JP2002241888A - Steel for molten zinc vessel having high high- temperature strength and little erosion - Google Patents

Steel for molten zinc vessel having high high- temperature strength and little erosion

Info

Publication number
JP2002241888A
JP2002241888A JP2001039376A JP2001039376A JP2002241888A JP 2002241888 A JP2002241888 A JP 2002241888A JP 2001039376 A JP2001039376 A JP 2001039376A JP 2001039376 A JP2001039376 A JP 2001039376A JP 2002241888 A JP2002241888 A JP 2002241888A
Authority
JP
Japan
Prior art keywords
steel
erosion
temperature strength
zinc
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001039376A
Other languages
Japanese (ja)
Inventor
Shuji Aihara
周二 粟飯原
Ryuji Uemori
龍治 植森
Takeshi Tsuzuki
岳史 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001039376A priority Critical patent/JP2002241888A/en
Publication of JP2002241888A publication Critical patent/JP2002241888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel for a molten zinc vessel which has high high- temperature strength and little erosion. SOLUTION: The steel for a molten zinc vessel having high high-temperature strength and little erosion has a composition containing, by mass, 0.01 to 0.2% C, <=0.05% Si, 0.01 to 2% Mn, <=0.02% P, <=0.02% S and 0.1 to 2% Mo, and further containing one or two kinds selected from 0.005 to 0.03% Nb and 0.005 to 0.05% V, and the balance Fe with inevitable impurities. Preferably, the steel further contains 0.005 to 0.05% Ti and 0.002 to 0.01% N and further contains 0.0002 to 0.06% Al and 0.0002 to 0.01% O, and one or more kinds selected from 0.0002 to 0.006% Mg, 0.0002 to 0.006% Ca and 0.0002 to 0.006% rare earth metals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼構造部材あるい
は鋼板の耐食性確保のために実施する溶融亜鉛メッキの
際に使用する溶融亜鉛貯槽用の釜あるいは容器に用いる
高温強度が高く且つ溶損が少ない溶融亜鉛釜用鋼に関す
るものである。
The present invention relates to a hot-dip galvanizing tank for use in hot-dip galvanizing for ensuring the corrosion resistance of a steel structural member or a steel plate. It relates to a small amount of steel for hot-dip galvanizing.

【0002】[0002]

【従来の技術】鋼構造部材あるいは鋼板の耐食性を増す
ために、溶融亜鉛メッキが施される。このために、45
0〜500℃程度に加熱されて溶融した亜鉛を釜あるい
は容器に貯槽し、この中に構造部材などを浸漬する、い
わゆる溶融亜鉛メッキ作業が行われる。この際に問題と
なるのは鋼製の釜あるいは容器(以下、亜鉛釜と称す
る)を長期にわたり使用すると、鋼が溶融亜鉛により溶
損することである。さらには、亜鉛釜が高温で長時間曝
されるために大きく変形して、安全性を損ねることであ
る。このような溶融亜鉛メッキ釜の損傷については、例
えば、「鉛と亜鉛」第202号(1998年3月発行)
p.11〜21に詳細な記述がある。
2. Description of the Related Art In order to increase the corrosion resistance of steel structural members or steel sheets, hot dip galvanizing is applied. For this purpose, 45
A so-called hot-dip galvanizing operation is performed in which zinc heated and melted at about 0 to 500 ° C. is stored in a pot or a container, and a structural member or the like is immersed therein. A problem in this case is that when a steel pot or container (hereinafter, referred to as a zinc pot) is used for a long time, the steel is melted and damaged by the molten zinc. Furthermore, the zinc pot is exposed to high temperature for a long time and is greatly deformed, which impairs safety. Regarding such damage to the hot-dip galvanizing pot, see, for example, “Lead and Zinc” No. 202 (issued in March 1998).
p. 11 to 21 have a detailed description.

【0003】溶融亜鉛と鋼が接触すると、亜鉛と鉄の合
金層が形成される。この際、安定な合金層が形成される
と、鋼の溶損は少ないが、合金層が不安定な場合、合金
化が進行して鋼の溶損が進行する。このような溶損の進
行を促進あるいは抑制する合金元素の影響については既
に詳細な検討がなされており、例えば、新日本製鐵
(株)製品カタログ「溶融亜鉛メッキ釜用鋼板」(昭和
55年4月)にその記載がある。これによると、溶損が
最も著しい500℃において、Siを低下させることに
より、溶損が抑制される。これはSiを低下することに
よって鉄亜鉛の合金層のうち不安定相が減少して合金層
が安定化するためである。
[0003] When molten zinc and steel come into contact, an alloy layer of zinc and iron is formed. At this time, if a stable alloy layer is formed, erosion of the steel is small, but if the alloy layer is unstable, alloying proceeds and erosion of the steel proceeds. The effects of alloying elements that promote or suppress the progress of such erosion have already been studied in detail. For example, Nippon Steel Corporation's product catalog “Steel for hot-dip galvanized pots” (1980) April). According to this, at 500 ° C. where erosion is most remarkable, erosion is suppressed by reducing Si. This is because the lowering of Si reduces the unstable phase of the iron-zinc alloy layer and stabilizes the alloy layer.

