JP2017196626A - Continuous casting method for molten steel - Google Patents

Continuous casting method for molten steel Download PDF

Info

Publication number
JP2017196626A
JP2017196626A JP2016086992A JP2016086992A JP2017196626A JP 2017196626 A JP2017196626 A JP 2017196626A JP 2016086992 A JP2016086992 A JP 2016086992A JP 2016086992 A JP2016086992 A JP 2016086992A JP 2017196626 A JP2017196626 A JP 2017196626A
Authority
JP
Japan
Prior art keywords
mass
molten steel
mold
continuous casting
equiaxed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016086992A
Other languages
Japanese (ja)
Other versions
JP6728934B2 (en
Inventor
笹井 勝浩
Katsuhiro Sasai
勝浩 笹井
原田 寛
Hiroshi Harada
寛 原田
諸星 隆
Takashi Morohoshi
隆 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016086992A priority Critical patent/JP6728934B2/en
Publication of JP2017196626A publication Critical patent/JP2017196626A/en
Application granted granted Critical
Publication of JP6728934B2 publication Critical patent/JP6728934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method capable of stably making coarse granular crystals near the center of a casting piece (including casting pieces having a C content of 0.1 or below mass%) for high strength steel and coarse columnar crystals surrounding them into fine equiaxed crystals.SOLUTION: With use of a continuous casting apparatus having an inductive electromagnetic stirring device 13 between a meniscus 12 in a mold and 10 m below the mold, molten steel comprising 0.03 or below mass% acid soluble Al, 0.1 or below mass% acid soluble Ti and above 0 mass% of the acid soluble Al concentration and the acid soluble Ti concentration in total, 0.0003 to 0.02 mass%, in total, of at least one or more of Ce, La, Nd and Pr, and 0.0001 to 0.004 mass% Ca, is poured into the mold 4. One or both of Bi and Sn are added to the molten steel in the mold to become 0.0005 to 0.01 mass% in total, and the molten steel is cast while being revolved in a horizontal plane by the inductive electromagnetic stirring device 13.SELECTED DRAWING: Figure 1

Description

通常の連続鋳造鋳片の横断面には、中心にポロシティや偏析を伴う最終凝固部を取り囲むように配された中心近傍の粗い粒状晶部と、粗い粒状晶部を取り囲む粗い柱状晶部とが観察される。この粗い粒状晶と柱状晶とを微細な等軸晶にし、中心偏析やミクロ偏析を大幅に軽減することができれば、例えばスラブを薄板にした際には成形加工性が顕著に優れた薄板になり、また例えば厚板にした際には低温靱性に優れた厚板となる。本発明は、この粗い粒状晶と柱状晶を微細な等軸晶にできる溶鋼の連続鋳造方法に関するものである。   In the cross section of a normal continuous cast slab, there are a coarse granular crystal part near the center arranged to surround the final solidified part with porosity and segregation in the center, and a coarse columnar crystal part surrounding the coarse granular crystal part. Observed. If this coarse granular crystal and columnar crystal can be made into fine equiaxed crystals and central segregation and microsegregation can be greatly reduced, for example, when a slab is made into a thin plate, it becomes a thin plate with remarkably excellent moldability. For example, when a thick plate is used, the plate has excellent low-temperature toughness. The present invention relates to a method for continuous casting of molten steel that can make these coarse granular crystals and columnar crystals into fine equiaxed crystals.

非特許文献1には、等軸晶は溶鋼過熱度が低いと増加することから、等軸晶化には低温鋳造が有効であることが示されている。また、特許文献1には、誘導電磁攪拌装置を用いて、凝固界面近傍の溶鋼に一方向の旋回流を与え、柱状デンドライトを分断することにより柱状晶を等軸晶にする技術が記載されている。特許文献2には、等軸晶化促進剤としてMgOを含有させた溶鋼を鋳型内に注湯すると共に、鋳片表層の清浄性を高めるため鋳型内で溶鋼を電磁攪拌しながら鋳造する方法が提案され、表面欠陥(電磁攪拌の洗浄効果)と内部欠陥(MgOによる凝固組織の微細化効果)を同時に抑制する技術が開示されている。さらに、特許文献3には、タンディッシュ内でプラズマ加熱装置を用いて等軸晶化促進剤(MgAl24、Ceの酸化物、硫化物等)を溶鋼表面に吹き付け、鋳型内で等軸晶核を多数生成させることにより、鋳片中心近傍の粗い粒状晶を微細化する技術が開示されている。 Non-Patent Document 1 shows that low temperature casting is effective for equiaxed crystallization because equiaxed crystals increase when the degree of superheated molten steel is low. Patent Document 1 describes a technique for making columnar crystals equiaxed by applying a unidirectional swirling flow to the molten steel near the solidification interface using an induction electromagnetic stirrer and dividing the columnar dendrite. Yes. Patent Document 2 discloses a method of pouring molten steel containing MgO as an equiaxed crystallization accelerator into a mold and casting the molten steel with electromagnetic stirring in the mold in order to improve the cleanliness of the slab surface layer. A technique has been proposed which simultaneously suppresses surface defects (electromagnetic stirring cleaning effect) and internal defects (solidification structure refinement effect due to MgO). Further, in Patent Document 3, an equiaxed crystallization accelerator (MgAl 2 O 4 , Ce oxide, sulfide, etc.) is sprayed on the surface of molten steel using a plasma heating device in a tundish, and is equiaxed in a mold. A technique for refining coarse granular crystals near the center of a slab by generating a large number of crystal nuclei is disclosed.

特開昭50−23338号公報Japanese Patent Laid-Open No. 50-23338 特開2000−334559号公報JP 2000-334559 A 特開2001−225153号公報JP 2001-225153 A

鉄鋼便覧第3版、II 製銑・製鋼、p.653Steel Handbook 3rd Edition, II Steelmaking and Steelmaking, p. 653

しかしながら、低温鋳造では、溶融金属の過熱度を液相線に近い温度にし、これを浸漬ノズルから鋳型内に注入する必要があるため、浸漬ノズルの閉塞や鋳型内でのディッケル生成等の凝固異常を招く場合がある。このため、現状の連続鋳造では注入する溶融金属の過熱度は20〜30K程度を採用しており、このような温度条件では近年軽量化ニーズで生産量が増加してきている高強度薄鋼板の成形加工性や高強度厚板の低温靱性を改善できる程の微細等軸晶化は達成されていない。また、誘導電磁攪拌を用いる方法や等軸晶化促進剤を添加する方法についても、高強度鋼の材質が改善できるまでの十分な微細等軸晶が得られているわけではなく、例えば等軸晶が生成し難いC含有率が0.1質量%以下の溶鋼に対しては、鋳片表層部の柱状晶までを十分に微細等軸晶化することは難しい。さらに言えば、MgO、MgAl24やCe酸化物の等軸晶化促進剤の効果は安定しておらず、他の酸化物の影響により凝固核生成能が低下するなど、従来知見していない変動要因が存在するものと推定される。 However, in low-temperature casting, it is necessary to set the superheat degree of the molten metal to a temperature close to the liquidus and to inject it into the mold from the immersion nozzle, so solidification abnormalities such as clogging of the immersion nozzle and deckle formation in the mold May be invited. For this reason, the current continuous casting employs a superheat degree of the molten metal to be injected of about 20 to 30 K. Under such temperature conditions, the production of high-strength thin steel sheets whose production volume has been increasing due to the need for weight reduction in recent years. Fine equiaxed crystallization that can improve workability and low-temperature toughness of high-strength thick plates has not been achieved. Also, with respect to the method using induction electromagnetic stirring and the method of adding an equiaxed crystallization accelerator, sufficient fine equiaxed crystals are not obtained until the material of the high-strength steel can be improved. For molten steel with a C content of 0.1% by mass or less, in which crystals are difficult to form, it is difficult to sufficiently equiaxially crystallize the columnar crystals of the slab surface layer. Furthermore, the effects of equiaxed crystallization accelerators such as MgO, MgAl 2 O 4 and Ce oxides are not stable, and solidification nucleation ability is reduced by the influence of other oxides. It is estimated that there are no variables.

本発明は、このような現状を鑑み、高強度鋼用鋳片(C含有率0.1質量%以下の鋳片まで含めて)において中心近傍の粗い粒状晶とそれを取り囲む粗い柱状晶を、安定して共に微細な等軸晶にできる溶鋼の連続鋳造方法の提供を課題としている。   In view of such a current situation, the present invention provides a coarse granular crystal near the center and a coarse columnar crystal surrounding it in a high-strength steel slab (including a slab having a C content of 0.1% by mass or less). An object of the present invention is to provide a continuous casting method of molten steel that can stably form fine equiaxed crystals.

このような状況に鑑み、中心近傍の粗い等軸晶とそれを取り囲む粗い柱状晶を、安定して共に微細な等軸晶にできる連続鋳造方法およびそれを用いて鋳造した微細な凝固組織を有する連続鋳造鋳片を提供するために、凝固組織微細化元素と微細化効果の変動要因の解明、少量添加で効果を安定的に発揮する添加方法や添加場所に関して鋭意研究を重ね、得られた知見を連続鋳造工程の中で最適に組み合わせてプロセス設計することで本発明の完成に至った。   In view of such a situation, it has a continuous casting method capable of stably and finely forming a coarse equiaxed crystal near the center and a coarse columnar crystal surrounding the coarse equiaxed crystal, and a fine solidified structure cast using the same. In order to provide continuous cast slabs, elucidate the factors that fluctuate the solidification structure refinement element and refinement effect, and earnestly research on the addition method and location where the effect can be stably exhibited with small additions. The present invention has been completed by optimally combining the processes in the continuous casting process.

