JP2001321907A - Method for producing continuous casting slab and continuous casting slab - Google Patents

Method for producing continuous casting slab and continuous casting slab

Info

Publication number
JP2001321907A
JP2001321907A JP2000142522A JP2000142522A JP2001321907A JP 2001321907 A JP2001321907 A JP 2001321907A JP 2000142522 A JP2000142522 A JP 2000142522A JP 2000142522 A JP2000142522 A JP 2000142522A JP 2001321907 A JP2001321907 A JP 2001321907A
Authority
JP
Japan
Prior art keywords
slab
alloy element
mold
continuous casting
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000142522A
Other languages
Japanese (ja)
Inventor
Hiroshi Harada
寛 原田
Eiichi Takeuchi
栄一 竹内
Shigenao Anzai
栄尚 安斎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000142522A priority Critical patent/JP2001321907A/en
Publication of JP2001321907A publication Critical patent/JP2001321907A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of a double-layer state continuous casting slab having high alloy element concentration on the surface layer of the cast slab in comparison with the inner layer part of the cast slab, and the continuous casting slab. SOLUTION: In the producing method of the cast slab having <=500 cm2 cross sectional area, continuous casting powder containing a prescribed alloy element is used and also, an electromagnetic stirring device is disposed in a continuous casting mold and the spouting holes of an immersion nozzle for supplying molten steel into the mold, are positioned at the lower part from the center position of a coil in the stirring device and thus, a zone, in which the alloy element is uniformly melted and mixed with the stirring flow or the variation stirring flow, is formed at the upper part in the mold, and a zone, in which the concentration of the alloy element is low is formed at the lower part thereof to produce the double-layer state cast slab having high alloy element concentration in the surface layer in comparison with that in the inner layer. The thickness of the surface layer part in the obtained continuously cast slab is D=k(L/V)n. Wherein, D: the thickness of the surface layer part, L: the depth of the coil center in the stirring device, V: the casting speed, k: solidifying factor, n: the constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳片断面積が50
0cm2 以下の鋳片を製造する方法において、溶鋼か
ら、直接、連続鋳造鋳型内にて、鋳片表層の合金元素濃
度が鋳片内層部と比較して高い複層状の連鋳鋳片を製造
する方法と、その連鋳鋳片に関する。
TECHNICAL FIELD The present invention relates to a slab having a cross section of 50 slabs.
In a method for producing a cast slab of 0 cm 2 or less, a continuous cast slab is produced from molten steel directly in a continuous casting mold in which the alloy element concentration of the surface layer of the slab is higher than that of the slab inner layer. And a continuous cast slab.

【0002】[0002]

【従来の技術】発明者らは、図1に示すように、特開平
8−290235号(特願平7−115283号)公報
にて、所定の合金元素を含有した連鋳パウダー13を用
いると共に、連続鋳造鋳型内の上部に電磁攪拌装置30
を設置し、鋳型内の溶鋼プール中の水平断面内で旋回流
31を形成し、かつ、鋳型内に溶鋼を供給する浸漬ノズ
ル2の吐出孔を攪拌域9よりも下方に設けることによ
り、鋳型内において、上部に、攪拌流により前記合金元
素が均一に溶解・混合した領域を形成し、また、その下
方に、合金元素の濃度が低い領域を形成することで、合
金元素の表層濃度が内層に比べて高い複層状の鋳片を製
造することを特徴とする連鋳鋳片の製造方法を、また、
特開平8−290236号(特願平7−115284
号)公報にて、鋳型上部、下部に、それぞれ溶鋼プール
中で旋回攪拌流を形成し、その下方で、直流磁界を形成
することができる電磁力を適用しつつ、鋳型内にパウダ
ーと共に溶鋼中に添加する合金元素の粒あるいは粉を添
加することで、鋳片表層部のみに添加した合金元素を富
化する方法を開示した。
2. Description of the Related Art As shown in FIG. 1, the inventors of the present invention disclosed in Japanese Patent Application Laid-Open No. Hei 8-290235 (Japanese Patent Application No. Hei 7-115283), using a continuously cast powder 13 containing a predetermined alloy element. , The electromagnetic stirring device 30
By forming a swirling flow 31 in a horizontal section in the molten steel pool in the mold and providing the discharge hole of the immersion nozzle 2 for supplying molten steel into the mold below the stirring zone 9, In the upper part, a region in which the alloy element is uniformly dissolved and mixed by the agitated flow is formed, and a region in which the concentration of the alloy element is low is formed therebelow, so that the surface concentration of the alloy element becomes lower in the inner layer. A method for producing a continuous cast slab, characterized by producing a multilayer cast slab higher than
JP-A-8-290236 (Japanese Patent Application No. Hei 7-115284)
No.) In the gazette, a swirling agitated flow is formed in the molten steel pool at the top and bottom of the mold, respectively. A method for enriching the alloy element added only to the surface layer portion of the slab by adding grains or powder of the alloy element to be added to the alloy is disclosed.

