JP2003129183A - High-strength steel slab and casting method therefor - Google Patents

High-strength steel slab and casting method therefor

Info

Publication number
JP2003129183A
JP2003129183A JP2001320388A JP2001320388A JP2003129183A JP 2003129183 A JP2003129183 A JP 2003129183A JP 2001320388 A JP2001320388 A JP 2001320388A JP 2001320388 A JP2001320388 A JP 2001320388A JP 2003129183 A JP2003129183 A JP 2003129183A
Authority
JP
Japan
Prior art keywords
steel
toughness
molten steel
less
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001320388A
Other languages
Japanese (ja)
Inventor
Toshihiko Koseki
敏彦 小関
Naoki Saito
直樹 斎藤
Yoichi Tanaka
洋一 田中
Hiroyuki Kinoshita
浩幸 木下
Takuya Hara
卓也 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001320388A priority Critical patent/JP2003129183A/en
Publication of JP2003129183A publication Critical patent/JP2003129183A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength steel slab and a casting method therefor. SOLUTION: The high-strength steel slab comprises, by mass%, 0.01-0.15% C, 0.005-0.5% Si, 0.1-2% Mn, 0.02% or less P, 0.01% or less S, 0.5-5.5% Ni, and 0.001-0.01% N, further one or more of 0.005-0.5% Nb, 0.003-0.05% Ti, 0.1-2% Mo, 0.01-1.5% Cu, 0.05-2.5% Cr, 0.01-0.5% V, and 0.0005-0.005% B, two or more of 0.001-0.1% Al, 0.001-0.5% Zr, 0.0005-0.02% Mg, 0.0005-0.02% Ca, and 0.001-0.5% REM (rare earth metals), and the balance Fe with unavoidable impurities, and has an isometric crystallization rate of 70% or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、引張強度が780
MPa 級以上で優れた低温靭性が要求される構造物全般に
供される高強度鋼鋳片及びその鋳造方法に関するもので
ある。
TECHNICAL FIELD The present invention has a tensile strength of 780.
The present invention relates to a high-strength steel cast slab that is used for all structures requiring a low temperature toughness of MPa class or higher and a casting method thereof.

【0002】[0002]

【従来の技術】引張強度が780MPa 級以上の高強度鋼
を直接焼入れ法(DQ)で製造する場合、靱性を確保す
るためには焼入れ組織の微細化が必須である。そのため
には制御圧延による焼入れ前のγ(オーステナイト)粒
の微細化ならびにγ粒内への加工の導入による変態組織
の微細化が有効であるが、厚手材の場合は厚減比が限ら
れ、圧延加工の効果に限界がある。これをカバーし、板
厚によらずDQ前のγの細粒化を促進するには圧延加工
前の再加熱γの微細化が最も有力である。再加熱γの微
細化は一般には加熱温度の低温化より達成されるが、種
々の合金元素を比較的多く含む高強度鋼においてその達
成は必ずしも容易でない。すなわち合金鋼では、加熱温
度が低くなると再加熱γが加熱前組織の旧γがそのまま
再現される現象(旧γメモリー)が起こり、この旧γが
再現された粗大粒と一部の新たに生成したγ粒とが混在
して著しい混粒となる。また、当然ながら、加熱温度を
上げれば加熱γは成長し、微細化は難しくなる。それゆ
え高強度鋼、合金鋼の場合、加熱温度の制御による圧延
前組織の制御、それによる最終鋼板の靭性の向上は難し
い。
2. Description of the Related Art When a high strength steel having a tensile strength of 780 MPa grade or more is produced by a direct quenching method (DQ), it is essential to make a quenching structure fine in order to secure toughness. For that purpose, it is effective to refine the γ (austenite) grains before quenching by controlled rolling and to refine the transformation structure by introducing processing into the γ grains, but in the case of thick materials, the thickness reduction ratio is limited, There is a limit to the effect of rolling. In order to cover this and to promote the grain refinement of γ before DQ regardless of the plate thickness, it is most effective to make the reheat γ fine before rolling. The refinement of the reheating γ is generally achieved by lowering the heating temperature, but it is not always easy to achieve in high strength steel containing a relatively large amount of various alloying elements. That is, in the alloy steel, when the heating temperature becomes lower, the reheating γ reproduces the old γ of the pre-heating structure as it is (old γ memory), and this old γ is reproduced as coarse grains and some new generation. The mixed γ particles are mixed to form a significantly mixed particle. In addition, as a matter of course, if the heating temperature is raised, the heating γ grows, and it becomes difficult to miniaturize. Therefore, in the case of high strength steel and alloy steel, it is difficult to control the microstructure before rolling by controlling the heating temperature and thereby improve the toughness of the final steel sheet.

【0003】低温加熱によっても再加熱γが微細化され
ず、むしろ粗大化・混粒化する事実は、高強度鋼を再加
熱焼入れ・焼戻しで製造する場合でも認識されていた
が、近年主流となりつつある直接焼入れ法で製造する場
合は、スタートが鋳片であるため、その影響は更に顕著
である。すなわち、鋳片の旧γ粒径は通常の連続鋳造の
場合、1mmのオーダーの粗大なものになり、鋳片の再加
熱によってその粗大な旧γ粒が再現されてしまうと、再
加熱組織は非常に粗大なγを含む著しい混粒組織となる
からである。一般の普通鋼の再加熱γが、100〜30
0μm程度の整粒である事を考えると、そのデメリット
の大きさは容易に想像できる。これを制御圧延しても、
限られた厚減比の中ではγ粒の均質化は非常に難しく、
結局、ベイナイトもしくはマルテンサイト変態を経て形
成される最終鋼板組織にも混粒が遺伝して、靭性劣化を
もたらす。
The fact that reheating γ is not refined even by low temperature heating but rather becomes coarse / mixed grain has been recognized even when high-strength steel is manufactured by reheating quenching / tempering, but in recent years it has become mainstream. In the case of the direct quenching method, which is being developed, the influence is more remarkable because the starting point is a slab. That is, in the case of normal continuous casting, the old γ grain size of the slab becomes coarse on the order of 1 mm, and if the coarse old γ grain is reproduced by reheating the slab, the reheated structure becomes This is because it results in a significantly mixed grain structure containing very coarse γ. The reheat γ of ordinary steel is 100 to 30.
Considering that the particle size is about 0 μm, the size of the disadvantage can be easily imagined. Even if this is controlled rolling,
It is very difficult to homogenize γ grains in the limited thickness reduction ratio,
Eventually, the mixed grains are inherited in the final steel sheet structure formed through the bainite or martensitic transformation, resulting in toughness deterioration.

