequency is turned off, and it is quickly taken out from the graphite crucible and poured into a mold that matches the shape of the nozzle. After cooling sufficiently, confirm that the metal has hardened and remove it from the mold. Thereby, an alloy ingot for an in-oil dropping device is obtained.
次に、油中滴下法について説明する。石英製のノズルに上記にて作製した合金インゴットを装入し、該ノズルを高周波コイルの中心に取り付け、更にノズルの上部に圧縮ガス供給用の治具を取り付ける。油を加熱するヒーターの電源を入れ、20〜100℃/分の昇温速度で油を加熱し、はんだ原料の融点近辺になった時点で昇温を停止し、該温度をはんだボールの作製が終了するまで維持する。その後、ノズルの先端を加熱された油の液面から深さ40mmまでの位置に沈める。特に、カラム中の油の温度分布が異なることによって発生する激しい対流を避けるため、ノズルの先端部の油中の深さは液面から2〜25mmの範囲内がより好ましい。なおノズルの先端部の位置が液面から40mmを超えると、高周波コイルとインゴットの距離が遠くなり、固相ができたりして好ましくない。 Next, the in-oil dropping method will be described. The alloy ingot prepared above is inserted into a quartz nozzle, the nozzle is attached to the center of the high frequency coil, and a jig for supplying compressed gas is attached to the upper part of the nozzle. Turn on the power of the heater that heats the oil, heat the oil at a rate of temperature increase of 20-100 ° C./min, stop the temperature increase when the temperature near the melting point of the solder raw material, Maintain until finished. Thereafter, the tip of the nozzle is submerged to a depth of 40 mm from the heated oil level. In particular, in order to avoid vigorous convection caused by a difference in temperature distribution of oil in the column, the depth in the oil at the tip of the nozzle is more preferably in the range of 2 to 25 mm from the liquid level. If the position of the tip of the nozzle exceeds 40 mm from the liquid level, the distance between the high-frequency coil and the ingot is increased, and a solid phase is formed, which is not preferable.
次に、高周波コイルの電源を入れ、150〜300℃/分の昇温速度で加熱し、合金インゴットを溶融させる。合金融点より100〜300℃より高い温度、より好ましくは合金融点より200〜300℃高い温度に達した時点で不活性ガスのバルブを開き、0.01MPaG以上0.50MPaG以下に加圧し、溶融した金属を吐出させる。吐出圧力は金属の密度によって調整するのが好ましく、例えばAuが主成分の場合0.08MPaG以上0.25MPaG以下が好ましい。ノズルにおいて、合金融点より好適には100℃高い温度の溶融状態で0秒以上1800秒以下の時間加熱保持するのが好ましい。これにより、組成をより均一化することができ、溶け残りや偏析の発生を最小限に抑制して吐出することができる。なお、Auを主成分とするはんだ合金の場合はこの加熱保持時間は100秒程度がより好ましい。 Next, the power of the high-frequency coil is turned on and heated at a heating rate of 150 to 300 ° C./min to melt the alloy ingot. When reaching a temperature higher than the melting point of the alloy by 100 to 300 ° C., more preferably 200 to 300 ° C. higher than the melting point of the alloy, the inert gas valve is opened and pressurized to 0.01 MPaG or more and 0.50 MPaG or less, Discharge the molten metal. The discharge pressure is preferably adjusted according to the density of the metal. For example, when Au is the main component, 0.08 MPaG or more and 0.25 MPaG or less is preferable. In the nozzle, it is preferable that the nozzle is heated and held in a molten state at a temperature higher by 100 ° C. than the melting point of the alloy for a time of 0 seconds to 1800 seconds. As a result, the composition can be made more uniform, and discharge can be performed while minimizing the occurrence of undissolved material and segregation. In the case of a solder alloy mainly composed of Au, the heating and holding time is more preferably about 100 seconds.