【0003】[0003]

【発明が解決しようとする課題】ブルームやビレット鋳
造においては、一般的に、凝固組織を等軸晶化するため
鋳型内電磁攪拌が用いられている。加えて、その電磁攪
拌を設置する位置については、スラブ鋳造の場合と異な
り、湯面から数100mm下側に設置されている場合が
多い。このような状況で、例えば、特開平8−2902
35号公報記載の方法のように、電磁攪拌装置よりも下
方にノズル吐出孔を設置しようとすると、浸漬深さがあ
まりにも過大となることや、湯面への熱供給が十分に図
れず、デッケルやノズル周りでの地金張り等、操業上の
課題が生じ、また、それに伴い鋳片品質上の課題が生じ
る。
In bloom or billet casting, electromagnetic stirring in a mold is generally used to make a solidified structure equiaxed. In addition, the position where the electromagnetic stirring is installed is different from the case of slab casting, and is often installed several hundred mm below the molten metal surface. In such a situation, for example, Japanese Patent Laid-Open No. 8-2902
When the nozzle discharge hole is installed below the electromagnetic stirrer as in the method described in Japanese Patent No. 35, the immersion depth becomes too large, and the heat supply to the molten metal surface cannot be sufficiently achieved. Operational problems such as deckle and metal plating around the nozzle occur, and accompanying this, problems in slab quality arise.

【0004】そこで、本発明は、上記課題を解決し、鋳
片断面積が500cm2 以下の鋳片を製造する場合にお
いても、連鋳パウダーから鋳型内溶鋼プール中に合金添
加を行い、かつ、鋳片表層部のみにおける合金元素濃度
が均一に富化された連鋳鋳片を製造する方法と、製造さ
れた表層と内層の成分濃度が異なる連鋳鋳片を提供する
ものである。
Therefore, the present invention solves the above-mentioned problems, and even when producing a slab having a slab cross-sectional area of 500 cm 2 or less, the alloy is added from the continuous casting powder into the molten steel pool in the mold and the casting is performed. An object of the present invention is to provide a method for producing a continuous cast slab in which the alloy element concentration in only one surface layer portion is uniformly enriched, and a continuous cast slab in which the produced surface layer and the inner layer have different component concentrations.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するものであって、その要旨とするところは、次の
(1)、(2)及び(3)のとおりである。 (1)鋳片断面積が500cm2 以下の鋳片を製造する
方法において、所定の合金元素を含有した連鋳パウダー
を用いると共に、連続鋳造鋳型内に電磁攪拌装置を設置
し、かつ、鋳型内に溶鋼を供給する浸漬ノズルの吐出孔
を前記攪拌装置のコイル中心位置よりも下方に位置せし
めることにより、鋳型内において、上部に、攪拌流によ
り前記合金元素が均一に溶解・混合した領域を形成し、
また、その下方に、合金元素の濃度が低い領域を形成す
ることで、合金元素の表層濃度が内層に比べて高い複層
状の鋳片を製造することを特徴とする連鋳鋳片の製造方
法。
The present invention solves the above-mentioned problems, and its gist is as follows (1), (2) and (3). (1) In a method for producing a slab having a slab cross-sectional area of 500 cm 2 or less, a continuous casting powder containing a predetermined alloy element is used, an electromagnetic stirring device is installed in a continuous casting mold, and By positioning the discharge hole of the immersion nozzle for supplying molten steel below the center position of the coil of the stirring device, a region in which the alloy element is uniformly melted and mixed by the stirring flow is formed in the upper portion in the mold. ,
In addition, a method for producing a continuous cast slab, characterized in that a region having a low alloy element concentration is formed therebelow to produce a multilayer cast slab in which the surface layer concentration of the alloy element is higher than that of the inner layer. .

【0006】(2)鋳片断面積が500cm2 以下の鋳
片を製造する方法において、所定の合金元素を含有した
連鋳パウダーを用いると共に、連続鋳造鋳型内に電磁攪
拌装置を設置し、鋳型内溶鋼プール中の水平断面内で形
成する攪拌流の方向及び流速を周期的に切り替え、か
つ、鋳型内に溶鋼を供給する浸漬ノズルの吐出孔を前記
攪拌装置のコイル中心位置よりも下方に位置せしめ、鋳
型内において、上部に、攪拌流により前記合金元素が均
一に溶解・混合した領域を形成し、また、その下方に、
合金元素の濃度が低い領域を形成することで、合金元素
の表層濃度が内層に比べて高い複層状の鋳片を製造する
ことを特徴とする連鋳鋳片の製造方法。
(2) In a method for producing a slab having a slab cross-sectional area of 500 cm 2 or less, a continuous casting powder containing a predetermined alloy element is used, and an electromagnetic stirring device is installed in the continuous casting mold, and The direction and flow rate of the stirring flow formed in the horizontal section in the molten steel pool are periodically switched, and the discharge hole of the immersion nozzle for supplying the molten steel into the mold is positioned below the coil center position of the stirring device. In the mold, a region in which the alloy element is uniformly dissolved and mixed by the agitated flow is formed at an upper portion, and below the lower portion,
A method for producing a continuous cast slab, wherein a region having a low alloy element concentration is formed to produce a multilayer cast slab having a surface layer concentration of an alloy element higher than that of an inner layer.