【0004】この再加熱によって前組織の旧γ粒が再現
されることによる混粒形成のメカニズムは依然明確でな
いが、たとえば、渡辺らは日本鉄鋼協会「鉄と鋼」第6
1年第1号(1975)pp.96−106の論文にお
いて、初期組織がマルテンサイトやベイナイトのラス組
織の場合、再加熱時にラス間から生成するγがバリアン
ト規制を受けることによって一定方位のものしか生成し
ないために旧γが再現されるとしており、また、松田ら
は日本鉄鋼協会「鉄と鋼」第60年第2号(1974)
pp.226−238において、初期ラス組織に生成す
る針状γはマルテンサイト型変態によって生成し、これ
が合体して旧γに相当する粗大粒を形成するとしてい
る。更に、S.T.Kimminsらは英金属学会「M
etalScience」第17巻11号(1983)
pp.519−532において、初期ラス組織から生成
するγは残留γを起点に成長するものであるとしてい
る。
The mechanism of mixed grain formation due to reproduction of old γ grains of the previous structure by this reheating is still unclear. For example, Watanabe et al. "Iron and Steel" No. 6 of the Iron and Steel Institute of Japan.
1st year No. 1 (1975) pp. In the paper of 96-106, when the initial structure is a martensite or bainite lath structure, the old γ is reproduced because the γ generated from between the laths during reheating is subject to variant regulation and only the azimuth of a certain orientation is generated. Matsuda et al., Iron and Steel, Japan Iron and Steel Institute, No. 60, No. 2 (1974).
pp. 226-238, needle-like γ generated in the initial lath structure is generated by martensitic transformation, and these coalesce to form coarse grains corresponding to old γ. Furthermore, S. T. Kimmins et al.
et alScience "Vol. 17, No. 11 (1983)
pp. 519-532, γ generated from the initial lath structure is supposed to grow from the residual γ as a starting point.

【0005】このように、合金鋼、高強度鋼の再加熱γ
の粗大化・混粒化は発現機構が依然として判然としない
上、合金鋼、高強度鋼に固有な前組織が絡むため、その
解決策もあまり見出せないでいた。唯一の解決策として
考えられるのは、旧γの再現が徐加熱によってより顕在
化することから、再加熱の昇温速度を上げることである
が、連続鋳造鋳片のような厚みで単重の大きいものを現
状の加熱速度の数倍から数十倍の速度でAc3 以上の高
温まで均一に加熱するのは現状の技術では難しい。ま
た、過去の特許の開示においても有効な対策は見出され
ていない。
As described above, reheating γ of alloy steel and high strength steel
Since the mechanism of the coarsening / mixing of grains is still unclear, and the pre-structures peculiar to alloy steel and high-strength steel are entangled, a solution to that problem could not be found. The only possible solution is to increase the heating rate of reheating because the reproduction of old γ becomes more apparent by gradual heating. It is difficult with the current technology to uniformly heat a large material to a high temperature of Ac 3 or more at a rate several times to several tens times the current heating rate. Moreover, effective measures have not been found in the disclosure of past patents.

【0006】しかしながら近年、低温貯槽タンク、低温
圧力容器、海洋構造物、ラインパイプ等の分野におい
て、構造物の大型化などの背景から高強度鋼のニーズは
高まっており、加えて安全性や貯蔵・輸送の効率化、適
用環境の苛酷化の観点から一層の低温靭性も要求されて
いる。これに対応するためには、合金鋼における上記課
題の改善あるいは上記課題の克服による低温靭性の向上
が必須となってきている。
However, in recent years, in the fields of low-temperature storage tanks, low-temperature pressure vessels, marine structures, line pipes, etc., the need for high-strength steel has increased due to the increase in size of structures, and in addition to safety and storage.・ Further low temperature toughness is required from the viewpoint of efficient transportation and severe application environment. In order to deal with this, improvement of the above problems in alloy steel or improvement of low temperature toughness by overcoming the above problems has become essential.

【0007】[0007]

【発明が解決しようとする課題】本発明は、引張強度が
780MPa 級以上で再加熱時及び熱間圧延時に混粒を起
こし難く、低温靭性に優れた鋼板製造を可能にする高強
度鋼鋳片及びその鋳造方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a high strength steel slab capable of producing a steel sheet having a tensile strength of 780 MPa or more, which is unlikely to cause mixed grains during reheating and hot rolling, and which has excellent low temperature toughness. And a method for casting the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
解決のための手段を鋳片の造りこみまで遡って種々実験
的に検討した。その結果、高強度鋼鋳片の再加熱時に起
こるγ粒組織の旧γの再現及びこれによる混粒化は広い
高強度鋼全般の合金組成にわたって根本的には抑えられ
ないが、初期の鋳片凝固組織によって再加熱後に圧延を
経て製造された鋼板の組織の均一性ならびに靭性が大き
く影響されることを見出し、特に初期凝固組織の等軸晶
化率の影響が大きいという知見に至った。そして、これ
を詳細に検討すべく、鋳造組織を再加熱する過程での組
織変化を種々の熱処理実験ならびに加工実験により詳細
に検討した結果、再加熱時に混粒を起こさない鋳片の凝
固組織の最適化とその鋳造方法に関する知見を得た。
[Means for Solving the Problems] The inventors of the present invention have studied various means experimentally by tracing back the means for solving the above problems up to the fabrication of a cast piece. As a result, the reproduction of the old γ of the γ grain structure and re-mixing due to the re-heating of the high strength steel slab cannot be fundamentally suppressed over a wide range of high strength steel alloy compositions, but the initial slab It was found that the solidification structure has a great influence on the uniformity and toughness of the structure of the steel sheet produced by rolling after reheating, and it has been found that the equiaxed crystallization rate of the initial solidification structure has a large influence. Then, in order to study this in detail, as a result of detailed examination of the structural change in the process of reheating the cast structure by various heat treatment experiments and processing experiments, the solidification structure of the slab that does not cause mixed grains during reheating The knowledge about optimization and its casting method was obtained.