溶融金属を吐出する際、従来の油中滴下法では吐出された溶融金属の分断が油の対流による振動の影響を受けて、常に同じ体積の溶融金属片に分断できずに不安定となる。その結果、はんだボールの粒度分布がブロードになり、所望の粒度のはんだボールの収率が悪くなっていた。これに対して、上記した方法で油中滴下することによりはんだボールの粒径のばらつきが抑えられ、収率が格段に向上する。特に、吐出圧力を制御すると共に高周波による加熱時の保持時間を最適化することにより、ノズル系内の圧力が安定化するため、はんだボールの形状や粒度分布がばらつくことなく安定し、過加圧によって生じやすい二個玉、変形ボール、瘤付ボールなど形状・外観不良のはんだボールがほとんど形成されなくなり、極めて高い収率が可能となる。この効果は、はんだ合金がAu系はんだの場合に特に顕著になる。 When discharging molten metal, in the conventional drop-in-oil method, the division of the discharged molten metal is affected by the vibration caused by the convection of the oil, so that the molten metal cannot always be divided into pieces of the same volume and becomes unstable. As a result, the particle size distribution of the solder balls becomes broad, and the yield of solder balls having a desired particle size has deteriorated. On the other hand, by dripping in oil by the method described above, variation in the particle size of the solder balls is suppressed, and the yield is remarkably improved. In particular, by controlling the discharge pressure and optimizing the holding time during heating with high frequency, the pressure in the nozzle system is stabilized, so that the shape and particle size distribution of the solder balls are stable and overpressurized. As a result, almost no solder balls having poor shape and appearance such as two balls, deformed balls, and knurled balls, which are likely to be generated due to the above, are formed, and an extremely high yield is possible. This effect is particularly remarkable when the solder alloy is Au-based solder.
はんだボールの原料となる溶融金属の吐出が完了した後、カラム下部の低温部で十分冷却してから、該カラム下部のバルブを開けてはんだボールを回収する。回収したはんだボールは油が付着しているため有機溶媒で洗浄するのが好ましい。この際、高揮発性で且つはんだボールを酸化させないものがよい。例えば、エタノールは揮発性が高く、洗浄時間を短くできるので好ましい。 After the molten metal serving as the solder ball raw material is completely discharged, the molten metal is sufficiently cooled at the low temperature portion at the bottom of the column, and then the valve at the bottom of the column is opened to collect the solder ball. The collected solder balls are preferably washed with an organic solvent since oil is adhered. At this time, a material that is highly volatile and does not oxidize the solder balls is preferable. For example, ethanol is preferable because it has high volatility and can shorten the washing time.
図1に示すような油中滴下装置を用いて、融点356℃付近の共晶組成である、Ge含有率12質量%及びAu含有率88質量%のAuGeはんだボールを作製した。具体的には、先ず、原料として純度99.9質量%以上のAuとGeとを準備した。これらを上記した組成となるようにそれぞれの原料を電子天秤で秤量し、高周波溶解炉用のグラファイト製坩堝に入れた。 An AuGe solder ball having a Ge content of 12% by mass and an Au content of 88% by mass having a eutectic composition around 356 ° C. was prepared using an in-oil dropping apparatus as shown in FIG. Specifically, first, Au and Ge having a purity of 99.9% by mass or more were prepared as raw materials. Each raw material was weighed with an electronic balance so as to have the above-described composition, and placed in a graphite crucible for a high-frequency melting furnace.
この原料の入った坩堝を高周波溶解炉に入れ、溶解炉の電源をいれて原料を加熱溶融させた。加熱する際、酸化を抑制するために窒素ガスを原料1Kgあたり0.6リットル/分以上の流量で流した。金属が溶融しはじめたら偏析が起こらないようにガラス棒で均一に混ぜた。十分溶融したことを確認した後、速やかに坩堝を取り出し、坩堝内の溶湯をノズルの形状に合った鋳型に流し込んだ。このようにして合計28本のインゴットを作製した。 The crucible containing this raw material was placed in a high-frequency melting furnace, and the melting furnace was turned on to heat and melt the raw material. When heating, nitrogen gas was flowed at a flow rate of 0.6 liter / min or more per 1 kg of the raw material in order to suppress oxidation. When the metal began to melt, it was mixed uniformly with a glass rod so that segregation did not occur. After confirming that it was sufficiently melted, the crucible was quickly taken out, and the molten metal in the crucible was poured into a mold matching the shape of the nozzle. In this way, a total of 28 ingots were produced.
