JP2017030013A - Continuous casting method of double-layered cast slab and continuous casting apparatus - Google Patents

Continuous casting method of double-layered cast slab and continuous casting apparatus Download PDF

Info

Publication number
JP2017030013A
JP2017030013A JP2015151910A JP2015151910A JP2017030013A JP 2017030013 A JP2017030013 A JP 2017030013A JP 2015151910 A JP2015151910 A JP 2015151910A JP 2015151910 A JP2015151910 A JP 2015151910A JP 2017030013 A JP2017030013 A JP 2017030013A
Authority
JP
Japan
Prior art keywords
molten steel
magnetic field
tundish
pool
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015151910A
Other languages
Japanese (ja)
Other versions
JP6500682B2 (en
Inventor
原田 寛
Hiroshi Harada
寛 原田
真士 阪本
Shinji Sakamoto
真士 阪本
悠衣 伊藤
Yui Ito
悠衣 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015151910A priority Critical patent/JP6500682B2/en
Publication of JP2017030013A publication Critical patent/JP2017030013A/en
Application granted granted Critical
Publication of JP6500682B2 publication Critical patent/JP6500682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a continuously cast double-layered slab whose surface layer part is higher than the inner layer part of the double-layered slab in concentration, a manufacturing method thereof, and a manufacturing apparatus thereof.SOLUTION: Provided are a continuous casting method of a double-layered cast slab and a continuous casting apparatus thereof, in which a tundish 2 is divided into two regions by a weir 4 having an opening 10, and while a molten steel is fed from a ladle in one of the regions, a first region 11, a prescribed element or an alloy thereof is continuously added to adjust a concentration in the other second region 12, and thereby, the molten steel with two kinds of components is retained in the tundish. The molten steel quantity to be consumed by solidification in respective molten steel pools on the upper part and the lower part of a strand sandwiching a DC magnetic field band 14 formed by a DC magnetic field generating device 8 for applying a DC magnetic field in a thickness direction to the whole width in a mold width direction is supplied into a mold by using two immersion nozzles disposed on the bottom of each chamber of the tundish.SELECTED DRAWING: Figure 1

Description

本発明は、鋳片表層部と内部の濃度が異なる複層状の鋳片を鋳造する連続鋳造方法および連続鋳造装置に関する。   The present invention relates to a continuous casting method and a continuous casting apparatus for casting a multilayered slab having a concentration different from that of a slab surface layer portion.

表層と内層の成分組成が異なる複層状の鋳片を製造する試みは古くから行われている。例えば、特許文献1に開示された方法があげられる。特許文献1には、長さの異なる二本の浸漬ノズルを鋳型内にある溶融金属のプールに挿入し、それぞれの吐出口を深さが異なる位置に設け、さらに異種の溶融金属間に直流磁場を利用して両金属の混合を防止しながら複層鋳片を製造する方法が開示されている。   Attempts to produce multi-layered slabs having different surface layer and inner layer composition have been made for a long time. For example, the method disclosed in Patent Document 1 can be mentioned. In Patent Document 1, two immersion nozzles having different lengths are inserted into a pool of molten metal in a mold, each discharge port is provided at a position having a different depth, and a DC magnetic field is provided between different types of molten metal. A method for producing a multilayer slab while preventing the mixing of both metals is disclosed.

しかしながら、上記方法では成分組成が異なる二種類の溶鋼を用いるため、二種類の溶鋼を同じタイミングで別々に溶製し、連続鋳造プロセスに搬送し、また、それぞれの溶鋼の中間保持容器として、タンディッシュをそれぞれ準備する必要がある。また、表層溶鋼と内層溶鋼で注入流量が大きく異なるため、1ヒート毎の必要溶鋼量が大きく異なり、通常の製鋼工場で実現するのは困難であった。   However, since the above method uses two types of molten steel having different component compositions, the two types of molten steel are separately melted at the same timing, transported to a continuous casting process, and used as an intermediate holding container for each molten steel. Each dish needs to be prepared. In addition, since the injection flow rate is greatly different between the surface layer molten steel and the inner layer molten steel, the amount of molten steel required for each heat is greatly different, which is difficult to realize in a normal steelmaking factory.

そこで、より簡便に鋳片の表層と内層の成分組成が異なる鋳片を鋳造する方法として、大きく分けて2つの方法が検討されている。ひとつは、鋳型内幅方向に一様な磁束密度分布を有する直流磁場を厚み方向に印加することで得られる電磁制動を利用して、その直流磁場帯の上方にワイヤー、あるいは連続鋳造用パウダーに何がしかの合金元素を含有させ連続的に供給することで鋳片表層を改質する方法が検討されている。   Thus, two methods are roughly studied as methods for more easily casting slabs having different component compositions of the surface layer and inner layer of the slab. One is to use electromagnetic braking obtained by applying a DC magnetic field having a uniform magnetic flux density distribution in the width direction of the mold in the thickness direction, to wire or powder for continuous casting above the DC magnetic field band. A method of modifying the slab surface layer by containing some alloy element and continuously supplying it has been studied.

鋳型内にワイヤー等で元素を添加する方法を開示したものとして、例えば特許文献2があげられる。この方法では、鋳型内のメニスカス部よりも少なくとも200mm下方に鋳型内溶鋼を遮断する直流磁場を設けるとともに、上方の溶鋼あるいは下部の溶鋼に所定元素を添加するとともに、元素を添加した溶鋼を撹拌することを特徴とする連続鋳造による複層鋼板の製造方法である。   For example, Patent Document 2 discloses a method for adding an element into a mold using a wire or the like. In this method, a direct-current magnetic field for cutting off the molten steel in the mold is provided at least 200 mm below the meniscus portion in the mold, and a predetermined element is added to the upper molten steel or the lower molten steel, and the molten steel to which the element has been added is stirred. It is the manufacturing method of the multilayer steel plate by the continuous casting characterized by this.

連続鋳造用パウダーになにがしかの元素を含有させ連続的に供給する、あるいは、パウダー層の上方から連続的にパウダーと反応しにくい金属粉あるいは金属粒を供給することによって溶鋼に元素を添加する方法として、例えば、特許文献3に開示された方法があげられる。この方法では、合金元素を含有させた連鋳用パウダーを用い、連続鋳造鋳型内の上部に電磁撹拌装置を設置して鋳型内上部溶鋼の水平断面内で合金元素を溶解・混合する撹拌流を形成し、その下方に幅方向に直流磁場を鋳片の厚み方向に印加して溶鋼中に直流磁場帯を形成し、かつ、その直流磁場帯の下方に浸漬ノズルにより溶鋼を供給して鋳造することで、合金元素の鋳片表層部の濃度が内層に比べて高い複層状の鋳片を製造する方法である。   A method of adding elements to molten steel by continuously supplying powder for continuous casting containing some elements, or by supplying metal powder or metal particles that are difficult to react with powder continuously from above the powder layer For example, the method disclosed in Patent Document 3 can be cited. In this method, a continuous casting powder containing an alloy element is used, and an electromagnetic stirrer is installed in the upper part of the continuous casting mold, and a stirring flow for melting and mixing the alloy element in the horizontal section of the upper molten steel in the mold is performed. A DC magnetic field is applied in the width direction below the slab to form a DC magnetic field zone in the molten steel, and the molten steel is supplied by an immersion nozzle below the DC magnetic field zone and cast. Thus, this is a method for producing a multilayered slab in which the concentration of the alloy element slab surface layer is higher than that of the inner layer.

なお、非特許文献1には、直流磁場として0.2〜0.3Tの磁場を印加することで、表層/内層の分離が図れることが開示されている。   Non-Patent Document 1 discloses that the surface layer / inner layer can be separated by applying a magnetic field of 0.2 to 0.3 T as a DC magnetic field.

しかしながら、鋳型内では上部にパウダー層が存在し、かつ周囲から冷却され、さらに矩形断面形状となるため、過剰な撹拌を行うことができず、濃度の均一化が図りにくい。また、ストランド上部と下部に供給する溶鋼量を独立に制御しないため、上下プール間での溶鋼混合が避けられず、分離度の高い鋳片を製造しにくいという課題があった。   However, a powder layer exists in the upper part in the mold and is cooled from the surroundings, and further has a rectangular cross-sectional shape. Therefore, excessive stirring cannot be performed and it is difficult to make the concentration uniform. Moreover, since the amount of molten steel supplied to the upper part and the lower part of the strand is not controlled independently, mixing of molten steel between the upper and lower pools is unavoidable, and there is a problem that it is difficult to produce a slab having a high degree of separation.

鋳造後に鋳片表面を改質する方法としては、例えば、特許文献4に、鋳片の表層を誘導加熱、プラズマ加熱のいずれか一方または双方により溶融させ、溶融した鋳片の表層部分に添加元素もしくはその合金を添加することを特徴とする鋳片の表層改質方法が開示されている。しかしながら、溶融プールの体積が小さいため、成分は添加できるものの濃度の均一化を図ることが難しいことや、方法上鋳片全面を一度に溶融されることが困難であり、鋳片表層全周にわたって改質するには複数回の溶融改質を行う必要がある等の課題があった。   As a method for modifying the surface of the slab after casting, for example, in Patent Document 4, the surface layer of the slab is melted by one or both of induction heating and plasma heating, and an additive element is added to the surface layer portion of the melted slab. Alternatively, a method for modifying the surface layer of a slab characterized by adding an alloy thereof is disclosed. However, since the volume of the molten pool is small, it is difficult to achieve a uniform concentration, although the components can be added, and it is difficult to melt the entire slab at once due to the method. There are problems such as the necessity of performing melt reforming a plurality of times for the modification.

特開昭63−108947号公報JP 63-108947 A 特開平3−243245号公報JP-A-3-243245 特開平8−290236号公報JP-A-8-290236 特開2004−195512号公報JP 2004-195512 A

E.Takeuchi, M.Zeze, H.Tanaka, H.Harada and S.Mizoguchi: Ironmaking and Steelmaking, 24(1997),257.E. Takeuchi, M. Zeze, H. Tanaka, H. Harada and S. Mizoguchi: Ironmaking and Steelmaking, 24 (1997), 257.

本発明は上記課題を解決するためになされたものであり、一つの取鍋、一つのタンディッシュにて連続鋳造用溶鋼を供給し、鋳片表層部の合金元素濃度が内部と比較して異なる複層状の連続鋳造鋳片を鋳造する連続鋳造方法および連続鋳造装置を提供することを目的としている。   The present invention has been made in order to solve the above-mentioned problems. The molten steel for continuous casting is supplied with one ladle and one tundish, and the alloy element concentration of the slab surface layer is different from the inside. An object of the present invention is to provide a continuous casting method and a continuous casting apparatus for casting a multilayer continuous casting slab.