【0009】本発明は、かかる知見に基づいて完成され
たもので、その要旨とするところは以下の通りである。 (1)質量%で、C:0.01〜0.15%、Si:
0.005〜0.5%、Mn:0.1〜2%、P:0.
02%以下、S:0.01%以下、Ni:0.5〜5.
5%、N:0.001〜0.01%を含有し、さらに、
Nb:0.005〜0.5%、Ti:0.003〜0.
05%、Mo:0.1〜2%、Cu:0.01〜1.5
%、Cr:0.05〜2.5%、V:0.01〜0.5
%、B:0.0005〜0.005%の1種または2種
以上、および、Al:0.001〜0.1%、Zr:
0.001〜0.5%、Mg:0.0005〜0.02
%、Ca:0.0005〜0.02%、REM:0.0
01〜0.5%の2種以上を含有し、残部Feおよび不
可避的不純物からなり、等軸晶化率が70%以上である
ことを特徴とする高強度鋼鋳片。 (2)質量%で、C:0.01〜0.15%、Si:
0.005〜0.5%、Mn:0.1〜2%、P:0.
02%以下、S:0.01%以下、Ni:0.5〜5.
5%、N:0.001〜0.01%を含有し、さらに、
Nb:0.005〜0.5%、Ti:0.003〜0.
05%、Mo:0.1〜2%、Cu:0.01〜1.5
%、Cr:0.05〜2.5%、V:0.01〜0.5
%、B:0.0005〜0.005%の1種または2種
以上を含有し、残部Feおよび不可避的不純物からなる
溶鋼の精錬時に、Al:0.001〜0.1%、Zr:
0.001〜0.5%、Mg:0.0005〜0.02
%、Ca:0.0005〜0.02%、REM:0.0
01〜0.5%の2種以上を同時または逐次に添加した
直後の溶存酸素が10ppm 以下である溶鋼を溶鋼過熱度
50℃以下で連続鋳造することを特徴とする高強度鋼鋳
片の鋳造方法。
The present invention has been completed based on such findings, and the gist thereof is as follows. (1) Mass%, C: 0.01 to 0.15%, Si:
0.005-0.5%, Mn: 0.1-2%, P: 0.
02% or less, S: 0.01% or less, Ni: 0.5-5.
5%, N: 0.001-0.01%, and
Nb: 0.005 to 0.5%, Ti: 0.003 to 0.
05%, Mo: 0.1 to 2%, Cu: 0.01 to 1.5
%, Cr: 0.05 to 2.5%, V: 0.01 to 0.5
%, B: 0.0005 to 0.005%, one or more kinds, and Al: 0.001 to 0.1%, Zr:
0.001-0.5%, Mg: 0.0005-0.02
%, Ca: 0.0005 to 0.02%, REM: 0.0
A high-strength steel slab containing 01 to 0.5% of two or more kinds, consisting of the balance Fe and unavoidable impurities, and having an equiaxed crystallization ratio of 70% or more. (2)% by mass, C: 0.01 to 0.15%, Si:
0.005-0.5%, Mn: 0.1-2%, P: 0.
02% or less, S: 0.01% or less, Ni: 0.5-5.
5%, N: 0.001-0.01%, and
Nb: 0.005 to 0.5%, Ti: 0.003 to 0.
05%, Mo: 0.1 to 2%, Cu: 0.01 to 1.5
%, Cr: 0.05 to 2.5%, V: 0.01 to 0.5
%, B: 0.0005 to 0.005% of 1 type or 2 types or more, Al: 0.001 to 0.1%, Zr: at the time of refining molten steel containing the balance Fe and unavoidable impurities.
0.001-0.5%, Mg: 0.0005-0.02
%, Ca: 0.0005 to 0.02%, REM: 0.0
Casting of high-strength steel slab characterized by continuously casting molten steel having a dissolved oxygen of 10 ppm or less immediately after adding two kinds or more of 01 to 0.5% simultaneously or sequentially at a molten steel superheat degree of 50 ° C. or less Method.

【0010】[0010]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明者らが、凝固組織の各部位ごとに再加熱時
の組織変化、その後の圧延中の組織変化を詳細に調査し
た結果、凝固時に柱状晶で凝固した部分は、再加熱時に
粗大な柱状γが再現され著しい混粒になるのに対して、
等軸晶で凝固した部分はその混粒程度が軽減されること
が判明した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The present inventors have conducted a detailed examination of the microstructure change during reheating for each part of the solidified structure, and the microstructure change during rolling thereafter, showing that the solidified portion with columnar crystals during solidification has a coarse columnar shape during reheating. While γ is reproduced and becomes a significantly mixed grain,
It was found that the mixed grains were reduced in the portion solidified by the equiaxed crystal.

【0011】さらに、再加熱後の熱間圧延では、凝固が
柱状晶の部分は混粒γ組織から再結晶の進行が緩慢であ
るのに対して、等軸晶凝固の部分は混粒γ組織から再結
晶が比較的早く、整粒化が比較的少ない加工率から促進
されることを見出した。したがって鋳片の等軸晶化を向
上させることで、高強度鋼および合金鋼に特異な再加熱
時の混粒γ組織の生成、およびそれに伴う圧延組織の不
均質、材質劣化の問題が改善できることが判明した。こ
こに等軸晶とは、成長する柱状デンドライトの分断・遊
離、あるいは溶鋼中での新たな核生成によって生成・成
長する凝固晶であり、柱状晶が鋳壁から温度勾配方向に
伸長するのに対して比較的等方的に成長する結晶であ
る。
Further, in the hot rolling after reheating, the progress of recrystallization is slow from the mixed grain γ structure in the columnar crystal solidification portion, whereas the equiaxed crystal solidification portion is in the mixed grain γ structure solidification. From this, it was found that recrystallization is relatively fast and grain size control is promoted by a relatively low processing rate. Therefore, by improving the equiaxed crystallization of the slab, it is possible to solve the problems of the generation of mixed grain γ structure during reheating peculiar to high-strength steel and alloy steel, and the accompanying inhomogeneity of the rolling structure and material deterioration. There was found. Here, equiaxed crystals are solidified crystals that are generated and grown by fragmentation / release of growing columnar dendrites or new nucleation in molten steel, and even though columnar crystals extend from the casting wall in the temperature gradient direction. On the other hand, it is a crystal that grows relatively isotropically.

【0012】さらに、一般に、等軸晶は凝固時に鋳片の
中央部で形成されるが、その等軸晶凝固領域のスラブ厚
に対する幅(これを等軸晶化率と定義)が70%以上に
なると、表層から伸びる柱状晶も相対的に微細化し、圧
延後のγ粒も全厚でほぼ均一になることも見出した。他
方、これより等軸晶化率が少ないと、表層から発達する
柱状γが相対的に長くなり、その部分で再加熱γの不均
一、圧延時の再結晶不均一が生じてしまう。したがっ
て、圧延時のγ粒を整粒微細化し最終鋼板の高靭性化を
促進するためには、等軸晶化率70%以上が必要であ
る。なお、等軸晶化率は100%を上限として高いほど
好ましい。
Further, generally, the equiaxed crystal is formed in the central portion of the slab during solidification, and the width of the equiaxed solidification region with respect to the slab thickness (this is defined as the equiaxed crystallization rate) is 70% or more. Then, it was also found that the columnar crystals extending from the surface layer were also relatively fine, and the γ-grains after rolling were almost uniform over the entire thickness. On the other hand, if the equiaxed crystallization rate is lower than this, the columnar γ that develops from the surface layer becomes relatively long, resulting in nonuniform reheating γ and nonuniform recrystallization during rolling. Therefore, an equiaxed crystallization rate of 70% or more is required to make the γ grains during rolling finer and promote higher toughness of the final steel sheet. The equiaxed crystallization rate is preferably as high as 100% as the upper limit.