上記のようにして作製した28本のインゴットからそれぞれ試料1〜28のはんだボールを製造した。各試料のはんだボールの作製では、図1に示すような油中滴下装置を使用した。その際、下記表1に示すように、ノズル先端部の液面からの深さ(mm)、ノズルからの吐出圧力(MPaG)、融点よりも200〜300℃高い温度での保持時間(秒)、及び対流抑制部材の有無の4つのパラメータを様々に変化させた。すなわち、各インゴットを石英製ノズルに入れ、ノズルの先端部を油の液面から0.1〜70mmのうちのいずれかの深さとなるように沈め、高周波コイルで金属インゴットを800℃まで加熱し、目視で完全に溶解したことを確認後、高周波の温度を下げ、556℃で0〜1800秒のうちのいずれかの時間保持してから、窒素ガスで溶融金属を0.05〜0.9MPaGで加圧して吐出させ、AuGeボールを製作した。なお、ボール直径の設定値は0.025mmとなるように、予めノズル先端の孔径を調整した。また、油中滴下装置のカラム内の油には、はんだボールの酸化抑制効果が大きい油を用いた。 Solder balls of Samples 1 to 28 were produced from the 28 ingots produced as described above. In the production of the solder balls for each sample, an oil-in-water dropping device as shown in FIG. 1 was used. At that time, as shown in Table 1 below, the depth from the liquid surface of the nozzle tip (mm), the discharge pressure from the nozzle (MPaG), and the holding time at a temperature 200 to 300 ° C. higher than the melting point (seconds) And the four parameters of the presence or absence of the convection suppressing member were changed variously. That is, each ingot is put into a quartz nozzle, the tip of the nozzle is submerged to a depth of 0.1 to 70 mm from the oil level, and the metal ingot is heated to 800 ° C. with a high frequency coil. After confirming that it was completely dissolved by visual observation, the temperature of the high frequency was lowered, held at 556 ° C. for any time from 0 to 1800 seconds, and then the molten metal was added with nitrogen gas to 0.05 to 0.9 MPaG. The AuGe ball was manufactured by pressurizing and discharging. The hole diameter at the tip of the nozzle was adjusted in advance so that the set value of the ball diameter was 0.025 mm. Moreover, the oil in the column of the dripping apparatus in oil used the oil with the big oxidation inhibitory effect of a solder ball.
得られた各試料のボールに対して、下記の方法により所定の粒径に分級してボール径の標準偏差、不良率と良品収率を調べ、下記の評価方法で評価した。すなわち、凝固したボールをカラムの下端から回収し、エタノール液で洗浄し、乾燥機を用いて85℃で乾燥した。乾燥したボールをランダムに200粒を抽出し、レーザー顕微鏡でボールの直径を測定し、ボール径の標準偏差を算出した。次にプレティング機を用いて形状・外観不良と良品ボールとを選別し、ボールの不良率を算出した。一方、残りのはんだボールに対しては、二軸分級器を用いて直径0.025±0.002mmの範囲で分級し、この分級によって得られたボールの収率を下記の式1により算出した。上記の評価結果を下記表2に示す。
[式1]
ボール収率(%)=直径0.025±0.002mmのボール質量÷分級投入ボール質量×100
The obtained balls of each sample were classified into predetermined particle diameters by the following method, the standard deviation of the ball diameter, the defect rate, and the yield of non-defective products were examined and evaluated by the following evaluation methods. That is, the solidified balls were collected from the lower end of the column, washed with an ethanol solution, and dried at 85 ° C. using a dryer. 200 dried balls were extracted at random, the diameter of the balls was measured with a laser microscope, and the standard deviation of the ball diameter was calculated. Next, the shape / appearance defects and non-defective balls were selected using a plating machine, and the defect ratio of the balls was calculated. On the other hand, the remaining solder balls were classified in a range of diameter 0.025 ± 0.002 mm using a biaxial classifier, and the yield of the balls obtained by this classification was calculated by the following formula 1. . The evaluation results are shown in Table 2 below.