【0007】(3)前記(1)または(2)の連鋳鋳片
の製造方法を用いて鋳造した、鋳片表層部の濃度が内層
濃度と比較して高く、かつ、その表層部の厚みが下記
(1)式で定義される厚みを有することを特徴とする連
鋳鋳片。 D=k(L/V)n …(1) D:表層部の厚み L:攪拌装置のコイル中心深さ V:鋳造速度 k:凝固係数 n:定数
(3) The density of the surface layer portion of the slab cast using the method of producing a continuous cast slab according to the above (1) or (2) is higher than that of the inner layer, and the thickness of the surface layer portion Has a thickness defined by the following formula (1). D = k (L / V) n (1) D: thickness of surface layer L: depth of coil center of stirrer V: casting speed k: solidification coefficient n: constant

【0008】[0008]

【発明の実施の形態】本発明において最も重要な点は、
鋳型内に溶鋼を注入する浸漬ノズルの吐出孔位置であ
る。そこで、以下、図2を例にとり、本発明を詳細に説
明する。断面積が500cm2 以下のブルームや、ビレ
ット鋳造において、電磁攪拌装置30のコイル中心位置
を湯面よりも数百mm下方(図中、L参照)に位置せし
め攪拌した場合、電磁攪拌装置30のコイル中心位置を
境に上下に2つの循環流(図中、矢印参照)が形成さ
れ、コイル中心位置よりも上方に添加したものは上部溶
鋼プール3内で、一方、コイル中心位置よりも下方に添
加したものは下部溶鋼プール4内で、それぞれ均一に混
合されることを発明者らは見いだした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The most important point in the present invention is that
This is the discharge hole position of the immersion nozzle for injecting molten steel into the mold. Therefore, the present invention will be described in detail below with reference to FIG. In a bloom or a billet casting having a cross-sectional area of 500 cm 2 or less, when the center position of the coil of the electromagnetic stirrer 30 is positioned several hundred mm below the molten metal surface (refer to L in the drawing) and stirred, the electromagnetic stirrer 30 Two circulating flows (see arrows in the figure) are formed vertically above and below the coil center position, and those added above the coil center position are in the upper molten steel pool 3 and, on the other hand, below the coil center position. The inventors have found that the additions are uniformly mixed in the lower molten steel pool 4 respectively.

【0009】この知見に基づき、上部溶鋼プール3内に
合金元素を添加し、かつ、下部溶鋼プール4内にノズル
吐出孔を位置せしめ溶鋼を供給することにより、上部溶
鋼プール3と下部溶鋼プール4において成分濃度を違え
ることができ、その結果、合金濃度が表層と内層で異な
る鋳片を製造することができるのである。上部溶鋼プー
ル3に合金元素を添加する方法として、所定の合金元素
の粒あるいは粉13を含有させた連鋳パウダー10を用
い、連続的あるいは間欠的に、鋳型1上方から湯面全体
に添加する。そして、鋳型1内のメニスカス上で連鋳パ
ウダー10が溶融していく過程で、上記合金元素の粒あ
るいは粉13がメニスカスで溶鋼と接触し、メニスカス
より鋳型1内の上部溶鋼プール3中に混合・拡散する。
例えば、ニッケル、銅、炭素、マンガン、燐、硫黄、モ
リブデン等、酸化物の標準生成自由エネルギーが珪素、
硼素よりも大きい元素の合金粉あるいは金属粉であれ
ば、全て同じような形でパウダーから溶鋼中に添加する
ことができる。
Based on this finding, the upper molten steel pool 3 and the lower molten steel pool 4 are added by adding an alloying element to the upper molten steel pool 3 and positioning the nozzle discharge hole in the lower molten steel pool 4 to supply molten steel. Therefore, the slabs having different alloy concentrations in the surface layer and the inner layer can be produced. As a method of adding an alloy element to the upper molten steel pool 3, a continuous cast powder 10 containing grains or powder 13 of a predetermined alloy element is used, and the alloy element is continuously or intermittently added from above the mold 1 to the entire molten metal surface. . Then, in the process of melting the continuous casting powder 10 on the meniscus in the mold 1, the grains or powders 13 of the alloy elements come into contact with the molten steel at the meniscus, and are mixed into the upper molten steel pool 3 in the mold 1 from the meniscus. ·Spread.
For example, nickel, copper, carbon, manganese, phosphorus, sulfur, molybdenum, etc., the standard free energy of formation of oxides is silicon,
All alloy powders or metal powders of elements larger than boron can be added from powder to molten steel in the same manner.

【0010】ついで、鋳型1内の上部溶鋼プール3の濃
度分布を水平断面内で均一化させる必要があるが、その
ために本発明では、水平断面内で一方向の攪拌流31を
形成するか、あるいは、その攪拌方向並びに攪拌流速を
周期的に時間変化させる。この2つの方式において、ど
ちらを選択するかは鋳造条件に応じて適宜選択すればよ
く、どちらかに限定されるものではないが、攪拌流速及
び攪拌方向を周期的に時間変化させる方式を用いた場
合、攪拌流に伴う湯面での乱れを発生させることなく、
パウダーからの合金添加を安定的に行うことができる。
Next, it is necessary to make the concentration distribution of the upper molten steel pool 3 in the mold 1 uniform in the horizontal cross section. For this purpose, in the present invention, the unidirectional stirring flow 31 is formed in the horizontal cross section. Alternatively, the stirring direction and the stirring flow rate are periodically changed with time. In these two methods, which one to select may be appropriately selected according to the casting conditions, and is not limited to either, but a method in which the stirring flow rate and the stirring direction are periodically changed with time is used. In this case, without causing turbulence in the molten metal surface due to the stirring flow,
The alloy can be stably added from the powder.

【0011】なお、攪拌方向及び攪拌流速を周期的に時
間変化させるには、図3に示すように、印加する電流を
周波数とは異なる周期で意図的に時間変化させる。この
時間変化により、鋳型1内の上部溶鋼プール3中の水平
断面内で振動攪拌流32を付与することができる(図
4、参照)。攪拌方向及び攪拌流速が周期的に切り替わ
ることで、湯面での平均流速が小さくなり、湯面での乱
れが発生しなくなる。
In order to periodically change the stirring direction and the stirring flow rate with time, as shown in FIG. 3, the applied current is intentionally changed with time at a cycle different from the frequency. By this time change, a vibrating stirring flow 32 can be applied in a horizontal section in the upper molten steel pool 3 in the mold 1 (see FIG. 4). By periodically switching the stirring direction and the stirring flow rate, the average flow rate on the surface of the molten metal becomes small, and the disturbance on the surface of the molten metal does not occur.

【0012】さらに、その上部溶鋼プール3の下端であ
るコイル中心位置よりも下方に浸漬ノズル2の吐出孔を
位置せしめることにより、ノズル吐出流の合金元素の濃
度を上部溶鋼プール3の合金元素の濃度よりも低くする
ことができるので、ノズル吐出孔よりも下部溶鋼プール
4に合金元素濃度の低い溶鋼を供給することができる。
その結果、鋳片の表層部6では周方向に均一で、かつ、
鋳片の内層部7よりも合金元素の濃度が高い鋳片を製造
することができる。
Further, by positioning the discharge hole of the immersion nozzle 2 below the center position of the coil which is the lower end of the upper molten steel pool 3, the concentration of the alloy element in the nozzle discharge flow can be reduced by the alloy element of the upper molten steel pool 3. Since the concentration can be lower than the concentration, molten steel having a lower alloy element concentration can be supplied to the lower molten steel pool 4 than the nozzle discharge hole.
As a result, the surface layer 6 of the slab is uniform in the circumferential direction, and
A slab having a higher alloy element concentration than the inner layer 7 of the slab can be manufactured.

【0013】この際に、合金元素に応じ整粒化した粒あ
るいは粉13を鋳片表層部6に添加したい成分濃度だけ
連鋳パウダー10中に含有させれば、振動攪拌域内の溶
鋼成分を所定濃度の成分に調整することができる。な
お、この際、連鋳パウダー10の粒内に、添加する合金
元素の粒あるいは粉を含有させると、合金添加をより均
一かつ安定化させることができる。
At this time, if the continuous cast powder 10 contains the grain or powder 13 sized according to the alloying element in a concentration of a component desired to be added to the slab surface layer portion 6, the molten steel component in the vibration agitation zone is predetermined. The concentration can be adjusted to the components. In this case, when the grains or powder of the alloy element to be added are contained in the grains of the continuous casting powder 10, the addition of the alloy can be more uniform and stabilized.

【0014】このようにして鋳造された鋳片は、以下の
特徴を有する。すなわち、鋳片の表層部の厚みについて
は、電磁攪拌装置のコイル中心位置よりも上に存在する
上部溶鋼プールで形成される凝固シェル厚みが表層部の
厚みとなるので、該表層部の厚みは下記(1)式で定義
される。 D=k(L/V)n …(1) D:表層部の厚み L:電磁攪拌装置のコイル中心深さ V:鋳造速度 k:凝固係数 n:定数
The slab thus cast has the following characteristics. That is, as for the thickness of the surface layer portion of the slab, the thickness of the solidified shell formed in the upper molten steel pool existing above the center position of the coil of the electromagnetic stirrer becomes the thickness of the surface layer portion. It is defined by the following equation (1). D = k (L / V) n (1) D: thickness of surface layer L: depth of coil center of electromagnetic stirrer V: casting speed k: solidification coefficient n: constant

【0015】[0015]

【実施例】鋳型1内の湯面レベルから300mm下方に
電磁攪拌装置30の高さ方向中心を位置せしめ、鋳型1
内の上部溶鋼プール3の中に、水平断面内で攪拌流31
を付与できるようにした連鋳プロセス(図2、参照)に
おいて、表1に示す条件で鋳造を行った。鋳型1内に溶
鋼を供給する浸漬ノズル2のノズル吐出孔位置は湯面レ
ベルからノズル吐出孔まで200mm、300mm、及
び、400mm(図中、L)とした。
EXAMPLE The center of the electromagnetic stirrer 30 in the height direction was positioned 300 mm below the level of the molten metal in the mold 1.
In the upper molten steel pool 3 inside, the agitated flow 31
In the continuous casting process (see FIG. 2) in which casting was performed, casting was performed under the conditions shown in Table 1. The positions of the nozzle discharge holes of the immersion nozzle 2 for supplying the molten steel into the mold 1 were 200 mm, 300 mm, and 400 mm (L in the figure) from the level of the molten metal to the nozzle discharge holes.

【0016】また、パウダー中にニッケル粉を20質量
%含有させ、鋳型上方から湯面全体に亘って、鋳造中、
連続的に供給した。なお、攪拌方式については、一方向
の攪拌流を付与した場合、及び攪拌方向及び攪拌流速を
周期的に切り替えた場合について実験を行った。図5
は、電磁攪拌のみを印加した場合の鋳片内でのニッケル
濃度分布を示すものであり、(a)は、幅方向中心での
鋳片厚み方向のニッケル濃度分布を示し、(b)は、表
面から5mmでの鋳片周方向のニッケル濃度分布を示す
ものである。この図5より、ノズル吐出孔位置を電磁攪
拌装置のコイル中心位置よりも下方に位置せしめた場合
においては、鋳片表層のニッケル濃度が周方向全体に亘
って、鋳片内層部よりも高くなっていることがわかる。
Further, the powder contains 20% by mass of nickel powder, and is cast over the entire surface of the molten metal from above the mold.
Feeded continuously. In addition, regarding the stirring method, an experiment was performed when a unidirectional stirring flow was applied and when the stirring direction and the stirring flow rate were periodically switched. FIG.
Shows the nickel concentration distribution in the slab when only electromagnetic stirring is applied, (a) shows the nickel concentration distribution in the slab thickness direction at the center in the width direction, and (b) shows It shows the nickel concentration distribution in the slab circumferential direction at 5 mm from the surface. From FIG. 5, when the position of the nozzle discharge hole is positioned below the center position of the coil of the electromagnetic stirrer, the nickel concentration of the slab surface layer is higher than the slab inner layer portion over the entire circumferential direction. You can see that it is.

【0017】図6は、一方向の攪拌流を付与した場合
と、振動攪拌流を付与した場合について、鋳片のニッケ
ル濃度分布を比較したものである。なお、図の縦軸は、
鋳片表層部におけるニッケル濃度の周方向平均値からの
ずれ(標準偏差)を平均的な富化濃度で割った値であ
り、この値が小さいほど濃度分布が周方向に均一である
ことを意味している。攪拌流速を速くした場合におい
て、一方向に攪拌した場合、鋳片表層部のニッケル濃度
分布に不均一が見られるが、低攪拌流速の場合、両者の
差はそれほど顕著には認められない。
FIG. 6 shows a comparison of the nickel concentration distribution of the slab when a unidirectional stirring flow is applied and when a vibrating stirring flow is applied. The vertical axis of the figure is
It is a value obtained by dividing the deviation (standard deviation) of the nickel concentration in the surface layer of the slab from the circumferential average value by the average enrichment concentration. The smaller this value is, the more uniform the concentration distribution is in the circumferential direction. are doing. When the stirring speed is increased, when the stirring is performed in one direction, the nickel concentration distribution in the surface layer portion of the slab is not uniform, but when the stirring speed is low, the difference between the two is not so remarkably recognized.

【0018】また、炭素、マンガン、燐、硫黄、銅、ク
ロム、モリブデン、ニオブについて同様な実験をしたと
ころ、どの元素においても、表層部の合金元素の濃度が
内層部と比較して高く、かつ、鋳片幅方向に一様な濃度
分布の鋳片を得ることができた。
Similar experiments were conducted on carbon, manganese, phosphorus, sulfur, copper, chromium, molybdenum, and niobium. As a result, the concentration of the alloying element in the surface layer was higher than that in the inner layer, and the concentration of the alloying element was higher than that of the inner layer. Thus, a slab having a uniform concentration distribution in the slab width direction could be obtained.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明の連鋳鋳片の製造方法によれば、
鋳片断面積が500cm2 以下の鋳片を製造する方法に
おいて、合金元素を含む連鋳パウダーを用い、電磁攪拌
装置を用い鋳型内溶鋼プール中で攪拌流を付与するか、
あるいは、流れの方向が周期的に変化する振動攪拌流を
付与し、合金元素を溶解・混合する領域を形成し、か
つ、浸漬ノズルの吐出孔を電磁攪拌装置のコイル中心位
置よりも下方に位置せしめて合金元素の濃度が低い領域
を形成することにより、合金元素の表層濃度が内層に比
べて高く、かつ、表層部の合金元素の濃度が均一な複層
状の鋳片を製造することができる。
According to the method for producing a continuous cast slab of the present invention,
In a method for producing a slab having a slab cross-sectional area of 500 cm 2 or less, using a continuous casting powder containing an alloy element, or applying a stirring flow in a molten steel pool in a mold using an electromagnetic stirring device,
Alternatively, a vibrating stirring flow in which the flow direction changes periodically is provided to form a region for dissolving and mixing the alloy element, and the discharge hole of the immersion nozzle is positioned below the center position of the coil of the electromagnetic stirring device. By forming at least the region where the concentration of the alloying element is low, it is possible to manufacture a multilayer slab in which the surface concentration of the alloying element is higher than that of the inner layer and the concentration of the alloying element in the surface portion is uniform. .

【0021】すなわち、本発明によれば、例えば、銅と
錫、あるいは、銅のみを含有した鋼の鋳造において、鋳
片の表層部のニッケル濃度を高くすることにより、この
鋼種に特有の銅起因の表面きずを抑制することができ
る。その他、鋳片表層部の濃度を、スケールきずや割れ
きず、メッキ不良等の様々な欠陥が発生しないレベルの
濃度に意図的に高めることができるので、鋳造段階にお
いて、鋳造以降の過程で発生する欠陥を防止することが
できる。加えて、鋳片表層部に新しい機能を付与した鋳
片を簡便に製造することができる。さらに、本発明は、
鋳片サイズによらず適用できる。例えば、ブルーム、ビ
レットのような小断面サイズの鋳造、あるいは、厚みが
100mm以下の薄スラブ鋳造にも適用可能である。
That is, according to the present invention, for example, in the casting of steel containing copper and tin, or only copper, by increasing the nickel concentration in the surface layer of the slab, the copper origin specific to this steel type is obtained. Surface flaws can be suppressed. In addition, since the concentration of the surface layer of the slab can be intentionally increased to a level at which various defects such as scale flaws and cracks and poor plating do not occur, it occurs in the casting stage and in the process after casting. Defects can be prevented. In addition, a slab having a new function added to the slab surface layer can be easily manufactured. Further, the present invention provides
Applicable regardless of slab size. For example, the present invention can be applied to casting of a small cross-sectional size such as bloom and billet, or casting of a thin slab having a thickness of 100 mm or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電磁攪拌装置を用い一方向の攪拌流を形成する
従来の連続鋳造を例示する図である。(a)は、鋳型上
方からみた鋳型内の状況を示し、(b)は、鋳型内の溶
鋼プール中の鉛直断面構造を示し、(c)は、鋳片の水
平断面での合金元素の濃度分布の状況を示す。
FIG. 1 is a diagram illustrating a conventional continuous casting for forming a unidirectional stirring flow using an electromagnetic stirring device. (A) shows the situation in the mold as viewed from above the mold, (b) shows the vertical cross-sectional structure in the molten steel pool in the mold, and (c) shows the concentration of the alloy element in the horizontal cross section of the slab. Shows the distribution situation.

【図2】一方向の攪拌流を付与し、下向き1孔型の浸漬
ノズルを用いる本発明の連続鋳造を例示する図である。
(a)は、鋳型上方からみた鋳型内の状況を示し、
(b)は、鋳型内の溶鋼プール中の鉛直断面構造を示
し、(c)は、鋳片の水平断面での合金元素の濃度分布
の状況を示す。
FIG. 2 illustrates a continuous casting of the present invention using a downward one-hole immersion nozzle with a unidirectional stirring flow.
(A) shows the situation in the mold as seen from above the mold,
(B) shows the vertical cross-sectional structure in the molten steel pool in the mold, and (c) shows the state of the concentration distribution of the alloy element in the horizontal cross section of the slab.

【図3】電磁攪拌装置に印加する電流の時間変化
(a)、及び、コイル中心高さにおける凝固シェル前面
の流速の時間変化(b)を、それぞれ示す図である。
FIG. 3 is a diagram showing a time change (a) of a current applied to an electromagnetic stirring device and a time change (b) of a flow velocity on the front surface of a solidified shell at the height of a coil center.

【図4】印加する周波数とは異なる周期で攪拌流の方向
及び流速を時間変化する振動攪拌流を付与し下向き1孔
型の浸漬ノズルを用いる本発明の連続鋳造を例示する図
である。(a)は、鋳型上方からみた鋳型内の状況を示
し、(b)は、鋳型内の溶鋼プール中の鉛直断面構造を
示し、(c)は、鋳片水平断面での合金元素の濃度分布
の状況を示す。
FIG. 4 is a view exemplifying continuous casting of the present invention using a downward one-hole immersion nozzle by applying a vibrating agitating flow that changes the direction and flow velocity of the agitating flow with time at a cycle different from the frequency of application. (A) shows the situation in the mold as viewed from above the mold, (b) shows the vertical sectional structure in the molten steel pool in the mold, and (c) shows the concentration distribution of alloy elements in the horizontal section of the slab. Shows the situation.

【図5】ノズル吐出孔位置を変えて電磁攪拌のみを印加
した場合における、鋳片厚み方向及び鋳片周方向のニッ
ケル濃度分布を示す図である。
FIG. 5 is a diagram showing a nickel concentration distribution in a slab thickness direction and a slab circumferential direction when only electromagnetic stirring is applied while changing the nozzle discharge hole position.

【図6】一方向の攪拌流を付与した場合と振動攪拌流を
付与した場合における、攪拌流速と鋳片表層部ニッケル
濃度の関係を示す図である。
FIG. 6 is a diagram showing the relationship between the stirring flow rate and the nickel concentration in the surface layer of the slab when a unidirectional stirring flow is applied and when a vibration stirring flow is applied.

【符号の説明】[Explanation of symbols]

1…鋳型 2…浸漬ノズル 3…上部溶鋼プール 4…下部溶鋼プール 6…鋳片の表層部 7…鋳片の内層部 9…攪拌域 10…連鋳パウダー 13…合金元素の粒あるいは粉 30…電磁攪拌装置 31…攪拌流 32…振動攪拌流 DESCRIPTION OF SYMBOLS 1 ... Mold 2 ... Immersion nozzle 3 ... Upper molten steel pool 4 ... Lower molten steel pool 6 ... Surface layer of cast piece 7 ... Inner layer part of cast piece 9 ... Stir zone 10 ... Continuous casting powder 13 ... Grain or powder of alloy element 30 ... Electromagnetic stirrer 31: Stirring flow 32: Vibration stirring flow

フロントページの続き (72)発明者 安斎 栄尚 北海道室蘭市仲町12番地 新日本製鐵株式 会社室蘭製鐵所内 Fターム(参考) 4E004 AA09 MB12 MB14 NA01 NB02 NC01 Continuation of the front page (72) Inventor Eisai Ansai 12 Nakamachi, Muroran-shi, Hokkaido F-term (reference) in Nippon Steel Corporation Muroran Works 4E004 AA09 MB12 MB14 NA01 NB02 NC01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋳片断面積が500cm2 以下の鋳片を
製造する方法において、所定の合金元素を含有した連鋳
パウダーを用いると共に、連続鋳造鋳型内に電磁攪拌装
置を設置し、かつ、鋳型内に溶鋼を供給する浸漬ノズル
の吐出孔を前記攪拌装置のコイル中心位置よりも下方に
位置せしめることにより、鋳型内において、上部に、攪
拌流により前記合金元素が均一に溶解・混合した領域を
形成し、また、その下方に、合金元素の濃度が低い領域
を形成することで、合金元素の表層濃度が内層に比べて
高い複層状の鋳片を製造することを特徴とする連鋳鋳片
の製造方法。
1. A method for producing a slab having a slab cross-sectional area of 500 cm 2 or less, wherein a continuous casting powder containing a predetermined alloy element is used, an electromagnetic stirring device is installed in a continuous casting mold, and By positioning the discharge hole of the immersion nozzle for supplying molten steel below the center position of the coil of the stirrer, in the mold, the region where the alloy element is uniformly melted and mixed by the stir flow in the upper part of the mold Forming a continuous cast slab characterized by producing a multi-layer cast slab having a lower alloy element surface concentration than the inner layer by forming a region below the alloy element concentration below the same. Manufacturing method.
【請求項2】 鋳片断面積が500cm2 以下の鋳片を
製造する方法において、所定の合金元素を含有した連鋳
パウダーを用いると共に、連続鋳造鋳型内に電磁攪拌装
置を設置し、鋳型内溶鋼プール中の水平断面内で形成す
る攪拌流の方向及び流速を周期的に切り替え、かつ、鋳
型内に溶鋼を供給する浸漬ノズルの吐出孔を前記攪拌装
置のコイル中心位置よりも下方に位置せしめ、鋳型内に
おいて、上部に、攪拌流により前記合金元素が均一に溶
解・混合した領域を形成し、また、その下方に、合金元
素の濃度が低い領域を形成することで、合金元素の表層
濃度が内層に比べて高い複層状の鋳片を製造することを
特徴とする連鋳鋳片の製造方法。
2. A method for producing a slab having a slab cross-sectional area of 500 cm 2 or less, wherein a continuous casting powder containing a predetermined alloy element is used and an electromagnetic stirring device is installed in the continuous casting mold. Periodically switch the direction and flow velocity of the stirring flow formed in the horizontal cross section in the pool, and position the discharge hole of the immersion nozzle that supplies molten steel into the mold below the coil center position of the stirring device, In the mold, a region in which the alloy element is uniformly dissolved and mixed by an agitated flow is formed at an upper portion, and a region having a lower alloy element concentration is formed below the upper portion so that the surface layer concentration of the alloy element is lower. A method for producing a continuous cast slab, characterized by producing a multi-layer cast slab higher than an inner layer.
【請求項3】 請求項1または2記載の連鋳鋳片の製造
方法を用いて鋳造した、鋳片表層部の濃度が内層濃度と
比較して高く、かつ、その表層部の厚みが下記(1)式
で定義される厚みを有することを特徴とする連鋳鋳片。 D=k(L/V)n …(1) D:表層部の厚み L:コイル中心深さ V:鋳造速度 k:凝固係数 n:定数
3. A cast slab produced by the method according to claim 1 or 2, wherein the concentration of the surface layer of the slab is higher than that of the inner layer, and the thickness of the surface layer is as follows: 1) A continuous cast slab having a thickness defined by the formula. D = k (L / V) n (1) D: thickness of surface layer L: depth of coil center V: casting speed k: solidification coefficient n: constant
JP2000142522A 2000-05-15 2000-05-15 Method for producing continuous casting slab and continuous casting slab Withdrawn JP2001321907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000142522A JP2001321907A (en) 2000-05-15 2000-05-15 Method for producing continuous casting slab and continuous casting slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000142522A JP2001321907A (en) 2000-05-15 2000-05-15 Method for producing continuous casting slab and continuous casting slab