【0013】発明者らは、このような鋳片をいかに造る
かについても鋭意取り組み、新たな知見を得るに至っ
た。従来、等軸晶化率を向上させるために、例えば特開
昭53−45627号公報や特開平5−115948号
公報に示されているように、鋳造中に鋳片内部の溶鋼に
電磁攪拌を付与するなどが提案されてきたが、これには
連続鋳造設備に付加的な設備が必要になるとともに、電
磁攪拌付与の最適位置が鋼成分によって凝固温度が変わ
るために変化し、効果が鋼成分によって大きくばらつく
という問題がある。
The inventors of the present invention have earnestly studied how to make such a slab and obtained new knowledge. Conventionally, in order to improve the equiaxed crystallization rate, electromagnetic stirring is applied to molten steel inside a slab during casting, as disclosed in, for example, JP-A-53-45627 and JP-A-5-115948. Although it has been proposed to add it, this requires additional equipment to the continuous casting equipment, and the optimum position of electromagnetic stirring application changes because the solidification temperature changes depending on the steel composition, and the effect is There is a problem that it greatly varies depending on the situation.

【0014】特に、比較的多くの合金元素を含む高強度
鋼、合金鋼ではそれが顕著である。その課題を解決する
ために、さらに制御性のよい等軸晶促進技術を探索した
結果、溶鋼がAl、Zr、Mg、REM、Caの脱酸元
素を2種以上含み、かつ脱酸元素添加直後の溶存酸素が
10ppm 以下である場合に等軸晶の生成促進が顕著であ
ることを見出した。これは、詳細解析の結果、脱酸元素
を複合して添加することによって形成される複合酸化物
が等軸晶化を大きく進めるためであった。
Particularly, it is remarkable in high strength steel and alloy steel containing a relatively large amount of alloying elements. In order to solve the problem, as a result of searching a technique for promoting equiaxed crystal with better controllability, molten steel contains two or more deoxidizing elements of Al, Zr, Mg, REM, and Ca, and immediately after the addition of the deoxidizing element. It was found that the formation acceleration of equiaxed crystals is remarkable when the dissolved oxygen content of the above is less than 10 ppm. This was because, as a result of detailed analysis, the composite oxide formed by adding the deoxidizing element in a complex manner greatly promotes equiaxed crystallization.

【0015】種々の検討の結果、2種以上の脱酸元素の
添加は同時でもあるいは逐次でも効果は変わらないが、
脱酸元素添加後の溶鋼中の溶存酸素が10ppm を超える
場合は複合酸化物の粗大化が激しく、等軸晶に有効な個
数が減少する、あるいは連続鋳造中に浮上してやはり減
少するなどで、本発明の効果が減じられることがわかっ
た。さらに、溶鋼過熱度が大きい場合も複合酸化物の形
成が安定せず、効果が減じられ等軸晶の割合を70%以
上とすることが困難となることがわかった。したがっ
て、複合脱酸による等軸晶生成の有効性を確保するため
には、脱酸元素添加直後の溶鋼中の溶存酸素が10ppm
以下、かつ鋳造時の溶鋼過熱度を50℃以下にする必要
がある。溶存酸素も溶鋼過熱度も低いほど好ましいが、
溶鋼過熱度は、0℃未満とすると溶鋼流動性などの問題
が生じるため好ましくない。
As a result of various studies, the effect of adding two or more kinds of deoxidizing elements at the same time or sequentially does not change,
If the dissolved oxygen in the molten steel after the addition of the deoxidizing element exceeds 10 ppm, the coarsening of the complex oxide will be severe and the number effective for equiaxed crystals will decrease, or it will rise during continuous casting and also decrease. It was found that the effect of the present invention was reduced. Further, it was found that even when the degree of superheat of molten steel is large, the formation of the complex oxide is not stable, the effect is reduced, and it becomes difficult to set the proportion of equiaxed crystals to 70% or more. Therefore, in order to ensure the effectiveness of equiaxed crystal formation by complex deoxidation, the dissolved oxygen in the molten steel immediately after the addition of the deoxidizing element is 10 ppm.
It is necessary to set the superheated degree of molten steel at the time of casting to 50 ° C. or less. It is preferable that the dissolved oxygen and molten steel superheat are lower,
If the molten steel superheat degree is less than 0 ° C., problems such as molten steel fluidity occur, which is not preferable.

【0016】なお、ここで、脱酸元素添加直後とは、脱
酸元素の効果が行き渡った後の時間を指し、添加時期、
添加プロセスにも依るが、添加後5〜15分後が目安と
なる。これより長くなると溶鋼の再酸化などの可能性も
出てくる。また、脱酸元素の添加時期は二次精錬段階か
ら二次精錬後の鍋、鋳造時のタンディッシュあるいはモ
ールドまで可能であり、添加法も純金属あるいは合金の
紛体や塊のインジェクションやワイヤによる添加など適
用できる。
The term “immediately after the addition of the deoxidizing element” means the time after the effect of the deoxidizing element has spread, and
Although it depends on the addition process, 5 to 15 minutes after the addition is a standard. If the length is longer than this, the possibility of reoxidation of molten steel also appears. In addition, the deoxidizing element can be added from the secondary refining stage to the pot after secondary refining, the tundish during casting, or the mold, and the addition method is injection of powder or lumps of pure metal or alloy or addition by wire. Can be applied.

【0017】次に本発明において、化学組成の限定理由
を述べる。Cは、鋼の強度を向上させる有効な成分とし
て含有するもので、0.01%未満では構造用鋼に必要
な強度の確保が困難であるが、0.15%を超える過剰
の含有は母材及び溶接部の靭性や耐溶接割れ性を低下さ
せるので、0.01〜0.15%の範囲とした。
Next, the reasons for limiting the chemical composition in the present invention will be described. C is contained as an effective component for improving the strength of steel, and if it is less than 0.01%, it is difficult to secure the strength required for structural steel, but if it exceeds 0.15%, it is a mother component. Since the toughness of the material and the welded portion and the weld cracking resistance are reduced, the range is set to 0.01 to 0.15%.

【0018】次に、Siは、脱酸元素として、また、母
材の強度確保に有効な元素であるが、0.005%未満
の含有では脱酸が不十分となり、また強度確保に不利で
ある。逆に0.5%を超える過剰の含有は粗大な酸化物
を形成して延性や靭性の劣化を招く。そこで、Siの範
囲は0.005〜0.5%とした。
Next, Si is an element effective as a deoxidizing element and for securing the strength of the base material. However, if the content of Si is less than 0.005%, the deoxidation becomes insufficient and it is disadvantageous for securing the strength. is there. On the contrary, if the content exceeds 0.5%, a coarse oxide is formed and ductility and toughness are deteriorated. Therefore, the range of Si is set to 0.005 to 0.5%.

【0019】また、Mnは、母材の強度、靭性の確保に
必要な元素であり、最低限0.1%以上含有する必要が
あるが、過剰に含有すると、焼入性過剰となり溶接割れ
性など劣化させるため、材質上許容できる範囲で上限を
2%とした。
Further, Mn is an element necessary for securing the strength and toughness of the base metal, and it is necessary to contain at least 0.1% or more, but if it is contained excessively, hardenability becomes excessive and weld cracking property is caused. In order to cause deterioration, the upper limit was set to 2% within the allowable range of the material.