【0004】一方、亜鉛釜の使用中変形に関しては、上
記文献1によると、たとえば3年間の使用により幅2.
1mの釜が幅方向に36mmにも変形する場合があるとの
記載がある。これを回避するためには、釜を構造的に補
強する、あるいは、溶融亜鉛の温度をできるだけ下げる
こと、などの手段が講じられている。しかしながら、こ
れらの対策は亜鉛釜の製造費を上昇したり、亜鉛メッキ
作業性を阻害することがあり、好ましくない。さらに
は、亜鉛釜を製造する際には溶接が適用されるが、従来
の亜鉛釜用鋼では溶接熱影響部(以下、HAZと称す
る)の靱性確保が困難であり、小入熱溶接を適用せざる
を得ない。この場合、溶接時間が長くなり、亜鉛釜の製
造に多大の時間がかかる。
[0004] On the other hand, regarding the deformation during use of the zinc pot, according to the above-mentioned document 1, for example, a width of 2.
There is a description that a 1 m pot may be deformed as much as 36 mm in the width direction. In order to avoid this, measures have been taken to reinforce the kettle structurally or to lower the temperature of the molten zinc as much as possible. However, these measures are not preferable because they may increase the production cost of the zinc pot and hinder the galvanizing workability. Furthermore, welding is applied when manufacturing a zinc pot, but it is difficult to secure the toughness of the heat affected zone (hereinafter, referred to as HAZ) with conventional zinc pot steel. I have to do it. In this case, the welding time becomes long and it takes a lot of time to manufacture the zinc pot.

【0005】[0005]

【発明が解決しようとする課題】上記のとおり、従来使
用されている亜鉛釜に使用される鋼は低Siとすること
により亜鉛釜の溶損を低下することができるが、高温の
強度が不十分であり、使用中の亜鉛釜の変形を抑制する
ことができない。さらには、亜鉛釜の製造の際に溶接の
入熱を低くしてHAZ靱性を確保する必要があり、製造
コストがかかる。
As described above, the steel used in the conventional zinc pot can be made to have low Si to reduce the melting loss of the zinc pot, but the strength at high temperatures is not high. It is sufficient, and the deformation of the zinc pot during use cannot be suppressed. Furthermore, it is necessary to secure the HAZ toughness by lowering the heat input during welding when manufacturing the zinc pot, which increases the manufacturing cost.

【0006】亜鉛釜の信頼性を向上させ、長期使用を可
能とするためには、溶融亜鉛による溶損を少なくするこ
とと、長期使用による変形を少なくすることを同時に達
成する必要がある。本発明の目的は、上記問題を解決す
るために、溶融亜鉛による溶損が少なく、且つ、亜鉛釜
の使用中変形を抑制するために高温強度を高め、さら
に、大入熱溶接を適用してもHAZ靱性を確保すること
が可能な、溶融亜鉛釜用鋼を提供することにある。
[0006] In order to improve the reliability of the zinc pot and enable long-term use, it is necessary to simultaneously reduce erosion due to molten zinc and reduce deformation due to long-term use. The object of the present invention is to solve the above-mentioned problems, to reduce the erosion by molten zinc, and to increase the high-temperature strength to suppress deformation during use of the zinc pot, and further, to apply a large heat input welding Another object of the present invention is to provide a steel for a hot-dip zinc pot capable of ensuring HAZ toughness.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
し高温強度が高く且つ溶損が少ない溶融亜鉛釜用鋼を提
供するもので、その要旨とするところは次のとおりであ
る。 (1)質量%で、C:0.01〜0.2%、Si:0.
05%以下、Mn:0.01〜2%、P:0.02%以
下、S:0.02%以下、Mo:0.1〜2%を含有
し、さらに、Nb:0.005〜0.03%、V:0.
005〜0.05%の1種または2種を含有し、残部F
e及び不可避的不純物よりなることを特徴とする高温強
度が高く且つ溶損が少ない溶融亜鉛釜用鋼。 (2)質量%で、さらに、Ti:0.005〜0.05
%、N:0.002〜0.01%を含有することを特徴
とする前記(1)に記載の高温強度が高く且つ溶損が少
ない溶融亜鉛釜用鋼。 (3)質量%で、さらに、Al:0.0002〜0.0
6%、O:0.0002〜0.01%を含有し、且つ、
Mg:0.0002〜0.006%、Ca:0.000
2〜0.006%、REM:0.0002〜0.006
%の1種または2種以上を含有することを特徴とする前
記(1)または(2)に記載の高温強度が高く且つ溶損
が少ない溶融亜鉛釜用鋼。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems and provides a steel for a hot-dip zinc pot having high strength at high temperature and little erosion. The gist of the invention is as follows. (1) In mass%, C: 0.01 to 0.2%, Si: 0.
Mn: 0.01 to 2%, P: 0.02% or less, S: 0.02% or less, Mo: 0.1 to 2%, and Nb: 0.005 to 0% 0.03%, V: 0.
005-0.05% of one or two kinds, with the balance being F
e. and high-temperature strength and little erosion, characterized by being composed of e and unavoidable impurities. (2) In mass%, Ti: 0.005 to 0.05
%, N: 0.002 to 0.01%, wherein the steel for a hot-dip zinc pot has a high high-temperature strength and a low melting loss according to the above (1). (3) In mass%, further, Al: 0.0002 to 0.0
6%, O: 0.0002-0.01%, and
Mg: 0.0002-0.006%, Ca: 0.000
2 to 0.006%, REM: 0.0002 to 0.006
% Or more of the steel for a hot-dip zinc pot as described in the above item (1) or (2), wherein the high-temperature strength is high and the erosion is small.