その要旨は以下の通りである。すなわち、
(1)鋳型内メニスカス〜鋳型下10mの間に誘導電磁攪拌装置を有する連続鋳造装置を用いて、C:0.03〜0.20質量%、Si:0.08〜1.5質量%、Mn:0.5〜3.0質量%、P:0.05質量%以下、S:0.002質量%以上、N:0.0005〜0.01質量%、Nb:0.2質量%以下、V:0.2質量%以下、Mo:0.5質量%以下、酸可溶Al:0.03質量%以下、酸可溶Ti:0.1質量%以下、Ce、La、NdもしくはPrの内、少なくとも1種以上の合計:0.0003〜0.02質量%、Ca:0.0001〜0.004質量%を含有し、残部がFeおよび不可避的不純物からなる溶鋼を鋳型内に注入し、該鋳型内溶鋼にBiおよびSnの内から1種以上を合計で0.0005〜0.01質量%になるように添加せしめ、前記誘導電磁攪拌装置により水平面内で溶鋼を旋回させながら鋳造することを特徴とする溶鋼の連続鋳造方法。
(2)タンディッシュ内でCaを0.0001〜0.004質量%含有させた後に鋳型内に注入することを特徴とする上記(1)に記載の溶鋼の連続鋳造方法。
(3)タンディッシュ内溶鋼の直上に設置した中空カーボン電極から溶鋼側に向けてプラズマアークを発生させ、該中空カーボン電極の中空部からCaを含有する金属ワイヤー、または金属粒を該プラズマアーク中に供給することによりCaガスを溶鋼表面上に連続的に吹き付けることを特徴とする上記(2)に記載の溶鋼の連続鋳造方法。
(4)BiおよびSnの内から1種以上を含有する金属ワイヤーを鋳型内溶鋼中に連続的に供給することを特徴とする上記(1)〜(3)のいずれか記載の溶鋼の連続鋳造方法。
(5)BiおよびSnの内から1種以上を含有するモールドフラックスを鋳型内溶鋼表面上に供給することを特徴とする上記(1)〜(3)のいずれかひとつに記載の溶鋼の連続鋳造方法。
(6)誘導電磁攪拌による溶鋼の旋回流速を25〜105cm/sとすることを特徴とする上記(1)〜(5)のいずれかひとつに記載の溶鋼の連続鋳造方法。
The summary is as follows. That is,
(1) Using a continuous casting apparatus having an induction electromagnetic stirring device between the meniscus in the mold and 10 m under the mold, C: 0.03 to 0.20 mass%, Si: 0.08 to 1.5 mass%, Mn: 0.5 to 3.0 mass%, P: 0.05 mass% or less, S: 0.002 mass% or more, N: 0.0005 to 0.01 mass%, Nb: 0.2 mass% or less V: 0.2% by mass or less, Mo: 0.5% by mass or less, acid-soluble Al: 0.03% by mass or less, acid-soluble Ti: 0.1% by mass or less, Ce, La, Nd or Pr Among them, a molten steel containing at least one total: 0.0003 to 0.02% by mass, Ca: 0.0001 to 0.004% by mass, the balance being Fe and unavoidable impurities is injected into the mold. And 0.005 to 0.01 mass in total of one or more of Bi and Sn in the molten steel in the mold It allowed added to a continuous casting method of molten steel, which comprises casting while swirling the molten steel in a horizontal plane by the inductive electromagnetic stirring device.
(2) The continuous casting method for molten steel as described in (1) above, wherein 0.0001 to 0.004 mass% of Ca is contained in the tundish and then poured into the mold.
(3) A plasma arc is generated from a hollow carbon electrode installed directly above the molten steel in the tundish toward the molten steel, and a metal wire or metal particle containing Ca is contained in the plasma arc from the hollow portion of the hollow carbon electrode. The continuous casting method for molten steel as described in (2) above, wherein Ca gas is continuously blown onto the surface of the molten steel by supplying to the molten steel.
(4) Continuous casting of molten steel according to any one of (1) to (3) above, wherein a metal wire containing one or more of Bi and Sn is continuously fed into the molten steel in the mold. Method.
(5) Continuous casting of molten steel according to any one of (1) to (3) above, wherein a mold flux containing one or more of Bi and Sn is supplied onto the molten steel surface in the mold. Method.
(6) The continuous casting method for molten steel according to any one of (1) to (5) above, wherein the swirling flow velocity of the molten steel by induction electromagnetic stirring is 25 to 105 cm / s.

本発明によると、鋳片表層部と鋳片内部の凝固組織を、安定して共に微細に等軸晶化した連続鋳造鋳片を製造することができるため、高強度薄鋼板では成形加工性に、高強度厚板では低温靱性に優れた材料を製造することが可能となる。   According to the present invention, it is possible to manufacture a continuous cast slab in which the solidified structure of the slab surface layer and the slab are stably and finely equiaxed together. With a high-strength thick plate, a material excellent in low-temperature toughness can be produced.

タンディッシュ内溶鋼への効果的なCa添加方法を説明するための図。The figure for demonstrating the effective Ca addition method to a tundish inner molten steel. Ceを0.004質量%、Caを0.001質量%含有させた溶鋼の連続鋳造実験における鋳片内部と鋳片表層部の平均等軸晶粒径におよぼす電磁攪拌流速の影響を示す図である。It is a figure which shows the influence of the electromagnetic stirring flow rate on the average equiaxed crystal grain diameter of the inside of a slab and a slab surface layer part in the continuous casting experiment of the molten steel containing 0.004 mass% of Ce and 0.001 mass% of Ca. is there. Ceを0.004質量%、Caを0.001質量%含有させた溶鋼に鋳型内でBiを0.003質量%添加して連続鋳造した鋳片内部と鋳片表層部の平均等軸晶粒径におよぼす電磁攪拌流速の影響を示す図である。Average equiaxed grains in the cast slab and in the slab surface layer, continuously cast by adding 0.003% by mass of Bi in molten steel containing 0.004% by mass of Ce and 0.001% by mass of Ca It is a figure which shows the influence of the electromagnetic stirring flow velocity which acts on a diameter.

凝固組織の形態は、凝固時の固液界面の温度勾配と凝固速度により決定され、温度勾配が小さい程、凝固速度が大きい程、等軸晶が形成され易くなる。しかし、実際の連続鋳造では鋳片表層から比較的内部まで柱状晶が成長しており、このような凝固組織形態を等軸晶主体に変える程の冷却条件の変更は難しい。そのような条件下で、凝固組織を微細等軸晶化するためには、等軸晶生成の核生成サイトを溶鋼中に分散させ、核生成頻度を上げることで微細等軸晶の形成を促進すること、界面活性効果の高い金属元素を用いて固液界面エネルギーを低下させ柱状晶自体を微細等軸晶化させる2つの方法が考えられる。本発明は、これら2つの凝固組織制御の原理を効果的に複合させ、鋳片全面に渡って凝固組織微細化効果を安定して最大限に引き出すための制御手段を明らかにすると共に、その制御手段を連続鋳造工程の中で最適に組み合わせてプロセス設計することにより完成させたものである。本発明の基本思想は、[1]等軸晶の核生成サイトとして有効に作用する酸化物・酸硫化物を溶鋼中に微細分散させ、これに電磁攪拌を加え溶鋼の過熱度を奪うことにより鋳片内部を安定的に微細等軸晶化させると共に、[2]鋳片表層部に固液界面エネルギーを低下させる金属元素を優先的に添加して、鋳型側から鋳片内部に向かって成長する柱状晶の微細化を図り、その上で電磁攪拌の旋回流でこの微細・脆弱な柱状晶を分断することにより鋳片表層部にも微細な等軸晶を生成させることにある。その結果として、鋳片全面に渡って微細な等軸晶組織を得ることが可能となる。   The form of the solidified structure is determined by the temperature gradient and solidification rate at the solid-liquid interface at the time of solidification. The smaller the temperature gradient and the greater the solidification rate, the easier the formation of equiaxed crystals. However, in actual continuous casting, columnar crystals grow from the slab surface layer to the inside relatively, and it is difficult to change the cooling conditions to such an extent that the solidification structure is changed to be equiaxed crystals. Under such conditions, in order to make the solidification structure fine equiaxed, the formation of fine equiaxed crystals is promoted by dispersing the nucleation sites of equiaxed crystals in the molten steel and increasing the frequency of nucleation. In addition, two methods of reducing the solid-liquid interface energy and making the columnar crystal itself into a fine equiaxed crystal using a metal element having a high surface active effect are conceivable. The present invention clarifies a control means for effectively combining these two solidification structure control principles and stably and maximizing the solidification structure refinement effect over the entire surface of the slab. It has been completed by optimally combining the means in the continuous casting process and designing the process. The basic idea of the present invention is that [1] oxides and oxysulfides that effectively act as nucleation sites for equiaxed crystals are finely dispersed in molten steel, and this is electromagnetically stirred to deprive the superheated degree of molten steel. While making the inside of the slab stably fine equiaxed, [2] A metal element that lowers the solid-liquid interface energy is preferentially added to the surface of the slab and grows from the mold side toward the inside of the slab. The purpose of this is to make the columnar crystals finer, and then to divide the fine and fragile columnar crystals with a swirl flow of electromagnetic stirring to produce fine equiaxed crystals on the surface of the slab. As a result, a fine equiaxed crystal structure can be obtained over the entire surface of the slab.