【0020】P、Sは、不純物元素で、延性、靭性を劣
化させる元素であり、極力低減することが好ましいが、
材質劣化が大きくなく、許容できる量として、Pの上限
を0.02%、Sの上限を0.01%に限定する。
P and S are impurity elements that deteriorate ductility and toughness and are preferably reduced as much as possible.
The upper limit of P is set to 0.02% and the upper limit of S is set to 0.01% as the allowable amounts without material deterioration.

【0021】Niは、靱性確保のために最も有効な元素
であり、引張強度780MPa 以上の高強度鋼において靭
性の保証温度が−40℃及び更に低温になるようなケー
スも含めると少なくとも0.5%、好ましくは1%以上
含有させる必要がある。一方、Niは高価な合金元素で
あり、さらに含有量が多くなると加工熱処理によって鋼
材を製造する場合の焼入れ性が過剰となるため、上限を
5.5%とする。
Ni is the most effective element for ensuring the toughness, and at least 0.5 is included in the case where the guaranteed temperature of the toughness is -40 ° C. or lower in the high strength steel having a tensile strength of 780 MPa or more. %, Preferably 1% or more. On the other hand, Ni is an expensive alloy element, and if its content is further increased, the hardenability in the case of producing a steel material by thermomechanical treatment becomes excessive, so the upper limit is made 5.5%.

【0022】Nは鋼中に単独固溶状態では鋼板靭性に有
害であるが、工業的に鋼中のNを完全に除去することは
不可能であり、必要以上に低減することは製造工程に過
大な負荷をかけるため好ましくない。そのため、工業的
に制御が可能で、製造工程への負荷が許容できる範囲と
して下限を0.001%とする。しかしながら過剰に含
有すると、固溶Nが増加し延性や靭性に悪影響を及ぼす
ため、許容できる範囲として上限を0.01%とする。
N is harmful to the steel plate toughness when it is in a single solid solution state in steel, but it is impossible to completely remove N in steel industrially, and reducing N more than necessary in the manufacturing process. It is not preferable because it applies an excessive load. Therefore, the lower limit is set to 0.001% as a range in which industrial control is possible and the load on the manufacturing process is allowable. However, if it is contained excessively, the amount of solute N increases and the ductility and toughness are adversely affected, so the upper limit is made 0.01% as an allowable range.

【0023】さらに、本発明の成分系では、強度確保お
よび靭性確保のための組織制御に、加工熱処理における
オーステナイトの再結晶抑制に有効なNb、Ti、およ
び、焼入れ性の制御に有効なMo、Cu、Cr、V、B
の1種または2種以上を含有させる。各々の元素の添加
範囲は以下のように限定する。
Further, in the component system of the present invention, Nb and Ti which are effective in controlling the recrystallization of austenite in thermomechanical treatment and Mo which is effective in controlling the hardenability are used for controlling the structure for securing strength and toughness. Cu, Cr, V, B
1 type or 2 types or more of are included. The addition range of each element is limited as follows.

【0024】Nbは、オーステナイト相中に固溶及び析
出状態で、オーステナイトの再結晶を抑制するために、
また、変態時あるいは焼戻し時にNb(C、N)を形成
することで、強度の向上に有効な元素であるが、過剰の
含有では析出脆化により靭性が劣化する。従って、靭性
の劣化を招かずに、効果を発揮できる範囲として、0.
005〜0.5%の範囲に限定する。
Nb is a solid solution and a precipitation state in the austenite phase in order to suppress recrystallization of austenite,
Further, by forming Nb (C, N) during transformation or tempering, it is an element effective for improving strength, but if it is contained in excess, the toughness deteriorates due to precipitation embrittlement. Therefore, as a range in which the effect can be exhibited without degrading the toughness, 0.
It is limited to the range of 005 to 0.5%.

【0025】Tiは、析出強化により母材強度向上に寄
与するとともに、高温でも安定なTiNの形成により加
熱オーステナイト粒径微細化にも有効な元素であり、加
工熱処理を基本とする本発明においては必須の元素であ
る。効果を発揮するためには0.003%以上の含有が
必要である。一方、0.05%を超えると、粗大な析出
物、介在物を形成して靭性や延性を劣化させるため、上
限を0.05%とする。
Ti is an element that contributes to the improvement of the strength of the base material by precipitation strengthening and is also effective for refining the heated austenite grain size by forming TiN that is stable even at high temperatures. In the present invention based on thermomechanical processing, It is an essential element. In order to exert the effect, the content of 0.003% or more is required. On the other hand, if it exceeds 0.05%, coarse precipitates and inclusions are formed to deteriorate toughness and ductility, so the upper limit is made 0.05%.

【0026】Moは焼入れ性向上、強度向上、耐焼戻し
脆化、耐SR脆化に有効な元素でもあり、その効果を発
揮するためには、0.1%以上の添加が必要であり、一
方、2%を超える添加では逆に靱性、溶接性が劣化する
ため、0.1〜2%に限定する。
Mo is also an element effective in improving hardenability, strength, temper embrittlement resistance, and SR embrittlement resistance, and in order to exert its effect, it is necessary to add 0.1% or more. On the contrary, if the content exceeds 2%, the toughness and weldability deteriorate, so the content is limited to 0.1 to 2%.

【0027】Cuは、0.01%以上の添加で、焼入れ
性向上、固溶強化、析出強化の効果を有するが、1.5
%超では熱間加工性に問題を生じるので、効果を発揮
し、かつ熱間加工性等の問題を生じない範囲として、本
発明においては、0.01〜1.5%の範囲に限定す
る。
Cu has the effect of improving hardenability, strengthening solid solution, and strengthening precipitation by adding 0.01% or more.
%, The hot workability will be problematic. Therefore, in the present invention, the range is 0.01 to 1.5% as a range in which the effect is exhibited and the hot workability or the like does not occur. .

【0028】Crは、焼入れ性向上、析出強化により母
材の強度向上に有効な元素であるが、明瞭な効果を生じ
るためには0.05%以上必要であり、一方、2.5%
を超えて添加すると、靭性及び溶接性が劣化する傾向を
有するため、0.05〜2.5%の範囲とする。
Cr is an element effective for improving the strength of the base material by improving the hardenability and precipitation strengthening, but 0.05% or more is necessary for producing a clear effect, while 2.5% is required.
If added in excess of 0.1%, the toughness and weldability tend to deteriorate, so the content is made 0.05 to 2.5%.

【0029】Vは、焼入れ性向上とともにVNを形成し
て強度向上に有効な元素であるが、過剰の含有では析出
脆化により靭性が劣化する。従って、靭性の大きな劣化
を招かずに、効果を発揮できる範囲として、0.01〜
0.5%の範囲に限定する。
V is an element effective for improving the strength by forming VN as well as improving the hardenability, but if contained in excess, the toughness deteriorates due to precipitation embrittlement. Therefore, as a range in which the effect can be exhibited without significantly deteriorating the toughness, 0.01 to
It is limited to the range of 0.5%.

