JPH09122833A - Method for concentrating solute on surface layer of cast slab in continuous casting - Google Patents

Method for concentrating solute on surface layer of cast slab in continuous casting

Info

Publication number
JPH09122833A
JPH09122833A JP30858895A JP30858895A JPH09122833A JP H09122833 A JPH09122833 A JP H09122833A JP 30858895 A JP30858895 A JP 30858895A JP 30858895 A JP30858895 A JP 30858895A JP H09122833 A JPH09122833 A JP H09122833A
Authority
JP
Japan
Prior art keywords
molten steel
partition plate
mold
surface layer
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30858895A
Other languages
Japanese (ja)
Inventor
Kenichi Miyazawa
憲一 宮沢
Hiroshi Harada
寛 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30858895A priority Critical patent/JPH09122833A/en
Publication of JPH09122833A publication Critical patent/JPH09122833A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control the quality on surface layer of a cast slab by concentrating a solute element added into molten steel in a mold onto the surface layer of the cast slab in continuous casting. SOLUTION: In producing the cast slab by pouring the molten steel 4 into the mold 1, a molten steel partition plate 3 is arranged at the upper part of discharging hole 12 of an immersion nozzle 2 in the mold, and DC magnetic field is impressed in the horizontal direction to the molten steel in the mold existing at the lower part from the molten steel partition plate by using magnets 6. The molten steel at the upper part from the molten steel partition plate is stirred by using an electromagnetic stirring device 5 arranged at the upper part of the mold and the allay element is added into the molten steel at the upper part from the molten steel partition plate to concentrate the adding element on the surface of the cast slab.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶鋼の連続鋳造方
法に関する。
TECHNICAL FIELD The present invention relates to a continuous casting method for molten steel.

【0002】[0002]

【従来の技術】連続鋳造において鋳片の表層の溶質濃度
を変えることは、鋼板の表層の材質の制御にとって極め
て有用である。従来、連鋳機の鋳型内の溶鋼にワイヤ添
加によって合金元素を添加する方法は良く知られている
が、この方法では鋳片全体に添加元素が分散し、鋳片表
層だけに合金元素を濃化させることはできない。鋳片表
層の溶質を濃化させる方法として、特開昭55−704
51号公報や特開昭55−70450号公報において、
鋳型壁に平行に設置した隔壁と鋳型壁の間の溶鋼に合金
を添加する方法が開示されている。しかし、この方法で
も、鋳型内に添加された合金元素は、浸漬ノズルの吐出
流によって混合され、鋳片内部に分散され、鋳片表層の
みに合金元素を濃化させることが困難である。
2. Description of the Related Art Changing the solute concentration in the surface layer of a slab in continuous casting is extremely useful for controlling the material quality of the surface layer of a steel sheet. Conventionally, a method of adding an alloying element to molten steel in a mold of a continuous casting machine by adding a wire is well known, but in this method, the additional element is dispersed throughout the cast piece, and the alloying element is concentrated only in the surface layer of the cast piece. It cannot be turned into As a method of thickening the solute on the surface layer of the cast slab, JP-A-55-704 is known.
51 and JP-A-55-70450,
A method is disclosed in which an alloy is added to the molten steel between a partition wall and a partition wall placed parallel to the mold wall. However, even with this method, the alloy elements added to the mold are mixed by the discharge flow of the immersion nozzle and dispersed inside the cast piece, and it is difficult to concentrate the alloy element only on the surface layer of the cast piece.

【0003】[0003]

【発明が解決すべき課題】上述のように、鋳型内の溶鋼
への元素添加によって鋳片表層のみに元素を濃化させる
方法がないのが現状であり、安定にかつ低コストに鋳片
表層に所望の元素を濃化させる方法が望まれている。
As described above, there is currently no method for concentrating elements only in the surface layer of a slab by adding elements to the molten steel in the mold, and the surface layer of the slab is stable and at low cost. There is a demand for a method of enriching a desired element.