本発明は、
(1) 鋳片の表層と内層の成分組成が異なる複層鋳片を製造する方法であって、タンディッシュの底部に、内層溶鋼用浸漬ノズルと、さらにその下流側に表層溶鋼用浸漬ノズルを配置し、これら2つの浸漬ノズルの間にタンディッシュ堰を設置し、該タンディッシュ堰は溶鋼浸漬部に開口面積率が10%以上70%以下の開口を有し、鋳型幅方向全幅にわたって厚み方向に直流磁場を印加する直流磁場発生装置を配置し、当該直流磁場発生装置によって形成される直流磁場帯をはさんだストランドの上部を上側溶鋼プール、下部を下側溶鋼プールとし、前記表層溶鋼用浸漬ノズルから上側溶鋼プールに溶鋼を供給し、内層溶鋼用浸漬ノズルから下側溶鋼プールに溶鋼を供給し、
前記タンディッシュ堰にて区分された取鍋溶鋼注入側を第1領域、その反対側を第2領域とし、第2領域側のタンディッシュ内溶鋼に対して所定の元素あるいはその合金を連続的に添加し濃度を調整することで、取鍋溶鋼ならびに取鍋溶鋼とは異なる成分組成からなる2種類の溶鋼をタンディッシュ内で保持しつつ、第1領域に収容された溶鋼を内層溶鋼用浸漬ノズルから下側溶鋼プールに供給し、第2領域に収容された溶鋼を表層溶鋼用浸漬ノズルから上側溶鋼プールに供給し、
当該2つの浸漬ノズルそれぞれから、それぞれの溶鋼プール中で凝固によって消費される溶鋼量を鋳型内に供給することを特徴とする複層鋳片の連続鋳造方法。
(2) 下側溶鋼プールに供給する溶鋼量はタンディッシュのヘッドと内層溶鋼用浸漬ノズルのスライディングノズルの開度と溶鋼流量の関係を用いて、溶鋼界面位置を直流磁場帯内に制御しつつ、タンディッシュにて成分調整された溶鋼を表層溶鋼用浸漬ノズルから上側溶鋼プールに供給する供給量については鋳型内湯面レベルが一定となるように制御することを特徴とする(1)記載の複層鋳片の連続鋳造方法。
(3) 前記直流磁場帯の上方の鋳型内湯面近傍において水平断面内で旋回流を形成することを特徴とする(1)又は(2)に記載の複層鋳片の連続鋳造方法。
(4) 鋳片の表層と内層の成分組成が異なる複層鋳片を製造する装置であって、取鍋からの溶鋼を保持するタンディッシュの底部に、内層溶鋼用浸漬ノズルと、さらにその下流側に表層溶鋼用浸漬ノズルが鋳造幅よりも短い間隔で併設され、その間にタンディッシュ堰が設置されており、該タンディッシュ堰は溶鋼浸漬部に開口面積率が70%以下の開口を有し、タンディッシュ堰で区分された取鍋溶鋼注入反対側の領域の溶鋼に成分を添加する成分添加装置を有し、
鋳型内では湯面近傍において水平断面内で旋回流を形成する電磁撹拌装置と、その下方に鋳型幅方向全体にわたって厚み方向に直流磁場を印加する直流磁場発生装置を備え、当該直流磁場発生装置によって形成される直流磁場帯をはさんだストランドの上部を上側溶鋼プール、下部を下側溶鋼プールとし、前記表層溶鋼用浸漬ノズルから上側溶鋼プールに溶鋼を供給し、内層溶鋼用浸漬ノズルから下側溶鋼プールに溶鋼を供給する構造とすることを特徴とする複層鋳片の連続鋳造装置。
The present invention
(1) A method for producing a multi-layer slab in which the composition of the surface layer and the inner layer of the slab is different, wherein an inner layer molten steel immersion nozzle is provided at the bottom of the tundish, and further, a surface layer molten steel immersion nozzle is provided downstream thereof. And a tundish weir is installed between these two immersion nozzles. The tundish weir has an opening with an opening area ratio of 10% or more and 70% or less in the molten steel immersion part, and the thickness direction extends over the entire width in the mold width direction. A DC magnetic field generator for applying a DC magnetic field is disposed on the upper part of the strand sandwiched by the DC magnetic field zone formed by the DC magnetic field generator, and the lower molten steel pool is the lower molten steel pool. Supply molten steel from the nozzle to the upper molten steel pool, supply molten steel from the inner layer molten steel immersion nozzle to the lower molten steel pool,
The ladle molten steel injection side divided by the tundish weir is the first region, the opposite side is the second region, and a predetermined element or its alloy is continuously applied to the molten steel in the tundish on the second region side. By adding and adjusting the concentration, the ladle molten steel and two types of molten steel with different composition from the ladle molten steel are held in the tundish while the molten steel contained in the first region is immersed in the inner layer molten steel. To the lower molten steel pool, the molten steel accommodated in the second region is supplied from the surface molten steel immersion nozzle to the upper molten steel pool,
A continuous casting method for a multilayer slab, characterized in that a molten steel amount consumed by solidification in each molten steel pool is supplied from each of the two immersion nozzles into a mold.
(2) The amount of molten steel supplied to the lower molten steel pool is controlled by controlling the position of the molten steel interface within the DC magnetic field zone using the relationship between the tundish head and the sliding nozzle opening of the inner layer molten steel immersion nozzle and the molten steel flow rate. The supply amount of the molten steel whose components are adjusted in the tundish to the upper molten steel pool from the immersion nozzle for surface molten steel is controlled so that the molten metal surface level in the mold is constant. A continuous casting method for layer slabs.
(3) The continuous casting method of a multilayer cast piece according to (1) or (2), wherein a swirling flow is formed in a horizontal section in the vicinity of the molten metal surface in the mold above the DC magnetic field zone.
(4) An apparatus for producing a multi-layer slab in which the composition of the surface layer and the inner layer of the slab is different, and a submerged nozzle for inner-layer molten steel at the bottom of the tundish that holds the molten steel from the ladle, and further downstream Surface surface molten steel immersion nozzles are provided side by side at intervals shorter than the casting width, and tundish weirs are installed between the nozzles. The tundish weirs have openings with an opening area ratio of 70% or less in the molten steel immersion part. , Having a component addition device for adding components to the molten steel in the region opposite to the ladle molten steel injection divided by the tundish weir,
In the mold, an electromagnetic stirrer that forms a swirl flow in the horizontal section near the molten metal surface, and a DC magnetic field generator that applies a DC magnetic field in the thickness direction over the entire mold width direction are provided below the electromagnetic stirrer. The upper part of the strand across the formed DC magnetic field zone is the upper molten steel pool, the lower part is the lower molten steel pool, the molten steel is supplied from the surface molten steel immersion nozzle to the upper molten steel pool, and the lower molten steel is supplied from the inner layer molten steel immersion nozzle. A continuous casting apparatus for multi-layer cast slabs, characterized in that molten steel is supplied to a pool.

本発明により、取鍋は1つ、タンディッシュは1つで連続鋳造用溶鋼を供給し、タンディッシュで溶鋼の領域を2つに分け、一方の領域への成分添加により取鍋から供給される母溶鋼とは異なる成分組成の溶鋼に成分調整しつつ母溶鋼との混合をタンディッシュ内、鋳型内で安定して防止することができ、表層厚み、表層濃度が鋳片全幅にわたって均一で、かつ、鋳片の表層と内層の成分組成が異なり、表層のみに高歩留で成分が添加された複層鋳片の製造が可能となる。   According to the present invention, one ladle and one tundish supply molten steel for continuous casting, and the tundish divides the molten steel region into two, and is supplied from the ladle by adding components to one region. It is possible to stably prevent mixing with the mother molten steel in the tundish and mold while adjusting the composition to a molten steel having a composition different from the mother molten steel, and the surface layer thickness and surface layer concentration are uniform over the entire width of the slab. The component composition of the surface layer and the inner layer of the slab is different, and it becomes possible to produce a multilayer slab in which components are added to the surface layer only at a high yield.

本方法は添加する成分についての制約は少なく、NiやCだけでなく、Si,Mn,P,S,B,Nb,Ti,Al,Cu,Moに加えて、強脱酸、強脱硫元素であるCa,Mg,REM等、鋼中に含有する元素を添加することができ、鋳片の表層成分を変えることで鋼材の新たな機能を比較的簡便な方法で可能となった。   In this method, there are few restrictions on the components to be added, not only Ni and C but also Si, Mn, P, S, B, Nb, Ti, Al, Cu, Mo, strong deoxidation and strong desulfurization elements. Elements contained in steel such as certain Ca, Mg, and REM can be added, and by changing the surface layer component of the slab, a new function of the steel material can be achieved by a relatively simple method.

本発明の装置ならびに方法を模式的に示した図である。It is the figure which showed typically the apparatus and method of this invention. タンディッシュ内の溶鋼流動状況を示す概略断面図であり、(a)は浸漬ノズルが1本でタンディッシュ堰を有しない従来の場合、(b)は浸漬ノズルが2本で間にタンディッシュ堰を有する本発明の場合である。It is a schematic sectional drawing which shows the molten steel flow condition in a tundish, (a) is a conventional case which does not have a tundish weir with one immersion nozzle, (b) is a tundish weir between two immersion nozzles In the case of the present invention having タンディッシュ堰の開口形状の例を示す図であり、(a)は上堰で(a−1)は(a−2)のA−A矢視断面図であり、(b)はその他の開口形状を示す。It is a figure which shows the example of the opening shape of a tundish dam, (a) is an upper dam, (a-1) is AA arrow sectional drawing of (a-2), (b) is other opening Show shape. 直流磁場帯により、ストランドが2つに分割された際の凝固シェル形成、表層と内層の界面がどのように形成されるかを模式的に示した図である。It is the figure which showed typically how solidified shell formation and the interface of a surface layer and an inner layer are formed when a strand is divided | segmented into two by a DC magnetic field zone. タンディッシュ堰開口の開口面積率と(a)表層分離度、(b)表層濃度均一性の関係について調査した結果である。It is the result of investigating the relationship between the opening area ratio of the tundish weir opening, (a) surface layer separation degree, and (b) surface layer concentration uniformity. 上側溶鋼プール溶鋼供給量Q2と上側溶鋼プール凝固量G2との比(Q2/G2)と(a)表層分離度、(b)表層濃度均一度との関係について調査した結果を示す図である。The result of investigating the relationship between the ratio (Q 2 / G 2 ) of the upper molten steel pool molten steel supply amount Q 2 and the upper molten steel pool solidification amount G 2 , (a) surface layer separation degree, and (b) surface layer concentration uniformity is shown. FIG. 表層厚みの鋳片幅方向分布に及ぼす電磁撹拌装置による旋回流の影響を示した図である。It is the figure which showed the influence of the swirl | vortex flow by an electromagnetic stirrer on the slab width direction distribution of surface layer thickness.

以下に本発明の好ましい実施の形態を図1、4に基づいて説明する。まず、特許文献1にあるように、メニスカス17の下方の所定位置に直流磁場発生装置8を配置し、直流磁場帯14を形成する。直流磁場帯14においては、磁力線が鋳片の厚み方向に向かう直流磁場を印加し、磁束密度は鋳型幅方向にほぼ均一とする。このような直流磁場帯を形成することにより、直流磁場帯14を通過しようとする溶鋼には電磁ブレーキがかかり、直流磁場帯14上方の上側溶鋼プール15と下方の下側溶鋼プール16とが事実上遮断されることとなる。上側溶鋼プール15で凝固した凝固シェルが鋳片の表層部24を形成し、下側溶鋼プールで凝固した凝固シェルが鋳片の内層部25を形成する。そして、直流磁場帯14部分における凝固シェルの厚さDが、鋳片の表層部の厚さに該当する。従って、直流磁場帯14を配置するメニスカスからの高さHは、目標とする表層部の厚さD、鋳型内における凝固係数K、鋳造速度VCに基づいて定めることとなる。 A preferred embodiment of the present invention will be described below with reference to FIGS. First, as disclosed in Patent Document 1, the DC magnetic field generator 8 is arranged at a predetermined position below the meniscus 17 to form a DC magnetic field zone 14. In the DC magnetic field zone 14, a DC magnetic field whose magnetic field lines are directed in the thickness direction of the slab is applied, and the magnetic flux density is made substantially uniform in the mold width direction. By forming such a DC magnetic field zone, an electromagnetic brake is applied to the molten steel that is going to pass through the DC magnetic field zone 14, and the upper molten steel pool 15 above the DC magnetic field zone 14 and the lower molten steel pool 16 below are the facts. It will be blocked. The solidified shell solidified in the upper molten steel pool 15 forms the surface layer portion 24 of the slab, and the solidified shell solidified in the lower molten steel pool forms the inner layer portion 25 of the slab. The thickness D of the solidified shell in the DC magnetic field zone 14 corresponds to the thickness of the surface layer portion of the slab. Accordingly, the height H from the meniscus at which the DC magnetic field zone 14 is arranged is determined based on the target surface thickness D, the solidification coefficient K in the mold, and the casting speed V C.

そのうえで、その直流磁場帯の上下それぞれに溶鋼を供給するために2本の浸漬ノズルを設置し、それぞれの溶鋼プールにおいて凝固する溶鋼量だけ、各浸漬ノズルから溶鋼を供給することで、表層と内層の成分組成が異なる鋳片が鋳造できる。ここで直流磁場帯とは直流磁場発生装置のコア高さと同じ範囲とする。理由はこの範囲内であれば均一な磁束密度の直流磁場が印加される。   In addition, two immersion nozzles are installed to supply molten steel above and below the DC magnetic field zone, and the molten steel is supplied from each immersion nozzle by the amount of molten steel that solidifies in each molten steel pool. It is possible to cast slabs having different component compositions. Here, the DC magnetic field band is set to the same range as the core height of the DC magnetic field generator. If the reason is within this range, a DC magnetic field having a uniform magnetic flux density is applied.

直流磁場帯の磁束密度は、上側溶鋼プールと下側溶鋼プールとの間の溶鋼の入れ替わりを最小限にすることのできる磁束密度を選択する。鋳片の表層と内層の成分組成が異なる複層鋳片を製造するにあたり、それぞれの溶鋼量比を計算すると、表層厚みや鋳造幅によって変化するものの、スラブ鋳造の条件であれば、内層/表層=4〜5と圧倒的に内層の流量が多い。従って、下側溶鋼プールへ溶鋼を供給する浸漬ノズルの吐出孔から流出した溶鋼流が、鋳型内溶鋼流動現象の大きな比率を占める。この吐出流は短辺凝固シェルに衝突して下側反転流と上側反転流を形成する。この上側反転流を抑制して直流磁場帯の通過を抑止できれば、上側溶鋼プールと下側溶鋼プールの溶鋼入れ替わりを最小限とできる。直流磁場帯の磁束密度が0.3T(テスラ)以上であれば、十分に溶鋼の入れ替わりを抑止することができる。この点は、前記非特許文献1にも記載のとおりである。   The magnetic flux density in the DC magnetic field zone is selected so that the interchange of molten steel between the upper molten steel pool and the lower molten steel pool can be minimized. In the production of multi-layer slabs with different composition of the surface layer and inner layer of the slab, the amount ratio of molten steel varies depending on the surface layer thickness and casting width. = 4-5, the flow rate of the inner layer is overwhelmingly large. Therefore, the molten steel flow that flows out from the discharge hole of the immersion nozzle that supplies molten steel to the lower molten steel pool accounts for a large proportion of the molten steel flow phenomenon in the mold. This discharge flow collides with the short-side solidified shell to form a lower reversal flow and an upper reversal flow. If this upper reversal flow is suppressed and the passage of the DC magnetic field zone can be suppressed, the replacement of the molten steel between the upper molten steel pool and the lower molten steel pool can be minimized. If the magnetic flux density in the DC magnetic field zone is 0.3 T (Tesla) or more, the replacement of molten steel can be sufficiently suppressed. This point is also described in Non-Patent Document 1.