上記基本思想を実現するための具体的方法と条件について、以下に述べる。まず、[1]の等軸晶核の生成サイトとなる酸化物・酸硫化物の条件であるが、Ti脱酸溶鋼にはチタニア系介在物が、Al脱酸溶鋼にはアルミナ系介在物が多数存在するが、これらの介在物は等軸晶核の生成サイトとはなり難く、さらに凝集・合体して粗大な酸化物となるため、等軸晶生成の核として有効に作用しない。これに対し、本発明者らは、溶鋼中にTiやAlよりも強脱酸元素であるCe、La、NdもしくはPrの内、少なくとも1種以上を添加し、チタニア系介在物およびアルミナ系介在物をCe酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、Pr酸硫化物、或いはこれらの複合酸化物に改質することにより、比較的微細な酸化物・酸硫化物を溶鋼中に均一に分散できること、これら酸化物・酸硫化物が微細な等軸晶生成の核になり易いことを見いだした。これは、チタニアやアルミナと比較して、Ce酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、Pr酸硫化物、或いはこれらの複合酸化物が溶鋼と濡れ易いためだと考えられる。ここで、Ce、La、NdもしくはPrの内、少なくとも1種以上の合計添加量は0.0003〜0.02質量%に規定した。これは、Ce、La、NdもしくはPrの内、少なくとも1種以上の合計添加量が0.0003質量%未満では等軸晶核生成サイトの量が少なくなることにより、反対に0.02質量%を超えると生成酸化物または酸硫化物が粗大化し易くなることにより、何れも鋳片内の凝固組織を微細な等軸晶にする効果が失われるためである。   Specific methods and conditions for realizing the basic idea will be described below. First, the conditions for oxides and oxysulfides that form the equiaxed crystal nuclei in [1] are as follows: Ti deoxidized molten steel contains titania inclusions, Al deoxidized molten steel contains alumina inclusions. Although many exist, these inclusions are unlikely to be the site of formation of equiaxed crystal nuclei, and further aggregate and coalesce to form a coarse oxide, so that they do not act effectively as nuclei for the formation of equiaxed crystals. On the other hand, the present inventors added at least one or more of Ce, La, Nd or Pr, which are deoxidizing elements stronger than Ti and Al, to the molten steel, and include titania inclusions and alumina inclusions. By modifying the material to Ce oxide, La oxide, Nd oxide, Pr oxide, Ce oxysulfide, La oxysulfide, Nd oxysulfide, Pr oxysulfide, or a composite oxide thereof The present inventors have found that relatively fine oxides and oxysulfides can be uniformly dispersed in molten steel, and that these oxides and oxysulfides are likely to become nuclei for the formation of fine equiaxed crystals. Compared with titania and alumina, this is Ce oxide, La oxide, Nd oxide, Pr oxide, Ce oxysulfide, La oxysulfide, Nd oxysulfide, Pr oxysulfide, or these This is probably because the complex oxide is easily wetted with molten steel. Here, the total addition amount of at least one of Ce, La, Nd, or Pr was regulated to 0.0003 to 0.02 mass%. This is because, if the total addition amount of at least one of Ce, La, Nd, or Pr is less than 0.0003 mass%, the amount of equiaxed nucleation sites decreases, and on the contrary, 0.02 mass% This is because, if it exceeds 1, the resulting oxide or oxysulfide is likely to be coarsened, and in any case, the effect of making the solidified structure in the slab a fine equiaxed crystal is lost.

実際の連続鋳造では、空気やスラグなどによる溶鋼再酸化が生じ、溶鋼中で新たにアルミナ系介在物やチタニア系介在物が生成する。これら介在物の生成量が多くなると、等軸晶核生成サイトとなるCe酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、Pr酸硫化物、或いはこれらの複合酸化物の表面に等軸晶核生成能の小さいアルミナ系介在物やチタニア系介在物が付着するため、所定のCe、La、NdもしくはPrの合計量を添加しても凝固組織微細化の効果が得にくく、最悪の場合全く等軸晶化しないことを本発明者らは知見している。この知見は、不活性ガス雰囲気でCeを添加して溶製した10kg溶鋼を不活性雰囲気と空気雰囲気で鋳型に注入し、得られた鋼塊の凝固組織を観察した結果、不活性雰囲気での鋳造組織が微細等軸晶化するのに対し、空気雰囲気の鋳造組織が粗大粒状晶化することで確認している。さらに、本発明者らは、溶鋼の再酸化が生じる実プロセスでも、Ce、La、NdもしくはPrの添加による凝固組織微細化効果を安定的に享受するためには、少量のCaを溶鋼中に添加し、Ce、La、NdもしくはPrの酸化物・酸硫化物の表面に付着したアルミナ系介在物やチタニア系介在物を低融点化すれば、溶鋼との濡れ性が改善されると共に、Ce、La、NdもしくはPrの酸化物・酸硫化物の表面からアルミナ系介在物やチタニア系介在物が洗浄され、Ce、La、NdもしくはPrの酸化物・酸硫化物の等軸晶核生成能が再生されることを見いだした。ここで、Ca濃度は0.0001〜0.004質量%に規定した。これは、Ca濃度が0.0001質量%未満では、溶鋼の再酸化が激しい場合、Ce、La、NdもしくはPrの酸化物・酸硫化物の表面に付着したアルミナ系介在物やチタニア系介在物を低融点組成にできないことにより、反対にCa濃度が0.004質量%を超えると、等軸晶核生成サイトとなるCe、La、NdもしくはPrの酸化物・酸硫化物までもが溶融し、付着していたアルミナ系介在物やチタニア系介在物を吸収して組成が大きく変わることにより、何れの場合にも微細等軸晶化の機能が低下するためである。   In actual continuous casting, molten steel is reoxidized by air, slag, etc., and alumina inclusions and titania inclusions are newly generated in the molten steel. When the amount of these inclusions increases, Ce oxide, La oxide, Nd oxide, Pr oxide, Ce oxysulfide, La oxysulfide, Nd oxysulfide, Pr, which become equiaxed crystal nucleation sites Since alumina inclusions and titania inclusions with small equiaxed crystal nucleation ability adhere to the surfaces of oxysulfides or these composite oxides, add the total amount of predetermined Ce, La, Nd or Pr. However, the present inventors have found that the effect of refining the solidification structure is difficult to obtain, and in the worst case, no equiaxed crystallization occurs. As a result of observing the solidification structure of the steel ingot obtained by injecting 10 kg molten steel prepared by adding Ce in an inert gas atmosphere into a mold in an inert atmosphere and an air atmosphere, This is confirmed by the fact that the cast structure is finely equiaxed and the cast structure in the air atmosphere is coarsely crystallized. Furthermore, in order to stably enjoy the effect of refining the solidified structure due to the addition of Ce, La, Nd or Pr even in the actual process in which re-oxidation of the molten steel occurs, the present inventors have added a small amount of Ca into the molten steel. Addition and lowering the melting point of alumina inclusions and titania inclusions attached to the surface of oxide, oxysulfide of Ce, La, Nd, or Pr improves the wettability with molten steel and improves Ce. Alumina inclusions and titania inclusions are cleaned from the surface of oxides, oxysulfides of La, Nd, or Pr, and equiaxed nucleation ability of oxides, oxysulfides of Ce, La, Nd, or Pr Found to be played. Here, the Ca concentration was regulated to 0.0001 to 0.004 mass%. This is because when the Ca concentration is less than 0.0001% by mass and the reoxidation of molten steel is severe, alumina inclusions and titania inclusions attached to the surface of the oxide, oxysulfide of Ce, La, Nd or Pr. On the contrary, when the Ca concentration exceeds 0.004 mass%, even the oxides and oxysulfides of Ce, La, Nd, or Pr that are the equiaxed crystal nucleation sites are melted. This is because the function of fine equiaxed crystallization is deteriorated in any case by absorbing the alumina inclusions and titania inclusions adhering thereto and changing the composition greatly.

空気やスラグなどによる溶鋼再酸化は取鍋やタンディッシュ内溶鋼注入部で主に起こること、Caの沸点は1487℃であり、溶鋼の融点(純鉄1538℃)よりも低く、溶鋼添加時に急激なガス化が生じることから、再酸化で生成したアルミナ系介在物やチタニア系介在物を効果的に低融点化するためには、溶鋼温度が比較的低く、再酸化介在物が生成するタンディッシュ内の溶鋼注入部よりも下流側でCaを添加することが望ましい。また、タンディッシュ内は浴深が浅く溶鋼静圧が低いため、ワイヤーなどでタンディッシュ底部にCaを添加しても爆発的なガス化でCaガスの多くが吹き抜け易く、歩留まり低下の懸念がある。そこで、タンディッシュでの効果的なCaの添加方法として、本発明者らは、図1に示すように、取鍋1内の溶鋼2を、タンディッシュ3を介して鋳型4内に連続的に供給する連続鋳造設備5において、タンディッシュ内溶鋼2の直上に設置された中空カーボン電極6とタンディッシュ3側に設置された固定電極7間に、直流電源装置8を用いて電力を印加し、中空カーボン電極6の先端とタンディッシュ3内溶鋼2の間にプラズマアーク9を発生させながら、Caワイヤー10(図1)やCa粒をプラズマアーク9中に供給してガス化させ、そのCaガスを作動ガスと共に溶鋼表面に吹き付ける方法を考案した。プラズマアークを安定して発生させCaのガス化を促進するには、中空カーボン電極6側を陰極、固定電極7側を陽極とし電子を溶鋼側に飛ばすことが好ましく、合わせて溶鋼加熱効果も高めることができる。カーボン電極6の中空部にはCaワイヤー10やCa粒と共に、プラズマを発生させるためのアルゴン、窒素等の不活性ガスを作動ガスとして流通させる。これにより、Caガスをタンディッシュ内溶鋼に安定的に吸収させることが可能となる。   The reoxidation of molten steel due to air or slag occurs mainly in the ladle or the molten steel injection part in the tundish, the boiling point of Ca is 1487 ° C, lower than the melting point of molten steel (pure iron 1538 ° C), and suddenly increases when molten steel is added In order to effectively lower the melting point of alumina inclusions and titania inclusions produced by reoxidation, the tundish where the molten steel temperature is relatively low and reoxidation inclusions are produced is required. It is desirable to add Ca on the downstream side of the molten steel injection part. In addition, since the bath depth is shallow and the molten steel static pressure is low in the tundish, even if Ca is added to the tundish bottom with a wire or the like, much of the Ca gas is easily blown out by explosive gasification, and there is a concern that the yield may be reduced. . Therefore, as an effective Ca addition method in the tundish, the present inventors continuously put the molten steel 2 in the ladle 1 into the mold 4 through the tundish 3, as shown in FIG. In the continuous casting equipment 5 to be supplied, electric power is applied between the hollow carbon electrode 6 installed immediately above the molten steel 2 in the tundish and the fixed electrode 7 installed on the tundish 3 side using a DC power supply device 8, While generating the plasma arc 9 between the tip of the hollow carbon electrode 6 and the molten steel 2 in the tundish 3, the Ca wire 10 (FIG. 1) and Ca particles are supplied into the plasma arc 9 to be gasified, and the Ca gas A method was devised for spraying with a working gas on the surface of molten steel. In order to stably generate a plasma arc and promote the gasification of Ca, it is preferable that the hollow carbon electrode 6 side is a cathode, the fixed electrode 7 side is an anode, and electrons are blown to the molten steel side. be able to. In the hollow part of the carbon electrode 6, together with the Ca wire 10 and Ca particles, an inert gas such as argon or nitrogen for generating plasma is circulated as a working gas. Thereby, Ca gas can be stably absorbed by the molten steel in the tundish.