【0004】本発明の目的は、連続鋳造において、鋳型
内の溶鋼中へ添加した溶質元素を鋳片表層に濃化させる
方法を提供することにある。
An object of the present invention is to provide a method for concentrating the solute element added to the molten steel in the mold in the surface layer of the slab in continuous casting.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために種々検討した結果、浸漬ノズルの吐出
孔の上部に設置した溶鋼仕切り板の作用と直流磁界の作
用により溶鋼仕切り板の上部と下部の溶鋼の混合を抑制
し、溶鋼仕切り板よりも上部の溶鋼を電磁撹拌装置によ
って撹拌することにより、この上部の溶鋼中へ添加した
合金元素が、下部の溶鋼に混合、拡散することなく、鋳
片表層のみに濃化することを見い出した。
As a result of various investigations to solve the above problems, the inventors of the present invention have found that the molten steel partition plate is provided by the action of the molten steel partition plate installed above the discharge hole of the immersion nozzle and the action of the DC magnetic field. By suppressing the mixing of molten steel in the upper and lower parts of the plate and stirring the molten steel in the upper part of the molten steel partition plate with an electromagnetic stirrer, the alloying elements added to the molten steel in the upper part are mixed and diffused in the lower molten steel. However, it was found that only the surface layer of the slab was thickened.

【0006】本発明の要旨は、鋼の連続鋳造において、
溶鋼を鋳型内へ注湯して鋳片を製造する際、鋳型内にあ
る浸漬ノズルの吐出孔の上部に溶鋼仕切り板を設置し、
かつ溶鋼仕切り板より下方に存在する鋳型内の溶鋼に水
平方向に直流磁界を印加し、鋳型上部に設置した電磁撹
拌装置を使って溶鋼仕切り板よりも上部の溶鋼を撹拌し
て、溶鋼仕切り板よりも上部の溶鋼中へ合金元素を添加
することにより、鋳片表層に添加元素を濃化させること
を特徴とする連続鋳造方法である。
The gist of the present invention is, in continuous casting of steel,
When molten steel is poured into the mold to produce a slab, a molten steel partition plate is installed above the discharge hole of the immersion nozzle in the mold.
In addition, a direct current magnetic field is applied to the molten steel in the mold below the molten steel partition plate in the horizontal direction, and the molten steel above the molten steel partition plate is agitated using the electromagnetic stirrer installed on the upper part of the mold to melt the molten steel partition plate. The continuous casting method is characterized in that the additive element is concentrated in the surface layer of the slab by adding the alloying element to the molten steel above.

【0007】[0007]

【発明の実施の形態】図1は、連続鋳造において、浸漬
ノズル2を経て溶鋼4を鋳型1の中へ注湯する際、浸漬
ノズルの吐出孔の上部に溶鋼仕切り板3と電磁撹拌装置
5を設置した時の平面図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram of a molten steel partition plate 3 and an electromagnetic stirrer 5 at the upper part of a discharge hole of a dipping nozzle when pouring molten steel 4 into a mold 1 through a dipping nozzle 2 in continuous casting. The top view at the time of installing is shown.

【0008】図2は、図1のA−Aの位置の断面図であ
り、連続鋳造において浸漬ノズル2の吐出孔12の上部
に溶鋼仕切り板3を設置し、電磁撹拌装置5と磁石6を
使って鋳片表層に添加元素を濃化させた時の模式図を示
す。
FIG. 2 is a sectional view taken along the line A--A in FIG. 1. In continuous casting, the molten steel partition plate 3 is installed above the discharge hole 12 of the immersion nozzle 2, and the electromagnetic stirrer 5 and the magnet 6 are installed. The schematic diagram when the additive element is concentrated on the surface layer of the cast slab is shown.