【0008】[0008]

【発明の実施と形態】本発明者らは、溶融亜鉛釜用鋼の
溶損と高温強度、さらには、HAZ靱性に関する詳細な
実験調査を実施した結果、下記のような知見を得た。す
なわち、前記新日本製鐵(株)製品カタログ「溶融亜鉛
メッキ釜用鋼板」(昭和55年4月)に記載の溶融亜鉛
釜用鋼は、鉄亜鉛合金層を安定化し、溶損を抑制するた
めに、極力Si含有量を低下することが必要である。さ
らには、Cを含有させることにより、さらに溶損が減少
することが明らかとされている。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted detailed experimental investigations on the erosion and high-temperature strength of a steel for a hot-dip zinc pot, and further on the HAZ toughness, and have obtained the following findings. That is, the steel for a hot-dip galvanizing furnace described in the Nippon Steel Corporation product catalog “Steel for hot-dip galvanizing kettle” (April 1980) stabilizes the iron-zinc alloy layer and suppresses erosion. Therefore, it is necessary to reduce the Si content as much as possible. Furthermore, it has been clarified that the incorporation of C further reduces erosion.

【0009】しかしながら、これらの鋼では高温強度確
保に対する方策が採られておらず、使用中の亜鉛釜の変
形を抑制することができない。発明者らは、低Si系の
亜鉛釜用鋼にMoを含有させ、さらに、NbまたはVを
微量添加することにより高温強度を顕著に上昇させ、溶
損が少なく、且つ、使用中の亜鉛釜の変形を極力抑制す
ることができることを知見した。Moは、固溶体強化に
より高温強度を上昇させるが、これに加えてNbあるい
はVを微量添加すると、NbあるいはVの炭窒化物が鋼
中に生成し、高温における使用中にこれら炭窒化物を核
としてMo炭化物が微細に析出するために、さらに高温
強度が上昇するものである。発明者らは、実施例にも示
したように、Siを低減し、且つ、Moを含有した上で
NbまたはVを含有させることにより、亜鉛による溶損
が少なく、且つ、高温強度の高い、亜鉛釜用の鋼として
優れた特性を発揮できる鋼を見出した。
[0009] However, these steels do not take measures to ensure high-temperature strength, and cannot suppress deformation of the zinc pot during use. SUMMARY OF THE INVENTION The present inventors have added Mo to low Si-based steel for zinc pots, and further increased the high-temperature strength remarkably by adding a small amount of Nb or V, thereby reducing erosion and using zinc pots in use. It has been found that the deformation of can be suppressed as much as possible. Mo increases the high-temperature strength by solid solution strengthening, but when Nb or V is added in a small amount, carbonitrides of Nb or V are formed in the steel, and these carbonitrides are nucleated during use at high temperatures. As a result, Mo carbides are finely precipitated, so that the high-temperature strength further increases. The inventors, as shown in the examples, reduce Si, and contain Mo and then Nb or V, so that erosion by zinc is small and high-temperature strength is high. A steel that can exhibit excellent properties as a steel for zinc pots has been found.

【0010】本発明における含有元素の限定理由は下記
のとおりである。Cは、母材強度確保と高温強度確保の
ために必須の元素である。0.01%未満では母材強度
を確保できない。0.2%超では母材ならびにHAZの
靱性低下が大きくなる。従ってCを0.01〜0.2%
に限定する。
The reasons for limiting the contained elements in the present invention are as follows. C is an essential element for securing the base material strength and the high-temperature strength. If it is less than 0.01%, the base material strength cannot be secured. If it exceeds 0.2%, the toughness of the base material and HAZ is greatly reduced. Therefore, C is 0.01-0.2%
Limited to.

【0011】Siは、溶融亜鉛による溶損を促進する元
素であり、極力低いほうがよく、0.05%超では溶損
が大きくなるので、上限を0.05%とする。しかし、
0.01%未満で溶損が著しく減少するので、0.01
%以上とすることが好ましい。
Si is an element that promotes erosion by molten zinc, and the lower the better, the better the erosion if it exceeds 0.05%. Therefore, the upper limit is made 0.05%. But,
Less than 0.01% significantly reduces erosion.
% Is preferable.

【0012】Mnは、母材強度確保に有効な元素であ
る。0.01%未満ではその効果が得られない。2%超
では母材とHAZの靱性確保が困難となる。従って、M
nの範囲を0.01〜2%とした。
Mn is an element effective for securing the base material strength. If it is less than 0.01%, the effect cannot be obtained. If it exceeds 2%, it becomes difficult to secure the toughness of the base material and HAZ. Therefore, M
The range of n was set to 0.01 to 2%.