[Formula 1]
Ball yield (%) = mass of ball of diameter 0.025 ± 0.002 mm ÷ mass of charged ball of classification × 100
上記表2から分かるように、本発明の方法に基づいて作製した試料1〜20の各AuGeボールはボール径の標準偏差と不良率が小さく、高い収率を示している。特にノズルと液面の深さが20mm、吐出圧力が0.1MPaG、556℃での保持時間が500秒、対流抑制部材を装着した試料14において、68.3%という極めて高い収率を示しており、それ以外の試料においても比較例である試料21〜28と比べて収率と品質が飛躍的に向上していることが分かる。すなわち、ノズル先端部の液面からの深さ、吐出圧力、融点より200〜300℃高い温度での保持時間及び対流抑制部材という四つのパラメータを適切に制御することで、製品の収率と品質を格段の向上させる効果が得られることが分かる。
As can be seen from Table 2 above, each AuGe ball of Samples 1 to 20 produced based on the method of the present invention has a small ball diameter standard deviation and a defective rate, and shows a high yield. Particularly, in the
一方、本発明の要件のいずれかを満たさない方法で作製した試料21〜28のAuGeボールはいずれも好ましくない結果となった。即ち、ボールの収率は高くても14%と試料1〜20のいずれよりも低く、ボール径の標準偏差、不良率も本発明の全試料よりも明らかに悪かった。特に、吐出圧力が0.6MPaG以上になると、溶融金属がノズルから勢いよく吐出されるためその分断が難しくなり、ボール状に分断される前に凝固され、外観・形状不良のボールの割合が格段に増えた。また、対流抑制部材を装着しない場合、ボールの収率は半分以上低くなった。更にノズル先端部の油面からの深さが40mmを超えるように沈めた場合、上部の高周波コイルとインゴットの位置とがずれたので、インゴットが良好に溶解されなくなり、ノズルの先端部で詰まりが発生して溶融金属が吐出されなくなる場合があった。
On the other hand, the AuGe balls of
10 ノズル
11 高周波コイル
12 圧力調整手段
13 ガス供給配管
14 高さ調整手段
20 カラム
21 ヒーター
22 対流抑制部材
B はんだボール
DESCRIPTION OF
Claims (7)
該ノズルの先端部は該カラム内の油の液面から深さ40mmまでの油中に配されており、且つ下方に向けて縮径して部分的に油中に浸漬する切頭円錐部とその下端部から下方に延在する円筒部とからなる対流抑制部材によって囲まれていることを特徴とする油中滴下装置。 An in-oil dropping device comprising a nozzle for discharging a molten solder material pressurized with an inert gas, and a column in which the discharged solder material is dropped in oil,
The tip of the nozzle is disposed in the oil up to a depth of 40 mm from the oil level in the column, and has a truncated cone portion that is reduced in diameter downward and partially immersed in the oil. A dripping device in oil characterized by being surrounded by a convection suppressing member comprising a cylindrical portion extending downward from a lower end portion thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014070613A JP6167966B2 (en) | 2014-03-28 | 2014-03-28 | Solder ball manufacturing method and manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014070613A JP6167966B2 (en) | 2014-03-28 | 2014-03-28 | Solder ball manufacturing method and manufacturing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015190051A JP2015190051A (en) | 2015-11-02 |
JP6167966B2 true JP6167966B2 (en) | 2017-07-26 |
Family
ID=54424808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014070613A Active JP6167966B2 (en) | 2014-03-28 | 2014-03-28 | Solder ball manufacturing method and manufacturing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6167966B2 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6421072A (en) * | 1987-07-16 | 1989-01-24 | Hitachi Ltd | Apparatus for melting and evaporating material |
JP3281019B2 (en) * | 1992-01-30 | 2002-05-13 | 同和鉱業株式会社 | Method and apparatus for producing zinc particles |
JP2000332047A (en) * | 1999-05-24 | 2000-11-30 | Sumitomo Metal Mining Co Ltd | Manufacture of solder balls |
JP2000328112A (en) * | 1999-05-24 | 2000-11-28 | Sumitomo Metal Mining Co Ltd | Manufacture of solder ball and manufacturing device therefor |
DE10120612A1 (en) * | 2001-04-26 | 2002-11-21 | Omg Ag & Co Kg | Method and device for producing spherical metal particles |