磁束密度の上限は高いほど好ましいが、超電導磁石によらず直流磁場を形成するうえではおよそ1.0Tが上限となる。鋳造条件に応じて0.3T〜1Tの範囲内で適正な磁束密度の磁場を印加すればよい。   The upper limit of the magnetic flux density is preferably as high as possible, but about 1.0 T is the upper limit in forming a DC magnetic field regardless of the superconducting magnet. What is necessary is just to apply the magnetic field of a suitable magnetic flux density within the range of 0.3T-1T according to casting conditions.

本発明では、
[1] タンディッシュ2にて取鍋1から注入された溶鋼(以下、第1溶鋼21)の一部を成分調整することで新たな溶鋼(以下、第2溶鋼22)を作り出すこと、
[2] 1つのタンディッシュ内で2種類の溶鋼:第1溶鋼21、第2溶鋼22を保持すること、
[3] 第1溶鋼21、第2溶鋼22をそれぞれ、ストランド内の下側溶鋼プール16、上側溶鋼プール15それぞれの位置で凝固によって消費される量だけ鋳型内に安定して供給すること
の3つが必要となる。
In the present invention,
[1] Creating a new molten steel (hereinafter referred to as the second molten steel 22) by adjusting the components of a part of the molten steel (hereinafter referred to as the first molten steel 21) injected from the ladle 1 in the tundish 2.
[2] Holding two types of molten steel: the first molten steel 21 and the second molten steel 22 in one tundish;
[3] 3 of supplying the first molten steel 21 and the second molten steel 22 stably in the mold by the amount consumed by solidification at the positions of the lower molten steel pool 16 and the upper molten steel pool 15 in the strand, respectively. One is required.

先ず、本発明では、[1] タンディッシュ2で第1溶鋼21と成分組成の異なる第2溶鋼22をつくる。   First, in the present invention, [1] a second molten steel 22 having a different composition from that of the first molten steel 21 is made with the tundish 2.

タンディッシュ内の流動は図2(a)に模式的に示すように、取鍋1から下向きに注入された取鍋注入流13がタンディッシュ内では水平に流れ、タンディッシュ底部に設けた浸漬ノズル30から下向きに流出する。そのため、取鍋注入流13から見て浸漬ノズル30よりもさらに下流側のタンディッシュ領域では流れがよどみやすく、淀んだ領域28が形成される。   As schematically shown in FIG. 2 (a), the flow in the tundish is such that a ladle injection flow 13 injected downward from the ladle 1 flows horizontally in the tundish and is provided at the bottom of the tundish. It flows out from 30 downward. Therefore, the flow tends to stagnate in the tundish region further downstream from the immersion nozzle 30 when viewed from the ladle injection flow 13, and a stagnant region 28 is formed.

加えて、前述のとおり、鋳片の表層と内層の成分組成が異なる複層鋳片を製造するにあたり、それぞれの溶鋼量比を計算すると、表層厚みや鋳造幅によって変化するものの、スラブ鋳造の条件であれば、内層/表層=4〜5と圧倒的に内層の流量が多い。そこで、図2(b)にしめすように、タンディッシュ底部に浸漬ノズルを配置する順番を、取鍋注入流13側から内層溶鋼用浸漬ノズル5を配置し、その下流側に表層溶鋼用浸漬ノズル6を配置し、加えて、この両者の浸漬ノズルの間にタンディッシュ堰4であって溶鋼浸漬部に開口10を有する堰を設ける。図1、図2(b)に示したように、タンディッシュ堰4によってタンディッシュを複数領域に、すなわち、取鍋からの第1溶鋼21を受ける第1領域11と、第1溶鋼21にワイヤー等によって所定元素あるいはその合金を添加し成分調整を行う第2領域12の2つの領域にわける。第1領域11には、取鍋注入流13位置と内層溶鋼用浸漬ノズル5が配置され、第2領域12には表層溶鋼用浸漬ノズル6が配置される。内層溶鋼用浸漬ノズル5からは第1溶鋼21を下側溶鋼プール16へ注入する。表層溶鋼用浸漬ノズル6からは第2溶鋼22を上側溶鋼プール15へ注入する。   In addition, as described above, when producing a multi-layer slab in which the composition of the surface layer and the inner layer of the slab differ, the amount ratio of each molten steel varies depending on the surface layer thickness and casting width, but the slab casting conditions If so, the inner layer / surface layer = 4-5, and the flow rate of the inner layer is overwhelmingly large. Therefore, as shown in FIG. 2 (b), the order in which the immersion nozzles are arranged at the bottom of the tundish is arranged such that the inner layer molten steel immersion nozzle 5 is arranged from the ladle injection flow 13 side and the downstream layer immersion steel immersion nozzle is arranged downstream thereof. 6 is arranged, and in addition, a tundish weir 4 between the both immersion nozzles and a weir having an opening 10 in the molten steel immersion portion is provided. As shown in FIG. 1 and FIG. 2 (b), the tundish is divided into a plurality of regions by the tundish weir 4, that is, the first region 11 that receives the first molten steel 21 from the ladle, and the wire to the first molten steel 21. For example, a predetermined element or an alloy thereof is added to the second region 12 to adjust the components. In the first region 11, the ladle pouring flow 13 position and the inner layer molten steel immersion nozzle 5 are disposed, and in the second region 12, the surface layer molten steel immersion nozzle 6 is disposed. The first molten steel 21 is injected into the lower molten steel pool 16 from the inner layer molten steel immersion nozzle 5. The second molten steel 22 is injected from the surface layer molten steel immersion nozzle 6 into the upper molten steel pool 15.

このようにすることで、タンディッシュ内の第1領域11では取鍋注入流13から内層溶鋼用浸漬ノズル5への溶鋼流が形成されるのに対し、タンディッシュ堰4で区画した第2領域12は図2(b)に示すように、堰がないときに比較してさらに淀んだ領域となり、第2領域12に前述したように成分添加装置7によって所定の元素あるいは合金をワイヤー等によって連続的に添加して含有成分を調整し、第2溶鋼22をつくる。その結果、1つのタンディッシュ内で2種類の溶鋼:第1溶鋼21、第2溶鋼22を保持することが可能となる。   By doing in this way, while the molten steel flow from the ladle pouring flow 13 to the inner layer molten steel immersion nozzle 5 is formed in the first region 11 in the tundish, the second region partitioned by the tundish weir 4 2B, as shown in FIG. 2 (b), the region is further stagnated as compared with the case where there is no weir. As described above, a predetermined element or alloy is continuously connected to the second region 12 by a wire or the like by the component addition device 7. The second molten steel 22 is produced by adjusting the content of the components and adjusting the content. As a result, two types of molten steel: the first molten steel 21 and the second molten steel 22 can be held in one tundish.

さらに、取鍋からの溶鋼(第1溶鋼21)に、所定の元素あるいはその合金をワイヤー等によって連続的に添加し成分調整を行う第2領域12については、撹拌力を付与し濃度の均一化を図る。そのためには、第2領域内のタンディッシュ底部からArバブリング等により撹拌を付与することで均一混合を図ることができる。さらに好ましくは、ワイヤーを添加し撹拌を付与する領域とその後方に溶鋼を鎮静化する領域を設けることができればワイヤー添加時に巻き込まれた介在物等を浮上除去することが好ましい。このようにして、鋳型上部の上側溶鋼プール15に供給する第2溶鋼22が第2領域12においてつくられる。なお、第2溶鋼22への成分添加量は第2領域内に供給される溶鋼量に応じて調整することで濃度を調整することができる。第1領域と第2領域の流量制御方法については後述する。   Furthermore, in the second region 12 in which a predetermined element or an alloy thereof is continuously added to the molten steel from the ladle (first molten steel 21) with a wire or the like and the components are adjusted, a stirring force is applied to make the concentration uniform. Plan. For this purpose, uniform mixing can be achieved by applying agitation by Ar bubbling or the like from the bottom of the tundish in the second region. More preferably, it is preferable to levitate and remove inclusions and the like involved when adding the wire if a region where the wire is added and stirring is provided and a region where the molten steel is calmed down can be provided behind the region. In this way, the second molten steel 22 to be supplied to the upper molten steel pool 15 above the mold is created in the second region 12. In addition, a density | concentration can be adjusted by adjusting the component addition amount to the 2nd molten steel 22 according to the molten steel amount supplied in a 2nd area | region. A flow rate control method for the first region and the second region will be described later.

次に、本発明では、[2] 第1溶鋼と第2溶鋼のタンディッシュ内での混合を防止し、2つの溶鋼を1つのタンディッシュで安定的に保持する。   Next, in the present invention, [2] mixing of the first molten steel and the second molten steel in the tundish is prevented, and the two molten steels are stably held in one tundish.

そのため本発明では、タンディッシュ2内に第1領域11と第2領域12を区画するタンディッシュ堰4を設ける。タンディッシュ堰4の湯面18より下部の溶鋼浸漬部分には開口10を設け、この開口10を通して第1領域11と第2領域12の溶鋼が流通可能となる。図3において、ドットハッチング部分がタンディッシュ堰4の溶鋼浸漬部分26のうちの堰存在部分であり、ドットハッチング部の下部の空白部分が開口10を示している。開口10の設け方としては、図3(a)に示すように堰の下方を開放していわゆる上堰とすることができる。また、図3(b)に示すような各種の開口を設けることとしても良い。堰の開口断面積を、堰配置位置における堰と平行な面におけるタンディッシュ溶鋼断面積で除した値(百分率)を、ここでは開口面積率(%)という。開口面積率を70%以下とすることにより、第1領域11と第2領域12の溶鋼の混合を有効に抑制することができ、第2領域12に添加した成分が第1領域11の第1溶鋼21に混合する可能性を低減することができる。一方、開口面積率が小さすぎると逆に成分不均一を生じることがあるが、開口面積率が10%以上であれば問題なく鋳造を行うことができる。   Therefore, in the present invention, the tundish weir 4 that partitions the first region 11 and the second region 12 is provided in the tundish 2. An opening 10 is provided in a portion of the tundish weir 4 below the molten metal surface 18 so that the molten steel in the first region 11 and the second region 12 can flow through the opening 10. In FIG. 3, the dot hatched portion is a weir existing portion of the molten steel immersion portion 26 of the tundish weir 4, and the blank portion below the dot hatched portion indicates the opening 10. As a method of providing the opening 10, as shown in FIG. 3A, the lower part of the weir can be opened to form a so-called upper weir. Further, various openings as shown in FIG. 3B may be provided. A value (percentage) obtained by dividing the opening cross-sectional area of the weir by the cross-sectional area of the tundish molten steel in a plane parallel to the weir at the weir arrangement position is referred to as an opening area ratio (%). By setting the opening area ratio to 70% or less, mixing of molten steel in the first region 11 and the second region 12 can be effectively suppressed, and the component added to the second region 12 is the first region 11 in the first region 11. The possibility of mixing with the molten steel 21 can be reduced. On the other hand, if the opening area ratio is too small, component non-uniformity may occur, but if the opening area ratio is 10% or more, casting can be performed without any problem.

本発明では、図4に模式的に示すように、鋳型幅全体にわたって形成される直流磁場帯14によってストランドを上側溶鋼プール15と下側溶鋼プール16の2つに分割し、上側溶鋼プール15には表層溶鋼用浸漬ノズル6から第2溶鋼22を注入し、下側溶鋼プール16には内層溶鋼用浸漬ノズル5から第1溶鋼21を注入する。直流磁場帯14の位置において、鋳片の表面側には第1溶鋼プールの溶鋼が凝固した凝固シェル(上側溶鋼プール凝固部分24)が形成されている。直流磁場帯位置における凝固シェル断面積をS2とする。この凝固シェル断面積S2が、鋳造後鋳片の表層部面積S2となる。鋳片表面積のうちの表層部面積S2以外の部分が内層部面積S1であり、S1とS2を足した値が鋳片断面積となる。上側溶鋼プールから凝固シェルとして下方に輸送される上側溶鋼プール凝固部分24の単位時間輸送量G2は、鋳造速度をVCとして、第1溶鋼、第2溶鋼の密度をρ1、ρ2とすると、
2=ρ22C
また、下側溶鋼プールで凝固して下方に輸送される下側溶鋼プール凝固部分25の単位時間輸送量G1は、
1=ρ11C
となる。合計鋳造量をGとすると、
G=G1+G2
となる。
In the present invention, as schematically shown in FIG. 4, the strand is divided into two of an upper molten steel pool 15 and a lower molten steel pool 16 by a DC magnetic field zone 14 formed over the entire mold width. The second molten steel 22 is injected from the surface layer molten steel immersion nozzle 6, and the first molten steel 21 is injected from the inner layer molten steel immersion nozzle 5 into the lower molten steel pool 16. At the position of the DC magnetic field zone 14, a solidified shell (upper molten steel pool solidified portion 24) in which the molten steel of the first molten steel pool is solidified is formed on the surface side of the slab. Let S 2 be the cross-sectional area of the solidified shell at the DC magnetic field band position. The solidified shell cross-sectional area S 2 becomes the surface layer portion area S 2 of the cast after cast piece. Surface portion area S 2 other portions of the slab surface area of the inner layer portion area S 1, the value obtained by adding the S 1 and S 2 is the cast strip cross-sectional area. The unit time transport amount G 2 of the upper molten steel pool solidified portion 24 transported downward as a solidified shell from the upper molten steel pool is expressed as follows. The casting speed is V C , and the densities of the first molten steel and the second molten steel are ρ 1 and ρ 2 . Then
G 2 = ρ 2 S 2 V C
In addition, the unit time transport amount G 1 of the lower molten steel pool solidified portion 25 that is solidified in the lower molten steel pool and transported downward is:
G 1 = ρ 1 S 1 V C
It becomes. If the total casting amount is G,
G = G 1 + G 2
It becomes.