【0013】Pは、母材とHAZの靱性を低下させる元
素であり、低いほうがよい。また、Pが高いと粒界強度
を弱めて亜鉛の粒界侵入を容易とするために、溶損が多
くなるとともに、溶融亜鉛メッキ割れを発生しやするな
る。かかる観点からPの上限を0.02%とした。
[0013] P is an element that lowers the toughness of the base material and HAZ, and the lower the better. On the other hand, when P is high, the grain boundary strength is weakened, and zinc easily enters the grain boundary, so that erosion is increased and hot-dip galvanizing cracks are likely to occur. From such a viewpoint, the upper limit of P is set to 0.02%.

【0014】Sは、母材をHAZの靱性を低下させる元
素であり、低いほうがよい。しかし、0.02%超では
靱性確保が困難となるので、0.02%を上限とした。
S is an element which lowers the toughness of the base material HAZ, and the lower the better. However, if it exceeds 0.02%, it becomes difficult to secure toughness, so 0.02% was made the upper limit.

【0015】Moは、本発明で必須の元素である。0.
1%未満では高温強度を上昇させる効果が顕著でない。
2%超含有すると高温強度は上昇するものの、粗大炭化
物を生成して母材とHAZの靱性低下が著しくなる。従
って、Moの範囲を0.1〜2%とした。
Mo is an essential element in the present invention. 0.
If it is less than 1%, the effect of increasing the high-temperature strength is not significant.
When the content exceeds 2%, the high-temperature strength increases, but coarse carbides are formed and the toughness of the base material and the HAZ is significantly reduced. Therefore, the range of Mo is set to 0.1 to 2%.

【0016】NbとVは、Moとともに含有させること
により、Mo単独の場合よりも高温強度を上昇させる元
素であり、必要に応じて1種または2種を含有させるこ
とができる。Nbは0.005%未満では高温強度上昇
の効果が顕著でない。また、0.03%超ではHAZ靱
性の低下が顕著となる。従ってNbの範囲を0.005
〜0.03%とした。Vは0.005%未満では高温強
度上昇の効果が顕著でない。また、0.05%超ではH
AZ靱性の低下が顕著となる。従って、Vの範囲を0.
005〜0.05%とした。
Nb and V are elements that increase the high-temperature strength when Mo is contained together with Mo alone, and one or two of them can be contained as necessary. If Nb is less than 0.005%, the effect of increasing the high-temperature strength is not significant. If it exceeds 0.03%, the HAZ toughness significantly decreases. Therefore, the range of Nb is set to 0.005.
-0.03%. If V is less than 0.005%, the effect of increasing the high-temperature strength is not significant. On the other hand, if it exceeds 0.05%, H
The decrease in AZ toughness is significant. Therefore, the range of V is set to 0.
005 to 0.05%.

【0017】亜鉛釜の製造には溶接が不可避である。従
来の亜鉛釜用鋼では、HAZの靱性を確保するために溶
接入熱を低く抑える必要があった。結果として、溶接施
工の時間が多大となり、製造コストの上昇を来す。本課
題を解決するために、下記の元素を含有させることによ
り大入熱溶接を適用してもHAZ靱性の確保ができる。
Welding is inevitable in the production of zinc pots. In the conventional steel for a zinc pot, it was necessary to keep the welding heat input low in order to secure the toughness of the HAZ. As a result, the time required for welding is increased, and the production cost is increased. In order to solve this problem, HAZ toughness can be ensured even by applying large heat input welding by including the following elements.

【0018】TiはNとともに含有させることにより微
細なTiNを鋼中に生成し、これがHAZのオーステナ
イト結晶粒の粗大化を防止することができる。さらには
TiNの上にMnSを析出させて、溶接熱サイクルの途
上でこの複合析出物から微細なフェライトを生成させる
ことができる。これらの効果により大入熱溶接でもHA
Z靱性を確保できる。Tiが0.005%未満では上記
効果が得られない。0.05%超では粗大なTiNやT
iCが析出するために母材とHAZの靱性を低下させ
る。従って、Tiの範囲を0.005〜0.05%とす
る。
By containing Ti together with N, fine TiN is formed in the steel, which can prevent the austenite crystal grains of the HAZ from becoming coarse. Further, MnS can be precipitated on TiN, and fine ferrite can be generated from the composite precipitate during the welding thermal cycle. Due to these effects, even in high heat input welding, HA
Z toughness can be ensured. If the Ti content is less than 0.005%, the above effects cannot be obtained. If it exceeds 0.05%, coarse TiN or T
Precipitation of iC lowers the toughness of the base metal and HAZ. Therefore, the range of Ti is set to 0.005 to 0.05%.