【0030】Bは、固溶状態でオーステナイト粒界に偏
析することで、微量で焼入れ性を高めることが可能な元
素であるが、粒界に偏析した状態では、オーステナイト
の再結晶抑制にも有効である。焼入性、再結晶抑制に効
果を発揮するためには0.0005%以上の添加が必要
であるが、一方、0.005%を超える過剰の添加で
は、BN、Fe23(C、B)6 等の粗大な析出物を生じ
て、靱性が劣化するため、0.0005〜0.005%
に限定する。
B is an element capable of enhancing the hardenability in a small amount by segregating to the austenite grain boundaries in a solid solution state, but in the state segregated to the grain boundaries, it is also effective in suppressing recrystallization of austenite. Is. In order to exert the effect of hardenability and suppression of recrystallization, it is necessary to add 0.0005% or more, while if added in excess of 0.005%, BN, Fe 23 (C, B) 0.0005 to 0.005% because coarse precipitates such as 6 are generated and the toughness deteriorates.
Limited to

【0031】さらに、本発明の特徴である等軸晶生成を
促進する脱酸元素として、Al、Zr、Mg、Ca、R
EMのうち2種以上を含有させる。各々の元素の添加範
囲は以下のように限定する。
Further, Al, Zr, Mg, Ca and R are used as deoxidizing elements for promoting equiaxed crystal formation which is a feature of the present invention.
Two or more kinds of EM are contained. The addition range of each element is limited as follows.

【0032】Alは、脱酸力が強く酸化物形成に有効な
元素である。溶鋼中で酸化物を形成するには0.001
%以上含有させる必要がある。一方、0.1%を超えて
過剰に含有すると、酸化物が粗大化し延性を極端に劣化
させるため、0.001%〜0.1%の範囲に限定する
必要がある。
Al is an element which has a strong deoxidizing power and is effective for oxide formation. 0.001 to form oxides in molten steel
% Or more must be contained. On the other hand, when the content exceeds 0.1% and is excessive, the oxide becomes coarse and the ductility is extremely deteriorated. Therefore, it is necessary to limit the content to 0.001% to 0.1%.

【0033】ZrはAl同様の強い脱酸力を有し、比較
的比重の重い複合酸化物を形成することから、等軸晶化
促進には有効な元素である。溶鋼中で酸化物を形成する
には0.001%以上含有させる必要があるが、0.5
%を超えて過剰に含有すると、酸化物が粗大化し延性を
極端に劣化させるため、0.001%〜0.5%の範囲
に限定する。
Zr has a strong deoxidizing power similar to Al and forms a complex oxide having a relatively high specific gravity, and is therefore an effective element for promoting equiaxed crystallization. To form an oxide in molten steel, it is necessary to contain 0.001% or more, but 0.5
If it is contained excessively in excess of%, the oxide becomes coarse and the ductility is extremely deteriorated, so the content is limited to 0.001% to 0.5%.

【0034】Mgは強力な脱酸元素であり、多様な元素
と複合酸化物を作るため、有効である。溶鋼中で酸化物
を形成するには0.0005%以上含有させる必要があ
るが、0.02%を超えて安定に含有させると蒸発蒸気
圧が高いことから製鋼工程では危険である。したがって
0.0005%〜0.02%とする。
Mg is a strong deoxidizing element and is effective because it forms a complex oxide with various elements. In order to form an oxide in molten steel, it is necessary to contain 0.0005% or more, but if it is stably contained in excess of 0.02%, the vaporized vapor pressure is high, which is dangerous in the steelmaking process. Therefore, it is set to 0.0005% to 0.02%.

【0035】REMもまた強力な脱酸力を有し複合酸化
物の生成を促進する。溶鋼中で酸化物を形成するには
0.001%以上含有させる必要があるが、高価である
ため0.5%を超える添加は鋼板のコストを大幅に引き
上げるとともに、脱酸元素としての効果は飽和するの
で、範囲を0.001%〜0.5%とする。
REM also has a strong deoxidizing power and promotes the formation of complex oxides. In order to form an oxide in molten steel, it is necessary to contain 0.001% or more, but since it is expensive, the addition of more than 0.5% significantly raises the cost of the steel sheet and has the effect as a deoxidizing element. Since it is saturated, the range is made 0.001% to 0.5%.

【0036】Caは鋼中最大の脱酸力を有する元素であ
り、上記のいずれの元素とも複合脱酸しうる。溶鋼中で
酸化物を形成するには0.0005%以上含有させる必
要があるが、0.02%を超えて過剰に添加すると酸化
物の液状化を促進し、合体により粗大化させるので、範
囲を0.0005%〜0.02%とする。
Ca is an element having the maximum deoxidizing power in steel and can be complex deoxidized with any of the above elements. In order to form an oxide in molten steel, it is necessary to contain 0.0005% or more, but if added in excess of 0.02%, liquefaction of the oxide is promoted and coarsening is caused by coalescence. Is 0.0005% to 0.02%.

【0037】[0037]

【実施例】以上が、本発明の要件についての説明である
が、さらに、実施例に基づいて本発明の効果を示す。表
1に示すA〜F、6種の化学組成を検討した。このう
ち、A〜Dは本発明範囲の組成であり、E、Fの2種は
発明外の組成である。脱酸元素としてAはAl−Zr−
Mg、BはAl−Ca、CはMg−Ca、DはZr−R
EMを含んでいる。また、比較鋼のE、FはAl脱酸で
ある。いずれも実機転炉で溶製し、二次精錬のRHにお
いて脱酸元素を添加し、添加後5分置いて溶鋼中の溶存
酸素を測定した。その結果を表2に示す。なお、酸素測
定時の溶鋼温度はいずれの場合もほぼ1600℃で一定
であった。この溶鋼を実機の連続鋳造機で240mm厚に
鋳造した。鋳造時の溶鋼過熱度を併せて表2に示す。合
金BおよびCについては溶鋼過熱度を変化させたものも
比較例として鋳造した。鋳造後、鋳造幅の1/2を長手
方向に切断し、その断面のエッチプリントおよびオーバ
ーホッファー氏液(日本鉄鋼協会編、鉄鋼便覧第1巻、
p.206)で腐食したマクロ組織から等軸晶化率を判
定した。その結果も表2に示す。
The above is a description of the requirements of the present invention. Furthermore, the effects of the present invention will be shown based on Examples. The chemical compositions of 6 to 6 shown in Table 1 were examined. Of these, A to D are compositions within the scope of the present invention, and two kinds of E and F are compositions outside the invention. As a deoxidizing element, A is Al-Zr-
Mg, B are Al-Ca, C is Mg-Ca, D is Zr-R
Includes EM. Further, E and F of the comparative steels are Al deoxidized. All were melted in an actual converter, the deoxidizing element was added in the RH of secondary refining, and 5 minutes after the addition, the dissolved oxygen in the molten steel was measured. The results are shown in Table 2. The molten steel temperature during oxygen measurement was constant at approximately 1600 ° C in all cases. This molten steel was cast to a thickness of 240 mm by an actual continuous casting machine. Table 2 also shows the degree of superheat of molten steel during casting. Regarding alloys B and C, alloys having different superheats of molten steel were also cast as comparative examples. After casting, 1/2 of the casting width is cut in the longitudinal direction, and the cross-section is etched printed and over Hoffer liquid (edited by the Iron and Steel Institute of Japan, Iron and Steel Handbook Vol. 1,
p. The equiaxed crystallization rate was determined from the macrostructure corroded in 206). The results are also shown in Table 2.