次に、内層溶鋼用浸漬ノズル5から下側溶鋼プール16に供給する溶鋼量をQ1、表層溶鋼用浸漬ノズル6から上側溶鋼プール15に供給する溶鋼量をQ2とする。合計溶鋼量Qを
Q=Q1+Q2
とおく。タンディッシュから鋳型への溶鋼供給量合計(Q)については、メニスカス位置が一定を保持するように湯面レベル制御によって調整するので、
Q=G
が確保される。本発明では、各浸漬ノズルから各溶鋼プールに供給する溶鋼量について、
1=G1
2=G2
とすることにより、直流磁場帯を経由しての溶鋼の混合を防止し、タンディッシュの第2領域で形成した第2溶鋼の成分のままで鋳片の表層部を形成し、第1領域における第1溶鋼の成分のままで鋳片の内層部を形成することができる。
Next, let Q 1 be the amount of molten steel supplied from the inner layer molten steel immersion nozzle 5 to the lower molten steel pool 16, and Q 2 be the amount of molten steel supplied from the surface layer molten steel immersion nozzle 6 to the upper molten steel pool 15. The total amount of molten steel Q is Q = Q 1 + Q 2
far. The total amount of molten steel supplied from the tundish to the mold (Q) is adjusted by the molten metal level control so that the meniscus position remains constant.
Q = G
Is secured. In the present invention, the amount of molten steel supplied to each molten steel pool from each immersion nozzle,
Q 1 = G 1
Q 2 = G 2
By preventing the mixing of the molten steel via the DC magnetic field zone, the surface layer portion of the slab is formed with the composition of the second molten steel formed in the second region of the tundish in the first region. The inner layer portion of the slab can be formed with the component of the first molten steel.

そこで本発明では、[3] これら3者の溶鋼量Q、Q1、Q2、を制御し、第1溶鋼と第2溶鋼とが直流磁場帯を通過して混合することのないように制御する。 Therefore, in the present invention, [3] the amount of molten steel Q, Q 1 , Q 2 of these three members is controlled so that the first molten steel and the second molten steel do not pass through the DC magnetic field zone and are mixed. To do.

具体的な制御方法について、図1、4を用いて説明する。   A specific control method will be described with reference to FIGS.

予め、適用する連続鋳造装置における鋳型内での凝固係数K(mm/min0.5)を確認しておく。メニスカス17から直流磁場帯14までの高さH、鋳造速度VCを定めることにより、直流磁場帯14における凝固シェル厚さDが
D=K√(H/VC
として求まる。求まった直流磁場帯における凝固シェル厚さDを用いて、直流磁場帯における凝固シェル断面積S2が定まり、前述の
2=ρ22C
によってG2が定まるので、
2=G2
となるように、表層溶鋼用浸漬ノズルからの溶鋼注入量Q2を定めればよい。
The solidification coefficient K (mm / min 0.5 ) in the mold in the continuous casting apparatus to be applied is confirmed in advance. By determining the height H from the meniscus 17 to the DC magnetic field zone 14 and the casting speed V C , the solidified shell thickness D in the DC magnetic field zone 14 becomes D = K√ (H / V C )
It is obtained as Using solidified shell thickness D in Motoma' DC magnetic field zone, Sadamari is solidified shell cross-sectional area S 2 of the DC magnetic field zone, the aforementioned G 2 = ρ 2 S 2 V C
Since G 2 is determined by
Q 2 = G 2
The molten steel injection amount Q 2 from the submerged nozzle for molten steel may be determined so that

直流磁場帯の磁場形成範囲は、湯面からの高さHを中心として上下に幅を有している。そのため、Q1とQ2のバランスが若干変動しても、上側溶鋼プール15と下側溶鋼プール16の境界27が直流磁場帯14の磁場範囲内に収まるのであれば、溶鋼界面位置を直流磁場帯内に制御でき、本発明の効果を十分に発揮することができる。湯面17から直流磁場帯上限までの距離をHH、直流磁場帯下限までの距離をHLとおく。上側と下側の溶鋼プール境界27がHH又はHLにあるとき、凝固シェル厚さはそれぞれ
H=K√(HH/VC
L=K√(HL/VC
となる。上側溶鋼プールでの凝固量G2について、溶鋼プール境界がHH又はHLにあるときの値をそれぞれG2H、G2Lとすると、
2H/G2≒DH/D=√(HH/H)
2L/G2≒DL/D=√(HL/H)
となる。そして、上側溶鋼プールへの溶鋼供給量Q2が、G2H〜G2Lの範囲に入っていれば、溶鋼界面27位置を直流磁場帯内に制御でき、上側溶鋼プールと下側溶鋼プールとの溶鋼混合を抑えて十分に良好な品質とすることができる。
The magnetic field forming range of the DC magnetic field band has a width in the vertical direction with the height H from the molten metal surface as the center. Therefore, even if the balance between Q 1 and Q 2 slightly varies, if the boundary 27 between the upper molten steel pool 15 and the lower molten steel pool 16 is within the magnetic field range of the DC magnetic field zone 14, the position of the molten steel interface is changed to the DC magnetic field. It can be controlled within the belt, and the effects of the present invention can be fully exhibited. The distance from the molten metal surface 17 to the upper limit of the DC magnetic field zone is set as H H , and the distance from the molten metal surface 17 to the lower limit of the DC magnetic field zone is set as H L. When the upper and lower molten steel pool boundaries 27 are at H H or H L , the solidified shell thickness is D H = K√ (H H / V C ), respectively.
D L = K√ (H L / V C )
It becomes. Regarding the solidification amount G 2 in the upper molten steel pool, the values when the molten steel pool boundary is at H H or H L are G 2H and G 2L , respectively.
G 2H / G 2 ≈D H / D = √ (H H / H)
G 2L / G 2 ≈D L / D = √ (H L / H)
It becomes. Then, the molten steel supply amount Q 2 of the upper molten steel pool, if within the range of G 2H ~G 2L, can control the molten steel surface 27 located in the DC magnetic field zone, the upper molten steel pool and a lower molten steel pool Mixing of molten steel can be suppressed to obtain a sufficiently good quality.

一定鋳造速度VC(単位時間鋳造量=G)にて引き抜きを行い、タンディッシュから鋳型内へ供給する溶鋼量がQ(=G)である状況で、まず、取鍋からタンディッシュに供給する溶鋼量がQで一定となるように制御する。タンディッシュに供給する溶鋼量をQとするための注入制御方法としては、取鍋重量を測定して時間当たり重量変化量がQとなるように注入制御を行う方法、あるいはタンディッシュ内溶鋼ヘッドが目視できる状況であれば当該溶鋼ヘッドが一定となるように注入制御を行う方法のいずれかを用いることができる。その結果、タンディッシュ内溶鋼ヘッドは一定の高さで保持される。この状態で、下側溶鋼プール16に供給される第1溶鋼の流量Q1を、
1=Q−Q2=Q−G2
となるように一定に制御する。具体的には、タンディッシュ内ヘッドを一定に保持しながら、あらかじめ定めた、スライディングノズル33b開度と流量のテーブルを用いて、規定開度を一定に保持することでQ1を一定に制御する。これだけでは、鋳型内全体に供給する溶鋼量Qに対して不足しているため、成分調整された第2溶鋼22を上側溶鋼プール15に供給する表層溶鋼用浸漬ノズル6のスライディングノズル33c流量調整において、鋳型内湯面レベルが一定となるように溶鋼量Q2を制御する。その結果、合計流量Qとストランド上下で消費される溶鋼量Q1、Q2それぞれを制御することができ、
2=G2
とすることができる。これにより、鋳型内の上側溶鋼プール15では、供給される溶鋼量(Q2)と、凝固シェルとして排出される時間あたり輸送量(G2)がバランスするとともに、下側溶鋼プール16では、供給される溶鋼量(Q1)と凝固シェルとして排出される時間あたり輸送量(G1)がバランスする。そのため、直流磁場帯を通過して混合する溶鋼流が生じないので、図1の第1溶鋼と第2溶鋼の界面を安定的に維持することができる。Q1とQ2のバランスによって決まる第1溶鋼と第2溶鋼の界面を直流磁場帯の範囲内に制御する。
In the situation where the amount of molten steel supplied from the tundish into the mold is Q (= G), the steel is first supplied from the ladle to the tundish at a constant casting speed V C (casting amount per unit time = G). The molten steel amount is controlled to be constant at Q. As an injection control method for setting the amount of molten steel supplied to the tundish to Q, a method of performing injection control so that the weight change per hour is measured by measuring the ladle weight, or the molten steel head in the tundish is If it can be visually observed, any of the methods for controlling the injection so that the molten steel head is constant can be used. As a result, the molten steel head in the tundish is held at a certain height. In this state, the flow rate Q 1 of the first molten steel supplied to the lower molten steel pool 16 is
Q 1 = Q−Q 2 = Q−G 2
It is controlled to be constant. Specifically, while keeping the head in the tundish constant, the predetermined opening degree is kept constant by using a predetermined sliding nozzle 33b opening degree and flow rate table to control Q 1 to be constant. . By this alone, the amount of molten steel Q supplied to the entire mold is insufficient. Therefore, in adjusting the flow rate of the sliding nozzle 33c of the surface layer molten steel immersion nozzle 6 for supplying the second molten steel 22 whose component has been adjusted to the upper molten steel pool 15. Then, the molten steel amount Q 2 is controlled so that the mold surface level in the mold becomes constant. As a result, it is possible to control the total flow rate Q and the amount of molten steel Q 1 and Q 2 consumed above and below the strand,
Q 2 = G 2
It can be. Thereby, in the upper molten steel pool 15 in the mold, the supplied molten steel amount (Q 2 ) balances the transport amount per hour (G 2 ) discharged as a solidified shell, and the lower molten steel pool 16 supplies The amount of molten steel (Q 1 ) and the transport amount per unit time (G 1 ) discharged as a solidified shell are balanced. Therefore, since the molten steel flow mixed through the DC magnetic field zone does not occur, the interface between the first molten steel and the second molten steel in FIG. 1 can be stably maintained. The interface between the first molten steel and the second molten steel determined by the balance between Q 1 and Q 2 is controlled within the range of the DC magnetic field zone.

この際、内層溶鋼用浸漬ノズル5の流量調整に用いるスライディングノズル33b開度と流量との関係が毎回一定ではない等の課題が考えられる。そこで、鋳造スタート時を活用して、スライディングノズル33bの開度と流量特性の関係を把握し、特性を補正すればよい。鋳造スタート時には第2溶鋼の成分調整はまだできていないため、内層溶鋼用浸漬ノズルを経由しての第1溶鋼のみで鋳造を行う。その際においても、タンディッシュ内ヘッドを一定とし、かつ、鋳型内湯面レベルを一定に制御し、スライディングノズル33bの開度と流量との関係を調整することで、流量補正が可能となる。   At this time, problems such as the relationship between the opening of the sliding nozzle 33b used for adjusting the flow rate of the inner layer molten steel immersion nozzle 5 and the flow rate are not constant each time can be considered. Therefore, the relationship between the opening degree of the sliding nozzle 33b and the flow rate characteristic may be grasped by utilizing the casting start time, and the characteristic may be corrected. Since the composition adjustment of the second molten steel has not been completed yet at the start of casting, casting is performed only with the first molten steel via the inner layer molten steel immersion nozzle. Even in such a case, the flow rate can be corrected by adjusting the relationship between the opening of the sliding nozzle 33b and the flow rate by keeping the tundish head constant and controlling the mold surface level in the mold to be constant.