【0019】NはTiNを生成させるために必須の元素
である。0.002%未満ではTiN析出量が少なく、
HAZ靱性向上効果が顕著でない。0.01%超では地
鉄中に固溶するN量が増えるために母材とHAZの靱性
を低下させる。従って、Nを0.002〜0.01%に
限定した。
N is an essential element for producing TiN. If it is less than 0.002%, the TiN precipitation amount is small,
The effect of improving the HAZ toughness is not significant. If it exceeds 0.01%, the amount of N which forms a solid solution in the base iron increases, so that the toughness of the base metal and the HAZ decreases. Therefore, N was limited to 0.002 to 0.01%.

【0020】Mg、Ca、REMは、単独で酸化物、硫
化物、ないしはこれらの複合物、さらには、Alと複合
した酸化物を生成し、これらの微細粒子がピン止め作用
によりHAZにおけるオーステナイト粒成長を抑制し、
あるいは、溶接熱サイクルの冷却過程においてこれら粒
子が核となって微細なフェライトを生成することによっ
てHAZ組織を微細化し、HAZ靱性を向上させる効果
がある。このような効果は特に大入熱溶接において顕著
に現れる。本発明では亜鉛釜用鋼にこれら元素を含有さ
せることにより、亜鉛釜製造における大入熱溶接を可能
とすることができる。
Mg, Ca, and REM alone generate oxides, sulfides, or composites thereof, or oxides composited with Al, and these fine particles are pinned to form austenite grains in the HAZ. Restrain growth,
Alternatively, in the cooling process of the welding heat cycle, these particles serve as nuclei to generate fine ferrite, thereby reducing the HAZ structure and improving the HAZ toughness. Such an effect is particularly remarkable in large heat input welding. In the present invention, large heat input welding in the production of a zinc pot can be made possible by including these elements in the steel for the zinc pot.

【0021】Alは、Mg、Ca、REMの1種または
2種以上と複合して酸化物を生成させる。0.06%超
では複合酸化物が生成されず、アルミナを生成してしま
うため、上記効果が得られない。また、0.0002%
未満とすることは製鋼上のコスト高を来すので工業的に
適当ではない。従って、Alの範囲を0.0002〜
0.06%とした。顕著な効果を得るためには0.00
1〜0.01%とすることが望ましい。
Al forms an oxide in combination with one or more of Mg, Ca, and REM. If the content exceeds 0.06%, a composite oxide is not generated and alumina is generated, so that the above effects cannot be obtained. 0.0002%
It is industrially unsuitable to make the amount less than the above because it increases the cost for steelmaking. Therefore, the range of Al is 0.0002-
0.06%. 0.00 for a noticeable effect
It is desirable to set it to 1 to 0.01%.

【0022】Oは、酸化物あるいは硫化物と酸化物の複
合物を生成するために必要な元素である。0.01%超
では粗大酸化物を生成するために上記効果が得られない
だけでなく、母材の強度延性も阻害する。また、0.0
002%未満とすることは製鋼上のコスト高を来すので
工業的に適当ではない。従って、Oの範囲を0.000
2〜0.01%とした。顕著な効果を得るためには0.
001〜0.005%とすることが望ましい。
O is an element necessary for forming an oxide or a composite of a sulfide and an oxide. If it exceeds 0.01%, the above effect cannot be obtained due to the formation of a coarse oxide, and the strength ductility of the base material is impaired. Also, 0.0
If the content is less than 002%, the cost for steelmaking is increased, so that it is not industrially suitable. Therefore, the range of O is 0.000
2 to 0.01%. In order to obtain a remarkable effect, use 0.
001-0.005% is desirable.

【0023】Mg、Ca、REMは、1種または2種以
上を含有させて微細な酸化物、硫化物、あるいはこれら
の混合物を生成することにより上記効果を発揮する。こ
れら元素が0.0002%未満では充分な量の酸化物、
硫化物、あるいはこれらの複合物を生成することができ
ない。0.006%超では粗大な粒子を生成してかえっ
てHAZ靱性の低下を来す。従って、これら元素の含有
範囲を0.0002〜0.006%とした。HAZ靱性
向上効果を最も発揮するためには0.001〜0.00
3%とすることが望ましい。
Mg, Ca, and REM exhibit the above-mentioned effects by containing one or more of them to form fine oxides, sulfides, or mixtures thereof. When these elements are less than 0.0002%, a sufficient amount of oxides,
Inability to form sulfides or their composites. If it exceeds 0.006%, coarse particles are formed and the HAZ toughness is reduced. Therefore, the content range of these elements is set to 0.0002 to 0.006%. To maximize the effect of improving HAZ toughness, 0.001 to 0.00
It is desirable to set it to 3%.