【0009】鋳造中、矢印の溶鋼流動方向7に示すよう
に流動して浸漬ノズル2の吐出孔12を経て鋳型1内へ
流入した溶鋼4は、溶鋼仕切り板3より下部の領域に流
出する。鋳型内の溶鋼4は、溶鋼から鋳型への抜熱によ
り凝固して凝固シェル8を形成し、この凝固シェルはあ
る一定の鋳造速度で矢印の鋳片の移動方向9に示すよう
に下方へ引き抜かれる。溶鋼仕切り板は、この板の上部
と下部の溶鋼の混合をある程度抑制できるが、鋳造速度
が速くて溶鋼のノズル吐出流速が大きい場合や、溶鋼仕
切り板3と凝固シェル8の間の空間が大きい場合には、
溶鋼仕切り板と凝固シェルの間で溶鋼が上下に流動し、
溶鋼仕切り板の下部の溶鋼と上部の溶鋼の混合を完全に
は抑制できない。この時、溶鋼仕切り板よりも下部の溶
鋼に磁石6によって直流磁界を印加すると、溶鋼は運動
の方向と逆方向に電磁気力を受けて流速が低減するた
め、溶鋼仕切り板の下部における溶鋼の流速が低減する
のみならず、溶鋼仕切り板の下部から上部領域へ流入す
る溶鋼の流速が低減して、溶鋼仕切り板の上部と下部の
溶鋼の混合を最小に抑制でき、上部の溶鋼中へ添加した
合金元素の下部溶鋼への混合、拡散を抑制でき、鋳型上
部における添加元素の鋳片表層への濃化が効率的に行え
る。
During casting, the molten steel 4 flowing in the molten steel flow direction 7 as shown by the arrow and flowing into the mold 1 through the discharge holes 12 of the immersion nozzle 2 flows out to a region below the molten steel partition plate 3. The molten steel 4 in the mold is solidified by heat removal from the molten steel to the mold to form a solidified shell 8, which is drawn downward at a certain casting speed as indicated by the arrow moving direction 9 of the slab. Be done. The molten steel partition plate can suppress mixing of molten steel in the upper and lower portions of this plate to some extent, but when the casting speed is high and the nozzle flow velocity of molten steel is high, or the space between the molten steel partition plate 3 and the solidified shell 8 is large. in case of,
Molten steel flows vertically between the molten steel partition plate and the solidified shell,
It is not possible to completely suppress the mixing of the molten steel in the lower part and the molten steel in the upper part of the molten steel partition plate. At this time, when a direct current magnetic field is applied to the molten steel below the molten steel partition plate by the magnet 6, the molten steel receives an electromagnetic force in the direction opposite to the direction of motion and the flow velocity is reduced. Therefore, the molten steel flow velocity in the lower portion of the molten steel partition plate is reduced. In addition to reducing the flow rate of molten steel flowing from the lower part of the molten steel partition plate to the upper region, the mixing of molten steel in the upper and lower parts of the molten steel partition plate can be suppressed to a minimum, and it is added to the molten steel in the upper part. Mixing and diffusion of alloy elements into the lower molten steel can be suppressed, and the additive elements in the upper part of the mold can be efficiently concentrated in the surface layer of the slab.

【0010】溶鋼仕切り板3よりも上部の溶鋼中へ、添
加すべき元素を含んだ鉄ワイヤ11を浸漬すると、鉄ワ
イヤは溶解し、添加元素が上部領域の溶鋼に混合する。
この時、鋳型上部に設置した電磁撹拌装置にて溶鋼仕切
り板よりも上部の溶鋼を撹拌すると、鉄ワイヤの溶解が
促進され、鉄ワイヤの溶解不足が防止できるとともに、
添加した元素が上部の溶鋼に均一に溶解する。溶鋼仕切
り板よりも上部の鋳型部では添加元素を含んだ溶鋼が凝
固するため、仕切り板の位置の凝固シェル厚さまでの鋳
片表層において、溶質元素を濃化させることができる。
添加元素を濃化できる鋳片表層厚さは、鋳造速度が遅い
ほど、また、鋳型内の溶鋼の湯面から溶鋼仕切り板まで
の距離が長いほど、厚くなる。これらの値を変えること
により、鋳片表層の溶質濃化層の厚さを種々変えること
ができる。溶鋼仕切り板よりも上部の溶鋼を電磁撹拌し
ないと、添加元素が溶鋼内で均一に混合せず、その結
果、鋳片表層濃度が鋳片の周囲方向の位置で不均一とな
る。
When the iron wire 11 containing the element to be added is immersed in the molten steel above the molten steel partition plate 3, the iron wire is melted and the additive element is mixed with the molten steel in the upper region.
At this time, if the molten steel above the molten steel partition plate is stirred with an electromagnetic stirring device installed in the upper part of the mold, the melting of the iron wire is promoted, and insufficient melting of the iron wire can be prevented,
The added element is uniformly dissolved in the molten steel above. Since the molten steel containing the additional element is solidified in the mold portion above the molten steel partition plate, the solute element can be concentrated in the surface layer of the cast piece up to the thickness of the solidified shell at the position of the partition plate.
The slab surface layer thickness at which the additive elements can be concentrated becomes thicker as the casting speed is slower and as the distance from the molten steel surface in the mold to the molten steel partition plate is longer. By changing these values, the thickness of the solute-enriched layer on the surface of the slab can be variously changed. Unless the molten steel above the molten steel partition plate is electromagnetically stirred, the additive elements are not uniformly mixed in the molten steel, and as a result, the surface concentration of the slab becomes uneven at the circumferential position of the slab.

【0011】なお、溶鋼仕切り板3よりも上部の溶鋼中
へ元素を添加する方法として、上述のワイヤ添加法の他
に、添加すべき元素を含む粒子をモールドフラックス1
0に混ぜて鋳型内の湯面に投入することによって、溶鋼
の湯面に接した溶融モールドフラックス中から溶鋼中へ
添加元素を溶解させることも可能である。
As a method of adding an element to the molten steel above the molten steel partition plate 3, in addition to the above-mentioned wire addition method, particles containing an element to be added are added to the mold flux 1
It is also possible to dissolve the additive element from the molten mold flux in contact with the molten steel surface into the molten steel by mixing it with 0 and pouring it into the molten steel surface.

【0012】溶鋼仕切り板3の設置と磁石6による直流
磁界の印加が無いと、ワイヤ添加された溶質元素は、浸
漬ノズルの吐出流に起因する溶鋼流動によって混合し、
溶鋼プール全体に分散するため、鋳片全体に添加元素濃
度が分散することになる。したがって、溶鋼仕切り板に
よって元素を添加する上部領域と吐出流が流入する下部
領域を仕切り、さらに直流磁界の作用によって上部領域
と下部領域の溶鋼の混合を抑制することが重要である。
When the molten steel partition plate 3 is not installed and no DC magnetic field is applied by the magnet 6, the solute elements added to the wire are mixed by the molten steel flow caused by the discharge flow of the immersion nozzle,
Since it is dispersed throughout the molten steel pool, the additive element concentration is dispersed throughout the slab. Therefore, it is important to partition the upper region to which the element is added and the lower region into which the discharge flow flows by the molten steel partition plate, and to suppress the mixing of the molten steel in the upper region and the lower region by the action of the DC magnetic field.

【0013】本発明によれば、溶鋼仕切り板の作用と直
流磁界の作用により、元素添加した上部領域の溶鋼と浸
漬ノズルから流入する下部領域の溶鋼との混合が極めて
少なくなり、さらに、鋳型上部の電磁撹拌装置による溶
鋼の撹拌により添加元素が均一に溶解し、鋳片表層に溶
質元素を効率的に濃化させることが可能である。
According to the present invention, due to the action of the molten steel partition plate and the action of the DC magnetic field, the mixing of the molten steel in the upper region added with the element and the molten steel in the lower region flowing from the dipping nozzle is extremely reduced, and further, the upper portion of the mold is It is possible to efficiently add the solute element to the surface layer of the slab by agitating the molten steel with the electromagnetic stirrer described above to uniformly dissolve the additive element.

【0014】[0014]

【実施例】ブルーム鋳片(厚さ300mm、幅500m
m)の表層に合金元素を濃化させる実験を行なった。通
常の振動式銅鋳型を使った連続鋳造機で、モールドフラ
ックスを用い、主成分として0.7mass%の炭素を
含む炭素鋼の溶鋼を浸漬ノズルを使って鋳型内へ注湯し
た。鋳造条件としては、鋳造速度は0.7m/minと
し、タンディシュ内の溶鋼過熱度は約10〜30℃の範
囲で、鋳型部以降の鋳片の2次冷却には水スプレーを採
用した。
[Example] Bloom cast (thickness 300 mm, width 500 m
An experiment was conducted in which the alloy element was concentrated on the surface layer of m). In a continuous casting machine using a normal vibration copper mold, mold flux was used and molten steel of carbon steel containing 0.7 mass% of carbon as a main component was poured into the mold using an immersion nozzle. As the casting conditions, the casting speed was 0.7 m / min, the degree of superheat of molten steel in the tundish was in the range of about 10 to 30 ° C., and water spray was adopted for the secondary cooling of the cast piece after the mold part.

【0015】溶鋼仕切り板は、縦200mm、横400
mm、厚さ50mmのアルミナグラファイト製で、図1
に示すように浸漬ノズルの吐出孔の上部に固定し、溶鋼
メニスカスから約400mm下方の位置に浸漬するよう
に設置した。
The molten steel partition plate has a length of 200 mm and a width of 400.
mm, 50 mm thick, made of alumina graphite.
As shown in FIG. 3, the dipping nozzle was fixed to the upper part of the discharge hole and was installed so as to be dipped at a position about 400 mm below the molten steel meniscus.

【0016】鋳型上部の溶鋼を撹拌するため、図2に示
すように、鋳型上部に移動磁界方式の電磁撹拌装置(鋳
片長手方向における電磁石の中心位置:溶鋼湯面から1
00mm下方、コイル電流:200アンペア)を用い
た。
In order to stir the molten steel in the upper part of the mold, as shown in FIG. 2, a moving magnetic field type electromagnetic stirrer is installed in the upper part of the mold (center position of the electromagnet in the longitudinal direction of the slab: 1 from the molten steel level).
00 mm down, coil current: 200 amps) was used.

【0017】直流磁界の印加には電磁石を用い、図2に
示すように、溶鋼仕切板よりも下部に置き、磁石の寸法
は、鋳片幅方向の長さが800mm、鋳片長手方向の長
さが200mmとし、磁極の中心位置が溶鋼湯面から5
00mmの位置になるように設置した。なお、鋳型の両
側に設置した電磁石の磁極間の中央位置における磁場強
度が約0.1テスラの条件で実験した。
An electromagnet is used to apply a DC magnetic field, and as shown in FIG. 2, it is placed below the molten steel partition plate, and the magnets have dimensions such that the length in the width direction of the cast piece is 800 mm and the length in the length direction of the cast piece is long. Is 200 mm, and the center position of the magnetic pole is 5 from the molten steel surface.
It was installed so that the position was 00 mm. The experiment was conducted under the condition that the magnetic field strength at the central position between the magnetic poles of the electromagnets installed on both sides of the mold was about 0.1 tesla.

【0018】元素の添加方法については、Mnを含有さ
せた鉄ワイヤを鋳型内の溶鋼中へ連続的に添加する方法
を試験した。なお、浸漬ノズルから鋳型内の下部領域へ
流入する溶鋼中のMn濃度は約0.5mass%であ
り、ワイヤ添加により鋳片表層のMn濃度が約0.7m
ass%に増加するように鉄ワイヤ中のMnの量、およ
びワイヤ供給速度を調整した。また、溶鋼仕切り板、電
磁撹拌装置、電磁石による直流磁界の印加の各々につい
て、使用する場合と使用しない場合の実験を行い、効果
を比較した。
Regarding the method of adding the elements, a method of continuously adding an Mn-containing iron wire into the molten steel in the mold was tested. The Mn concentration in the molten steel flowing from the dipping nozzle to the lower region in the mold was about 0.5 mass%, and the Mn concentration in the cast slab surface layer was about 0.7 m due to the addition of wire.
The amount of Mn in the iron wire and the wire feed rate were adjusted so as to increase to ass%. Further, with respect to each of the molten steel partition plate, the electromagnetic stirrer, and the application of the DC magnetic field by the electromagnet, an experiment was performed with and without use, and the effects were compared.

【0019】鋳片表層への添加元素の濃化の程度を調べ
るために、鋳造実験で得られた鋳片の定常部において、
鋳片表面から鋳片厚さ方向へ10mmの位置(添加元素
が濃化した鋳片表層の代表位置)、および75mmの位
置(鋳片内部の代表位置)におけるMnの濃度を分析し
た。
In order to investigate the degree of concentration of the additive element in the surface layer of the cast piece, in the steady part of the cast piece obtained in the casting experiment,
The Mn concentration was analyzed at a position of 10 mm from the surface of the slab in the thickness direction of the slab (representative position of the surface layer of the slab where the additive element was concentrated) and at a position of 75 mm (representative position inside the slab).

【0020】その結果、(1)電磁撹拌が無い場合で、
溶鋼仕切り板と直流磁界の両方を使用しない場合、鋳
片のMn濃度は鋳片表層と内部で区別無く、約0.53
5〜0.538mass%であり、鋳片表層のみに添加
元素を濃化させることができず、添加した元素は鋳片全
体に分散してしまうことが分かった。溶鋼仕切板と直
流磁界を各々独立に使用した場合、鋳片表層のMn濃度
は、各々0.64〜0.70mass%および0.65
〜0.70mass%であり、溶鋼仕切板と直流磁界
の両方を同時に使用した場合、鋳片表層のMn濃度は
0.67〜0.70mass%であり、溶鋼仕切板と直
流磁界を併用すると溶鋼仕切板の下部と上部の溶鋼の混
合を低減でき、鋳片表層の添加元素の濃度変動が多少あ
るものの、鋳片表層における添加元素の濃化の程度が高
くなることが分かった。
As a result, (1) when there is no electromagnetic stirring,
When both the molten steel partition plate and the DC magnetic field are not used, the Mn concentration of the slab is about 0.53 without distinction between the slab surface layer and the inside.
It was 5 to 0.538 mass%, and it was found that the additive element could not be concentrated only in the surface layer of the cast piece, and the added element was dispersed in the entire cast piece. When the molten steel partition plate and the DC magnetic field were used independently, the Mn concentrations in the surface layer of the slab were 0.64 to 0.70 mass% and 0.65, respectively.
Is 0.70 mass%, and when both the molten steel partition plate and the direct current magnetic field are used at the same time, the Mn concentration of the slab surface layer is 0.67 to 0.70 mass%, and when the molten steel partition plate and the direct current magnetic field are used together, the molten steel It was found that the mixing of molten steel in the lower part and the upper part of the partition plate can be reduced, and although the concentration of the additive element in the surface layer of the cast slab slightly fluctuates, the concentration of the additive element in the surface layer of the slab becomes high.

【0021】さらに、(2)電磁撹拌の使用の下で、
溶鋼仕切板と直流磁界の両方を使用した場合、鋳片表層
のMn濃度の変動はさらに低減して約0.69〜0.7
0mass%の変動であり、電磁撹拌により溶鋼仕切板
よりも上部の溶鋼中へ添加した鉄ワイヤの溶解および溶
鋼中での添加元素の混合が良くなるために、鋳片表層の
添加元素の濃度変動が少なくなり、鋳片表層への添加元
素の濃化を非常にうまくできることが判明した。
Further, (2) under the use of electromagnetic stirring,
When both the molten steel partition plate and the DC magnetic field were used, the fluctuation of the Mn concentration in the surface layer of the slab was further reduced to about 0.69 to 0.7.
This is a fluctuation of 0 mass%, and the concentration of the additive element in the surface layer of the slab is changed because the iron wire added to the molten steel above the molten steel partition plate by the electromagnetic stirring is melted and the additive element is well mixed in the molten steel. It was found that the concentration of additive elements on the surface layer of the slab can be improved very well.

【0022】[0022]

【発明の効果】本発明を実施すれば、鋳型内に添加した
元素が鋳片全体に分散することを抑制して、安定かつ低
コストに鋳片表層に添加元素を濃化させることができ
る。
EFFECTS OF THE INVENTION By carrying out the present invention, it is possible to suppress the elements added in the mold from being dispersed in the entire slab, and to stably and inexpensively concentrate the additional elements on the surface layer of the slab.

【図面の簡単な説明】[Brief description of the drawings]

【図1】浸漬ノズル、鋳型、溶鋼仕切り板、電磁撹拌装
置の関係を示す平面図である。
FIG. 1 is a plan view showing the relationship among an immersion nozzle, a mold, a molten steel partition plate, and an electromagnetic stirrer.

【図2】図1のA−Aの位置の断面図であり、連続鋳造
において浸漬ノズルの吐出孔の上部に溶鋼仕切り板を設
置し、電磁撹拌装置と磁石を使って鋳片表層に添加元素
を濃化させた時の模式図である。
2 is a cross-sectional view taken along the line AA in FIG. 1, in which a molten steel partition plate is installed above the discharge hole of the immersion nozzle in continuous casting, and an additive element is added to the surface layer of the slab using an electromagnetic stirrer and a magnet. It is a schematic diagram at the time of making it concentrated.

【符号の説明】[Explanation of symbols]

1 鋳型 2 浸漬ノズル 3 溶鋼仕切り板 4 溶鋼 5 電磁撹拌装置 6 磁石 7 溶鋼の流動方向 8 凝固シェル 9 鋳片の移動方向 10 モールドフラックス 11 ワイヤ 12 ノズル吐出孔 1 Mold 2 Immersion Nozzle 3 Molten Steel Partition Plate 4 Molten Steel 5 Electromagnetic Stirrer 6 Magnet 7 Flow Direction of Molten Steel 8 Solidification Shell 9 Moving Direction of Cast Piece 10 Mold Flux 11 Wire 12 Nozzle Discharge Hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼の連続鋳造において、溶鋼を鋳型内へ
注湯して鋳片を製造する際、鋳型内にある浸漬ノズルの
吐出孔の上部に溶鋼仕切り板を設置し、かつ溶鋼仕切り
板より下方に存在する鋳型内の溶鋼に水平方向に直流磁
界を印加し、鋳型上部に設置した電磁撹拌装置を使って
溶鋼仕切り板よりも上部の溶鋼を撹拌して、溶鋼仕切り
板よりも上部の溶鋼中へ合金元素を添加することによ
り、鋳片表層に添加元素を濃化させることを特徴とする
連続鋳造方法。
1. In continuous casting of steel, when molten steel is poured into a mold to produce a slab, the molten steel partition plate is installed above the discharge hole of the immersion nozzle in the mold, and the molten steel partition plate is also provided. A direct current magnetic field is applied horizontally to the molten steel in the mold below, and the electromagnetic stirrer installed at the top of the mold is used to stir the molten steel above the molten steel partition plate so that it is above the molten steel partition plate. A continuous casting method, which comprises adding an alloying element to molten steel to concentrate the additive element on a surface layer of a slab.
JP30858895A 1995-11-02 1995-11-02 Method for concentrating solute on surface layer of cast slab in continuous casting Withdrawn JPH09122833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30858895A JPH09122833A (en) 1995-11-02 1995-11-02 Method for concentrating solute on surface layer of cast slab in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30858895A JPH09122833A (en) 1995-11-02 1995-11-02 Method for concentrating solute on surface layer of cast slab in continuous casting

Publications (1)

Publication Number Publication Date
JPH09122833A true JPH09122833A (en) 1997-05-13

Family

ID=17982849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30858895A Withdrawn JPH09122833A (en) 1995-11-02 1995-11-02 Method for concentrating solute on surface layer of cast slab in continuous casting

Country Status (1)

Country Link
JP (1) JPH09122833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482225B1 (en) * 2012-12-27 2015-01-12 주식회사 포스코 Method and apparatus for keeping temperature uniformity on surface of molten metal in mold
JP2015027687A (en) * 2013-07-30 2015-02-12 新日鐵住金株式会社 Method for producing continuously cast slab

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482225B1 (en) * 2012-12-27 2015-01-12 주식회사 포스코 Method and apparatus for keeping temperature uniformity on surface of molten metal in mold
JP2015027687A (en) * 2013-07-30 2015-02-12 新日鐵住金株式会社 Method for producing continuously cast slab

Similar Documents

Publication Publication Date Title
SU1416050A3 (en) Method of continuous electromagnetic casting of ingots
US3952791A (en) Method of continuous casting using linear magnetic field for core agitation
RU2170157C2 (en) Ingot continuous casting mold with apparatus for electromagnetically agitating melt
JP2000271710A (en) Method for continuously casting steel
US5137077A (en) Method of controlling flow of molten steel in mold
JPH09122833A (en) Method for concentrating solute on surface layer of cast slab in continuous casting
RU2196021C2 (en) Plant for continuous casting of slabs of melt metal
JP2003117636A (en) Method for controlling fluidity of molten steel in mold and device for forming electromagnetic field for this purpose
JP7151247B2 (en) Flow controller for thin slab continuous casting and thin slab continuous casting method
JPH09262650A (en) Method for controlling fluidity in mold in continuous casting and device therefor
JPH0924445A (en) Method for concentrating solute on surface layer of cast slab in continuous casting
JP3257546B2 (en) Steel continuous casting method
SU1355113A3 (en) Method of electromagnetic stirring of melted steel in ingot continuous casting process
JPH09262651A (en) Method for reducing non-metallic inclusion in continuous casting
JP2001321907A (en) Method for producing continuous casting slab and continuous casting slab
RU2419508C2 (en) Mixer
JP2002001501A (en) Method of manufacturing continuous cast slab
JP2003275849A (en) Method for producing continuously cast slab
JP3426383B2 (en) Steel continuous casting method
JPS6340650A (en) Apparatus for reducing center segregation in continuously casting slab
JP3318451B2 (en) Continuous casting method of multilayer slab
JP3422946B2 (en) Continuous casting method and continuous casting slab of molten steel
JPH10180426A (en) Electromagnetic stirring method in mold in continuous casting
JP2004042063A (en) Continuous casting device and continuous casting method
RU60011U1 (en) DEVICE FOR CONTINUOUS METAL CASTING

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107