鋳型内への溶鋼供給量制御方法としてあるいは、まず表層溶鋼用浸漬ノズル6のスライディングノズル33c開度と溶鋼供給量の関係を予め求めておき、表層溶鋼用浸漬ノズル6からの溶鋼供給量Q2が上側溶鋼プール凝固量G2となるようにスライディングノズル33c開度を定め、内層溶鋼用浸漬ノズル5のスライディングノズル33b流量調整については、鋳型内の湯面レベルが一定になるように制御することとしても良い。 As a method for controlling the amount of molten steel supplied into the mold, or first, the relationship between the sliding nozzle 33c opening degree of the surface layer molten steel immersion nozzle 6 and the amount of molten steel supplied is obtained in advance, and the amount of molten steel supplied from the surface layer molten steel immersion nozzle 6 Q 2. There defining a sliding nozzle 33c opening so that the upper molten steel pool solidified quantity G 2, for sliding nozzle 33b flow adjustment of the inner molten steel for immersion nozzle 5, to control as the molten metal surface level in the mold is constant It is also good.

これら3つの方法を今回新たに導入することで、取鍋は1つ、タンディッシュは1つであるが、タンディッシュでの成分添加により取鍋から供給される第1溶鋼とは異なる成分組成の第2溶鋼に成分調整しつつ、タンディッシュ内での第1溶鋼との混合を防止することができ、これら2つの溶鋼を鋳型内の異なる深さの位置に長さの異なる2つの浸漬ノズルを介してそれぞれの溶鋼量を供給しつつ、鋳型内においても2つの溶鋼の混合を防止することで、鋳片の表層と内層の成分組成が異なる複層鋳片の製造が可能となる。   By introducing these three methods this time, there is one ladle and one tundish, but the composition of the ingredients differs from the first molten steel supplied from the ladle by adding ingredients in the tundish. While adjusting the composition of the second molten steel, mixing with the first molten steel in the tundish can be prevented, and two immersion nozzles having different lengths are placed at different depth positions in the mold. In this way, it is possible to manufacture a multi-layer slab in which the component composition of the surface layer and the inner layer of the slab is different by preventing the mixing of the two molten steels in the mold while supplying the amount of each molten steel.

なお、直流磁場帯14によってストランドを上側溶鋼プール15と下側溶鋼プール16に分割するが、前述したように直流磁場帯よりも上の上側溶鋼プールに供給される溶鋼量は、直流磁場帯よりも下の下側溶鋼プールに供給される溶鋼量と比較して少ない。そのため、上側溶鋼プール15では、十分な溶鋼攪拌ができないことがある。本発明では、鋳型内周方向全体にわたっての凝固を均一化する手段として、上側溶鋼プール15における鋳型内湯面近傍に電磁撹拌装置9を設置し、水平断面内で旋回流を付与し、溶鋼流動ならびに凝固を周方向に均一化すると好ましい。   In addition, although a strand is divided | segmented into the upper molten steel pool 15 and the lower molten steel pool 16 with the DC magnetic field zone 14, as mentioned above, the amount of molten steel supplied to the upper molten steel pool above a DC magnetic field zone is from a DC magnetic field zone. The amount of molten steel supplied to the lower molten steel pool below is also small. Therefore, in the upper molten steel pool 15, sufficient molten steel stirring may not be possible. In the present invention, as a means for uniformizing the solidification over the entire inner circumferential direction of the mold, an electromagnetic stirring device 9 is installed in the vicinity of the molten metal surface in the upper molten steel pool 15 to provide a swirl flow in the horizontal section, It is preferable to make the coagulation uniform in the circumferential direction.

以上、述べた本発明の原理を検証するため、試験連鋳機を用いて鋳造試験を行った。試験連鋳機では、幅800mm×厚170mmの鋳片の鋳造が可能である。図1に示すように、鋳型内の湯面17レベルから75mm下方に電磁撹拌装置9のコア中心を設置し、鋳型内湯面近傍の水平断面内で最大0.6m/sの旋回流を付与した。加えて、湯面レベルからH=400mm下方を中心に幅方向に均一な磁束密度分布を有する直流磁場を鋳片の厚み方向に印加することができる直流磁場発生装置8を設けた。この直流磁場発生装置8のコア厚みが200mmのため、湯面レベルからの高さがHH=300mmからHL=500mmの範囲内にわたってほぼ同じ磁束密度の直流磁場を最大0.5T印加することができる。従って、第2溶鋼供給量Q2とG2との比(Q2/G2)が、G2H/G2≒√(HH/H)=0.87からG2L/G2≒√(HL/H)=1.12の範囲内であれば、溶鋼界面位置を直流磁場帯内に制御できるので、本発明の効果を発揮することができる。 As described above, in order to verify the principle of the present invention described above, a casting test was performed using a test continuous casting machine. The test continuous casting machine can cast a slab having a width of 800 mm and a thickness of 170 mm. As shown in FIG. 1, the core center of the electromagnetic stirrer 9 is installed 75 mm below the level 17 of the molten metal surface in the mold, and a swirling flow of up to 0.6 m / s is applied in the horizontal section near the molten metal surface in the mold. . In addition, a DC magnetic field generator 8 is provided that can apply a DC magnetic field having a uniform magnetic flux density distribution in the width direction around H = 400 mm below the surface of the molten metal in the thickness direction of the slab. Since the core thickness of the DC magnetic field generator 8 is 200 mm, a maximum of 0.5 T of a DC magnetic field having substantially the same magnetic flux density is applied over a range from the molten metal level of H H = 300 mm to H L = 500 mm. Can do. Therefore, the ratio (Q 2 / G 2 ) between the second molten steel supply amount Q 2 and G 2 is G 2H / G 2 ≈√ (H H /H)=0.87 to G 2L / G 2 ≈√ ( If it is in the range of H L /H)=1.12, the position of the molten steel interface can be controlled within the DC magnetic field zone, so that the effect of the present invention can be exhibited.

鋳型3の上方に設けるタンディッシュ2の仕様は以下の通りである。容量は10tで、タンディッシュ2は、内層溶鋼用浸漬ノズル5と表層溶鋼用浸漬ノズル6の2つの浸漬ノズルを有し、2つの浸漬ノズルの間隔は400mmである。タンディッシュ内において、2つの浸漬ノズルの中間位置にタンディッシュ堰4を設置し、タンディッシュ堰4として図3(a)に示すような上堰を用い、開口面積率を条件によって変えた。   The specifications of the tundish 2 provided above the mold 3 are as follows. The capacity is 10 tons, and the tundish 2 has two immersion nozzles, an inner layer molten steel immersion nozzle 5 and a surface layer molten steel immersion nozzle 6, and the interval between the two immersion nozzles is 400 mm. In the tundish, a tundish weir 4 was installed at an intermediate position between two submerged nozzles. An upper weir as shown in FIG. 3A was used as the tundish weir 4, and the opening area ratio was changed depending on conditions.

鋳型内に溶鋼を供給する2つの浸漬ノズルの吐出孔位置は、鋳片幅方向には幅中心をはさんでそれぞれ1/4幅位置とした。また、深さ方向には、直流磁場発生装置8によって形成される直流磁場帯14の上方に表層溶鋼用浸漬ノズル6の吐出口を設け、下方に内層溶鋼用浸漬ノズル5の吐出口を設置した。具体的には、表層溶鋼用浸漬ノズル6の吐出孔位置は湯面レベルから150mmとし、内層溶鋼用浸漬ノズル5の吐出孔位置は湯面レベルから550mmとした。ここで、鋳型内の凝固係数K値はおよそ25mm/min0.5であることを確認しており、鋳造速度VC=1m/分で鋳造した際の直流磁場発生装置8の中心までで形成される表層厚Dは約16mmである。この表層厚みから、直流磁場帯位置における凝固シェル断面積(鋳造後鋳片の表層部面積)S2が定まり、この表層部面積S2と鋳造速度から、下側溶鋼プールと上側溶鋼プールから下方に輸送される単位時間鋳造量がそれぞれG1、G2として定まり、G1、G2に等しくなるように第1溶鋼と第2溶鋼の流量(Q1、Q2)を規定することができる。 The discharge hole positions of the two immersion nozzles for supplying molten steel into the mold were set to 1/4 width positions with the width center in the slab width direction. Further, in the depth direction, the discharge port of the surface molten steel immersion nozzle 6 is provided above the DC magnetic field zone 14 formed by the DC magnetic field generator 8, and the discharge port of the inner layer molten steel immersion nozzle 5 is installed below. . Specifically, the discharge hole position of the surface layer molten steel immersion nozzle 6 was 150 mm from the molten metal surface level, and the discharge hole position of the inner layer molten steel immersion nozzle 5 was 550 mm from the molten metal surface level. Here, it is confirmed that the solidification coefficient K value in the mold is about 25 mm / min 0.5 , and it is formed up to the center of the DC magnetic field generator 8 when casting at a casting speed V C = 1 m / min. The surface layer thickness D is about 16 mm. From this surface layer thickness, the solidified shell cross-sectional area (surface layer area of the cast slab after casting) S 2 is determined from the DC magnetic field zone position, and from this surface layer area S 2 and the casting speed, the lower molten steel pool and the upper molten steel pool The unit-time casting amounts to be transported to the steel are determined as G 1 and G 2 , respectively, and the flow rates (Q 1 and Q 2 ) of the first molten steel and the second molten steel can be defined so as to be equal to G 1 and G 2. .

第1溶鋼21と第2溶鋼22の流量制御については、鋳造開始時に内層溶鋼用浸漬ノズル5から第1溶鋼21のみで鋳造を行い、必要溶鋼流量を供給するための内層溶鋼用浸漬ノズル5のスライディングノズル33bの開度を確認した。その後、タンディッシュヘッドが一定となるように、取鍋1からの注入量を一定に制御したうえで、内層溶鋼用浸漬ノズル5からの供給溶鋼量がQ1となるようにスライディングノズル33b開度を一定で制御した。さらに、第2溶鋼22については、湯面レベルが一定となるように表層溶鋼用浸漬ノズル6のスライディングノズル33c開度調整を行い、結果として第2溶鋼22の供給量がQ2となるように制御した。 About flow control of the 1st molten steel 21 and the 2nd molten steel 22, it casts only with the 1st molten steel 21 from the immersion nozzle 5 for inner-layer molten steel at the time of a casting start, and the immersion nozzle 5 for inner-layer molten steel for supplying required molten steel flow rate The opening degree of the sliding nozzle 33b was confirmed. Thereafter, as the tundish head is constant, after controlling the injection amount from the ladle 1 at a constant, sliding nozzle 33b opening so that the supply amount of molten steel from the submerged nozzle 5 for lining molten steel becomes Q 1 Was controlled at a constant. Further, with respect to the second molten steel 22, the opening degree of the sliding nozzle 33 c of the immersion nozzle 6 for surface molten steel is adjusted so that the molten metal level is constant, and as a result, the supply amount of the second molten steel 22 becomes Q 2. Controlled.

取鍋1から供給する溶鋼成分が第1溶鋼21成分であり、第1溶鋼21は低炭Alキルド鋼である。取鍋から供給する第1溶鋼21はタンディッシュ2の第1領域11に供給され、その一部はタンディッシュ堰4の開口10を経由して第2領域12に供給される。第2領域内の第2溶鋼22は第1溶鋼21に対して、第2領域内に0.3mm厚の軟鋼板でかしめた鉄製ワイヤー(内部にNi粒を含有:420g/m)をワイヤーフィーダーにて添加した。Q2=G2となる鋳造においては添加速度3m/分で添加した。なお、この条件で上記Ni含有ワイヤーを添加すると、第1溶鋼に0.5%Niを添加することに相当する。Q2とG2が相違する鋳造(下記実験2)においては、第2溶鋼中のNi含有量が0.5%となるようにワイヤーの添加速度を調整した。 The molten steel component supplied from the ladle 1 is the first molten steel 21 component, and the first molten steel 21 is low-carbon Al killed steel. The first molten steel 21 supplied from the ladle is supplied to the first region 11 of the tundish 2, and a part thereof is supplied to the second region 12 via the opening 10 of the tundish weir 4. The second molten steel 22 in the second region is a wire feeder made of iron wire (containing Ni grains inside: 420 g / m) caulked with a 0.3 mm thick mild steel plate in the second region with respect to the first molten steel 21. Was added. In casting where Q 2 = G 2 , the addition speed was 3 m / min. Note that adding the Ni-containing wire under these conditions corresponds to adding 0.5% Ni to the first molten steel. In the casting in which Q 2 and G 2 are different (Experiment 2 below), the wire addition speed was adjusted so that the Ni content in the second molten steel was 0.5%.

鋳片内Ni濃度分布を調査するため、表層については表面から8mm位置(表層厚みの中心)、内層については表面から40mm位置(鋳片1/4厚)について、両短辺中央、1/4幅位置の表裏面、1/2幅位置の表裏面、のそれぞれ8箇所、表層、内層あわせて合計16箇所から分析試料を採取し濃度を調査した。また、表層厚については、分析試料を採取した部位について、表面から40mmまでの領域を対象に、分析試料を採取したほぼ同じ位置でサンプルを切り出し、EPMAにて厚み方向の濃度分布を調査した。添加した元素の濃度が高くなっている厚みを求めた。   In order to investigate the Ni concentration distribution in the slab, the surface layer is 8 mm from the surface (center of the surface layer thickness), and the inner layer is 40 mm from the surface (slab ¼ thickness). Analytical samples were collected from a total of 16 locations, including the front and back surfaces at the width position and the front and back surfaces at the 1/2 width position, the surface layer and the inner layer, and the concentration was investigated. As for the surface layer thickness, the sample was cut out at almost the same position where the analysis sample was collected from the region from which the analysis sample was collected, and the concentration distribution in the thickness direction was investigated by EPMA. The thickness at which the concentration of the added element was high was determined.