【0038】表2から明らかなように本発明であるN
o.1〜4は70%以上の高い等軸晶化率を示したのに
対し、比較の脱酸元素を1種類しか含まないNo.5、
6の等軸晶化率は低かった。また脱酸元素を2種以上含
有しても鋳造時溶鋼過熱度の高かったNo.7、8も、
同成分のNo.2、3と比較して等軸晶化率が大幅に低
減した。
As is clear from Table 2, N which is the present invention
o. 1 to 4 showed a high equiaxed crystallization rate of 70% or more, whereas No. 1 containing only one type of comparative deoxidizing element. 5,
The equiaxed crystallization rate of 6 was low. Moreover, even if two or more kinds of deoxidizing elements were contained, No. 1 which had a high degree of superheat of molten steel during casting. 7 and 8
No. of the same component The equiaxed crystallization rate was significantly reduced as compared with 2 and 3.

【0039】これらから本発明の効果は明瞭であるが、
さらに、この鋳造鋳片から全厚の試験片を抽出し、熱処
理炉を用いて鋳片再加熱を再現し、それを急冷して再加
熱γ粒を観察した。昇温速度は実機加熱炉並の毎分6
℃、加熱温度は1000℃である。その結果、本発明の
No.1〜4の鋳片は全厚にわたってほぼ粒度が整って
いたのに対し、比較鋼はいずれも粗大粒を含む混粒組織
になっていた。さらにそれぞれの鋳片を用いて、100
0℃加熱の通常のDQTプロセスにより板厚25mmの鋼
板を作製した。その鋼板の靭性を評価したところ、本発
明鋳片を用いた場合は比較鋳片を用いた場合より高い靭
性が得られ、再加熱及び圧延時の整粒効果に依るものと
判断される。再加熱実験におけるγ粒度測定結果、およ
び25mm鋼板の靭性評価結果(シャルピーvTrs)と引張
強度を表2に併せて示した。
From these, the effect of the present invention is clear,
Furthermore, a full-thickness test piece was extracted from this cast slab, the slab reheating was reproduced using a heat treatment furnace, and the slab was rapidly cooled to observe reheated γ grains. The rate of temperature rise is 6 per minute, which is similar to that of an actual heating furnace.
The heating temperature is 1000 ° C. As a result, the No. The slabs 1 to 4 had a substantially uniform grain size over the entire thickness, whereas the comparative steels all had a mixed grain structure containing coarse grains. Further, using each cast, 100
A steel plate having a plate thickness of 25 mm was produced by a normal DQT process of heating at 0 ° C. When the toughness of the steel sheet was evaluated, higher toughness was obtained when the slab of the present invention was used than when the comparative slab was used, and it is judged that this is due to the grain size regulating effect during reheating and rolling. Table 2 also shows the γ grain size measurement result in the reheating experiment, the toughness evaluation result (Charpy vTrs) and the tensile strength of the 25 mm steel plate.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】本発明により、引張強度が780MPa 級
以上で再加熱時及び熱間圧延時に混粒を起こし難く、低
温靭性に優れた鋼板製造を可能にする高強度鋼の鋳片の
提供が可能となる。その結果、靭性に優れた高強度鋼板
の製造が可能となり、低温貯槽タンク、低温圧力容器、
海洋構造物、船舶、橋梁、ラインパイプ等へ、安全性に
極めて優れた構造材料を提供することが可能となり、産
業上の効果は極めて大きい。
Industrial Applicability According to the present invention, there is provided a slab of high-strength steel which has a tensile strength of 780 MPa or more, is unlikely to cause mixed grains during reheating and hot rolling, and enables production of a steel sheet excellent in low temperature toughness. It will be possible. As a result, it becomes possible to manufacture high-strength steel sheets with excellent toughness, and low-temperature storage tanks, low-temperature pressure vessels,
It is possible to provide structural materials with extremely high safety to marine structures, ships, bridges, line pipes, etc., and the industrial effect is extremely large.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 洋一 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 木下 浩幸 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 原 卓也 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4E004 MB20 NB01 NC01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoichi Tanaka             5-3 Tokai-cho, Tokai-shi, Aichi Nippon Steel Corporation             Ceremony Company Nagoya Steel Works (72) Inventor Hiroyuki Kinoshita             2-6-3 Otemachi, Chiyoda-ku, Tokyo New Japan             Steelmaking Co., Ltd. (72) Inventor Takuya Hara             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division F-term (reference) 4E004 MB20 NB01 NC01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.01〜0.15%、 Si:0.005〜0.5%、 Mn:0.1〜2%、 P :0.02%以下、 S :0.01%以下、 Ni:0.5〜5.5%、 N :0.001〜0.01%を含有し、さらに、 Nb:0.005〜0.5%、 Ti:0.003〜0.05%、 Mo:0.1〜2%、 Cu:0.01〜1.5%、 Cr:0.05〜2.5%、 V :0.01〜0.5%、 B :0.0005〜0.005%の1種または2種以
上、および、 Al:0.001〜0.1%、 Zr:0.001〜0.5%、 Mg:0.0005〜0.02%、 Ca:0.0005〜0.02%、 REM:0.001〜0.5%の2種以上を含有し、残
部Feおよび不可避的不純物からなり、等軸晶化率が7
0%以上であることを特徴とする高強度鋼鋳片。
1. In mass%, C: 0.01 to 0.15%, Si: 0.005 to 0.5%, Mn: 0.1 to 2%, P: 0.02% or less, S: 0.01% or less, Ni: 0.5 to 5.5%, N: 0.001 to 0.01%, and Nb: 0.005 to 0.5%, Ti: 0.003 to 0.05%, Mo: 0.1 to 2%, Cu: 0.01 to 1.5%, Cr: 0.05 to 2.5%, V: 0.01 to 0.5%, B: 0 0.0005 to 0.005%, one or more, and Al: 0.001 to 0.1%, Zr: 0.001 to 0.5%, Mg: 0.0005 to 0.02%, Ca: 0.0005 to 0.02%, REM: 0.001 to 0.5%, two or more kinds are contained, the balance is Fe and inevitable impurities, and the equiaxed crystallization rate is 7.
A high-strength steel slab that is 0% or more.
【請求項2】 質量%で、 C :0.01〜0.15%、 Si:0.005〜0.5%、 Mn:0.1〜2%、 P :0.02%以下、 S :0.01%以下、 Ni:0.5〜5.5%、 N :0.001〜0.01%を含有し、さらに、 Nb:0.005〜0.5%、 Ti:0.003〜0.05%、 Mo:0.1〜2%、 Cu:0.01〜1.5%、 Cr:0.05〜2.5%、 V :0.01〜0.5%、 B :0.0005〜0.005%の1種または2種以
上を含有し、残部Feおよび不可避的不純物からなる溶
鋼の精錬時に、 Al:0.001〜0.1%、 Zr:0.001〜0.5%、 Mg:0.0005〜0.02%、 Ca:0.0005〜0.02%、 REM:0.001〜0.5%の2種以上を同時または
逐次に添加した直後の溶存酸素が10ppm 以下である溶
鋼を溶鋼過熱度50℃以下で連続鋳造することを特徴と
する高強度鋼鋳片の鋳造方法。
2. In mass%, C: 0.01 to 0.15%, Si: 0.005 to 0.5%, Mn: 0.1 to 2%, P: 0.02% or less, S: 0.01% or less, Ni: 0.5 to 5.5%, N: 0.001 to 0.01%, and Nb: 0.005 to 0.5%, Ti: 0.003 to 0.05%, Mo: 0.1 to 2%, Cu: 0.01 to 1.5%, Cr: 0.05 to 2.5%, V: 0.01 to 0.5%, B: 0 0.005 to 0.005% of one kind or two or more kinds of Al, 0.001 to 0.1%, Zr: 0.001 to 0.1% during refining of molten steel containing the balance Fe and inevitable impurities. 2% or more of 5%, Mg: 0.0005 to 0.02%, Ca: 0.0005 to 0.02%, REM: 0.001 to 0.5% are added simultaneously or sequentially. Casting method of high strength steel cast piece, characterized in that the dissolved oxygen immediately after the continuous casting below molten steel molten steel superheat 50 ° C. to be 10ppm or less.
JP2001320388A 2001-10-18 2001-10-18 High-strength steel slab and casting method therefor Withdrawn JP2003129183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001320388A JP2003129183A (en) 2001-10-18 2001-10-18 High-strength steel slab and casting method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320388A JP2003129183A (en) 2001-10-18 2001-10-18 High-strength steel slab and casting method therefor