次に、[1]の電磁攪拌の条件に関して述べる。一般に、電磁攪拌では、凝固界面の溶鋼に旋回流を付与するため、この旋回流が柱状デンドライトを分断し、等軸晶化を促進すると考えられている。しかし、本発明者等の知見では、従来から言われている鋳片表層部の凝固界面における柱状晶分断の効果は弱く、むしろ電磁攪拌により凝固シェルと溶鋼間の熱伝達が促進され、鋳片内部の溶鋼過熱度を低下させる効果が高いことを見いだした。本発明の等軸晶核の生成促進では、この電磁攪拌の溶鋼過熱度を低下させる効果を活用し、電磁攪拌により微細な酸化物・酸硫化物を起点に生成した等軸晶核の再溶解を防止している。しかしながら、電磁攪拌による溶鋼過熱度の低減効果を高めていくためには、旋回流速を速くする必要があり、その場合微細な酸化物・酸硫化物が凝集・合体により粗大化し、等軸晶の核として有効に機能しなくなる。そこで、C:0.08質量%、Si:0.5質量%、Mn:1.0質量%、P:0.02質量%、S:0.003質量%、N:0.003質量%、酸可溶Al:0.025質量%、酸可溶Ti:0.04質量%、Ce:0.004質量%、Ca:0.001質量%の溶鋼を連続鋳造する実験を実施し、鋳片内部と鋳片表層部の等軸晶粒径におよぼす電磁攪拌の旋回流速の影響を調査した。なお、分岐状柱状晶(分断されていない)、分断された分岐状柱状晶についても、その粒径を同時に評価できるように、等軸晶粒径は2(a・b)0.5と定義した(aは結晶粒の長径、bは結晶粒の短径である。分断されていない分岐状柱状晶についてはひとつの枝をひとつの結晶粒とした。)。鋳片内部の平均等軸晶粒径は、鋳片1/4厚から内部における横断面の等軸晶粒径の平均値、鋳片表層部の平均等軸晶粒径は、表層から鋳片1/4厚における横断面の等軸晶粒径の平均値である。 Next, the conditions for electromagnetic stirring in [1] will be described. In general, in electromagnetic stirring, a swirl flow is imparted to the molten steel at the solidification interface, and this swirl flow is considered to break up columnar dendrites and promote equiaxed crystallization. However, according to the knowledge of the present inventors, the effect of columnar crystal fragmentation at the solidification interface of the slab surface layer portion that has been conventionally known is weak, rather, heat transfer between the solidified shell and the molten steel is promoted by electromagnetic stirring, and the slab It was found that the effect of lowering the internal superheated molten steel was high. In the promotion of the formation of equiaxed crystal nuclei of the present invention, the effect of reducing the superheated degree of molten steel by this magnetic stirring is utilized, and the remelting of equiaxed nuclei generated from the origin of fine oxides and oxysulfides by electromagnetic stirring. Is preventing. However, in order to increase the effect of reducing the degree of superheated molten steel by electromagnetic stirring, it is necessary to increase the swirl flow velocity. In that case, fine oxides and oxysulfides are coarsened by agglomeration and coalescence, resulting in equiaxed crystals. It will not function effectively as a nucleus. Therefore, C: 0.08% by mass, Si: 0.5% by mass, Mn: 1.0% by mass, P: 0.02% by mass, S: 0.003% by mass, N: 0.003% by mass, An experiment was conducted to continuously cast molten steel of acid-soluble Al: 0.025 mass%, acid-soluble Ti: 0.04 mass%, Ce: 0.004 mass%, Ca: 0.001 mass%, and slab The influence of the swirl velocity of electromagnetic stirring on the equiaxed grain size of the inner and slab surface layer was investigated. In addition, the equiaxed crystal grain size was defined as 2 (a · b) 0.5 so that the grain size of the branched columnar crystals (not divided) and the divided branched columnar crystals can be evaluated simultaneously ( a is the major axis of the crystal grains, and b is the minor axis of the crystal grains.For the branched columnar crystals that are not divided, one branch is taken as one crystal grain.) The average equiaxed grain size inside the slab is the average value of the equiaxed grain size of the cross section inside from the slab 1/4 thickness, and the average equiaxed grain size of the slab surface layer is from the surface layer to the slab It is the average value of equiaxed grain size of the transverse section at ¼ thickness.

鋳片内部と鋳片表層部における平均等軸晶粒径におよぼす電磁攪拌流速の影響を図2に示す。図2から分かるように、鋳片内部の平均等軸晶粒径は溶鋼の旋回流速が25cm/s以上で3mm以下に、30cm/s以上で2mm程度まで小さくなるが、100cm/sを超えると反対に平均等軸晶粒径は大きくなり始め、105cm/s超では3mmを超えて粗大化する。この原因は、電磁攪拌の旋回流速が25cm/s以上、より明確には30cm/s以上になると鋳片内部で微細酸化物を起点に生成した等軸晶核の再溶解が抑制されるのに対し、旋回流速が100cm/sを超えると鋳片内部でCe酸化物やCe酸硫化物でも、凝集・合体による粗大化が進行し、等軸晶の核として機能し難くなり、105cm/sを超えると等軸晶核として機能しなくなるためだと考えられる。なお、鋳片表層部については、殆どが鋳型側から鋳片内部に向かって一定方向に揃った比較的長い分岐状柱状晶が成長しており、分断されていない分岐状柱状晶、分断した分岐状柱状晶、柱状晶を含む平均等軸晶粒径は粗大であった。これは、電磁攪拌による鋳片表層部の凝固界面における柱状晶分断の効果が比較的弱いためである。したがって、鋳片内部の凝固組織を微細な等軸晶にするためには、電磁攪拌の旋回流速を30〜100cm/sに制御するのが望ましい。また、鋳型下10mよりも更に下方では、既に鋳片表層の凝固はほぼ完了しているため、誘導電磁攪拌は凝固の始まる鋳型内メニスカスの位置と鋳型下10mの位置との間に設置するのが効果的である。   FIG. 2 shows the influence of the magnetic stirring velocity on the average equiaxed grain size in the slab and in the slab surface layer. As can be seen from FIG. 2, the average equiaxed grain size inside the slab is as small as 3 mm or less when the swirling flow velocity of molten steel is 25 cm / s or more, and to about 2 mm when it is 30 cm / s or more. On the other hand, the average equiaxed grain size starts to increase, and when it exceeds 105 cm / s, it becomes larger than 3 mm. This is because when the swirling flow velocity of electromagnetic stirring is 25 cm / s or more, more specifically 30 cm / s or more, the remelting of equiaxed nuclei generated from fine oxides inside the slab is suppressed. On the other hand, if the swirling flow rate exceeds 100 cm / s, even Ce oxide or Ce oxysulfide inside the slab will be coarsened by agglomeration and coalescence, making it difficult to function as an equiaxed crystal nucleus. It is thought that this is because if it exceeds, it will not function as an equiaxed crystal nucleus. In the slab surface layer portion, relatively long branched columnar crystals that are aligned in a certain direction from the mold side toward the inside of the slab are growing, and undivided branched columnar crystals, divided branches. The average equiaxed grain size including columnar crystals and columnar crystals was coarse. This is because the effect of columnar crystal division at the solidification interface of the slab surface layer by electromagnetic stirring is relatively weak. Therefore, in order to make the solidified structure inside the slab into a fine equiaxed crystal, it is desirable to control the swirl flow rate of electromagnetic stirring to 30 to 100 cm / s. Further, below 10 m below the mold, solidification of the slab surface has already been almost completed, and therefore induction electromagnetic stirring is installed between the position of the meniscus in the mold where solidification starts and the position of 10 m below the mold. Is effective.

次に、[2]固液界面エネルギーを低下させる金属元素の選定であるが、鋼板材質に悪影響を与えることなく少量添加で界面活性効果が得られる元素としてBiおよびSnが有望であることを、これら金属元素を添加した10kg溶鋼の凝固実験で柱状晶間隔を評価することにより見いだした。柱状晶微細化の効果は、これら金属元素の内から1種以上を合計で0.0005質量%以上添加すれば十分であるが、0.01質量%を超えて添加すると鋼板が脆化し圧延時に端部に耳割れが発生した。このため、溶鋼中にはBiおよびSnの内から1種以上を合計で0.0005〜0.01質量%になるように添加すればよい。さらに、BiおよびSnの添加場所は鋳片材質全体に悪影響を与え難く、なるべく鋳片表層部で柱状晶微細化の効果のみを最大限に享受できるように、鋳型内の溶鋼中に添加するのが望ましい。添加方法としては、BiおよびSnを含有する金属ワイヤーを直接鋳型内の溶鋼上部側に挿入するか、或いはBiおよびSnを含有するモールドフラックスを用いて供給することで、比較的鋳片表層部に効率的に添加できる。モールドフラックスを介して微細化元素を添加する方法としては、事前にBiやSnを混入させたモールドフラックスを使用する方法、添加直前にBiやSnをモールドフラックスに混入させながら鋳型内に供給する方法、鋳造中に一定の速度でBi粉やSn粉を湯面被覆しているモールドフラックス上に供給する方法、などが有効である。BiおよびSnの沸点は各々1560℃と2270℃であり、溶鋼の融点(純鉄1538℃)よりも高いため添加時に爆発的なガス化は生じない。さらに、BiとSnの密度は各々9.8g/cm3と7.3g/cm3であり、溶鋼の密度7.0g/cm3よりも重いことから、ワイヤーやパウダーから溶鋼表面に添加しても直ちに浮上してしまうことはなく、溶鋼中に比較的容易に添加できる。添加したBi、Snの含有量については、スラブ又は圧延鋼板から採取した試料の分析によって評価することができる。 Next, [2] selection of a metal element that lowers the solid-liquid interfacial energy, Bi and Sn are promising as elements that can obtain a surface active effect by adding a small amount without adversely affecting the steel plate material. It was found by evaluating the columnar crystal interval in a solidification experiment of 10 kg molten steel to which these metal elements were added. As for the effect of refining columnar crystals, it is sufficient to add one or more of these metal elements in a total amount of 0.0005% by mass or more, but if added in excess of 0.01% by mass, the steel sheet becomes brittle and during rolling. Ear cracks occurred at the edges. For this reason, what is necessary is just to add 1 or more types from Bi and Sn to molten steel so that it may become 0.0005-0.01 mass% in total. In addition, Bi and Sn are added to the molten steel in the mold so that the entire cast slab material is hardly adversely affected and only the effect of refining columnar crystals can be enjoyed to the maximum extent possible. Is desirable. As an addition method, a metal wire containing Bi and Sn is directly inserted into the molten steel upper side in the mold, or a mold flux containing Bi and Sn is used to supply relatively to the surface of the slab. Can be added efficiently. As a method of adding a fine element through a mold flux, a method of using a mold flux mixed with Bi or Sn in advance, or a method of supplying Bi or Sn into a mold while mixing Bi or Sn into the mold flux immediately before the addition. For example, a method of supplying Bi powder or Sn powder onto the mold flux covering the molten metal surface at a constant speed during casting is effective. The boiling points of Bi and Sn are 1560 ° C. and 2270 ° C., respectively, which are higher than the melting point of molten steel (pure iron 1538 ° C.), so no explosive gasification occurs during addition. Further, the density of Bi and Sn is 9.8 g / cm 3 and 7.3 g / cm 3 , respectively, which is heavier than the density of molten steel 7.0 g / cm 3. However, it does not float immediately and can be added to molten steel relatively easily. The contents of added Bi and Sn can be evaluated by analyzing samples collected from slabs or rolled steel sheets.