得られた分析結果については以下の指標で表内層の分離度、表層濃度の均一性を評価した。鋳片表層濃度CO、鋳片内層濃度CI、取鍋内濃度CLとタンディッシュ内に添加した濃度CTから決まる表層分離度XOと鋳片表層厚み内の周方向平均値CMと標準偏差σから求められる濃度均一度Yを以下の式を用いて求めた。
O=(CO −CI)/(CT −CL ) −−−−(1)
Y=σ/CM −−−−(2)
With respect to the obtained analysis results, the separation degree of the inner surface layer and the uniformity of the surface layer concentration were evaluated by the following indices. The slab surface layer concentration C O , the slab inner layer concentration C I , the ladle concentration C L and the concentration C T added to the tundish and the surface layer separation degree X O and the circumferential average value C M within the slab surface layer thickness And the density uniformity Y obtained from the standard deviation σ was obtained using the following equation.
X O = (C O -C I ) / (C T -C L ) ---- (1)
Y = σ / C M ---- (2)

具体的な実験方法について説明する。前述した本発明の原理を検証するため、以下、3つの実験を行った。   A specific experimental method will be described. In order to verify the principle of the present invention described above, the following three experiments were conducted.

まず、実験1として、タンディッシュ堰4の開口10の形状と開口面積率を変化させる実験を行い、表層分離度XO、濃度均一度Yに及ぼす影響を調査した。なお、鋳型内の直流磁場帯14に印加する磁束密度を0.4Tとし、Q2=G2として直流磁場帯14を通過する溶鋼の発生を抑止し、鋳型内電磁撹拌装置9による撹拌流速は0.4m/sの条件とした。結果を図5に示すが、開口面積率が10%未満では溶鋼温度が低い場合には、濃度の均一性の点で課題があった。一方、開口面積率70%を超えると分離度が低下し、濃度の均一性も低下した。タンディッシュ2の第1領域11と第2領域12の間で第1溶鋼21と第2溶鋼22の混合が生じたことによる。逆に、タンディッシュ堰の開口面積率を調整し、開口面積率が10%以上70%以下とすると、表層分離度XOは0.9以上1以下、濃度均一度Yは0.1以下となり、表層分離度、濃度均一度ともに良好な鋳片をえることができた。 First, as Experiment 1, an experiment was performed in which the shape and opening area ratio of the opening 10 of the tundish weir 4 were changed, and the influence on the surface layer separation degree X O and the concentration uniformity degree Y was investigated. Note that the magnetic flux density applied to the DC magnetic field zone 14 in the mold is set to 0.4 T, the generation of molten steel passing through the DC magnetic field zone 14 is suppressed with Q 2 = G 2 , and the stirring flow rate by the electromagnetic stirring device 9 in the mold is The condition was 0.4 m / s. The results are shown in FIG. 5, but when the opening area ratio is less than 10% and the molten steel temperature is low, there is a problem in terms of concentration uniformity. On the other hand, when the opening area ratio exceeded 70%, the degree of separation decreased and the uniformity of concentration also decreased. This is because the first molten steel 21 and the second molten steel 22 are mixed between the first region 11 and the second region 12 of the tundish 2. Conversely, if the opening area ratio of the tundish weir is adjusted so that the opening area ratio is 10% or more and 70% or less, the surface layer separation degree X O is 0.9 or more and 1 or less, and the concentration uniformity Y is 0.1 or less. A slab with good surface separation and uniformity of density could be obtained.

次に、実験2として、第1、第2溶鋼の流量バランスを変化させ、表層溶鋼用浸漬ノズル6からの溶鋼供給量Q2が、上側溶鋼プール15で凝固する鋳造量G2と相違する条件で鋳造し、表層分離度、濃度均一性に及ぼす影響を調査した。ここで、タンディッシュ堰4は開口面積率が40%となるように調整、鋳型内の直流磁場帯14に印加する直流磁場の磁束密度は0.4T、鋳型内電磁撹拌装置9による撹拌流速は0.4m/sの条件で、Q2を変化して鋳造した。結果を図6に示すが、Q2/G2=0.87〜1.12の範囲に制御した条件では、溶鋼界面位置を直流磁場帯内に制御できるので、表層分離度XOは0.9以上1以下、濃度均一度Yは0.1以下となり、表層分離度、濃度均一度ともに良好な鋳片をえることができた。一方、Q2/G2<0.87の条件では、上側溶鋼プールへの溶鋼供給量が不足して、直流磁場帯14を通過して下側溶鋼プール16から上側溶鋼プール15へ溶鋼が移動するため、上側溶鋼プール15の添加元素含有量が低下することとなった。逆に、Q2/G2>1.12の条件では、上側溶鋼プール15への溶鋼供給量が過剰で、直流磁場帯14を通過して上側溶鋼プール15から下側溶鋼プール16へ溶鋼が移動するため、鋳片の内層にも添加元素が含有される結果となった。 Next, as experiment 2, the flow rate balance of the first and second molten steel is changed, and the molten steel supply amount Q 2 from the immersion nozzle 6 for surface molten steel is different from the casting amount G 2 that solidifies in the upper molten steel pool 15. The effect on surface separation and concentration uniformity was investigated. Here, the tundish weir 4 is adjusted so that the opening area ratio is 40%, the magnetic flux density of the DC magnetic field applied to the DC magnetic field zone 14 in the mold is 0.4 T, and the stirring flow rate by the electromagnetic stirring device 9 in the mold is Casting was carried out under the condition of 0.4 m / s, with Q 2 varied. The results are shown in Figure 6, the conditions controlled in a range of Q 2 / G 2 = 0.87~1.12, can be controlled molten steel surface located within DC magnetic field zone, the surface layer separability X O 0. 9 or more and 1 or less, and the density uniformity Y was 0.1 or less, and a slab having good surface layer separation and density uniformity could be obtained. On the other hand, under the condition of Q 2 / G 2 <0.87, the molten steel supply amount to the upper molten steel pool is insufficient, and the molten steel moves from the lower molten steel pool 16 to the upper molten steel pool 15 through the DC magnetic field zone 14. Therefore, the additive element content of the upper molten steel pool 15 is reduced. On the contrary, under the condition of Q 2 / G 2 > 1.12, the molten steel supply amount to the upper molten steel pool 15 is excessive, and the molten steel passes through the DC magnetic field zone 14 from the upper molten steel pool 15 to the lower molten steel pool 16. As a result, the additive element was contained in the inner layer of the slab.

さらに、実験3として、鋳型内に印加する磁束密度を0.4T、表内層界面27位置を制動域内の450mm、タンディッシュ堰の開口は開口面積が40%となるように調整した条件で、上側溶鋼プール15における鋳型内電磁撹拌装置9の撹拌流速を変えて鋳造した。表層ノズル側短辺部の表層厚み、内層ノズル側短辺部の厚み、幅中央部の表層部の厚みを調査し、撹拌条件との関係を調査した。   Further, as Experiment 3, the magnetic flux density applied to the mold was 0.4 T, the surface inner layer interface 27 position was 450 mm in the braking region, and the opening of the tundish weir was adjusted so that the opening area was 40%. The molten steel pool 15 was cast while changing the stirring flow rate of the electromagnetic stirring device 9 in the mold. The surface layer thickness of the surface layer nozzle side short side part, the thickness of the inner layer nozzle side short side part, and the thickness of the surface layer part of the width center part were investigated, and the relationship with the stirring conditions was investigated.

図7には鋳型内電磁撹拌の有無による表層厚みの周方向分布の違いについて調査した結果を示した。電磁撹拌を印加しない条件では下部に溶鋼を供給するノズル側で溶鋼が停滞しやすく、表層厚みが厚くなる傾向がみられたが、0.3m/s以上の旋回流を湯面近傍で付与することで表層厚みの周方向分布を均一化することができ、好ましい。   FIG. 7 shows the results of investigating the difference in the circumferential distribution of the surface layer thickness with and without electromagnetic stirring in the mold. Under conditions where electromagnetic stirring is not applied, the molten steel tends to stagnate on the nozzle side that supplies molten steel to the bottom, and the surface layer tends to increase in thickness, but a swirling flow of 0.3 m / s or more is applied in the vicinity of the molten metal surface. Thus, the circumferential distribution of the surface layer thickness can be made uniform, which is preferable.

本方法は以上のような方法で第2溶鋼の成分調整を行うので、第2溶鋼に添加する成分についての制約は少なく、NiやCだけでなく、Si,Mn,P,S,B,Nb,Ti,Al,Cu,Moに加えて、強脱酸、強脱硫元素であるCa,Mg,REM等、鋼中に含有する元素を添加することができる。このため、鋳片の表層成分を変えることで鋼材の新たな機能を比較的簡便な方法で可能となる。   Since this method adjusts the components of the second molten steel by the method as described above, there are few restrictions on the components added to the second molten steel, and not only Ni and C but also Si, Mn, P, S, B, Nb In addition to Ti, Al, Cu, and Mo, elements contained in steel such as strong deoxidation and strong desulfurization elements such as Ca, Mg, and REM can be added. For this reason, the new function of steel materials is attained by a comparatively simple method by changing the surface layer component of a slab.

図1に模式的に示した鋳造装置で低炭Alキルド鋼を鋳造する実験を行った。溶鋼の溶製は、転炉出鋼後、二次精錬にて脱ガス、成分調整した。取鍋溶鋼は250tであった。   An experiment for casting low-carbon Al killed steel was performed using the casting apparatus schematically shown in FIG. The molten steel was melted by degassing and component adjustment by secondary refining after leaving the converter. The ladle molten steel was 250 tons.

容量50tのタンディッシュ2底部に内層溶鋼用浸漬ノズル5と表層溶鋼用浸漬ノズル6の2つの浸漬ノズルを設けた。2つの浸漬ノズルの間隔は600mmである。その中間位置にタンディッシュ堰4を設置し、開口部の形状と開口面積率は条件によって変更した。   Two immersion nozzles of an inner layer molten steel immersion nozzle 5 and a surface layer molten steel immersion nozzle 6 were provided at the bottom of the tundish 2 having a capacity of 50 t. The distance between the two immersion nozzles is 600 mm. The tundish weir 4 was installed in the middle position, and the shape of the opening and the area ratio of the opening were changed according to the conditions.

鋳型内の湯面17レベルから100mm下方に電磁撹拌装置9のコア中心を設置し、鋳型内の上部溶鋼プール中に水平断面内で最大0.6m/sの旋回流を形成した。かつ湯面レベルから450mm下方に幅方向に均一な磁束密度分布を有する直流磁場を鋳片の厚み方向に印加することができる直流磁場発生装置8を設けた。最大0.5Tの直流磁場が印加できる。この直流磁場発生装置8のコア厚みが200mmのため、湯面レベルから350〜550mmの範囲内にわたってほぼ同じ磁束密度の直流磁場を最大0.5T印加することができる。そのため、直流磁場帯14の範囲は湯面レベルからの高さがHH=350mmからHL=550mmの範囲となる。従って、第2溶鋼供給量Q2とG2との比(Q2/G2)が、G2H/G2≒√(HH/H)=0.88からG2L/G2≒√(HL/H)=1.11の範囲内であれば、溶鋼界面27位置を直流磁場帯14内に制御できるので、本発明の効果を発揮することができる。 The core center of the electromagnetic stirrer 9 was installed 100 mm below the level 17 of the molten metal surface in the mold, and a swirling flow of a maximum of 0.6 m / s was formed in the horizontal molten section in the upper molten steel pool in the mold. In addition, a direct-current magnetic field generator 8 capable of applying a direct-current magnetic field having a uniform magnetic flux density distribution in the width direction 450 mm below the level of the molten metal surface is provided in the thickness direction of the slab. A maximum DC magnetic field of 0.5T can be applied. Since the direct current magnetic field generator 8 has a core thickness of 200 mm, a direct current magnetic field having substantially the same magnetic flux density can be applied at a maximum of 0.5 T over a range of 350 to 550 mm from the molten metal surface level. Therefore, the range of the DC magnetic field zone 14 is such that the height from the hot water level is H H = 350 mm to H L = 550 mm. Therefore, the ratio (Q 2 / G 2 ) between the second molten steel supply amount Q 2 and G 2 is G 2H / G 2 ≈√ (H H /H)=0.88 to G 2L / G 2 ≈√ ( If it is within the range of H L /H)=1.11, the position of the molten steel interface 27 can be controlled within the DC magnetic field zone 14, and thus the effect of the present invention can be exhibited.