Publications (1)

Publication Number Publication Date
JP2003129183A true JP2003129183A (en) 2003-05-08

Family

ID=19137788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320388A Withdrawn JP2003129183A (en) 2001-10-18 2001-10-18 High-strength steel slab and casting method therefor

Country Status (1)

Country Link
JP (1) JP2003129183A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030148A (en) * 2007-06-22 2009-02-12 Sumitomo Metal Ind Ltd Method for manufacturing cold-rolled steel sheet and plated steel sheet
JP2009220163A (en) * 2008-03-18 2009-10-01 Sumitomo Metal Ind Ltd Continuously cast slab of steel whose solidification structure has equiaxed dendrite, and continuous casting method therefor
CN107058910A (en) * 2016-12-15 2017-08-18 河北工业大学 A kind of low-alloy cast steel amorphous state alterant and its preparation method and application
JP2017196626A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Continuous casting method for molten steel
JP2017196625A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Continuous casting method for molten steel
JP2020537716A (en) * 2017-10-27 2020-12-24 バオシャン アイアン アンド スティール カンパニー リミテッド Low yield ratio, ultra-high strength coiled tubing steel and its manufacturing method
CN112359281A (en) * 2020-10-26 2021-02-12 中冶陕压重工设备有限公司 ZG17CrNi2MoSYI steel and casting preparation method
CN114150222A (en) * 2021-11-28 2022-03-08 日钢营口中板有限公司 Large-thickness steel plate for low-temperature pressure container and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030148A (en) * 2007-06-22 2009-02-12 Sumitomo Metal Ind Ltd Method for manufacturing cold-rolled steel sheet and plated steel sheet
JP2009220163A (en) * 2008-03-18 2009-10-01 Sumitomo Metal Ind Ltd Continuously cast slab of steel whose solidification structure has equiaxed dendrite, and continuous casting method therefor
JP2017196626A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Continuous casting method for molten steel
JP2017196625A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Continuous casting method for molten steel
CN107058910A (en) * 2016-12-15 2017-08-18 河北工业大学 A kind of low-alloy cast steel amorphous state alterant and its preparation method and application
JP2020537716A (en) * 2017-10-27 2020-12-24 バオシャン アイアン アンド スティール カンパニー リミテッド Low yield ratio, ultra-high strength coiled tubing steel and its manufacturing method
CN112359281A (en) * 2020-10-26 2021-02-12 中冶陕压重工设备有限公司 ZG17CrNi2MoSYI steel and casting preparation method
CN114150222A (en) * 2021-11-28 2022-03-08 日钢营口中板有限公司 Large-thickness steel plate for low-temperature pressure container and manufacturing method thereof
CN114150222B (en) * 2021-11-28 2022-12-02 日钢营口中板有限公司 Large-thickness steel plate for low-temperature pressure vessel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3863878B2 (en) Welded structural steel with excellent weld heat affected zone toughness, manufacturing method thereof, and welded structure using the same
JP5177310B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP7219882B6 (en) Steel material for pressure vessel and its manufacturing method
JP5085364B2 (en) Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness
WO2006009299A1 (en) Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
JP2020509197A (en) Steel for pressure vessel excellent in resistance to hydrogen-induced cracking and method for producing the same
CN111433381B (en) High Mn steel and method for producing same
JP5589516B2 (en) Steel for thick plate
JP2016183387A (en) Thick steel plate for low temperature and production method therefor
KR100256350B1 (en) The manufacturing method for yield strength 50kgf/mm2 steel with excellent anti hydrogen cracking and stress corrosion cracking property
JP2003129183A (en) High-strength steel slab and casting method therefor
JP5428999B2 (en) LPG / ammonia mixed steel manufacturing method
JP3699670B2 (en) Manufacturing method of high strength steel sheet with excellent low temperature toughness
JPH05171341A (en) Production of thick steel plate excellent in toughness in welding heat-affected zone
JPH0757886B2 (en) Process for producing Cu-added steel with excellent weld heat-affected zone toughness
KR102508128B1 (en) Steel plate having excellent low temperature impact toughness of heat affeected zone and manufacturing mehtod for the same
JP5516013B2 (en) High-strength steel plate, continuous casting method of slabs that are materials of this high-strength steel plate, and method for producing high-strength steel
KR100856306B1 (en) Ferritic stainless steel having excellent low temperature formability of welded zone
KR100825632B1 (en) Ferritic stainless steel having excellent formability of welded zone and corrosion resistance, and method for manufacturing the same
JPH09194990A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPH0694569B2 (en) Manufacturing method of steel with excellent low temperature toughness in the heat affected zone
JP7207199B2 (en) Steel material and its manufacturing method
KR100825630B1 (en) Ferritic stainless steel having excellent formability of welded zone, and method for manufacturing the same
TWI732658B (en) Steel and its manufacturing method
JP2002241888A (en) Steel for molten zinc vessel having high high- temperature strength and little erosion

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104