【0024】本発明では、厚板を主な対象とするが、そ
の製造法を特に限定する必要はなく、例えば、連続鋳造
スラブをオーステナイト域に加熱後、再結晶域で熱間圧
延後空冷、再結晶域及び未再結晶域で圧延後空冷(制御
圧延)、熱間圧延後フェライト域まで冷却後再度オース
テナイト域に加熱後空冷(焼きならし)、再結晶域圧延
後水冷またはその後焼き戻し(直接焼き入れ、または、
直接焼き入れ焼き戻し)、再結晶域及び未再結晶域圧延
後制御冷却またはその後焼き戻し(制御圧延制御冷却、
または、制御圧延制御冷却焼き戻し)、あるいは、熱間
圧延後フェライト域まで冷却し再度オーステナイト域に
加熱後水冷またはその後焼き戻し(焼き入れ、または、
焼き入れ焼き戻し)などの製造プロセスを適用すること
ができる。これらのプロセスは、必要とする母材強度靱
性のレベルに応じて選択すればよい。
In the present invention, the main object is a thick plate, but there is no particular limitation on the manufacturing method. For example, a continuous cast slab is heated to an austenite region, hot-rolled in a recrystallization region, and air-cooled. After rolling in the recrystallized and unrecrystallized regions, air cooling (control rolling), cooling to the ferrite region after hot rolling, heating again to the austenite region, air cooling (normalizing), rolling in the recrystallization region, water cooling or tempering ( Direct quenching, or
Direct quenching and tempering), recrystallization zone and non-recrystallization zone, controlled cooling after rolling or tempering afterwards (controlled rolling controlled cooling,
Or, control rolling control cooling tempering) or, after hot rolling, cooling to the ferrite region, heating again to the austenitic region, then water cooling or tempering (quenching, or
A manufacturing process such as quenching and tempering can be applied. These processes may be selected according to the required base material strength toughness level.

【0025】[0025]

【実施例】(実施例1)上記効果を確認するために以下
に示す実験を実施した。表1に示す合金組成を有する鋼
塊を実験室真空溶解炉により製造し、これを1200℃
に加熱後、20mm厚さに熱間圧延して、鋼板を製造し
た。この鋼より短冊状の試験片を加工し、500℃の溶
融亜鉛中に浸漬して溶損量を測定した。一方、高温強度
を測定するために、クリープ試験を実施した。試験片を
500℃に保持した状態で150MPa の応力を負荷し、
破断時間を測定した。
EXAMPLES (Example 1) In order to confirm the above effects, the following experiment was conducted. A steel ingot having the alloy composition shown in Table 1 was produced in a laboratory vacuum melting furnace,
And then hot-rolled to a thickness of 20 mm to produce a steel sheet. A strip-shaped test piece was processed from this steel, and immersed in molten zinc at 500 ° C. to measure the amount of erosion. On the other hand, a creep test was performed to measure the high-temperature strength. With the test specimen kept at 500 ° C, a stress of 150 MPa was applied,
The break time was measured.

【0026】表2に、溶融亜鉛中における鋼の溶損量を
示す。Siが本発明範囲外である鋼2では著しい溶損を
示すが、それ以外の鋼の溶損量は少ない。Mo、Nb、
Vを含有する鋼もSi量を本発明範囲内とすれば、溶損
量は少ない。特に、Siが0.01%未満の鋼4と鋼6
では溶損量が特に少ない。表3に、クリープ試験結果を
示す。Mo、Nb、Vのいずれも含有しない鋼1及び鋼
2では破断時間が短い。一方、Moを含有する鋼3では
破断時間が長くなる。Moに加えてNb、Vを含有する
鋼4〜6では、鋼3よりも破断時間がさらに長くなる。
Table 2 shows the amount of erosion of steel in molten zinc. Steel 2 in which Si is out of the range of the present invention shows remarkable erosion, but the other steels have a small amount of erosion. Mo, Nb,
V-containing steel also has a small amount of erosion if the amount of Si is within the range of the present invention. In particular, steel 4 and steel 6 with less than 0.01% Si
In particular, the amount of erosion is particularly small. Table 3 shows the results of the creep test. In steels 1 and 2, which do not contain any of Mo, Nb and V, the rupture time is short. On the other hand, the steel 3 containing Mo has a longer rupture time. In steels 4 to 6 containing Nb and V in addition to Mo, the rupture time is longer than that of steel 3.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】(実施例2)転炉により鋼を溶製し、連続
鋳造により厚さが240mmのスラブを製造した。表4
に、鋼材の化学成分を示す。表5に、再結晶域熱間圧延
後空冷により製造した鋼板の板厚、母材の機械的性質を
示す。表6に、鋼板から加工した短冊状試験片を500
℃の溶融亜鉛中に浸漬して溶損量を測定した結果を示
す。同表から明らかなように、本発明鋼は溶損量が少な
い。また、同表には500℃、負荷応力150MPa にお
けるクリープ破断時間を示す。本発明鋼は高いクリープ
強度を示す。比較鋼14は溶損量は少ないが、クリープ
破断時間が短い。また、比較鋼16、17はクリープ破
断時間は長いが、溶損量が大きい。
Example 2 Steel was melted by a converter and a slab having a thickness of 240 mm was manufactured by continuous casting. Table 4
The chemical composition of steel is shown below. Table 5 shows the thickness of the steel sheet manufactured by air cooling after hot rolling in the recrystallization region and the mechanical properties of the base material. Table 6 shows that a strip test piece processed from a steel plate was 500
The result of measuring the amount of erosion by immersion in molten zinc at ℃ is shown. As is clear from the table, the steel of the present invention has a small amount of erosion. The table also shows the creep rupture time at 500 ° C. and a load stress of 150 MPa. The steel of the present invention exhibits high creep strength. Comparative steel 14 has a small amount of erosion but a short creep rupture time. Comparative steels 16 and 17 have a long creep rupture time, but have a large amount of erosion.

【0031】クリープ強度向上による亜鉛釜の使用中変
形抑制効果を確認するために、発明鋼8と比較鋼14に
ついて幅2.1m、長さ7m、深さ1.9m(板厚50
mm)の亜鉛釜を製造し、使用3年後の幅方向変形量を測
定した。比較鋼では30〜36mmであったのに対して、
発明鋼では5〜13mmであった。発明鋼を使用した釜の
変形量は小さく優れた特性を示す。
In order to confirm the effect of suppressing the deformation during use of the zinc pot by improving the creep strength, the invention steel 8 and the comparative steel 14 were 2.1 m in width, 7 m in length and 1.9 m in depth (sheet thickness of 50 m).
mm) was manufactured, and the amount of deformation in the width direction after three years of use was measured. Whereas the comparative steel was 30-36mm,
In the case of the invention steel, it was 5 to 13 mm. The pot using the invention steel has a small deformation amount and exhibits excellent characteristics.

【0032】表7にサブマージアーク溶接継手を作成
し、HAZ靱性を評価した結果を示す。ここで、溶接入
熱を75kJ/cmとした。請求項2または3に対応する本
発明鋼は、比較鋼に比して大入熱溶接HAZの靱性が高
く、入熱を高くした高能率溶接が可能であることが確認
できた。
Table 7 shows the results of preparing submerged arc welded joints and evaluating the HAZ toughness. Here, the welding heat input was set to 75 kJ / cm. It was confirmed that the steel of the present invention corresponding to claim 2 or 3 has high toughness of the high heat input welding HAZ as compared with the comparative steel, and enables high efficiency welding with high heat input.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【表7】 [Table 7]

【0037】[0037]

【発明の効果】以上説明したとおり、本発明鋼では亜鉛
釜用鋼として最も重要な特性である耐溶損性能に優れた
上に、長期使用中の釜の変形が少なく、亜鉛釜としての
特性が優れる。信頼性の高い亜鉛釜を製造するためには
溶損が少ないことと変形が少ないことを同時に達成する
ことが必要であり、このためには本発明鋼を用いること
によって初めて可能となる。さらに、大入熱溶接をして
もHAZの靱性低下が少なく、大入熱溶接を適用して亜
鉛釜を効率的に製造することが可能で、製造コスト低減
にも寄与するものである。従って、本発明は産業上の価
値の極めて高い発明であるといえる。
As described above, the steel of the present invention is excellent in erosion resistance, which is the most important property as a steel for a zinc pot, and has little deformation of the pot during long-term use, and has the characteristics as a zinc pot. Excellent. In order to produce a highly reliable zinc pot, it is necessary to simultaneously achieve low erosion and low deformation, and this can only be achieved by using the steel of the present invention. Furthermore, even if the large heat input welding is performed, the toughness of the HAZ is hardly reduced, and the zinc pot can be efficiently manufactured by applying the large heat input welding, thereby contributing to a reduction in manufacturing cost. Therefore, it can be said that the present invention is an invention having extremely high industrial value.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.01〜0.2%、 Si:0.05%以下、 Mn:0.01〜2%、 P :0.02%以下、 S :0.02%以下、 Mo:0.1〜2%を含有し、さらに、 Nb:0.005〜0.03%、 V :0.005〜0.05%の1種または2種を含有
し、残部Fe及び不可避的不純物よりなることを特徴と
する高温強度が高く且つ溶損が少ない溶融亜鉛釜用鋼。
1. Mass%, C: 0.01 to 0.2%, Si: 0.05% or less, Mn: 0.01 to 2%, P: 0.02% or less, S: 0.02 % Or less, Mo: 0.1 to 2%, Nb: 0.005 to 0.03%, V: 0.005 to 0.05%, and the balance Fe And a high-temperature strength and low melting loss steel for molten zinc pots, characterized by being composed of unavoidable impurities.
【請求項2】 質量%で、さらに、 Ti:0.005〜0.05%、 N :0.002〜0.01%を含有することを特徴と
する請求項1に記載の高温強度が高く且つ溶損が少ない
溶融亜鉛釜用鋼。
2. The high-temperature strength according to claim 1, wherein the steel further contains 0.005 to 0.05% of Ti and 0.002 to 0.01% of N in mass%. Steel for hot-dip zinc pot with low erosion.
【請求項3】 質量%で、さらに、 Al:0.0002〜0.06%、 O :0.0002〜0.01%を含有し、且つ、 Mg:0.0002〜0.006%、 Ca:0.0002〜0.006%、 REM:0.0002〜0.006%の1種または2種
以上を含有することを特徴とする請求項1または2に記
載の高温強度が高く且つ溶損が少ない溶融亜鉛釜用鋼。
3. The composition further contains, by mass%, Al: 0.0002 to 0.06%, O: 0.0002 to 0.01%, Mg: 0.0002 to 0.006%, and Ca 3. High temperature strength and melting damage according to claim 1 or 2, characterized by containing one or more of 0.0002 to 0.006% and REM: 0.0002 to 0.006%. Low-temperature steel for hot-dip zinc pots.
JP2001039376A 2001-02-16 2001-02-16 Steel for molten zinc vessel having high high- temperature strength and little erosion Pending JP2002241888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001039376A JP2002241888A (en) 2001-02-16 2001-02-16 Steel for molten zinc vessel having high high- temperature strength and little erosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001039376A JP2002241888A (en) 2001-02-16 2001-02-16 Steel for molten zinc vessel having high high- temperature strength and little erosion

Publications (1)

Publication Number Publication Date
JP2002241888A true JP2002241888A (en) 2002-08-28

Family

ID=18902176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001039376A Pending JP2002241888A (en) 2001-02-16 2001-02-16 Steel for molten zinc vessel having high high- temperature strength and little erosion

Country Status (1)

Country Link
JP (1) JP2002241888A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235979B1 (en) * 2010-06-29 2013-02-28 현대제철 주식회사 Plating bath for fabricating galvanized steel and method for fabricating the same
JP2013177682A (en) * 2012-02-08 2013-09-09 Nippon Steel & Sumitomo Metal Corp Steel plate for molten zinc bath equipment excellent in resistance to molten zinc corrosion and resistance to zinc-induced cracking and method for producing the same
JP2013177681A (en) * 2012-02-08 2013-09-09 Nippon Steel & Sumitomo Metal Corp Steel plate for molten zinc bath equipment excellent in resistance to molten zinc corrosion and resistance to zinc-induced cracking and method for producing the same
JP7334771B2 (en) 2020-12-18 2023-08-29 Jfeスチール株式会社 Steel for the shell of the container for the melt, the shell of the container for containing the melt, and the container for containing the melt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130310A (en) * 1973-04-20 1974-12-13
JP2000234139A (en) * 1999-02-09 2000-08-29 Nippon Steel Corp High tensile strength steel for welding excellent in toughness of welding heat affected zone and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130310A (en) * 1973-04-20 1974-12-13
JP2000234139A (en) * 1999-02-09 2000-08-29 Nippon Steel Corp High tensile strength steel for welding excellent in toughness of welding heat affected zone and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235979B1 (en) * 2010-06-29 2013-02-28 현대제철 주식회사 Plating bath for fabricating galvanized steel and method for fabricating the same
JP2013177682A (en) * 2012-02-08 2013-09-09 Nippon Steel & Sumitomo Metal Corp Steel plate for molten zinc bath equipment excellent in resistance to molten zinc corrosion and resistance to zinc-induced cracking and method for producing the same
JP2013177681A (en) * 2012-02-08 2013-09-09 Nippon Steel & Sumitomo Metal Corp Steel plate for molten zinc bath equipment excellent in resistance to molten zinc corrosion and resistance to zinc-induced cracking and method for producing the same
JP2017122280A (en) * 2012-02-08 2017-07-13 新日鐵住金株式会社 Molten zinc bath installation
JP2017133106A (en) * 2012-02-08 2017-08-03 新日鐵住金株式会社 Molten zinc bath facility
JP7334771B2 (en) 2020-12-18 2023-08-29 Jfeスチール株式会社 Steel for the shell of the container for the melt, the shell of the container for containing the melt, and the container for containing the melt

Similar Documents

Publication Publication Date Title
JP5177310B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP4959161B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility
JP5354600B2 (en) High-strength galvanized DP steel sheet with excellent mechanical properties and surface quality and method for producing the same
JP6115691B1 (en) Steel plate and enamel products
WO2007029515A1 (en) High-toughness wear-resistant steel exhibiting little hardness change in service and process for production thereof
JP2013500391A (en) Method for producing ultra-low carbon steel slab, strip or sheet
JP4751152B2 (en) Hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and hole expansibility, alloyed hot-dip galvanized high-strength steel sheet, and methods for producing them
CN102712978A (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
CA2868278C (en) Cost-effective ferritic stainless steel
JP5428999B2 (en) LPG / ammonia mixed steel manufacturing method
CN106563888A (en) High-cost-performance submerged-arc welding wire and producing method thereof
JP3436857B2 (en) Thin steel sheet excellent in press formability with few defects and method for producing the same
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
CN111108225B (en) Steel sheet and method for producing same
WO1993017143A1 (en) High-chromium and high-phosphorus ferritic stainless steel excellent in weatherproofness and rustproofness
JP3570376B2 (en) Steel material excellent in corrosion resistance of crude oil tank and its manufacturing method
JP5546178B2 (en) Ferritic / austenitic stainless steel with excellent ingot crack resistance and workability and method for producing the same
JP2002241888A (en) Steel for molten zinc vessel having high high- temperature strength and little erosion
JP2003129183A (en) High-strength steel slab and casting method therefor
WO2022145061A1 (en) Steel material
WO2022145068A1 (en) Steel material
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
KR100825632B1 (en) Ferritic stainless steel having excellent formability of welded zone and corrosion resistance, and method for manufacturing the same
JPS59166655A (en) High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof
TWI732658B (en) Steel and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706