鋳型内に溶鋼を供給する浸漬ノズルの位置については、まず、鋳片幅方向には幅中心をはさんでそれぞれ1/4幅位置とした。また、浸漬ノズルの吐出孔位置については、深さ方向には直流磁場発生装置によって形成される制動領域(直流磁場帯14)の上側(表層溶鋼用浸漬ノズル6)部と、下側(内層溶鋼用浸漬ノズル5)にそれぞれ設置した。具体的には、表層溶鋼用浸漬ノズル6の吐出孔位置は湯面レベルから200mmとし、内層溶鋼用浸漬ノズル5の吐出孔位置は湯面レベルから600mmとした。   With respect to the position of the immersion nozzle for supplying molten steel into the mold, first, in the width direction of the slab, the position was set to a quarter width position across the width center. Moreover, about the discharge hole position of an immersion nozzle, the upper side (immersion nozzle 6 for surface layer molten steel) part and the lower side (inner layer molten steel) of the braking area | region (DC magnetic field zone 14) formed by a DC magnetic field generator in a depth direction. It was installed in the immersion nozzle 5). Specifically, the discharge hole position of the surface layer molten steel immersion nozzle 6 was set to 200 mm from the molten metal level, and the discharge hole position of the inner layer molten steel immersion nozzle 5 was set to 600 mm from the molten metal level.

鋳造条件は、1200mm幅、250mm厚、鋳造速度1.5m/分で鋳造した。ここで、鋳型内の凝固係数K値はおよそ25mm/min0.5であることを確認しており、鋳型内直流磁場発生装置8の中心までで形成される表層厚は約14mmである。この表層厚みから、直流磁場帯位置における凝固シェル断面積(鋳造後鋳片の表層部面積)S2が定まり、この表層部面積S2と鋳造速度から、下側溶鋼プールと上側溶鋼プールから下方に輸送される単位時間鋳造量がそれぞれG1、G2として定まり、G1、G2に等しくなるように第1溶鋼と第2溶鋼の流量(Q1、Q2)を規定することができる。 The casting conditions were as follows: 1200 mm width, 250 mm thickness, casting speed 1.5 m / min. Here, it has been confirmed that the solidification coefficient K value in the mold is about 25 mm / min 0.5 , and the surface layer thickness formed up to the center of the DC magnetic field generator 8 in the mold is about 14 mm. From this surface layer thickness, the solidified shell cross-sectional area (surface layer area of the cast slab after casting) S 2 is determined from the DC magnetic field zone position, and from this surface layer area S 2 and the casting speed, the lower molten steel pool and the upper molten steel pool The unit-time casting amounts to be transported to the steel are determined as G 1 and G 2 , respectively, and the flow rates (Q 1 and Q 2 ) of the first molten steel and the second molten steel can be defined so as to be equal to G 1 and G 2. .

第1溶鋼と第2溶鋼の流量制御については、鋳造開始時に第1溶鋼のみで鋳造を行い、必要溶鋼流量を供給するための内層溶鋼用浸漬ノズル5のスライディングノズル33bの開度を確認した。その後、タンディッシュヘッドが一定となるように、スライディングノズル33a流量調整によって取鍋からの注入量を一定に制御したうえで、本発明例と一部の比較例について、内層溶鋼用浸漬ノズル5からの供給溶鋼量がQ1となるようにスライディングノズル開度を一定で制御した。さらに、第2溶鋼については、湯面レベル計31で計測した湯面レベルが一定となるように表層溶鋼用浸漬ノズル6のスライディングノズル33c開度調整を行い、結果として第2溶鋼の供給量がQ2となるように制御した。 Regarding the flow control of the first molten steel and the second molten steel, casting was performed only with the first molten steel at the start of casting, and the opening degree of the sliding nozzle 33b of the inner layer molten steel immersion nozzle 5 for supplying the necessary molten steel flow rate was confirmed. Thereafter, the amount of injection from the ladle is controlled to be constant by adjusting the flow rate of the sliding nozzle 33a so that the tundish head is constant, and then from the immersion nozzle 5 for inner layer molten steel for the present invention example and some comparative examples. supply molten steel amount was controlled sliding nozzle opening at a constant such that the Q 1. Furthermore, about the 2nd molten steel, the sliding nozzle 33c opening degree adjustment of the immersion nozzle 6 for surface molten steel is adjusted so that the molten metal level measured with the molten metal level meter 31 may become constant, and the supply amount of the 2nd molten steel is obtained as a result. Control was performed so that Q 2 was obtained.

タンディッシュでの成分調整について説明する。前述したタンディッシュの第2領域12内に0.3mm厚の軟鋼板でかしめた鉄製ワイヤー(外径12mm、C粉含有量:226g/m)をワイヤーフィーダーにて添加した。ワイヤーの添加速度は、各実施例での第2溶鋼の流量Q2に対応して、第2溶鋼に0.3%Cを添加することに相当する添加速度とした。 The component adjustment in the tundish will be described. An iron wire (outer diameter 12 mm, C powder content: 226 g / m) caulked with a mild steel plate having a thickness of 0.3 mm was added to the second region 12 of the tundish using a wire feeder. The addition rate of the wire was set to an addition rate corresponding to adding 0.3% C to the second molten steel corresponding to the flow rate Q 2 of the second molten steel in each example.

次に、本発明の原理を検証するために行った実験内容について説明する。
◆実験1:第1、第2溶鋼の流量バランスを変化させ、Q2/G2が変化する条件で鋳造する。
◆実験2:タンディッシュ堰の開口部形状と開口面積率を変えて鋳造する。
◆実験3:鋳型内電磁撹拌装置の印加電流を変えて湯面近傍で形成する旋回流速を変えて鋳造する。
ここで、前述した実験において、鋳型内直流磁場発生装置8により0.5Tの直流磁場を印加した。
Next, the contents of experiments conducted to verify the principle of the present invention will be described.
◆ Experiment 1: Casting is performed under the condition that Q 2 / G 2 is changed by changing the flow rate balance of the first and second molten steels.
◆ Experiment 2: Casting by changing the opening shape and opening area ratio of the tundish weir.
Experiment 3: Casting is performed by changing the applied current of the electromagnetic stirring device in the mold and changing the swirling flow velocity formed near the molten metal surface.
Here, in the experiment described above, a DC magnetic field of 0.5 T was applied by the in-mold DC magnetic field generator 8.

鋳片内C濃度分布を調査するため、表層については表面から7mm位置(表層厚みの中心)、内層については表面から60mm位置(鋳片1/4厚)について、両短辺中央、1/4幅位置の表裏面、1/2幅位置の表裏面、のそれぞれ8箇所、表層、内層あわせて合計16箇所から分析試料を採取し濃度を調査した。また、表層厚DRについては、分析試料を採取した部位について、表面から60mmまでの領域を対象に、分析試料を採取したほぼ同じ位置でサンプルを切り出し、EPMAにて厚み方向の濃度分布を調査した。添加した元素の濃度が高くなっている厚みを求めた。 In order to investigate the C concentration distribution in the slab, the surface layer is 7 mm from the surface (center of the surface layer thickness), and the inner layer is 60 mm from the surface (slab ¼ thickness). Analytical samples were collected from a total of 16 locations, including the front and back surfaces at the width position and the front and back surfaces at the 1/2 width position, the surface layer and the inner layer, and the concentration was investigated. As for the surface layer thickness D R, for the region from which the analysis sample was collected, for the region from the surface to 60 mm, the sample was cut out at almost the same position where the analysis sample was collected, and the concentration distribution in the thickness direction was investigated by EPMA. did. The thickness at which the concentration of the added element was high was determined.

得られた分析結果については以下の指標で表内層の分離度、表層濃度の均一性を評価した。鋳片表層濃度CO、鋳片内層濃度CI、取鍋内濃度CLとタンディッシュ内に添加した濃度CTから決まる表層分離度XOと鋳片表層厚み内の周方向平均値CMと標準偏差σから求められる濃度均一度Yを以下の式を用いて求める。
O=(CO −CI)/(CT −CL ) −−−−(1)
Y=σ/CM −−−−(2)
With respect to the obtained analysis results, the separation degree of the inner surface layer and the uniformity of the surface layer concentration were evaluated by the following indices. The slab surface layer concentration C O , the slab inner layer concentration C I , the ladle concentration C L and the concentration C T added to the tundish and the surface layer separation degree X O and the circumferential average value C M within the slab surface layer thickness Then, the density uniformity Y obtained from the standard deviation σ is obtained using the following equation.
X O = (C O -C I ) / (C T -C L ) ---- (1)
Y = σ / C M ---- (2)

実験1、実験2、実験3、それぞれの結果を表1、表2、表3に示した。   The results of Experiment 1, Experiment 2, and Experiment 3 are shown in Table 1, Table 2, and Table 3, respectively.

Figure 2017030013
Figure 2017030013

表1ではタンディッシュ堰として図3(a)に示す上堰を用い、上堰の深さを調整し開口面積率を全体の40%、鋳型内に印加する直流磁場の磁束密度は0.5T、鋳型内電磁撹拌装置による撹拌流速は0.4m/sの条件で、第2溶鋼供給量Q2とG2との比(Q2/G2)を変化して鋳造した。界面位置(メニスカスから界面までの距離HR)については、鋳片の表層厚DRを計測し、
R=K√(HR/VC
を逆算して求めた。
In Table 1, the upper weir shown in FIG. 3A is used as the tundish weir, the depth of the upper weir is adjusted, the opening area ratio is 40% of the whole, and the magnetic flux density of the DC magnetic field applied to the mold is 0.5T. The casting was performed by changing the ratio (Q 2 / G 2 ) between the second molten steel supply rate Q 2 and G 2 under the condition that the stirring flow rate by the electromagnetic stirring device in the mold was 0.4 m / s. For the interface position (distance H R from the meniscus to the interface), the surface thickness D R of the slab is measured,
D R = K√ (H R / V C )
Was calculated in reverse.

2/G2=0.88〜1.11の範囲として界面27位置が直流磁場による制動域内に制御した本発明1,2,3の条件では分離度、均一度ともに良好な結果が得られた。一方、Q2/G2<0.87にはずれた比較例3,4では、界面位置が直流磁場帯上端に止まり、表層分離度XO、濃度均一度Yともに不良であった。Q2/G2>1.11にはずれた比較例1,2では、界面位置が直流磁場帯の下端位置に止まり、比較的良好な表層分離度、濃度均一性がえられたが、本発明と比較すると不十分であった。 Under the conditions of the present invention 1, 2 and 3 in which the interface 27 position is controlled within the braking region by the DC magnetic field in the range of Q 2 / G 2 = 0.88 to 1.11, good results are obtained in both the degree of separation and uniformity. It was. On the other hand, in Comparative Examples 3 and 4 that deviated to Q 2 / G 2 <0.87, the interface position remained at the upper end of the DC magnetic field zone, and both the surface layer separation degree X O and the concentration uniformity degree Y were poor. In Comparative Examples 1 and 2, which deviated from Q 2 / G 2 > 1.11, the interface position remained at the lower end position of the DC magnetic field zone, and relatively good surface layer separation and concentration uniformity were obtained. It was insufficient compared with.

Figure 2017030013
Figure 2017030013

表2では鋳型内に印加する磁束密度を0.5T、Q2/G2=1(表/内層界面位置を制動域内の450mm)、鋳型内電磁撹拌装置による撹拌流速は0.4m/sの条件で、タンディッシュ堰として図3に示すものを用い、開口面積率を変化して鋳造した。開口面積率が10%〜70%に調整した本発明4〜10では表層分離度、濃度均一度ともに良好な結果が得られたが、堰がない(開口面積率100%)比較例5、開口面積率が大きすぎる比較例9、10では表層分離度、濃度均一度ともに不十分であった。また、開口面積率が少なすぎる比較例6〜8では均一性におとる条件もあり、不適であった。 In Table 2, the magnetic flux density applied to the mold is 0.5 T, Q 2 / G 2 = 1 (the table / inner layer interface position is 450 mm in the braking region), and the stirring flow rate by the electromagnetic stirring device in the mold is 0.4 m / s. Under the conditions, the tundish weir shown in FIG. 3 was used, and casting was performed while changing the opening area ratio. In the present inventions 4 to 10 in which the opening area ratio was adjusted to 10% to 70%, good results were obtained in both surface layer separation and concentration uniformity, but there was no weir (opening area ratio 100%). In Comparative Examples 9 and 10 in which the area ratio was too large, both the surface layer separation degree and the concentration uniformity were insufficient. Further, Comparative Examples 6 to 8 in which the opening area ratio was too small were unsuitable due to conditions for uniformity.