さらに、[2]の電磁攪拌の条件について述べる。ここでは、先に述べたように凝固界面における電磁攪拌の柱状晶分断効果が弱いことから、鋳型内にBiおよびSnを添加して、鋳型側から成長する柱状晶を微細・脆弱化させ、この柱状晶を電磁攪拌の弱い剪断力により効果的に分断し、鋳片表層部に微細な等軸晶を造り込むことが重要となる。そこで、C:0.08質量%、Si:0.5質量%、Mn:1.0質量%、P:0.02質量%、S:0.003質量%、N:0.003質量%、酸可溶Al:0.025質量%、酸可溶Ti:0.04質量%、Ce:0.004質量%、Ca:0.001質量%の溶鋼を鋳型内に注入し、該鋳型内で連鋳パウダーを通してBiを0.003質量%添加する連続鋳造実験により、鋳片内部と鋳片表層部の平均等軸晶粒径におよぼす電磁攪拌の旋回流速の影響を調査した。結果を図3に示す。鋳片表層部の平均等軸晶粒径は、電磁攪拌による旋回流速が25cm/s以上になると3mm以下まで、旋回流速が30cm/s以上になると2mm程度まで小さくなり、さらに旋回流速が100cm/s超でもその効果は維持されている。これは、電磁攪拌の旋回流速が25cm/s以上になると、鋳型内でのBi添加により微細・脆弱化された柱状晶が電磁攪拌流により分断されはじめ、さらに30cm/s以上になるとより効果的に柱状晶の分断効果が得られ、鋳片表層部に微細等軸晶を生成できることを示す結果である。一方、図3から分かるように、溶鋼の旋回流速が30cm/s以上になると鋳片内部の平均等軸晶粒径は2mm程度まで小さくなるが、100cm/sを超えると反対に平均等軸晶粒径は大きくなり始める。この原因は、先の実験でも述べたように、電磁攪拌の旋回流速が30cm/s以上になると鋳片内部で微細なCe酸化物やCe酸硫化物を起点に生成した等軸晶核の再溶解が効果的に抑制されるのに対し、旋回流速が100cm/sを超えると鋳片内部でCe酸化物やCe酸硫化物でも、凝集・合体による粗大化が始まり、等軸晶の核として機能し難くなるためだと考えられる。したがって、鋳片全体を微細等軸晶化するには、電磁攪拌流速を30〜100cm/sとすることが効果的である。   Furthermore, the electromagnetic stirring conditions of [2] will be described. Here, as described above, since the columnar crystal fragmentation effect of electromagnetic stirring at the solidification interface is weak, Bi and Sn are added into the mold to make the columnar crystal growing from the mold side fine and brittle. It is important to effectively divide the columnar crystals by the shearing force with weak electromagnetic stirring and to build fine equiaxed crystals in the slab surface layer. Therefore, C: 0.08% by mass, Si: 0.5% by mass, Mn: 1.0% by mass, P: 0.02% by mass, S: 0.003% by mass, N: 0.003% by mass, Acid-soluble Al: 0.025% by mass, acid-soluble Ti: 0.04% by mass, Ce: 0.004% by mass, Ca: 0.001% by mass of molten steel was poured into the mold. In a continuous casting experiment in which 0.003% by mass of Bi was added through continuous casting powder, the influence of the swirling flow rate of electromagnetic stirring on the average equiaxed crystal grain size inside the slab and the surface part of the slab was investigated. The results are shown in FIG. The average equiaxed grain size of the slab surface layer portion is reduced to 3 mm or less when the swirling flow rate by electromagnetic stirring is 25 cm / s or more, and is decreased to about 2 mm when the swirling flow rate is 30 cm / s or more. The effect is maintained even if it exceeds s. This is more effective when the swirling flow velocity of electromagnetic stirring is 25 cm / s or more, and columnar crystals refined and weakened by addition of Bi in the mold begin to be divided by the electromagnetic stirring flow, and further 30 cm / s or more. It is a result which shows that the parting effect of a columnar crystal is obtained, and that a fine equiaxed crystal can be generated in the slab surface layer portion. On the other hand, as can be seen from FIG. 3, the average equiaxed grain size inside the slab decreases to about 2 mm when the swirling flow velocity of the molten steel is 30 cm / s or more. The particle size begins to increase. As described in the previous experiment, the cause of this is that the recrystallization of equiaxed nuclei generated from fine Ce oxides and Ce oxysulfides in the slab when the swirling flow velocity of electromagnetic stirring is 30 cm / s or more. While dissolution is effectively suppressed, when the swirling flow velocity exceeds 100 cm / s, coarsening due to agglomeration and coalescence begins even in the case of Ce oxide or Ce oxysulfide inside the slab. It is thought that it becomes difficult to function. Therefore, in order to make the entire slab fine equiaxed, it is effective to set the magnetic stirring flow rate to 30 to 100 cm / s.

電磁攪拌流速については、柱状晶や分岐状柱状晶組織が発達する通常の連続鋳造条件において、鋳造した鋳片の幅方向中央部の凝固組織をピクリン酸エッチングで現出し、柱状晶や分岐状柱状晶の傾きから流速を評価することができる。この方法によって予め電磁攪拌推力と電磁攪拌流速の関係を求めておき、本発明方法においても、目標とする電磁攪拌流速を得るための電磁攪拌推力を選択して電磁攪拌を実施すればよい。   With regard to the magnetic stirring speed, the solidified structure at the center in the width direction of the cast slab is revealed by picric acid etching under normal continuous casting conditions in which columnar crystals and branched columnar crystal structures develop. The flow rate can be evaluated from the inclination of the crystal. In this method, the relationship between the electromagnetic stirring thrust and the electromagnetic stirring flow rate is obtained in advance, and in the method of the present invention, the electromagnetic stirring may be performed by selecting the electromagnetic stirring thrust for obtaining the target electromagnetic stirring flow rate.

上記[1]と[2]の組み合わせによって、鋳片の表層から1/4厚、1/4厚から内部のそれぞれについて平均等軸晶粒径を3mm以下(電磁攪拌流速25〜105cm/s)、望ましくは2mm以下(電磁攪拌流速30〜100cm/s)の凝固組織を得ることができる。   By combining the above [1] and [2], the average equiaxed grain size is 3 mm or less for each of the ¼ thickness from the surface layer of the slab and the ¼ thickness to the inside (electromagnetic stirring flow rate 25 to 105 cm / s). Desirably, a solidified structure having a thickness of 2 mm or less (electromagnetic stirring flow rate of 30 to 100 cm / s) can be obtained.

本発明は、上記説明からも分かるように、スラブへの適用に限られたものではなく、ブルームやビレットに適用しても、十分な凝固組織の微細化効果が得られる。   As can be seen from the above description, the present invention is not limited to application to slabs, and even when applied to bloom or billet, a sufficient solidification structure refinement effect can be obtained.

本発明の溶鋼中の化学成分のうち、Ce、La、Nd、Pr、Ca、Bi、Snの限定理由についてはすでに述べたとおりである。最後に、これら以外の化学成分の限定理由について記載する。   Among the chemical components in the molten steel of the present invention, the reasons for limiting Ce, La, Nd, Pr, Ca, Bi, and Sn are as described above. Finally, the reasons for limiting the chemical components other than these will be described.

本発明では、溶鋼中の溶存(酸可溶)Al濃度は0.03質量%以下であり、これを超える酸可溶Al濃度では多量のアルミナ系介在物が残存し、それらをCe、La、NdもしくはPrの酸化物・酸硫化物に改質できないため、鋳片内の凝固組織を微細等軸晶化できない。アルミナ系介在物をCe酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、Pr酸硫化物、或いはこれらの複合酸化物に改質し、等軸晶の核生成能を高めるためには酸可溶Al濃度は低い方が良く、下限値は0質量%を含む。   In the present invention, the dissolved (acid-soluble) Al concentration in the molten steel is 0.03% by mass or less, and if the acid-soluble Al concentration exceeds this, a large amount of alumina inclusions remain, and these are Ce, La, Since it cannot be modified to an oxide or oxysulfide of Nd or Pr, the solidified structure in the slab cannot be made into fine equiaxed crystals. Alumina inclusions modified to Ce oxide, La oxide, Nd oxide, Pr oxide, Ce oxysulfide, La oxysulfide, Nd oxysulfide, Pr oxysulfide, or complex oxides of these In order to enhance the nucleation ability of equiaxed crystals, the acid-soluble Al concentration should be low, and the lower limit value includes 0% by mass.