JP2008030093A (en) * | 2006-07-28 | 2008-02-14 | Sumitomo Metal Mining Co Ltd | Au/Ge ALLOY SOLDER BALL |
JP4780464B2 (en) * | 2006-09-27 | 2011-09-28 | 三菱マテリアル株式会社 | Au-Ge alloy solder paste |
JP5078167B2 (en) * | 2009-03-14 | 2012-11-21 | 田中貴金属工業株式会社 | AuGe alloy balls for soldering |
JP2011126738A (en) * | 2009-12-17 | 2011-06-30 | Showa Denko Kk | Apparatus for pulling single crystal, and method for pulling single crystal |
-
2014
- 2014-03-28 JP JP2014070613A patent/JP6167966B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015190051A (en) | 2015-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2301027A (en) | Method of casting | |
CN105458264B (en) | A kind of increasing material manufacturing method under contact type mechanical vibration condition | |
RU2663661C2 (en) | Method and installation for manufacture of large diameter ingots | |
CN108500279B (en) | Cold bed smelting type gas atomization powder preparation method and device | |
JP5048222B2 (en) | Method for producing long ingots of active refractory metal alloys | |
JP6464814B2 (en) | Solder ball manufacturing apparatus and manufacturing method | |
EP2886519B1 (en) | Vertical crucible pulling process for producing a glass body having a high silica content | |
KR960006048B1 (en) | Method and device for the granulation of a molten material | |
JP6167966B2 (en) | Solder ball manufacturing method and manufacturing apparatus | |
JP2016064416A (en) | Method for production of platinum group-based alloy | |
KR20160112149A (en) | Manufacturing method for Fe-Cu alloy | |
JP4227084B2 (en) | Apparatus for producing spherical fine copper powder by rotating disk method and method for producing spherical fine copper powder by rotating disk method | |
WO2013152946A1 (en) | A method for producing shot from melt, a device for carrying out same, a device for cooling melt fragments, and a die for producing shot from melt | |
JP6994392B2 (en) | Ingot made of an alloy containing titanium as the main component, and its manufacturing method | |
KR102283343B1 (en) | Slag for electro slag remelting and the method for preparing ingot using the same | |
CN113458352B (en) | Method for producing Cu-Ni-Sn alloy and cooler for use in same | |
JP2016185562A (en) | Method and apparatus for manufacturing ingot comprising alloy of high melting point active metal | |
JP7173152B2 (en) | Manufacturing method and manufacturing apparatus for titanium alloy ingot | |
JP6736029B2 (en) | Method for manufacturing alloy castings | |
JP5847686B2 (en) | Method of adding mold flux into continuous casting mold | |
JP6546721B2 (en) | Quartz glass crucible for pulling single crystal silicon | |
JPH04272146A (en) | Production of titanium and titanium alloy product | |
JP7406075B2 (en) | Titanium ingot manufacturing method and titanium ingot manufacturing mold | |
WO2021024704A1 (en) | METHOD FOR CASTING Ti-AL BASED ALLOY | |
JP5250480B2 (en) | Ingot manufacturing method and cold crucible induction melting apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170612 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6167966 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |