JP4418119B2 - Method for dispersing fine oxides in molten steel - Google Patents

Method for dispersing fine oxides in molten steel Download PDF

Info

Publication number
JP4418119B2
JP4418119B2 JP2001060535A JP2001060535A JP4418119B2 JP 4418119 B2 JP4418119 B2 JP 4418119B2 JP 2001060535 A JP2001060535 A JP 2001060535A JP 2001060535 A JP2001060535 A JP 2001060535A JP 4418119 B2 JP4418119 B2 JP 4418119B2
Authority
JP
Japan
Prior art keywords
molten steel
gas
less
steel
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001060535A
Other languages
Japanese (ja)
Other versions
JP2002256333A (en
Inventor
太朗 廣角
明人 清瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001060535A priority Critical patent/JP4418119B2/en
Publication of JP2002256333A publication Critical patent/JP2002256333A/en
Application granted granted Critical
Publication of JP4418119B2 publication Critical patent/JP4418119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、Mgを含有する鋼材の製造に際し、鋼の性質を向上させるために微細な酸化物を鋼中に分散させる方法に関する。
【0002】
【従来の技術】
近年、溶接における熱影響部(以後、HAZ 部と呼ぶ)の靭性のさらなる向上を目的として、溶鋼中で生成する酸化物を用いる技術が望まれている。酸化物の導入方法として、多くの場合、鋼の溶製工程において、Tiなどの脱酸元素を単独に添加する方法などがあるが、多くの場合、溶鋼保持中に酸化物の凝集合体が起こり粗大な酸化物の生成をもたらし、かえって鋼の清浄度を損ない靭性を低下させることとなる。そこで、これらの酸化物の微細化を図るために複合脱酸法などの様々な工夫がなされている。
【0003】
例えば、特開昭62-170459号公報に開示される溶接用高張力鋼板では、低Al化によるフェライト析出の促進効果と、Ti、Bの複合添加、N量の制御とを組み合わせてHAZ靭性の改善を行うことが提案されている。
しかしながら、従来知られている方法では、エレクトロスラグ溶接に代表されるような超大入熱溶接時の結晶粒の粗大化を阻止しうるほどの、微細な介在物を分散させることはできない。抜本的なHAZ靭性の向上を図るためには、超大入熱溶接時でも旧γ粒のピニング効果が期待できるような、高温でも溶解しにくい、高融点の酸化物粒子などを鋼中に生成し、かつ微細に分散できるような技術の開発が望まれている。
【0004】
このような微細な粒子を鋼中に分散させる方法の一つとして、金属MgやMg合金を溶鋼中に添加し、鋼中溶存酸素により微細なMgOあるいはMgOを含む酸化物にして溶鋼中に分散させる方法がある。例えば、Mgを主とした脱酸を行う薄鋼板材用溶鋼の溶製方法が特開平5-302112号公報に開示されている。また、製鋼温度(1500〜1750℃程度)においてMgは蒸発しやすく、添加の歩留まりが悪いとされている問題を解決する手段として、添加剤としてMg合金を使う方法が、例えば、特開平7-48616号公報に開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、溶鋼中の酸素濃度が低い場合、添加されたMgは反応する酸素が不足しているためMgOを十分に生成できず、そのまま揮発してしまい、Mg歩留まりが低下する。Mg歩留まりの低下は、溶鋼中のAl2O3等をMgOを含む酸化物に改質することができず、Al2O3系の粗大な酸化物を形成し、鋼材の品質欠陥に至る可能性がある。
【0006】
このように、溶鋼に金属MgやMg合金を添加した際に、操業に支障を生じることなく、Mgが酸化してMgOになる歩留まりを高め、鋼材の組織を微細にして、鋳片及び鋼材の表面や内部の欠陥を抑制し、鋳片及び鋼材の手入れや屑化等を防止して品質の向上を図る方法について具体的に示されていないなどの問題がある。
本発明は、操業に支障を生じることなく、溶鋼中におけるMgOあるいはMgOを含有する酸化物の生成を増して、HAZ靭性及び母材の強度に優れた微細な酸化物が分散した鋼の製造方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために種々の検討を行った結果、酸化性ガスの溶鋼中への吹き込み、その中でもCO2ガス、あるいは不活性ガスとCO2の混合ガスの溶鋼中への吹き込みにより、MgOあるいはその他の酸化物より構成される微細介在物が従来以上に高密度に鋼材中に分散することを見出した。
【0008】
本発明は、前記知見に基づいてなされたものであり、その要旨は以下のとおりである。
(1) 0.001〜0.01質量%のMgを溶質として含有する溶鋼中にCOガス、または不活性ガスとCOの混合ガスを供給し、MgOあるいはMgOを含む酸化物を生成することを特徴とする溶鋼中の微細酸化物分散方法。
(2) 溶鋼に供給するガス流量が溶鋼1tあたり5000Nl/min以下であり、さらに、COガスの混合比に応じて、供給するガスの総量が下記式のLminで表される値以上とすることを特徴とする上記(1)に記載の溶鋼中の微細酸化物分散方法。
Lmin[Nl]=12500×(%CO)−0.7
(3) 溶鋼組成が、質量%で、C : 0.03〜0.2%、Si : 0.4%以下、Mn : 0.5〜2.0%、P : 0.015%%以下、S : 0.006%以下、Ti : 0.007〜0.02%、Al: 0.001%〜0.03%、O : 0.005%以下、N : 0.0025〜0.006%、を含有し、残部がFe及び不可避的な不純物からなることを特徴とする上記(1)または(2)に記載の溶鋼中の微細酸化物分散方法。
(4) 質量%で、さらに、Cu : 1.5%以下、Ni : 1.5%以下、Mo : 1%以下、Cr : 1%以下、Nb : 0.05%以下、V : 0.05%以下、B : 0.002%以下、Ca : 0.004%以下、REM : 0.003%以下、の1種または2種以上を含有することを特徴とする上記(3)に記載の溶鋼中の微細酸化物分散方法。
【0009】
【発明の実施の形態】
上記に示した方法を用いて酸化性ガスであるCO2ガスを溶鋼中へ吹き込むことにより、溶鋼中のMgを酸化して一次の微細な酸化物とすることができる。ここで一次の酸化物とは溶鋼中の成分とガス中の酸素分との反応によって生成する酸化物を示す。
【0010】
しかし、このガスが酸化性の高いO2ガスであると、本発明における酸化性の低いCO2ガスに比して生成するMgOは粗大なものとなるため、溶鋼中より浮上分離しスラグ相へ混入しやすくなることや、この粗大な介在物が鋼中に残留した場合、製品の欠陥の原因となりやすいなどの難点がある。さらに、吹き込む酸素ガスの濃度次第では、溶鋼中のSi、Mn、Tiといった成分までをも酸化し、狙いとする鋼材の特性に悪影響を及ぼす恐れがある。
【0011】
一方、CO2ガスは製鋼温度である1500〜1750℃程度においてCO2=CO+1/2O2の反応によって分解し、酸素を生成する。一般的に、CO2ガス、不活性ガスとCO2の混合ガスから生成するO2ガスの分圧PO2は、CO2ガスの混合比に応じて概ね以下の(1)式のように表される。
PO2[Pa]=10×(%CO2)0.7 ・・・・・・(1)
ここで、(%CO2)は混合ガス中のCO2の体積%であり、CO2ガスを単独で使用する場合、(%CO2)=100である。また、不活性ガスとはHe、Ne、Ar、Krなど元素周期律表上で0族に分類されるガスを指す。本発明においては上記のいずれのガスも用いることが可能であるが、コストの観点からArを使用することが望ましい。例えば、1600℃の雰囲気中に105PaのCO2ガスを導入した場合、一部のCO2ガスが分解し、約2.5×102PaのO2ガスが生成する。また、105PaのAr+10%CO2ガスでは、約50PaのO2ガスが生成する。
【0012】
このように、CO2ガスを用いることにより、O2ガスを使用する場合と比較して非常に低いポテンシャルで酸素を供給することが可能となる。また、CO2ガスを不活性ガスで希釈することにより、さらに酸素分圧を低減することが可能である。従って、粗大な介在物は生成しにくく、概ね2μm以下の微細な酸化物が生成し、微細であることから溶鋼中で浮上分離しにくく、容易に鋼中に分散することができる。なお、O2ガスを大量の不活性ガスで希釈して本発明と同等の低酸素ポテンシャルを実現することも可能であるが、体積比が大きく異なるため混合が困難であるなどの操業上の難点がある。
【0013】
Mgは本発明において最も重要な役割を有する元素である。Mgが0.001%未満の場合、TiNの析出核となるMg系の酸化物を十分に析出させることができない。そのため、下限を0.001%とする。一方、酸化物として消費されるMgは0.01%あれば十分であり、これを超えるMgの効果は期待できない。Mgは蒸気圧が高く、酸化力が強い非常に活性な元素であることから、必要以上に鋼中に含有させることは製造コストの上昇を招き好ましくない。そのため、上限を0.01%とする。
【0014】
ここで、生成する酸化物はMgOだけとは限らず、例えば溶鋼中不可避成分であるAlとMgOが反応するとMgO・Al2O3などの微細酸化物が生成する。
一方、本発明方法の範囲においてCO2ガス、あるいは不活性ガスとCO2の混合ガスを溶鋼に供給する際、その総量が少なすぎると溶鋼に十分な酸素分が供給できず、酸化物を多量分散させることができない。従って、供給するガスの総量は以下の(2)式で与えられるLminで表される値以上とする。
Lmin[Nl]=12500×(%CO2)-0.7 ・・・・・・(2)
例えば、CO2ガス単独により溶鋼に酸素を供給する場合、供給するガスの総量は(2)式より溶鋼1tあたり約500Nl以上とすることにより溶鋼に十分な酸素を供給し、酸化物を多量分散させることができる。反対に、供給するガスの流量が大きすぎると溶鋼の飛散の原因となり、歩留まりの低下、コストの増大を招いて好ましくない。従って、供給するガスの流量の上限を溶鋼1tあたり5000Nl/minとする。
【0015】
このCO2ガスの供給方法としては、溶鋼上からガスを吹き付ける方法、溶鋼中にガスを吹き込む方法が考えられる。例えば溶鋼中へ多孔体耐火物ランスを浸漬する方法がある。または、溶鋼容器の一部分にポーラスプラグを埋め込み、これを介して溶鋼中にガスを供給してもよい。
なお、当該ガス吹き込み多孔体の形状と位置は、溶鋼保持容器に応じて適宜決定すればよい。例えば、溶鋼保持容器の壁面や底部に板状の形状で複数個配置してもよい。
【0016】
この多孔体よりCO2ガスあるいは不活性ガスと CO2の混合ガスを供給し、多孔から溶鋼中へ供給添加することにより、溶鋼中で酸素分を供給することができる。このように酸化性ガスを溶鋼中に供給して、上記の如く微細酸化物を生成する態様としては、溶鋼の鋳造過程に近い箇所が望ましく、例えば取鍋、タンディッシュ、モールドにおけるガス供給が最適である。また、製鋼温度(1500〜1750℃程度)においてMgは蒸発しやすく、添加の歩留まりが悪いため、酸化性ガスの供給は溶鋼中へのMg投入からの時間経過が短いほど望ましい。
【0017】
次に、各々の化学成分の限定理由について説明する。
Cの下限である0.03%は、母材及び溶接部の強度、靭性を確保するための最小値である。しかし、Cが多すぎると母材及びHAZ靭性を低下させるとともに溶接性を劣化させるため、その上限を0.2%とする。
Siは、脱酸のために鋼に含有されるが、多すぎると溶接性及びHAZ靭性が劣化するため、上限を0.4%とする。本発明の脱酸はTiだけでも十分可能であり、良好なHAZ靭性を得るためにはSiを0.3%以下にするのが望ましい。また下限は0%である。
【0018】
Mnは、母材及び溶接部の強度、靭性の確保に不可欠であり、下限を0.5%とする。しかし、Mnが多すぎるとHAZ靭性を劣化させたり、スラブの中心偏析を助長し、溶接性を劣化させるため上限を2%とする。
Pは、本発明方法においては不純物元素であり、0.015%以下とする。Pの低減はスラブ中心偏析の軽減を通じて母材及びHAZ靭性の機械的性質を改善し、さらにはHAZの粒界破壊を抑制する。従って、下限は0%である。
【0019】
Sは、多すぎると中心偏析を助長したり、延伸したMnSが多量に生成したりするため、母材及びHAZ靭性の機械的性質が劣化する。従って、上限を0.006%とする。また下限は0%である。
Tiは、ピニング粒子としての複合析出TiNの分散状態を制御する上で重要である。TiNは厚板圧延でのスラブ加熱時のγ粒成長抑制を通じて母材組織を微細化し、鋼材の強度と靭性を向上させることにも貢献する。しかし、Tiが多すぎるとTiCの過剰生成が原因となりHAZ靭性が低下するため、上限を0.02%とする。一方、Tiが0.007%未満の場合、MgOあるいはMgO・Al2O3酸化物上に複合析出するTiNの個数が過小となり、HAZ靭性向上に必要なγ粒成長抑制効果が得られないため、下限を0.007%とする。
【0020】
Alは、多すぎると脱酸生成物がクラスター化し、粗大な介在物を作る原因になるため、上限を0.03%とする。しかし、本発明条件においてはMgO・Al2O3等の微細酸化物生成が期待でき、Mg添加前に若干のAlが溶存していることは好ましいと考えられるため、下限を0.001%とする。
Oは、多すぎると脱酸生成物の粗大化を引き起こすため、上限を0.005%とする。また下限は0%である。
【0021】
Nは、ピンニング粒子であるTiNの個数を確保する上で重要である。Nが0.0025%未満の場合、TiNの個数が確保できない。また、Nが0.006%を超える場合固溶Nが過剰となり、HAZ靭性の低下を引き起こす。よって上限を0.006%、下限を0.0025%とする。
製品に求める特性を発現させるため、さらに以下の元素を1種または2種以上を溶鋼に添加しても良い。
【0022】
Cu、Niは、溶接性及びHAZ靭性に悪影響を及ぼすことなく母材の強度、靭性を向上させる。しかし、1.5%を超えると溶接性及びHAZ靭性が劣化する。
Mo、Crは、母材の強度、靭性を向上させる。しかし、1%を超えると母材の靭性、溶接性およびHAZ靭性が劣化する。
Nbは、母材組織の微細化に有効な元素であり、母材の機械的性質を向上させる。しかし、0.05%を超えるとHAZ靭性が劣化する。
【0023】
Vは、母材の靭性を向上させる。しかし0.05%を超えると溶接性及びHAZ靭性が劣化する。
Bは、焼き入れ性を高めて母材やHAZの機械的性質を向上させる。しかし、0.002%を超えて添加するとHAZ靭性や溶接性が劣化する。
CaとREMは、酸化物や硫化物を形成して材質を改善する。ここで、REMとはLa、Ceなどの希土類金属元素を示す。Caを0.004%を超えて添加しても材質改善効果が飽和する。REMを0.003%を超えて添加しても同様に材質改善効果が飽和する。必要以上に添加することは製造コストの増加を招き好ましくない。CaとREMの両方を添加しても効果は同等である。
【0024】
すべての元素について下限値は0%を超える値とする。
【0025】
【実施例】
以下、表1、表2および図1を参照しながら本発明の実施例について説明する。
(実施例1)
高周波誘導加熱により1tの電解鉄を真空溶解し、1600℃で成分調整後、Mn、Siにより脱酸した。その後Mgを添加し、溶鋼のサンプリングを行った。溶鋼の組成は質量%で、Mg: 0.0011〜0.0058%、C: 0.10〜0.15%、Si: 0.1〜0.3%、Mn: 1.0〜1.5%、P: 0.01%以下、S: 0.005%以下、Ti: 0.01%、Al: 0.01%、O: 0.005%以下、N: 0.0040〜0.0055%、B: 0.001〜0.002%である。
【0026】
次に、多孔体耐火物からCO2ガスもしくはAr+CO2混合ガスを合計1000Nl/minで5分間吹き込み、その後金型内に鋳造し、凝固させた。なお本実施例におけるLminは500〜4010Nlの範囲であり、供給したガスの総量5000 Nlは本発明の範囲に属する。この試料の上部、中央部の2箇所についてそれぞれ2個以上のサンプルを切り出し、切断面を研磨、光学顕微鏡により介在物の粒径及び母相1mm2当たりの介在物密度を測定した。
【0027】
表1にガス吹き込み前の溶鋼組成と冷却後の介在物の分散状態を示す。また、比較のため純Arガスを吹き込む試験(比較例11)及びAr-1%、10%O2ガスを同様の条件で溶鋼中へ吹き込む試験(比較例12〜15)を行い、同様の分析を行った結果を示す。さらに、比較のためMgを添加しない実験(比較例16、17)もあわせて行い、本発明方法におけるMgの役割を明らかにした。
【0028】
図1は、各実験のガス中酸素ポテンシャルと測定された介在物密度の関係を表すグラフである。ここで、酸素ポテンシャルとは計算により求めた1600℃のCO2ガス、Ar+CO2ガスから生成するO2ガスの分圧である。
表1および図1から明らかなように、本発明の条件で製造した試料中において、径が0.2〜3μmの微細な酸化物が酸化性ガスを供給しなかった比較材11中およびAr+O2混合ガスを用いた比較材12〜15中に比べて多く生成した。また、比較材16、17より、本発明方法がMg含有鋼に特に有効な微細酸化物分散方法であることを示す結果が得られた。
【0029】
【表1】

Figure 0004418119
【0030】
(実施例2)
CO2ガス及びAr+CO2ガスを溶鋼中へ吹き込むに際して、供給ガスの総量を少なくした試験(比較例21、22)及びガスの流量を大きくした試験(比較例23)を行った。
表2より、供給するガスの総量が(2)式で与えられるLmin.より少ない場合、溶鋼に十分な酸素分が供給できず、酸化物を多量分散させることができなかった。また、溶鋼中へ供給するガスの流量が非常に大きい場合、溶鋼の飛散が激しく、操業が困難であった。
【0031】
【表2】
Figure 0004418119
【0032】
【発明の効果】
本発明によれば、Mg含有溶鋼中へCO2ガスあるいはAr+CO2混合ガスを吹き込む手段を講じることにより、溶鋼中のMgを選択酸化微細化するとともに、分散させて鋼材の材質を向上することができる。また、粗大な酸化物の生成を防止することができ、鋼材の欠陥を防止して製品の品質を高めることができるなどの優れた効果が得られる。
【図面の簡単な説明】
【図1】供給ガスの酸素ポテンシャルと試料1mm2中に観察された0.2〜3μmの微細酸化物数との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for dispersing fine oxides in steel in order to improve the properties of steel in the production of steel containing Mg.
[0002]
[Prior art]
In recent years, for the purpose of further improving the toughness of a heat-affected zone (hereinafter referred to as HAZ zone) in welding, a technique using an oxide generated in molten steel is desired. As a method for introducing oxides, in many cases, there is a method of adding a deoxidizing element such as Ti alone in the steel melting process, but in many cases, aggregation and coalescence of oxides occur while holding molten steel. This results in the formation of coarse oxides, which in turn reduces the cleanliness of the steel and reduces the toughness. Therefore, various devices such as a composite deoxidation method have been made in order to refine these oxides.
[0003]
For example, in the high-tensile steel sheet for welding disclosed in Japanese Patent Application Laid-Open No. 62-170459, the HAZ toughness is combined by combining the effect of promoting ferrite precipitation by reducing Al, combined addition of Ti and B, and control of the N content. Improvements have been proposed.
However, conventionally known methods cannot disperse fine inclusions that can prevent coarsening of crystal grains during super-high heat input welding such as electroslag welding. In order to drastically improve HAZ toughness, high melting point oxide particles that are difficult to dissolve even at high temperatures and that can be expected to have a pinning effect on old γ grains even during ultra-high heat input welding are produced in steel. Development of a technology that can be finely dispersed is desired.
[0004]
As one of the methods for dispersing such fine particles in steel, metal Mg or Mg alloy is added to molten steel, and it is made into oxide containing fine MgO or MgO by dissolved oxygen in steel and dispersed in molten steel. There is a way to make it. For example, Japanese Unexamined Patent Publication No. 5-302112 discloses a method for producing molten steel for thin steel sheets that performs deoxidation mainly using Mg. Further, as a means for solving the problem that Mg is easily evaporated at a steelmaking temperature (about 1500 to 1750 ° C.) and the yield of addition is poor, a method using an Mg alloy as an additive is, for example, This is disclosed in Japanese Patent No. 48616.
[0005]
[Problems to be solved by the invention]
However, when the oxygen concentration in the molten steel is low, the added Mg has insufficient oxygen to react, so MgO cannot be generated sufficiently and volatilizes as it is, and the Mg yield decreases. The decrease in Mg yield cannot reform Al 2 O 3 etc. in molten steel into oxides containing MgO, and can form coarse oxides of Al 2 O 3 and lead to quality defects in steel materials. There is sex.
[0006]
In this way, when adding metal Mg or Mg alloy to the molten steel, the yield of Mg is oxidized to MgO without causing any trouble in operation, the structure of the steel material is refined, and the slab and steel material are made finer. There is a problem that a method for improving the quality by suppressing defects on the surface and the inside and preventing the slab and steel material from being cared for or improved in quality is not specifically described.
The present invention increases the production of MgO or MgO-containing oxides in molten steel without hindering operation, and a method for producing steel in which fine oxides excellent in HAZ toughness and base metal strength are dispersed. Is intended to provide.
[0007]
[Means for Solving the Problems]
As a result of various investigations to solve the above problems, the present inventors have blown an oxidizing gas into molten steel, and in particular, in the molten steel of CO 2 gas or a mixed gas of inert gas and CO 2. It was found that fine inclusions composed of MgO or other oxides were dispersed in the steel material at a higher density than before.
[0008]
This invention is made | formed based on the said knowledge, The summary is as follows.
(1) a 0.001-0.01 mass% of Mg was supplied containing CO 2 gas in the molten steel to or an inert gas and a mixed gas of CO 2, as a solute, and wherein the generating an oxide containing MgO or MgO A method for dispersing fine oxides in molten steel.
(2) The flow rate of gas supplied to the molten steel is 5000 Nl / min or less per 1 ton of molten steel, and the total amount of gas to be supplied is greater than or equal to the value represented by L min in the following formula, depending on the mixing ratio of CO 2 gas. The method for dispersing fine oxides in molten steel as described in (1) above, wherein
L min [Nl] = 12500 × (% CO 2 ) −0.7
(3) Molten steel composition in mass%, C: 0.03-0.2%, Si: 0.4% or less, Mn: 0.5-2.0%, P: 0.015% or less, S: 0.006% or less, Ti: 0.007-0.02% In the above (1) or (2), Al: 0.001% to 0.03%, O: 0.005% or less, N: 0.0025 to 0.006%, and the balance consisting of Fe and inevitable impurities A method for dispersing fine oxides in molten steel as described.
(4) By mass%, Cu: 1.5% or less, Ni: 1.5% or less, Mo: 1% or less, Cr: 1% or less, Nb: 0.05% or less, V: 0.05% or less, B: 0.002% or less The method for dispersing fine oxides in molten steel according to (3) above, wherein one or more of Ca: 0.004% or less and REM: 0.003% or less are contained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
By blowing CO 2 gas, which is an oxidizing gas, into the molten steel using the method described above, Mg in the molten steel can be oxidized to form a primary fine oxide. Here, the primary oxide refers to an oxide produced by a reaction between a component in molten steel and an oxygen content in the gas.
[0010]
However, if this gas is a highly oxidizable O 2 gas, MgO produced in comparison with the low oxidizable CO 2 gas in the present invention will be coarser, so that it floats and separates from the molten steel into the slag phase. There are difficulties such as being easily mixed, and if this coarse inclusion remains in the steel, it tends to cause product defects. Furthermore, depending on the concentration of oxygen gas to be blown, even components such as Si, Mn, and Ti in the molten steel may be oxidized, which may adversely affect the properties of the target steel material.
[0011]
On the other hand, CO 2 gas is decomposed by a reaction of CO 2 = CO + 1 / 2O 2 at a steelmaking temperature of about 1500 to 1750 ° C. to generate oxygen. In general, the partial pressure P O2 of O 2 gas generated from CO 2 gas, a mixed gas of inert gas and CO 2 is approximately expressed by the following equation (1) according to the mixing ratio of CO 2 gas. Is done.
P O2 [Pa] = 10 × (% CO 2 ) 0.7・ ・ ・ ・ ・ ・ (1)
Here, (% CO 2 ) is the volume percent of CO 2 in the mixed gas, and (% CO 2 ) = 100 when CO 2 gas is used alone. The inert gas refers to a gas classified as group 0 on the periodic table of elements such as He, Ne, Ar, and Kr. In the present invention, any of the above gases can be used, but it is desirable to use Ar from the viewpoint of cost. For example, when 10 5 Pa of CO 2 gas is introduced into an atmosphere at 1600 ° C., a part of the CO 2 gas is decomposed to generate about 2.5 × 10 2 Pa of O 2 gas. In addition, with 10 5 Pa Ar + 10% CO 2 gas, O 2 gas of about 50 Pa is generated.
[0012]
As described above, by using the CO 2 gas, it is possible to supply oxygen with a very low potential compared to the case of using the O 2 gas. Moreover, it is possible to further reduce the oxygen partial pressure by diluting the CO 2 gas with an inert gas. Accordingly, coarse inclusions are not easily generated, and fine oxides of approximately 2 μm or less are formed. Since they are fine, they are difficult to float and separate in molten steel and can be easily dispersed in steel. Although it is possible to achieve a low oxygen potential equivalent to that of the present invention by diluting O 2 gas with a large amount of inert gas, operational difficulties such as difficulty in mixing due to the large difference in volume ratio There is.
[0013]
Mg is an element having the most important role in the present invention. When Mg is less than 0.001%, Mg-based oxides that form TiN precipitation nuclei cannot be sufficiently precipitated. Therefore, the lower limit is made 0.001%. On the other hand, 0.01% of Mg consumed as oxide is sufficient, and the effect of Mg exceeding this cannot be expected. Since Mg is a very active element having a high vapor pressure and strong oxidizing power, it is not preferable to contain it in steel more than necessary because it causes an increase in production cost. Therefore, the upper limit is made 0.01%.
[0014]
Here, the generated oxide is not limited to MgO. For example, when Al, which is an inevitable component in molten steel, reacts with MgO, fine oxides such as MgO · Al 2 O 3 are generated.
On the other hand, when supplying CO 2 gas or a mixed gas of inert gas and CO 2 to the molten steel within the scope of the method of the present invention, if the total amount is too small, a sufficient amount of oxygen cannot be supplied to the molten steel, and a large amount of oxide is required. Cannot be dispersed. Therefore, the total amount of gas to be supplied is not less than the value represented by L min given by the following equation (2).
L min [Nl] = 12500 × (% CO 2 ) -0.7・ ・ ・ ・ ・ ・ (2)
For example, when oxygen is supplied to molten steel using CO 2 gas alone, the total amount of gas to be supplied is about 500 Nl or more per ton of molten steel according to equation (2), so that sufficient oxygen is supplied to the molten steel and a large amount of oxide is dispersed. Can be made. On the other hand, if the flow rate of the supplied gas is too large, it will cause the molten steel to scatter, leading to a decrease in yield and an increase in cost. Therefore, the upper limit of the flow rate of the supplied gas is set to 5000 Nl / min per 1 ton of molten steel.
[0015]
As a method for supplying the CO 2 gas, a method of blowing a gas from above the molten steel and a method of blowing a gas into the molten steel can be considered. For example, there is a method of immersing a porous refractory lance in molten steel. Alternatively, a porous plug may be embedded in a part of the molten steel container, and gas may be supplied into the molten steel through the plug.
In addition, what is necessary is just to determine suitably the shape and position of the said gas blowing porous body according to a molten steel holding | maintenance container. For example, a plurality of plates may be arranged on the wall surface or bottom of the molten steel holding container.
[0016]
By supplying CO 2 gas or a mixed gas of inert gas and CO 2 from this porous body and supplying and adding the porous gas into the molten steel, the oxygen content can be supplied in the molten steel. As described above, it is desirable that the oxidizing gas is supplied into the molten steel to produce the fine oxide as described above, and a place close to the casting process of the molten steel is desirable. For example, gas supply in a ladle, tundish, and mold is optimal. It is. Further, since Mg easily evaporates at a steelmaking temperature (about 1500 to 1750 ° C.) and the yield of addition is poor, it is desirable that the oxidizing gas supply be as short as possible after the Mg is introduced into the molten steel.
[0017]
Next, the reasons for limiting each chemical component will be described.
The lower limit of C, 0.03%, is the minimum value for securing the strength and toughness of the base metal and the welded portion. However, too much C lowers the base metal and HAZ toughness and deteriorates weldability, so the upper limit is made 0.2%.
Si is contained in steel for deoxidation, but if it is too much, weldability and HAZ toughness deteriorate, so the upper limit is made 0.4%. The deoxidation of the present invention can be sufficiently performed with Ti alone. In order to obtain good HAZ toughness, it is desirable that Si be 0.3% or less. The lower limit is 0%.
[0018]
Mn is indispensable for securing the strength and toughness of the base metal and the welded portion, and the lower limit is 0.5%. However, if Mn is too much, the HAZ toughness is deteriorated, the center segregation of the slab is promoted, and the weldability is deteriorated, so the upper limit is made 2%.
P is an impurity element in the method of the present invention, and is 0.015% or less. Reduction of P improves the mechanical properties of the base metal and HAZ toughness through reduction of slab center segregation, and further suppresses HAZ grain boundary fracture. Therefore, the lower limit is 0%.
[0019]
If S is too large, center segregation is promoted or a large amount of stretched MnS is generated, so that the mechanical properties of the base material and HAZ toughness deteriorate. Therefore, the upper limit is made 0.006%. The lower limit is 0%.
Ti is important in controlling the dispersion state of the composite precipitated TiN as pinning particles. TiN contributes to improving the strength and toughness of steel by refining the base metal structure by suppressing the growth of γ grains during slab heating during thick plate rolling. However, if the amount of Ti is too much, the HAZ toughness decreases due to excessive TiC formation, so the upper limit is made 0.02%. On the other hand, when Ti is less than 0.007%, the number of TiN compound-deposited on MgO or MgO · Al 2 O 3 oxide becomes too small, and the effect of suppressing γ grain growth necessary for improving HAZ toughness cannot be obtained. Is 0.007%.
[0020]
If Al is too much, deoxidation products will cluster and cause coarse inclusions, so the upper limit is set to 0.03%. However, the formation of fine oxides such as MgO · Al 2 O 3 can be expected under the conditions of the present invention, and it is considered preferable that some Al is dissolved before adding Mg, so the lower limit is made 0.001%.
If O is too much, the deoxidation product becomes coarse, so the upper limit is made 0.005%. The lower limit is 0%.
[0021]
N is important in securing the number of TiN as pinning particles. When N is less than 0.0025%, the number of TiN cannot be secured. On the other hand, when N exceeds 0.006%, the solid solution N becomes excessive, causing a reduction in HAZ toughness. Therefore, the upper limit is 0.006% and the lower limit is 0.0025%.
In order to develop the characteristics required for the product, one or more of the following elements may be added to the molten steel.
[0022]
Cu and Ni improve the strength and toughness of the base metal without adversely affecting the weldability and HAZ toughness. However, if it exceeds 1.5%, weldability and HAZ toughness deteriorate.
Mo and Cr improve the strength and toughness of the base material. However, if it exceeds 1%, the toughness, weldability and HAZ toughness of the base metal deteriorate.
Nb is an effective element for refining the base material structure, and improves the mechanical properties of the base material. However, if it exceeds 0.05%, the HAZ toughness deteriorates.
[0023]
V improves the toughness of the base material. However, if it exceeds 0.05%, the weldability and HAZ toughness deteriorate.
B enhances the hardenability and improves the mechanical properties of the base material and HAZ. However, if added over 0.002%, HAZ toughness and weldability deteriorate.
Ca and REM improve the material by forming oxides and sulfides. Here, REM indicates a rare earth metal element such as La or Ce. Even if Ca is added in excess of 0.004%, the material improvement effect is saturated. Even if REM is added in excess of 0.003%, the material improvement effect is saturated similarly. Adding more than necessary is undesirable because it increases the production cost. The effect is the same even when both Ca and REM are added.
[0024]
The lower limit is over 0% for all elements.
[0025]
【Example】
Examples of the present invention will be described below with reference to Table 1, Table 2, and FIG.
(Example 1)
1 t of electrolytic iron was dissolved in vacuum by high-frequency induction heating, the components were adjusted at 1600 ° C., and then deoxidized with Mn and Si. After that, Mg was added and the molten steel was sampled. Composition of molten steel is% by mass, Mg: 0.0011 to 0.0058%, C: 0.10 to 0.15%, Si: 0.1 to 0.3%, Mn: 1.0 to 1.5%, P: 0.01% or less, S: 0.005% or less, Ti: 0.01%, Al: 0.01%, O: 0.005% or less, N: 0.0040 to 0.0055%, B: 0.001 to 0.002%.
[0026]
Next, CO 2 gas or Ar + CO 2 mixed gas was blown from the porous refractory at a total rate of 1000 Nl / min for 5 minutes, then cast into a mold and solidified. In this example, L min is in the range of 500 to 4010 Nl, and the total amount of supplied gas of 5000 Nl belongs to the scope of the present invention. Two or more samples were cut out from each of the upper part and the central part of the sample, the cut surface was polished, and the particle size of inclusions and the inclusion density per 1 mm 2 of the mother phase were measured with an optical microscope.
[0027]
Table 1 shows the molten steel composition before gas injection and the dispersion state of inclusions after cooling. For comparison, a test in which pure Ar gas was blown (Comparative Example 11) and a test in which Ar-1% and 10% O 2 gas were blown into the molten steel under the same conditions (Comparative Examples 12 to 15) were conducted, and the same analysis was performed. The result of having performed is shown. Furthermore, for comparison, experiments in which Mg was not added (Comparative Examples 16 and 17) were also conducted to clarify the role of Mg in the method of the present invention.
[0028]
FIG. 1 is a graph showing the relationship between the oxygen potential in the gas and the measured inclusion density in each experiment. Here, the oxygen potential is a partial pressure of O 2 gas generated from 1600 ° C. CO 2 gas and Ar + CO 2 gas obtained by calculation.
As is clear from Table 1 and FIG. 1, in the sample manufactured under the conditions of the present invention, the fine oxide having a diameter of 0.2 to 3 μm was not supplied with the oxidizing gas in the comparative material 11 and Ar + O 2 A large amount was produced as compared with the comparative materials 12 to 15 using the mixed gas. In addition, from the comparative materials 16 and 17, the results showing that the method of the present invention is a fine oxide dispersion method particularly effective for Mg-containing steels were obtained.
[0029]
[Table 1]
Figure 0004418119
[0030]
(Example 2)
When CO 2 gas and Ar + CO 2 gas were blown into the molten steel, tests (Comparative Examples 21 and 22) in which the total amount of supply gas was reduced and tests (Comparative Example 23) in which the gas flow rate was increased were performed.
From Table 2, when the total amount of gas to be supplied is less than L min. Given by equation (2), sufficient oxygen content could not be supplied to the molten steel, and the oxide could not be dispersed in a large amount. In addition, when the flow rate of the gas supplied into the molten steel is very large, the molten steel is severely scattered, making it difficult to operate.
[0031]
[Table 2]
Figure 0004418119
[0032]
【The invention's effect】
According to the present invention, by providing means for blowing CO 2 gas or Ar + CO 2 mixed gas into Mg-containing molten steel, Mg in the molten steel is selectively oxidized and refined and dispersed to improve the quality of the steel material. be able to. Moreover, the production of coarse oxides can be prevented, and excellent effects such as prevention of defects in steel materials and improvement of product quality can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the oxygen potential of a supply gas and the number of fine oxides of 0.2 to 3 μm observed in a 1 mm 2 sample.