また、酸可溶Ti濃度も高くなり過ぎると、チタニア系介在物をCe酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、Pr酸硫化物、或いはこれらの複合酸化物に改質できなくなることから酸可溶Ti濃度は0.1質量%以下とし、下限値は0質量%を含む。また、溶鋼成分のばらつきと材質劣化を防止する観点から、溶存酸素をAlまたはTiである程度脱酸しておくことが好ましく、その要件からAlもしくはTiの1種または2種を添加後の酸可溶(溶存)Al濃度と酸可溶(溶存)Ti濃度の合計は、少なくとも0質量%超が好ましい。酸可溶Al濃度と酸可溶Ti濃度の合計が0.0005質量%以上であるとより好ましい。さらに、酸可溶Al濃度、酸可溶Ti濃度とは、酸に溶解したAl量とTi量を測定したもので、溶存Alと溶存Tiは酸に溶解し、アルミナやチタニアは酸に溶解しないことを利用した分析方法である。ここで、酸とは、例えば塩酸1、硝酸1、水2の割合で混合した混酸である。   If the acid-soluble Ti concentration becomes too high, the titania inclusions are changed to Ce oxide, La oxide, Nd oxide, Pr oxide, Ce oxysulfide, La oxysulfide, Nd oxysulfide, Pr. Since it becomes impossible to modify the oxysulfide or these complex oxides, the acid-soluble Ti concentration is 0.1% by mass or less, and the lower limit includes 0% by mass. In addition, from the viewpoint of preventing variation in molten steel components and material deterioration, it is preferable to deoxidize dissolved oxygen to some extent with Al or Ti. From the requirements, it is possible to oxidize after adding one or two of Al or Ti. The total of the dissolved (dissolved) Al concentration and the acid-soluble (dissolved) Ti concentration is preferably at least more than 0% by mass. The total of the acid-soluble Al concentration and the acid-soluble Ti concentration is more preferably 0.0005% by mass or more. Furthermore, the acid-soluble Al concentration and the acid-soluble Ti concentration are obtained by measuring the amount of Al and Ti dissolved in an acid. Dissolved Al and dissolved Ti dissolve in an acid, and alumina and titania do not dissolve in an acid. This is an analysis method that uses this. Here, the acid is a mixed acid mixed at a ratio of hydrochloric acid 1, nitric acid 1, and water 2, for example.

Cは鋼板の強度を確保するために必須の元素であり、高強度鋼板を得るためには少なくとも0.03質量%が必要である。しかし、過剰に含まれると、Ti等の添加元素によりCを固定したり、冷却条件を駆使しても、伸びフランジ特性に好ましくないセメンタイト相の生成が避けられないので0.20質量%以下とする。   C is an essential element for securing the strength of the steel sheet, and at least 0.03 mass% is necessary to obtain a high-strength steel sheet. However, if excessively contained, even if C is fixed by an additive element such as Ti or the cooling conditions are fully utilized, the formation of a cementite phase that is not preferable for stretch flange characteristics is unavoidable. To do.

Siは曲げ性の劣化を比較的抑えて、強度向上に寄与する元素であり、その効果を発揮するためには0.08質量%以上の添加が必要である。過剰に添加すると溶接性や延性に悪影響を及ぼすので1.5質量%を上限とする。   Si is an element that contributes to strength improvement by relatively suppressing the deterioration of bendability, and 0.08% by mass or more is necessary to exert its effect. If added excessively, the weldability and ductility are adversely affected, so 1.5 mass% is made the upper limit.

MnはC、Siとともに鋼板の高強度化に有効な元素であり、0.5質量%以上は含有させる必要があるが、3.0質量%を超えて含有させると延性が劣化するため上限を3.0質量%とする。   Mn is an element effective for increasing the strength of steel sheets together with C and Si, and it is necessary to contain 0.5% by mass or more, but if it exceeds 3.0% by mass, the ductility deteriorates, so the upper limit is set. The content is 3.0% by mass.

Pは固溶強化元素として有効であるが、偏析による加工性の劣化が懸念されるので0.05質量%以下にする必要がある。固溶強化の必要がなければPを添加する必要はなく、Pの下限値は0質量%を含む。   P is effective as a solid solution strengthening element, but since there is a concern about deterioration of workability due to segregation, it is necessary to make it 0.05% by mass or less. If solid solution strengthening is not necessary, it is not necessary to add P, and the lower limit value of P includes 0% by mass.

Sは、MnSの粗大な延伸介在物を形成して加工性を劣化させるため、従来はS濃度0.002質量%の極低硫化が加工性確保に必須であったが、本発明では微細で硬質なCe酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、Pr酸硫化物、或いはこれらの複合酸化物上にMnSを析出させ、圧延時にも変形が起こりにくく、介在物の延伸を防止しているため、S濃度の上限値は特に規定しない。しかしあまりS濃度が高過ぎると、MnSの変形を抑制するCe、La、Nd、或いはPrの酸化物・酸硫化物が多量に必要となり、それに伴いCe、La、NdもしくはPrの内、少なくとも1種以上の合計添加量が0.02質量%を超えるため、生成酸化物または酸硫化物が粗大化し易くなる不都合があり、0.02質量%以下が望ましい。また、S濃度は従来並の0.002質量%未満に低減するためには、二次精錬で脱硫処理を相当強化する必要があり、脱硫処理コストが高くなりすぎること、且つ本発明の副次的なMnSの形態制御の効果を享受しにくくなるためS濃度の下限値は0.002質量%とする。   Since S forms coarsely stretched inclusions of MnS and degrades workability, conventionally, ultra-low sulfidation with an S concentration of 0.002% by mass has been essential for securing workability. MnS is deposited on hard Ce oxide, La oxide, Nd oxide, Pr oxide, Ce oxysulfide, La oxysulfide, Nd oxysulfide, Pr oxysulfide, or a composite oxide thereof. The upper limit of the S concentration is not particularly specified because deformation hardly occurs during rolling and the inclusions are prevented from being stretched. However, if the S concentration is too high, a large amount of Ce, La, Nd, or Pr oxide / oxysulfide that suppresses deformation of MnS is required, and accordingly at least one of Ce, La, Nd, or Pr is required. Since the total addition amount of seeds or more exceeds 0.02% by mass, there is a disadvantage that the generated oxide or oxysulfide tends to be coarsened, and 0.02% by mass or less is desirable. In addition, in order to reduce the S concentration to less than 0.002% by mass, the desulfurization treatment needs to be considerably strengthened by secondary refining, the desulfurization treatment cost becomes excessively high, and the secondary of the present invention Therefore, the lower limit value of the S concentration is set to 0.002% by mass.

Nは添加し過ぎると、微量なAlであっても粗大な析出物を生成し、加工性を劣化させるので、0.01質量%を上限とする。一方、0.0005質量%未満とするにはコストがかかるので、0.0005質量%を下限とする。   If N is added too much, even if it is a trace amount of Al, coarse precipitates are generated and the workability is deteriorated, so 0.01 mass% is made the upper limit. On the other hand, since it costs to make it less than 0.0005 mass%, 0.0005 mass% is made the lower limit.

Nb、Vはより高い強度を得るために添加する元素であり、これら元素と結合して形成される炭窒化物による析出強化を利用するものである。析出強化は、これら元素の単独、或いは複合添加で得られるが、過度の添加は加工性を劣化させるため、これら元素の1種または2種でそれぞれ0.2質量%を上限とする。強度向上効果を得るためには、それぞれ0.005質量%以上添加することが好ましい。   Nb and V are elements added to obtain higher strength, and utilize precipitation strengthening by carbonitride formed by combining with these elements. Precipitation strengthening can be obtained by adding these elements alone or in combination. However, excessive addition deteriorates workability, so the upper limit is 0.2% by mass for one or two of these elements. In order to obtain the strength improvement effect, 0.005% by mass or more is preferably added.

Moも強度を向上させるために用いられる元素であるが、主に焼き入れ性を高めるために添加される。過度に添加すると、延性の劣化を招くことから0.5質量%を上限とする。焼き入れ性を確保する場合には、0.05質量%以上添加することが好ましい。Nb、V、Moは含有しなくても良い。   Mo is also an element used to improve the strength, but is added mainly to improve the hardenability. If added excessively, ductility is deteriorated, so the upper limit is made 0.5 mass%. When ensuring hardenability, it is preferable to add 0.05 mass% or more. Nb, V, and Mo may not be contained.

材質確保の観点から主要な添加元素は以上であるが、スクラップの利用による微量のCu、NiおよびCr等の不可避的不純物としての混入は、本発明を損なうものではない。   From the viewpoint of securing the material, the main additive elements are as described above. However, the incorporation of trace amounts of Cu, Ni, Cr, etc. as unavoidable impurities by using scrap does not impair the present invention.

以下に、実施例及び比較例を挙げて、図1に基づいて本発明について説明する。   Below, an Example and a comparative example are given and this invention is demonstrated based on FIG.

表1のCa、Bi、Snを除く化学成分を含有する溶鋼300tを溶製した。表1のCa、BiおよびSnの成分値に応じて、取鍋またはタンディッシュ3(容量50t)でCaを溶鋼中にワイヤー添加すると共に、鋳型4内では溶鋼中にBiとSnをワイヤー添加しながら鋳造した。なお、表1の試験番号11、13、15については、BiおよびSnの内から1種以上を含有するモールドフラックスを鋳型内溶鋼11の表面上に供給して連続鋳造した。鋳片サイズは厚み250mm×幅1500mmで、鋳造速度は1.3m/minである。   300t of molten steel containing chemical components excluding Ca, Bi and Sn in Table 1 was produced. According to the component values of Ca, Bi and Sn in Table 1, Ca is added to the molten steel with a ladle or tundish 3 (capacity 50 t), and Bi and Sn are added to the molten steel in the mold 4. While casting. For test numbers 11, 13, and 15 in Table 1, a mold flux containing at least one of Bi and Sn was supplied onto the surface of the molten steel 11 in the mold and continuously cast. The slab size is 250 mm thick × 1500 mm wide, and the casting speed is 1.3 m / min.