Figure 2017030013
Figure 2017030013

表3では鋳型内に印加する磁束密度を0.5T、Q2/G2=1(表内層界面位置を制動域内の450mm)、図3(a)に示すタンディッシュの上堰深さを開口面積率が40%となるように調整した条件で、鋳型内電磁撹拌装置の撹拌流速を変えて鋳造した。表層溶鋼用浸漬ノズル6側短辺部の表層厚み、内層溶鋼用浸漬ノズル5側短辺部の厚み、幅中央部の表層部の厚みを調査し、撹拌条件との関係を調査した。鋳型内電磁撹拌による撹拌流を付与しない本発明13では品質上問題にはならないものの表層厚みの不均一がみられた。一方、鋳型内電磁撹拌装置による撹拌流を付与した本発明11,12ではいずれも表層溶鋼用浸漬ノズル6短辺厚、内層溶鋼用浸漬ノズル5短辺厚と幅中央部の表層厚みがほぼ同じであった。そのため、鋳型内電磁撹拌による撹拌流を付与することで表層厚みが鋳片周方向に均一になるため、好ましい。 In Table 3, the magnetic flux density applied to the mold is 0.5 T, Q 2 / G 2 = 1 (the inner layer interface position is 450 mm in the braking zone), and the upper weir depth of the tundish shown in FIG. The casting was carried out by changing the stirring flow rate of the electromagnetic stirring device in the mold under the condition that the area ratio was adjusted to 40%. The surface layer thickness of the immersion nozzle 6 side for the surface layer molten steel, the thickness of the short side portion of the immersion nozzle 5 for the inner layer molten steel, and the thickness of the surface layer portion of the central portion of the width were investigated, and the relationship with the stirring conditions was investigated. In the invention 13 in which stirring flow by electromagnetic stirring in the mold was not applied, the surface layer thickness was not uniform, although this was not a problem in quality. On the other hand, in this invention 11 and 12 which gave the stirring flow by the electromagnetic stirring apparatus in a casting_mold | template, the surface layer thickness of the immersion nozzle 6 for surface layer molten steel 6 and the short side thickness of the immersion nozzle 5 for inner layer molten steel are substantially the same. Met. Therefore, it is preferable because the thickness of the surface layer becomes uniform in the slab circumferential direction by applying a stirring flow by electromagnetic stirring in the mold.

1 取鍋
2 タンディッシュ
3 鋳型
4 タンディッシュ堰
5 内層溶鋼用浸漬ノズル
6 表層溶鋼用浸漬ノズル
7 成分添加装置
8 直流磁場発生装置
9 電磁攪拌装置
10 開口
11 第1領域
12 第2領域
13 取鍋注入流
14 直流磁場帯
15 上側溶鋼プール
16 下側溶鋼プール
17 メニスカス(湯面)
18 湯面
20 溶鋼
21 第1溶鋼
22 第2溶鋼
23 凝固シェル
24 上側溶鋼プール凝固部分(表層部)
25 下側溶鋼プール凝固部分(内層部)
26 溶鋼浸漬部分
27 界面
28 淀んだ領域
29 鋳片
30 浸漬ノズル
31 湯面レベル計
32 制御装置
33 流量調整装置
DESCRIPTION OF SYMBOLS 1 Ladle 2 Tundish 3 Mold 4 Tundish weir 5 Inner layer molten steel immersion nozzle 6 Surface layer molten steel immersion nozzle 7 Component addition device 8 DC magnetic field generator 9 Electromagnetic stirrer 10 Opening 11 First region 12 Second region 13 Ladle Injection flow 14 DC magnetic field zone 15 Upper molten steel pool 16 Lower molten steel pool 17 Meniscus (water surface)
18 Molten surface 20 Molten steel 21 First molten steel 22 Second molten steel 23 Solidified shell 24 Upper molten steel pool solidified portion (surface layer portion)
25 Lower molten steel pool solidification part (inner layer part)
26 Molten steel immersion portion 27 Interface 28 Stagnation region 29 Slab 30 Immersion nozzle 31 Molten surface level gauge 32 Control device 33 Flow rate adjustment device

Claims (4)

鋳片の表層と内層の成分組成が異なる複層鋳片を製造する方法であって、タンディッシュの底部に、内層溶鋼用浸漬ノズルと、さらにその下流側に表層溶鋼用浸漬ノズルを配置し、これら2つの浸漬ノズルの間にタンディッシュ堰を設置し、該タンディッシュ堰は溶鋼浸漬部に開口面積率が10%以上70%以下の開口を有し、鋳型幅方向全幅にわたって厚み方向に直流磁場を印加する直流磁場発生装置を配置し、当該直流磁場発生装置によって形成される直流磁場帯をはさんだストランドの上部を上側溶鋼プール、下部を下側溶鋼プールとし、前記表層溶鋼用浸漬ノズルから上側溶鋼プールに溶鋼を供給し、内層溶鋼用浸漬ノズルから下側溶鋼プールに溶鋼を供給し、
前記タンディッシュ堰にて区分された取鍋溶鋼注入側を第1領域、その反対側を第2領域とし、第2領域側のタンディッシュ内溶鋼に対して所定の元素あるいはその合金を連続的に添加し濃度を調整することで、取鍋溶鋼ならびに取鍋溶鋼とは異なる成分組成からなる2種類の溶鋼をタンディッシュ内で保持しつつ、第1領域に収容された溶鋼を内層溶鋼用浸漬ノズルから下側溶鋼プールに供給し、第2領域に収容された溶鋼を表層溶鋼用浸漬ノズルから上側溶鋼プールに供給し、
当該2つの浸漬ノズルそれぞれから、それぞれの溶鋼プール中で凝固によって消費される溶鋼量を鋳型内に供給することを特徴とする複層鋳片の連続鋳造方法。
A method for producing a multi-layer slab in which the component composition of the surface layer and the inner layer of the slab is different, and an immersion nozzle for inner layer molten steel is disposed at the bottom of the tundish, and further, an immersion nozzle for surface layer molten steel is disposed downstream thereof, A tundish weir is installed between these two immersion nozzles, the tundish weir has an opening with an opening area ratio of 10% to 70% in the molten steel immersion part, and a DC magnetic field in the thickness direction over the entire width in the mold width direction. The upper part of the strand sandwiching the DC magnetic field zone formed by the DC magnetic field generator is the upper molten steel pool, the lower part is the lower molten steel pool, and the upper part from the immersion nozzle for the surface molten steel Supply molten steel to the molten steel pool, supply molten steel from the immersion nozzle for inner layer molten steel to the lower molten steel pool,
The ladle molten steel injection side divided by the tundish weir is the first region, the opposite side is the second region, and a predetermined element or its alloy is continuously applied to the molten steel in the tundish on the second region side. By adding and adjusting the concentration, the ladle molten steel and two types of molten steel with different composition from the ladle molten steel are held in the tundish while the molten steel contained in the first region is immersed in the inner layer molten steel. To the lower molten steel pool, the molten steel accommodated in the second region is supplied from the surface molten steel immersion nozzle to the upper molten steel pool,
A continuous casting method for a multilayer slab, characterized in that a molten steel amount consumed by solidification in each molten steel pool is supplied from each of the two immersion nozzles into a mold.
下側溶鋼プールに供給する溶鋼量はタンディッシュのヘッドと内層溶鋼用浸漬ノズルのスライディングノズルの開度と溶鋼流量の関係を用いて、溶鋼界面位置を直流磁場帯内に制御しつつ、タンディッシュにて成分調整された溶鋼を表層溶鋼用浸漬ノズルから上側溶鋼プールに供給する供給量については鋳型内湯面レベルが一定となるように制御することを特徴とする請求項1記載の複層鋳片の連続鋳造方法。   The amount of molten steel supplied to the lower molten steel pool is controlled by controlling the position of the molten steel interface in the DC magnetic field zone using the relationship between the tundish head and the sliding nozzle opening of the immersion nozzle for inner layer molten steel and the molten steel flow rate. 2. The multilayer slab according to claim 1, wherein the supply amount of the molten steel whose components are adjusted in step 1 is supplied from the surface layer molten steel immersion nozzle to the upper molten steel pool is controlled so that the molten metal level in the mold is constant. Continuous casting method. 前記直流磁場帯の上方の鋳型内湯面近傍において水平断面内で旋回流を形成することを特徴とする請求項1又は2に記載の複層鋳片の連続鋳造方法。   3. A continuous casting method for a multilayer slab according to claim 1, wherein a swirling flow is formed in a horizontal section in the vicinity of the molten metal surface in the mold above the DC magnetic field zone. 鋳片の表層と内層の成分組成が異なる複層鋳片を製造する装置であって、取鍋からの溶鋼を保持するタンディッシュの底部に、内層溶鋼用浸漬ノズルと、さらにその下流側に表層溶鋼用浸漬ノズルが鋳造幅よりも短い間隔で併設され、その間にタンディッシュ堰が設置されており、該タンディッシュ堰は溶鋼浸漬部に開口面積率が70%以下の開口を有し、タンディッシュ堰で区分された取鍋溶鋼注入反対側の領域の溶鋼に成分を添加する成分添加装置を有し、
鋳型内では湯面近傍において水平断面内で旋回流を形成する電磁撹拌装置と、その下方に鋳型幅方向全体にわたって厚み方向に直流磁場を印加する直流磁場発生装置を備え、当該直流磁場発生装置によって形成される直流磁場帯をはさんだストランドの上部を上側溶鋼プール、下部を下側溶鋼プールとし、前記表層溶鋼用浸漬ノズルから上側溶鋼プールに溶鋼を供給し、内層溶鋼用浸漬ノズルから下側溶鋼プールに溶鋼を供給する構造とすることを特徴とする複層鋳片の連続鋳造装置。
An apparatus for producing a multi-layer slab in which the composition of the surface layer and the inner layer of the slab is different, the inner layer molten steel immersion nozzle at the bottom of the tundish that holds the molten steel from the ladle, and the surface layer further downstream Molten steel immersion nozzles are provided at intervals shorter than the casting width, and tundish weirs are installed between them. The tundish weir has an opening with an opening area ratio of 70% or less in the molten steel immersion part. It has a component addition device that adds components to the molten steel in the region opposite to the ladle molten steel injection divided by the weir,
In the mold, an electromagnetic stirrer that forms a swirl flow in the horizontal section near the molten metal surface, and a DC magnetic field generator that applies a DC magnetic field in the thickness direction over the entire mold width direction are provided below the electromagnetic stirrer. The upper part of the strand across the formed DC magnetic field zone is the upper molten steel pool, the lower part is the lower molten steel pool, the molten steel is supplied from the surface molten steel immersion nozzle to the upper molten steel pool, and the lower molten steel is supplied from the inner layer molten steel immersion nozzle. A continuous casting apparatus for multi-layer cast slabs, characterized in that molten steel is supplied to a pool.
JP2015151910A 2015-07-31 2015-07-31 Method and apparatus for continuous casting of multi-layer cast slab Active JP6500682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015151910A JP6500682B2 (en) 2015-07-31 2015-07-31 Method and apparatus for continuous casting of multi-layer cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015151910A JP6500682B2 (en) 2015-07-31 2015-07-31 Method and apparatus for continuous casting of multi-layer cast slab

Publications (2)

Publication Number Publication Date
JP2017030013A true JP2017030013A (en) 2017-02-09
JP6500682B2 JP6500682B2 (en) 2019-04-17

Family

ID=57986913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015151910A Active JP6500682B2 (en) 2015-07-31 2015-07-31 Method and apparatus for continuous casting of multi-layer cast slab

Country Status (1)

Country Link
JP (1) JP6500682B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112789673A (en) * 2018-09-28 2021-05-11 株式会社Posco Casting simulation device and casting simulation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152684A (en) * 1984-01-19 1985-08-10 Nippon Steel Corp Clad steel plate having high fatigue limit ratio and good formability
JPH02138046U (en) * 1989-04-19 1990-11-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152684A (en) * 1984-01-19 1985-08-10 Nippon Steel Corp Clad steel plate having high fatigue limit ratio and good formability
JPH02138046U (en) * 1989-04-19 1990-11-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112789673A (en) * 2018-09-28 2021-05-11 株式会社Posco Casting simulation device and casting simulation method

Also Published As

Publication number Publication date
JP6500682B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
CN108348989B (en) Continuous casting device and continuous casting method for multi-layer casting blank
JP6855806B2 (en) Continuous casting method and continuous casting equipment for multi-layer slabs
JP6515286B2 (en) Method and apparatus for continuous casting of multi-layer cast slab
CN106536087A (en) Method and device for thin-slab strand casting
JP6123549B2 (en) Manufacturing method of continuous cast slab
US6557623B2 (en) Production method for continuous casting cast billet
KR101239537B1 (en) Method for deceasing a depression of strip surface by optimization a deposition depth in submerged entry nozzle
JP6500682B2 (en) Method and apparatus for continuous casting of multi-layer cast slab
JP2015080792A (en) Continuous casting method of steel
JP6330542B2 (en) Manufacturing method of continuous cast slab
JP3988538B2 (en) Manufacturing method of continuous cast slab
JP3573096B2 (en) Manufacturing method of continuous cast slab
JP2020171960A (en) Molten metal continuous casting method and continuous casting apparatus
JP2018069324A (en) Mold device for continuous casting for steel and manufacturing method of surface layer-modified cast slab using the same
JPH0839196A (en) Production of continuously cast slab
JP2001321907A (en) Method for producing continuous casting slab and continuous casting slab
JP2008279482A (en) Continuous casting method of double layered cast strip, and cast strip
JPH07290195A (en) Production of continuously cast slab
JPH0557397A (en) Method for continuously casting two layer steel with solidifying method below molten steel surface
JP2001300704A (en) Method for producing continuously cast slat and cast slab
JP2001105108A (en) Method for continuously producing cast slab
JPH05318029A (en) Method for continuously casting double layer steel stabilizing double layer ratio
JPH07116796A (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R151 Written notification of patent or utility model registration

Ref document number: 6500682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350