Claims (4)

0.001〜0.01質量%のMgを溶質として含有する溶鋼中にCO2ガス、または不活性ガスとCOの混合ガスを供給し、MgOあるいはMgOを含む酸化物を生成することを特徴とする溶鋼中の微細酸化物分散方法。 Supplying a CO 2 gas or an inert gas and a mixed gas of CO 2, a 0.001-0.01 mass% of Mg in the molten steel contained as a solute in the molten steel and generating an oxide containing MgO or MgO Fine oxide dispersion method. 溶鋼に供給するガス流量が溶鋼1tあたり5000Nl/min以下であり、さらに、CO2ガスの混合比に応じて、供給するガスの総量Lが下記式のLminで表される値以上とすることを特徴とする請求項1に記載の溶鋼中の微細酸化物分散方法。
Lmin[Nl]=12500×(%CO2)-0.7
The flow rate of gas supplied to the molten steel is 5000 Nl / min or less per 1 ton of molten steel, and the total amount of gas L to be supplied is greater than or equal to the value represented by L min in the following formula, depending on the mixing ratio of the CO 2 gas. 2. The method for dispersing fine oxides in molten steel according to claim 1, wherein:
L min [Nl] = 12500 × (% CO 2 ) -0.7
溶鋼組成が、質量%で、
C : 0.03〜0.2%、
Si : 0.4%以下、
Mn : 0.5〜2.0%、
P : 0.015%以下、
S : 0.006%以下、
Ti : 0.007〜0.02%、
Al: 0.001%〜0.03%、
O : 0.005%以下、
N : 0.0025〜0.006%、
を含有し、残部がFe及び不可避的な不純物からなることを特徴とする請求項1または2に記載の溶鋼中の微細酸化物分散方法。
Molten steel composition is mass%,
C: 0.03-0.2%,
Si: 0.4% or less,
Mn: 0.5-2.0%
P: 0.015% or less,
S: 0.006% or less,
Ti: 0.007-0.02%,
Al: 0.001% to 0.03%,
O: 0.005% or less,
N: 0.0025-0.006%,
3. The method for dispersing fine oxides in molten steel according to claim 1, wherein the balance is Fe and the balance is Fe and inevitable impurities.
質量%で、さらに、Cu : 1.5%以下、Ni : 1.5%以下、Mo : 1%以下、Cr : 1%以下、Nb : 0.05%以下、V : 0.05%以下、B : 0.002%以下、Ca : 0.004%以下、REM : 0.003%以下、の1種または2種以上を含有することを特徴とする請求項3に記載の溶鋼中の微細酸化物分散方法。Further, Cu: 1.5% or less, Ni: 1.5% or less, Mo: 1% or less, Cr: 1% or less, Nb: 0.05% or less, V: 0.05% or less, B: 0.002% or less, Ca: 4. The fine oxide dispersion method in molten steel according to claim 3, comprising one or more of 0.004% or less and REM: 0.003% or less.
JP2001060535A 2001-03-05 2001-03-05 Method for dispersing fine oxides in molten steel Expired - Fee Related JP4418119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060535A JP4418119B2 (en) 2001-03-05 2001-03-05 Method for dispersing fine oxides in molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060535A JP4418119B2 (en) 2001-03-05 2001-03-05 Method for dispersing fine oxides in molten steel