誘導電磁攪拌装置13は鋳型内メニスカス12に設置されており、鋳造中はこの誘導電磁攪拌装置13に500A、周波数2Hzの電流を流して溶鋼を40cm/sで攪拌した。一部の実験(試験番号16、17、18)では、誘導電磁攪拌装置13の電流を変化させ、溶鋼を90cm/s、25cm/sおよび105cm/sで攪拌した。電磁攪拌流速については、前述のように、鋳造した鋳片の幅方向中央部における柱状晶や分岐状柱状晶の傾きから流速を評価した。   The induction electromagnetic stirrer 13 was installed in the in-mold meniscus 12. During casting, the molten steel was stirred at 40 cm / s by passing a current of 500 A and a frequency of 2 Hz through the induction electromagnetic stirrer 13. In some experiments (test numbers 16, 17, and 18), the current of the induction electromagnetic stirring device 13 was changed, and the molten steel was stirred at 90 cm / s, 25 cm / s, and 105 cm / s. As for the electromagnetic stirring flow rate, as described above, the flow rate was evaluated from the inclination of the columnar crystals and the branched columnar crystals at the center in the width direction of the cast slab.

Ca濃度が0.001質量%未満の試験(試験番号11、12、13)ではCaワイヤーを取鍋内で添加、Ca濃度が0.001質量%以上0.002質量%以下の試験(試験番号1、2、3、16、17、18、19)ではCaワイヤーをタンディッシュ内で添加、さらにCa濃度が0.002質量%超の試験(試験番号6、7、8)では図1に示すようにタンディッシュ内溶鋼2の直上に設置した中空カーボン電極6の上部から金属Caワイヤー10を中空部に供給することにより、プラズマアークを発生させながらCaガスを溶鋼表面に吹き付けた。中空カーボン電極6の直径は120mm、中空部の内径は10mm、作動ガスとしてArガスを250Nl/分の流量で流した。中空カーボン電極側を陰極、溶鋼側を陽極として600KWの電力を印加した。   In the test (test numbers 11, 12, and 13) with a Ca concentration of less than 0.001% by mass, a Ca wire was added in the ladle, and the test with a Ca concentration of 0.001 to 0.002% by mass (test number) 1, 2, 3, 16, 17, 18, 19), the Ca wire is added in the tundish, and the test in which the Ca concentration exceeds 0.002 mass% (test numbers 6, 7, 8) is shown in FIG. Thus, by supplying the metal Ca wire 10 to the hollow part from the upper part of the hollow carbon electrode 6 installed immediately above the molten steel 2 in the tundish, Ca gas was sprayed on the molten steel surface while generating a plasma arc. The hollow carbon electrode 6 had a diameter of 120 mm, the hollow portion had an inner diameter of 10 mm, and Ar gas was flowed as a working gas at a flow rate of 250 Nl / min. A power of 600 KW was applied using the hollow carbon electrode side as a cathode and the molten steel side as an anode.

凝固組織の観察は、空気による再酸化の激しい鋳造初期(空のタンディッシュを溶鋼で充満させるまでの部位:0〜50t程度鋳造)、再酸化の少ない鋳造中期(タンディッシュ内の溶鋼が充満した以降の定常部位:50〜250t程度鋳造)、鍋スラグの巻き込みによる再酸化の激しい鋳造末期(タンディッシュ内溶鋼が減少し始める部位:250〜300t程度鋳造)で実施した。   The solidification structure was observed in the early casting stage where reoxidation by air was intense (site until the empty tundish was filled with molten steel: about 0 to 50 tons), in the middle casting period where the reoxidation was low (the molten steel in the tundish was filled). The subsequent steady part: casting about 50 to 250 t), and at the end of casting where the reoxidation was intense due to the entrainment of pan slag (site where the molten steel in the tundish starts to decrease: casting about 250 to 300 t).

前述のとおり、鋳片内部の平均等軸晶粒径は、鋳片1/4厚から内部における横断面の等軸晶粒径の平均値とした。また、鋳片表層部の平均等軸晶粒径は、表層から鋳片1/4厚における横断面の等軸晶粒径の平均値とした。なお、分岐状柱状晶(分断されていない)、分断された分岐状柱状晶についても、その粒径を同時に評価できるように、等軸晶粒径は2(a・b)0.5と定義した(aは結晶粒の長径、bは結晶粒の短径である。分断されていない分岐状柱状晶についてはひとつの枝をひとつの結晶粒とした。)。 As described above, the average equiaxed grain size inside the slab was defined as the average value of the equiaxed grain size of the cross section inside from the thickness of the slab ¼. Further, the average equiaxed grain size of the slab surface layer portion was the average value of the equiaxed grain size of the transverse section from the surface layer to the slab thickness ¼. In addition, the equiaxed crystal grain size was defined as 2 (a · b) 0.5 so that the grain size of the branched columnar crystals (not divided) and the divided branched columnar crystals can be evaluated simultaneously ( a is the major axis of the crystal grains, and b is the minor axis of the crystal grains.For the branched columnar crystals that are not divided, one branch is taken as one crystal grain.)

本実験で得られた鋳片の凝固組織を調査した結果を表2に示す。表1、表2において、本発明範囲を外れる数値にアンダーラインを付している。   Table 2 shows the results of investigating the solidification structure of the slab obtained in this experiment. In Tables 1 and 2, numerical values outside the scope of the present invention are underlined.

本発明の実施例である試験番号1、6、11、16、17、18では、等軸晶の核生成サイトとして有効なCe酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、Pr酸硫化物、或いはこれらの複合酸化物を溶鋼中に微細分散させ、これに電磁攪拌を加え溶鋼の過熱度を奪うこと、さらに溶鋼の再酸化が激しく、Ce、La、Nd、或いはPrの酸化物・酸硫化物の等軸晶核生成能が低下する鋳造初期と末期において、Ca添加の効果で等軸晶核の生成能の低下を補うことにより、鋳造全期にわたって鋳片内部を粒径3mm以下に微細等軸晶化した。合わせて、鋳型内で固液界面エネルギーを低下させるBiおよびSnを添加して、鋳型側から鋳片内部に向かって成長する柱状晶の微細・脆弱化を図り、その上で電磁攪拌の旋回流でこの微細・脆弱な柱状晶を分断することにより、鋳造全域で鋳片表層部にも粒径3mm以下の微細等軸晶を生成させることに成功した。   In test numbers 1, 6, 11, 16, 17, and 18, which are examples of the present invention, Ce oxide, La oxide, Nd oxide, Pr oxide, and Ce acid effective as nucleation sites for equiaxed crystals. Sulfide, La oxysulfide, Nd oxysulfide, Pr oxysulfide, or complex oxides of these are finely dispersed in molten steel, and electromagnetic stirring is added to this to take away the superheat of the molten steel. Oxidation is severe, and the ability to produce equiaxed nuclei is reduced by the effect of Ca addition at the beginning and end of casting, when the ability to produce equiaxed nuclei of Ce, La, Nd, or Pr oxides and oxysulfides decreases. By making up, the inside of the slab was finely equiaxed with a grain size of 3 mm or less over the entire casting period. At the same time, Bi and Sn, which lower the solid-liquid interface energy in the mold, are added to make the columnar crystals that grow from the mold side toward the inside of the slab, and then the vortex flow of electromagnetic stirring Thus, by dividing the fine and brittle columnar crystals, it was possible to produce fine equiaxed crystals with a particle size of 3 mm or less in the slab surface layer throughout the entire casting area.

一方、比較例である試験番号2、7、12では鋳型内でのBiおよびSn添加を実施しなかったため鋳片表層部の分岐状柱状晶が粗大化し、比較例である試験番号3、8、13では等軸晶の核生成サイトとして有効なCe、La、Nd、或いはPrを溶鋼中に含有させなかったため鋳片内部の等軸晶が粗大化し、さらに比較例である試験番号4、9、14ではCe、La、Nd、或いはPrの含有もなく、鋳型内でのBiおよびSn添加もなく、さらにCa添加もなかったため、鋳片内部と表層部の何れにおいても等軸晶は粗大化した。   On the other hand, in the test numbers 2, 7, and 12 which are comparative examples, Bi and Sn addition in the mold was not performed, so that the branched columnar crystals in the slab surface layer portion were coarsened, and test numbers 3 and 8 which were comparative examples. In No. 13, Ce, La, Nd, or Pr effective as an equiaxed crystal nucleation site was not contained in the molten steel, so that the equiaxed crystal inside the slab was coarsened, and test numbers 4, 9, which were comparative examples, In No. 14, Ce, La, Nd, or Pr was not contained, Bi and Sn were not added in the mold, and Ca was not added. Therefore, the equiaxed crystal was coarsened both in the slab and in the surface layer portion. .

さらに、Ca添加しなかった比較例の試験番号5、10、15では、鋳造中期では凝固組織は微細化したものの、溶鋼再酸化の激しい鋳造初期と鋳造末期では、Ce、La、Nd、或いはPrを添加したにも関わらず、鋳片内部の等軸晶は粗大化した。これは、溶鋼再酸化で生じた多量のアルミナ系介在物やチタニア系介在物が、等軸晶核生成サイトのCe酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、Pr酸硫化物、或いはこれらの複合酸化物の表面に付着したことにより、等軸晶微細化能を消失したためである。   Furthermore, in the test numbers 5, 10, and 15 of the comparative examples in which Ca was not added, the solidification structure was refined in the middle of the casting, but Ce, La, Nd, or Pr in the early casting stage and the late casting stage where the molten steel was reoxidized severely. However, the equiaxed crystal inside the slab was coarsened. This is because a large amount of alumina inclusions and titania inclusions generated by reoxidation of molten steel are Ce oxides, La oxides, Nd oxides, Pr oxides, Ce oxysulfides at equiaxed nucleation sites, This is because the ability to refine equiaxed crystals has disappeared due to adhesion to the surface of La oxysulfide, Nd oxysulfide, Pr oxysulfide, or a composite oxide thereof.

また、Ceを過剰添加した比較例の試験番号19では、生成した等軸晶核生成サイトのCe酸化物、Ce酸硫化物、或いはこれらの複合酸化物が粗大化したため、鋳片内部の等軸晶は粗大化した。   In addition, in the test number 19 of the comparative example in which Ce was excessively added, since the Ce oxide, Ce oxysulfide, or complex oxide of these formed equiaxed nucleation sites was coarsened, the equiaxed inside of the slab Crystals became coarse.

Figure 2017196626
Figure 2017196626

Figure 2017196626
Figure 2017196626

1 取鍋
2 溶鋼
3 タンディッシュ
4 鋳型
5 連続鋳造設備
6 中空カーボン電極
7 固定電極
8 直流電源装置
9 プラズマアーク
10 Caワイヤー
11 溶鋼
12 メニスカス
13 誘導電磁攪拌装置
DESCRIPTION OF SYMBOLS 1 Ladle 2 Molten steel 3 Tundish 4 Mold 5 Continuous casting equipment 6 Hollow carbon electrode 7 Fixed electrode 8 DC power supply device 9 Plasma arc 10 Ca wire 11 Molten steel 12 Meniscus 13 Induction electromagnetic stirring device

Claims (6)

鋳型内メニスカス〜鋳型下10mの間に誘導電磁攪拌装置を有する連続鋳造装置を用いて、C:0.03〜0.20質量%、Si:0.08〜1.5質量%、Mn:0.5〜3.0質量%、P:0.05質量%以下、S:0.002質量%以上、N:0.0005〜0.01質量%、Nb:0.2質量%以下、V:0.2質量%以下、Mo:0.5質量%以下、酸可溶Al:0.03質量%以下、酸可溶Ti:0.1質量%以下、Ce、La、NdもしくはPrの内、少なくとも1種以上の合計:0.0003〜0.02質量%、Ca:0.0001〜0.004質量%を含有し、残部がFeおよび不可避的不純物からなる溶鋼を鋳型内に注入し、該鋳型内溶鋼にBiおよびSnの内から1種以上を合計で0.0005〜0.01質量%になるように添加せしめ、前記誘導電磁攪拌装置により水平面内で溶鋼を旋回させながら鋳造することを特徴とする溶鋼の連続鋳造方法。   Using a continuous casting apparatus having an induction electromagnetic stirring device between the meniscus in the mold and 10 m below the mold, C: 0.03 to 0.20 mass%, Si: 0.08 to 1.5 mass%, Mn: 0 0.5 to 3.0 mass%, P: 0.05 mass% or less, S: 0.002 mass% or more, N: 0.0005 to 0.01 mass%, Nb: 0.2 mass% or less, V: 0.2% by mass or less, Mo: 0.5% by mass or less, acid-soluble Al: 0.03% by mass or less, acid-soluble Ti: 0.1% by mass or less, Ce, La, Nd or Pr, At least one or more total: 0.0003 to 0.02% by mass, Ca: 0.0001 to 0.004% by mass, with the balance being Fe and unavoidable impurities injected into the mold, One or more of Bi and Sn are added to the molten steel in the mold in a total amount of 0.0005 to 0.01% by mass. Addition allowed the continuous casting method of molten steel, which comprises casting while swirling the molten steel in a horizontal plane by the induction stirrer as. タンディッシュ内でCaを0.0001〜0.004質量%含有させた後に鋳型内に注入することを特徴とする請求項1に記載の溶鋼の連続鋳造方法。   The molten steel continuous casting method according to claim 1, wherein 0.0001 to 0.004 mass% of Ca is contained in the tundish and then poured into the mold. タンディッシュ内溶鋼の直上に設置した中空カーボン電極から溶鋼側に向けてプラズマアークを発生させ、該中空カーボン電極の中空部からCaを含有する金属ワイヤー、または金属粒を該プラズマアーク中に供給することによりCaガスを溶鋼表面上に連続的に吹き付けることを特徴とする請求項2に記載の溶鋼の連続鋳造方法。   A plasma arc is generated from the hollow carbon electrode placed directly above the molten steel in the tundish toward the molten steel, and a metal wire or metal particles containing Ca is supplied into the plasma arc from the hollow portion of the hollow carbon electrode. The continuous casting method of molten steel according to claim 2, wherein Ca gas is continuously sprayed onto the surface of the molten steel. BiおよびSnの内から1種以上を含有する金属ワイヤーを鋳型内溶鋼中に連続的に供給することを特徴とする請求項1〜請求項3のいずれか1項に記載の溶鋼の連続鋳造方法。   4. The molten steel continuous casting method according to claim 1, wherein a metal wire containing at least one of Bi and Sn is continuously fed into the molten steel in the mold. 5. . 請求項BiおよびSnの内から1種以上を含有するモールドフラックスを鋳型内溶鋼表面上に供給することを特徴とする請求項1〜請求項3のいずれか1項に記載の溶鋼の連続鋳造方法。   The molten steel continuous casting method according to any one of claims 1 to 3, wherein a mold flux containing at least one of Bi and Sn is supplied onto the molten steel surface in the mold. . 誘導電磁攪拌による溶鋼の旋回流速を25〜105cm/sとすることを特徴とする請求項1〜請求項5のいずれか1項に記載の溶鋼の連続鋳造方法。   The continuous casting method of molten steel according to any one of claims 1 to 5, wherein a swirling flow velocity of the molten steel by induction electromagnetic stirring is set to 25 to 105 cm / s.
JP2016086992A 2016-04-25 2016-04-25 Continuous casting method for molten steel Active JP6728934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016086992A JP6728934B2 (en) 2016-04-25 2016-04-25 Continuous casting method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016086992A JP6728934B2 (en) 2016-04-25 2016-04-25 Continuous casting method for molten steel

Publications (2)

Publication Number Publication Date
JP2017196626A true JP2017196626A (en) 2017-11-02
JP6728934B2 JP6728934B2 (en) 2020-07-22

Family

ID=60236985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016086992A Active JP6728934B2 (en) 2016-04-25 2016-04-25 Continuous casting method for molten steel

Country Status (1)

Country Link
JP (1) JP6728934B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110157855A (en) * 2019-06-20 2019-08-23 东北大学 Carbon steel grain refiner, grain refiner core-spun yarn, preparation method and carbon steel continuous casting crystal fining method
CN110724841A (en) * 2019-11-07 2020-01-24 中南大学 Preparation method of immiscible alloy and continuous casting equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061598A (en) * 1998-08-21 2000-02-29 Nippon Steel Corp Method for continuously casting molten steel
JP2000312953A (en) * 1999-03-03 2000-11-14 Nippon Steel Corp Continuous casting method of steel and continuous casting cast metal
JP2001105104A (en) * 1999-10-12 2001-04-17 Nippon Steel Corp Method for continuously casting steel and continuously cast slab
JP2003129183A (en) * 2001-10-18 2003-05-08 Nippon Steel Corp High-strength steel slab and casting method therefor
JP2005177848A (en) * 2003-12-22 2005-07-07 Nippon Steel Corp Center defect reducing method of continuously cast steel slab
JP2008290103A (en) * 2007-05-24 2008-12-04 Sumitomo Metal Ind Ltd Continuously cast slab of steel with equiaxed dendrite in surface layer part, and continuous casting method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061598A (en) * 1998-08-21 2000-02-29 Nippon Steel Corp Method for continuously casting molten steel
JP2000312953A (en) * 1999-03-03 2000-11-14 Nippon Steel Corp Continuous casting method of steel and continuous casting cast metal
JP2001105104A (en) * 1999-10-12 2001-04-17 Nippon Steel Corp Method for continuously casting steel and continuously cast slab
JP2003129183A (en) * 2001-10-18 2003-05-08 Nippon Steel Corp High-strength steel slab and casting method therefor
JP2005177848A (en) * 2003-12-22 2005-07-07 Nippon Steel Corp Center defect reducing method of continuously cast steel slab
JP2008290103A (en) * 2007-05-24 2008-12-04 Sumitomo Metal Ind Ltd Continuously cast slab of steel with equiaxed dendrite in surface layer part, and continuous casting method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110157855A (en) * 2019-06-20 2019-08-23 东北大学 Carbon steel grain refiner, grain refiner core-spun yarn, preparation method and carbon steel continuous casting crystal fining method
CN110724841A (en) * 2019-11-07 2020-01-24 中南大学 Preparation method of immiscible alloy and continuous casting equipment
CN110724841B (en) * 2019-11-07 2021-09-07 中南大学 Preparation method of immiscible alloy and continuous casting equipment

Also Published As

Publication number Publication date
JP6728934B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
RU2230797C2 (en) Method for steel graininess reduction, an alloy for steel graininess reduction and a method to produce the alloy for steel graininess reduction
CN110184548B (en) Method for refining solidification structure of high manganese steel continuous casting billet
JP6455289B2 (en) Continuous casting method for molten steel
JP4561575B2 (en) Continuous casting method of low alloy steel and steel slab with suppressed austenite grain growth during reheating
TWI394843B (en) Melt Method of Ti - containing Very Low Carbon Steel and Manufacturing Method of Ti - containing Very Low Carbon Steel Casting
JP4858295B2 (en) Continuous casting method of high strength steel with finely dispersed precipitates and slab for high strength steel
JP6728934B2 (en) Continuous casting method for molten steel
JP7260731B2 (en) High purity steel and its refining method
JP4569458B2 (en) Continuous casting method of steel material with finely dispersed precipitates and slab for steel material
JP2009113086A (en) Method for continuously casting of extra-low carbon steel
CN109694936B (en) Deoxidizing alloying agent capable of purifying molten steel and preparation method thereof
JP6500630B2 (en) Continuous casting method for molten steel and continuous cast slab
JP6809243B2 (en) Continuously cast steel slabs and their manufacturing methods
JP6728933B2 (en) Continuous casting method for molten steel
JP6488931B2 (en) Continuous casting method for molten steel
JP6347405B2 (en) Method for producing maraging steel
JP5056826B2 (en) Steel for continuous casting and method for producing the same
JP2017106105A (en) Method for producing sulfur-added steel
JP4418119B2 (en) Method for dispersing fine oxides in molten steel
US20180243823A1 (en) Method of manufacturing of a casted part or ingot of a metallic alloy attaining a minimal segragation in the casting process
CN104745960A (en) 21-10Mn7Mo steel ingot and smelting process thereof
RU2407606C1 (en) Procedure for production of continuous cast work piece of upgraded quality
CN104745962A (en) Smelting method of 21-10Mn7Mo steel ingot
RU2535428C1 (en) Out-of-furnace steel treatment with calcium method
JP2001252747A (en) Method for treating molten steel excellent in quality characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R151 Written notification of patent or utility model registration

Ref document number: 6728934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151