Publications (1)

Publication Number Publication Date
JP2001321907A true JP2001321907A (en) 2001-11-20

Family

ID=18649464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000142522A Withdrawn JP2001321907A (en) 2000-05-15 2000-05-15 Method for producing continuous casting slab and continuous casting slab

Country Status (1)

Country Link
JP (1) JP2001321907A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018449A (en) * 2006-07-12 2008-01-31 Kobe Steel Ltd Method for managing immersed nozzle
CN104942247A (en) * 2014-03-31 2015-09-30 北京明诚技术开发有限公司 Control system and method for regulating electromagnetic stirrer in continuous casting process
CN106756193A (en) * 2016-12-30 2017-05-31 苏州有色金属研究院有限公司 Preparation facilities of carbon nanotube enhanced aluminium-based composite material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018449A (en) * 2006-07-12 2008-01-31 Kobe Steel Ltd Method for managing immersed nozzle
CN104942247A (en) * 2014-03-31 2015-09-30 北京明诚技术开发有限公司 Control system and method for regulating electromagnetic stirrer in continuous casting process
CN106756193A (en) * 2016-12-30 2017-05-31 苏州有色金属研究院有限公司 Preparation facilities of carbon nanotube enhanced aluminium-based composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6855806B2 (en) Continuous casting method and continuous casting equipment for multi-layer slabs
JP2017080788A (en) Method and device for continuously casting double-layered cast slab
US6557623B2 (en) Production method for continuous casting cast billet
JP2001321907A (en) Method for producing continuous casting slab and continuous casting slab
WO1993022085A1 (en) Method of obtaining double-layered cast piece
JP3456311B2 (en) Continuous casting method of multilayer slab
JP2001232450A (en) Method for manufacturing continuous cast slab
JP2017196626A (en) Continuous casting method for molten steel
JP6500682B2 (en) Method and apparatus for continuous casting of multi-layer cast slab
JP2001300704A (en) Method for producing continuously cast slat and cast slab
JP3257546B2 (en) Steel continuous casting method
JP3573096B2 (en) Manufacturing method of continuous cast slab
JPH08290235A (en) Production of continuously cast slab
JPH09122833A (en) Method for concentrating solute on surface layer of cast slab in continuous casting
JP2018069324A (en) Mold device for continuous casting for steel and manufacturing method of surface layer-modified cast slab using the same
RU2419508C2 (en) Mixer
JPH0924445A (en) Method for concentrating solute on surface layer of cast slab in continuous casting
JP3426383B2 (en) Steel continuous casting method
JPH0839196A (en) Production of continuously cast slab
JP2002178108A (en) Method for continuously casting steel
JPH08290236A (en) Production of continuously cast slab
JPH11320050A (en) Continuous casting method
JPH08300111A (en) Method for continuously casting small lot of cast slab
JP2002205152A (en) Method for producing continuously cast product
JPH07290195A (en) Production of continuously cast slab

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807