Publications (2)

Publication Number Publication Date
JP2002256333A JP2002256333A (en) 2002-09-11
JP4418119B2 true JP4418119B2 (en) 2010-02-17

Family

ID=18919939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060535A Expired - Fee Related JP4418119B2 (en) 2001-03-05 2001-03-05 Method for dispersing fine oxides in molten steel

Country Status (1)

Country Link
JP (1) JP4418119B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6753203B2 (en) * 2016-08-09 2020-09-09 日本製鉄株式会社 Steel plate and manufacturing method of the steel plate

Also Published As

Publication number Publication date
JP2002256333A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP2003521582A (en) Steel grain refining method, steel grain refining alloy and method for producing grain refining alloy
CN110343954A (en) A kind of connection rod of automobile engine steel and its manufacturing method
JP5541310B2 (en) Manufacturing method of highly clean steel
CN114395657A (en) High-cleanness electroslag bearing steel for railway freight car and smelting method thereof
JP3896709B2 (en) Method of melting high cleanliness steel
JP6642174B2 (en) Continuous casting method of high carbon molten steel
JP7260731B2 (en) High purity steel and its refining method
US20120261085A1 (en) Extremely low carbon steel plate excellent in surface characteristics, workability, and formability and a method of producing extremely low carbon cast slab
TW202138587A (en) Stainless steel, stainless steel material, and method for manufacturing stainless steel
JP2021123773A (en) Ni-Cr-Al-Fe ALLOY HAVING EXCELLENT SURFACE PROPERTIES AND METHOD FOR PRODUCING THE SAME
JP5590056B2 (en) Manufacturing method of highly clean steel
JP4418119B2 (en) Method for dispersing fine oxides in molten steel
JP2001089825A (en) Steel product excellent in toughness in heat affected zone by welding, and its manufacture
JP4441142B2 (en) Method for producing fine oxide dispersed molten steel
JP3036362B2 (en) Manufacturing method of oxide dispersion steel
JP4555505B2 (en) Mass dispersion method for fine oxides in molten steel
JP4502944B2 (en) Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate
JP3036361B2 (en) Manufacturing method of Al-Mn oxide dispersed steel
JP2000273525A (en) Production of high cleanliness steel
JP3036373B2 (en) Manufacturing method of oxide dispersion steel
JP2002105527A (en) Method for producing high cleanliness steel
JPH08193245A (en) Bearing steel and its production
JP3535026B2 (en) Slab for thin steel sheet with less inclusion defect and method for producing the same
JP6728933B2 (en) Continuous casting method for molten steel
JP2017133079A (en) Steel material excellent in toughness in heat affected zone, and production method of steel material excellent in toughness in heat affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

R151 Written notification of patent or utility model registration

Ref document number: 4418119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees