JP5354600B2 - High-strength galvanized DP steel sheet with excellent mechanical properties and surface quality and method for producing the same - Google Patents

High-strength galvanized DP steel sheet with excellent mechanical properties and surface quality and method for producing the same Download PDF

Info

Publication number
JP5354600B2
JP5354600B2 JP2009528186A JP2009528186A JP5354600B2 JP 5354600 B2 JP5354600 B2 JP 5354600B2 JP 2009528186 A JP2009528186 A JP 2009528186A JP 2009528186 A JP2009528186 A JP 2009528186A JP 5354600 B2 JP5354600 B2 JP 5354600B2
Authority
JP
Japan
Prior art keywords
steel sheet
steel
mechanical properties
surface quality
strength galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009528186A
Other languages
Japanese (ja)
Other versions
JP2010502845A (en
Inventor
リョン ソン、イル
ジェ カン、ヒ
グン ジン、クォン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2010502845A publication Critical patent/JP2010502845A/en
Application granted granted Critical
Publication of JP5354600B2 publication Critical patent/JP5354600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling

Description

本発明は、主として車両の内装、外装、及び構造用に使われる、機械的性質及び表面品質に優れた高強度DP(Dual Phase)鋼に係り、より詳しくは、従来の高強度DP鋼より製造が容易で、より優れた表面品質及び機械的な特性を有する高強度亜鉛メッキDP鋼板及びその製造方法に関する。
The present invention relates to a high strength DP (Dual Phase) steel having excellent mechanical properties and surface quality, which is mainly used for interior, exterior and structure of a vehicle, and more specifically, manufactured from a conventional high strength DP steel. The present invention relates to a high-strength galvanized DP steel sheet having a superior surface quality and mechanical properties, and a method for producing the same.

最近の自動車用成形品が複雑化、集積化する傾向により、自動車用鋼板は、より高い成形性を有することが要求される。一方、よく知られたように、自動車用鋼板は、自動車の有用性を向上させるために、加工脆性及び溶接部の疲労特性に優れていなければならない。更に、自動車用鋼板は、美麗さでも満足できるメッキ表面を持たなければならない。   Due to the tendency of recent automotive molded products to become complicated and integrated, automotive steel sheets are required to have higher formability. On the other hand, as is well known, a steel sheet for automobiles must be excellent in work brittleness and fatigue properties of welds in order to improve the usefulness of automobiles. Furthermore, the steel sheet for automobiles must have a plated surface that is satisfactory even in beauty.

一般に、鋼板の成形性及び強度を上げるためには、鋼板を製造するのにケイ素(Si)、マンガン(Mn)、チタン(Ti)、ニオブ(Nb)、アルミニウム(Al)のような材質強化成分を添加する。しかしながら、これらの成分の大部分は鉄(Fe)より強い酸素親和性を有する成分であるため、冷延焼鈍工程中に酸化物の表面濃縮を起こす。   In general, in order to increase the formability and strength of a steel sheet, the material strengthening component such as silicon (Si), manganese (Mn), titanium (Ti), niobium (Nb), aluminum (Al) is used to manufacture the steel sheet Add. However, most of these components are components having a stronger oxygen affinity than iron (Fe), and thus cause surface concentration of the oxide during the cold rolling annealing process.

このような酸化物の表面濃縮は、メッキ剥がれなどのメッキ品質の低下が生じることがある。また、表面濃縮物が粗いものであれば、連続焼鈍炉のハースロール(Hearth Roll)に付着してメッキ鋼板の表面にくぼみなどの欠陥を生じさせる要因となる。   Such surface concentration of the oxide may cause deterioration in plating quality such as plating peeling. In addition, if the surface concentrate is rough, it may adhere to the hearth roll of the continuous annealing furnace and cause defects such as dents on the surface of the plated steel sheet.

上述のようなメッキ欠陥の問題を改善すべく、日本の高炉各社によって公知の深加工(deep processing)用薄層鋼板の製造技術が開発された。 In order to improve the above-mentioned problem of plating defects, Japanese blast furnace companies have developed a known technique for manufacturing a thin steel sheet for deep processing.

要約すれば、クロム(Cr)、アンチモン(Sb)、および錫(Sn)などの特定の成分を添加することにより、メッキ性能を向上させる方法が開示されている(例えば、特許文献1、特許文献2、特許文献3、特許文献4、及び特許文献5を参照)。または冷延工程前に熱延コイルを予備酸化することによって、冷延焼鈍工程で表面濃縮物が生成するのを阻止する方法が示された(例えば特許文献6を参照)。しかし、これら方法は具体的な成分添加の効果が明確でなく、添加成分の冶金学的な挙動が明確に検証されていない。このため、この製造方法は不十分で加工性に欠けると考えられた。   In summary, methods for improving plating performance by adding specific components such as chromium (Cr), antimony (Sb), and tin (Sn) are disclosed (for example, Patent Document 1 and Patent Document 1). 2, see Patent Document 3, Patent Document 4, and Patent Document 5). Alternatively, a method of preventing the formation of a surface concentrate in the cold rolling annealing process by pre-oxidizing the hot rolled coil before the cold rolling process has been shown (for example, see Patent Document 6). However, in these methods, the effect of adding specific components is not clear, and the metallurgical behavior of the added components is not clearly verified. For this reason, it was thought that this manufacturing method was insufficient and lacked processability.

更に、上記の従来技術の幾つかは、現在の一般的な熱延−冷延−連続焼鈍の設備では実施できない製造法であるため、実際に商業的な生産は行われていない。   Furthermore, since some of the above-mentioned conventional techniques are manufacturing methods that cannot be carried out with the current general hot-rolling-cold-rolling-continuous annealing equipment, there is no actual commercial production.

特開2002−146477号公報JP 2002-146477 A 特開2001−64750号公報JP 2001-64750 A 特開2002−294397号公報JP 2002-29497A 特開2002−155317号公報JP 2002-155317 A 大韓民国出願番号第2005−0128666号明細書Korean Application No. 2005-0128666 Specification 特開2001−288550号公報JP 2001-288550 A

本発明は従来の問題点を改善するため行われたものであって、本発明の課題は、合金成分と熱延工程の巻取り温度を適切に制御することによって、優れた機械的性能と表面品質を有する高強度の亜鉛メッキDP鋼板を従来の高強度DP鋼より容易に生産する方法を確立する方法を提供することにある。
The present invention has been made to improve the conventional problems. The object of the present invention is to control the alloy components and the coiling temperature of the hot rolling process appropriately, thereby improving the mechanical performance and surface. An object of the present invention is to provide a method for establishing a method for producing a high-strength galvanized DP steel sheet having quality more easily than conventional high-strength DP steel.

上記の課題を達成するための本発明の機械的な性質及び表面品質に優れた高強度亜鉛メッキDP鋼板は、重量%で、炭素(C)0.01乃至0.2%、ケイ素(Si)0.01乃至1.5%、マンガン(Mn)0.2乃至4.0%、リン(P)0.001乃至0.1%、硫黄(S)0.03%以下、アルミニウム(Al)0.01乃至1.5%、窒素(N)0.001乃至0.03%、及びアンチモン(Sb)0.005乃至0.1%を含み、選択にホウ素(B)0.0002乃至0.005%、クロム(Cr)0.01乃至2.0%、及びモリブデン(Mo)0.005乃至0.5%、の中の1種以上を含み、残部の鉄(Fe)とその他の不可避な不純物から成る組成を有し、
前記組成が、下式(1)の関係を満たし、
且つ、表面に厚さが1μm以下の酸化物層を有することを特徴とする。

Figure 0005354600
The high-strength galvanized DP steel sheet having excellent mechanical properties and surface quality according to the present invention for achieving the above-mentioned problems is carbon (C) 0.01 to 0.2%, silicon (Si) by weight%. 0.01 to 1.5%, manganese (Mn) 0.2 to 4.0%, phosphorus (P) 0.001 to 0.1%, sulfur (S) 0.03% or less, aluminum (Al) 0 0.01 to 1.5%, nitrogen (N) 0.001 to 0.03%, and antimony (Sb) 0.005 to 0.1% , and boron (B) 0.0002 to 0.00% selectively. Including at least one of 005%, chromium (Cr) 0.01 to 2.0%, and molybdenum (Mo) 0.005 to 0.5%, with the balance of iron (Fe) and other inevitable Having a composition consisting of impurities,
The composition satisfies the relationship of the following formula (1),
In addition, an oxide layer having a thickness of 1 μm or less is provided on the surface.
Figure 0005354600

また、本発明の機械的な性質及び表面品質に優れた高強度亜鉛メッキDP鋼板の製造方法は、重量%で、炭素(C)0.01乃至0.2%、ケイ素(Si)0.01乃至1.5%、マンガン(Mn)0.2乃至4.0%、リン(P)0.001乃至0.1%、硫黄(S)0.03%以下、アルミニウム(Al)0.01乃至1.5%、窒素(N)0.001乃至0.03%、及びアンチモン(Sb)0.005乃至0.1%を含み、選択的にホウ素(B)0.0002乃至0.005%、クロム(Cr)0.01乃至2.0%、及びモリブデン(Mo)0.005乃至0.5%の中の1種以上を含み、残部の鉄(Fe)とその他の不可避な不純物から成る組成を有し、且つ前記組成が下式(1)を満たす鋼スラブを、1100℃乃至1250℃に再加熱する工程と、
該鋼スラブを熱間圧延する工程と、
下式(2)を満たす巻取り温度(CT)±20℃の温度範囲で巻取りする工程と、
酸洗及び冷間圧延を実施する工程と、
700℃乃至860℃で焼鈍するする工程と、
を含むことを特徴とする。

Figure 0005354600
In addition, the method for producing a high-strength galvanized DP steel sheet having excellent mechanical properties and surface quality according to the present invention includes carbon (C) 0.01 to 0.2%, silicon (Si) 0.01% by weight. To 1.5%, manganese (Mn) 0.2 to 4.0%, phosphorus (P) 0.001 to 0.1%, sulfur (S) 0.03% or less, aluminum (Al) 0.01 to 1.5%, nitrogen (N) 0.001 to 0.03%, and antimony (Sb) 0.005 to 0.1%, optionally boron (B) 0.0002 to 0.005%, A composition comprising at least one of chromium (Cr) 0.01 to 2.0% and molybdenum (Mo) 0.005 to 0.5%, the balance being iron (Fe) and other inevitable impurities And a steel slab whose composition satisfies the following formula (1): 1100 ° C. to 1250 A step of re-heating to,
Hot rolling the steel slab;
Winding temperature (CT) satisfying the following formula (2) winding within a temperature range of ± 20 ° C.,
Carrying out pickling and cold rolling;
Annealing at 700 ° C. to 860 ° C .;
It is characterized by including.
Figure 0005354600

本発明によると、優れた表面特性と共に優れた機械的な性質を有する高強度DP鋼の製造が可能である。   According to the present invention, it is possible to produce a high-strength DP steel having excellent surface properties and excellent mechanical properties.

アンチモン(Sb)添加の有無による本発明鋼と比較例鋼の酸化物の形状を示す写真である。図1(a)は比較鋼16であり、図1(b)は発明鋼11である。It is a photograph which shows the shape of the oxide of this invention steel and comparative example steel by the presence or absence of antimony (Sb) addition. FIG. 1A is a comparative steel 16, and FIG. 1B is an inventive steel 11. 本発明の鋼の表面に形成された酸化物のサイズ分布を表すグラフである。It is a graph showing the size distribution of the oxide formed in the surface of the steel of this invention.

以下、本発明の実施形態を詳しく説明する。
本発明者等は、従来の高強度DP鋼より製造が容易で、且つ優れた機械的な性質及び表面品質を有する高強度DP鋼の製造方法を研究を行った。その研究過程において、研究者等は、鋼の合金成分組成と熱間圧延の巻取り温度を適切に制御することとによって、鋼板表面の酸化物の粒子の直径の増大を制御することができ、それによって優れた表面品質を保証し機械的な性質を改善することができることを見出した。
Hereinafter, embodiments of the present invention will be described in detail.
The present inventors have studied a method for producing high-strength DP steel that is easier to manufacture than conventional high-strength DP steel and has excellent mechanical properties and surface quality. In the research process, researchers can control the increase in the diameter of oxide particles on the steel sheet surface by appropriately controlling the alloy composition of the steel and the hot rolling coiling temperature, It has been found that it can guarantee excellent surface quality and improve mechanical properties.

以下、本発明に係る鋼の成分組成範囲を説明する。
炭素(C)の含量は0.01乃至0.2%の範囲が好ましい。
炭素(C)は、鋼板の強度を増加させ、フェライトとマルテンサイトからなる複合組織を確保するのに非常に重要な成分である。炭素(C)の含量が0.01%未満の場合、本発明で目標とする強度を確保することができない。一方、炭素(C)の含量が0.2%を超えると、引っ張り強度及び溶接性が低下する可能性が高くなる。よって、炭素(C)は0.01乃至0.2%の量を加えることが好ましい。
Hereinafter, the component composition range of the steel according to the present invention will be described.
The carbon (C) content is preferably in the range of 0.01 to 0.2%.
Carbon (C) is a very important component for increasing the strength of the steel sheet and securing a composite structure composed of ferrite and martensite. When the carbon (C) content is less than 0.01%, the target strength in the present invention cannot be ensured. On the other hand, if the carbon (C) content exceeds 0.2%, the tensile strength and weldability are likely to be reduced. Therefore, carbon (C) is preferably added in an amount of 0.01 to 0.2%.

ケイ素(Si)の含量は0.01乃至1.5%の範囲が好ましい。
ケイ素(Si)は、鋼板の延性を低下させること無く強度を確保することができる有用な成分である。またケイ素(Si)はフェライトを形成し、また未変態オーステナイトへの炭素(C)濃度を増加させることにより、マルテンサイトの形成を促進する。ケイ素(Si)の含量が0.01%未満の場合、上記の効果を示さない。一方、1.5%以上加えられたケイ素(Si)は、表面特性と溶接性が低下する可能性が高くなる。よって、ケイ素(Si)は0.01乃至1.5%加えることが好ましい。
The silicon (Si) content is preferably in the range of 0.01 to 1.5%.
Silicon (Si) is a useful component that can ensure strength without reducing the ductility of the steel sheet. Silicon (Si) forms ferrite and promotes the formation of martensite by increasing the carbon (C) concentration in untransformed austenite. When the content of silicon (Si) is less than 0.01%, the above effect is not exhibited. On the other hand, silicon (Si) added in an amount of 1.5% or more increases the possibility that the surface characteristics and weldability will deteriorate. Therefore, it is preferable to add 0.01 to 1.5% of silicon (Si).

マンガン(Mn)の含量は0.2乃至4.0%の範囲が好ましい。
マンガン(Mn)は、固溶体を強化する効果が大きく、フェライトとマルテンサイトからなる複合組織の形成を促進する。マンガン(Mn)の添加量が0.2%未満の場合、高強度を実現する効果が十分でない。一方、4.0%以上加えられたマンガン(Mn)は、溶接性と熱間圧延性とを低下させる可能性が高くなる。よって、マンガン(Mn)は0.2乃至4%加えることが好ましい。
The content of manganese (Mn) is preferably in the range of 0.2 to 4.0%.
Manganese (Mn) has a great effect of strengthening the solid solution and promotes the formation of a composite structure composed of ferrite and martensite. When the addition amount of manganese (Mn) is less than 0.2%, the effect of realizing high strength is not sufficient. On the other hand, manganese (Mn) added in an amount of 4.0% or more increases the possibility of reducing weldability and hot rollability. Therefore, it is preferable to add 0.2 to 4% of manganese (Mn).

リン(P)の含量は0.001乃至0.1%の範囲が好ましい。
リン(P)は、固溶体の強度を増加するためマンガン(Mn)と共に添加される代表的な成分である。リン(P)の添加量が0.001%未満では所定の効果を得ることができない。一方、0.1%以上加えられたリン(P)は溶接性を減じ、連続鋳造の間に起こる中心偏析によって鋼の性質に大きな差異を生じさせる。従って、上記Pの含量は0.001乃至0.1%に制限することが好ましい。
The phosphorus (P) content is preferably in the range of 0.001 to 0.1%.
Phosphorus (P) is a typical component added with manganese (Mn) to increase the strength of the solid solution. If the amount of phosphorus (P) added is less than 0.001%, a predetermined effect cannot be obtained. On the other hand, phosphorus (P) added in an amount of 0.1% or more reduces weldability and causes a large difference in the properties of steel due to central segregation that occurs during continuous casting. Accordingly, the P content is preferably limited to 0.001 to 0.1%.

硫黄(S)の含量は0.03%以下が好ましい。
硫黄(S)は鋼の製造時に不可避に含有される成分であるため、その上限を0.03%以下に制限することが好ましい。
The content of sulfur (S) is preferably 0.03% or less.
Since sulfur (S) is a component inevitably contained during the production of steel, it is preferable to limit the upper limit to 0.03% or less.

アルミニウム(Al)は0.01乃至1.5%の範囲が好ましい。
アルミニウム(Al)は、一般的に鋼の脱酸素のため添加されるが、本発明では伸展性の向上のため添加される。また、アルミニウム(Al)はオーステンパリング(austempering)の間に形成される炭化物の生成を抑制し、強度を増加させる。また、アルミニウム(Al)の量が0.01%未満では効果を十分に得ることができない。一方、1.5%以上加えられたアルミニウム(Al)は、鋼の冷延工程の焼鈍の間に生じる内部酸化を加速するために、GA−メッキ層の合金化を阻害し、高い合金化の温度が要求する。よって、アルミニウム(Al)は、は0.01%乃至1.5%加えることが好ましい。
Aluminum (Al) is preferably in the range of 0.01 to 1.5%.
Aluminum (Al) is generally added for deoxidation of steel, but in the present invention, it is added for improving extensibility. Aluminum (Al) also suppresses the formation of carbides formed during austempering and increases strength. Further, when the amount of aluminum (Al) is less than 0.01%, the effect cannot be sufficiently obtained. On the other hand, aluminum (Al) added in an amount of 1.5% or more hinders alloying of the GA-plated layer in order to accelerate internal oxidation that occurs during annealing in the cold rolling process of steel, resulting in high alloying. Temperature requires. Therefore, it is preferable to add 0.01% to 1.5% of aluminum (Al).

窒素(N)は0.001乃至0.03%の範囲が好ましい。
Nは、オーステナイトを安定化させるのに有効な成分である。0.001%未満加えられた窒素(N)は、このような効果が得られない。一方、0.03%以上加えられた窒素(N)は、Alと結合して粗大なAlNを生成し、それによって機械的な性質を低下させることがある。よって、窒素(N)含量は、0.03%を超えないことが好ましい。
Nitrogen (N) is preferably in the range of 0.001 to 0.03%.
N is an effective component for stabilizing austenite. Nitrogen (N) added less than 0.001% does not provide such an effect. On the other hand, nitrogen (N) added in an amount of 0.03% or more may combine with Al to produce coarse AlN, thereby reducing mechanical properties. Therefore, it is preferable that the nitrogen (N) content does not exceed 0.03%.

ホウ素(B)の含量は0.0002乃至0.005%の範囲が好ましい。
ホウ素(B)は粒界強化成分であって、スポット溶接部の疲労特性を向上させ、リン(P)粒界脆性を防止する効果がある。またホウ素(B)は、Al及びSi含量が高い鋼の製造において、高温伸展性を向上させる効果がある。それに加えてホウ素(B)は焼鈍中の冷却工程において、オーステナイトがパーライトに変態するのを遅らせる。添加量が0.005%を超えたホウ素(B)は、過剰なホウ素(B)は鋼の表面に濃縮され、メッキの粘着性を低下させる。従って、所望の効果を得るためには、ホウ素(B)は0.0002%以上添加しなければならないが、0.005%を超えると、ホウ素(B)は急激に加工性を低下させ、メッキ鋼板の表面性質を劣化させる。よって、ホウ素(B)は、0.0002乃至0.005%加えることが好ましい。
The boron (B) content is preferably in the range of 0.0002 to 0.005%.
Boron (B) is a grain boundary strengthening component, and has the effect of improving fatigue characteristics of spot welds and preventing phosphorus (P) grain boundary brittleness. Boron (B) has the effect of improving high-temperature extensibility in the production of steel with a high Al and Si content. In addition, boron (B) delays the transformation of austenite to pearlite during the cooling process during annealing. When boron (B) is added in an amount exceeding 0.005%, excess boron (B) is concentrated on the surface of the steel, thereby reducing the adhesion of the plating. Therefore, in order to obtain a desired effect, boron (B) must be added in an amount of 0.0002% or more. However, if it exceeds 0.005%, boron (B) rapidly deteriorates workability and plating. Deteriorate the surface properties of the steel sheet. Therefore, it is preferable to add 0.0002 to 0.005% of boron (B).

クロム(Cr)の含量は、0.01乃至2.0%の範囲が好ましい。
クロム(Cr)は、鋼の硬度を向上させ強度を確保するため添加する成分である。クロム(Cr)の含量が0.01%未満の場合、上記の効果を確保することが難しい。一方、クロム(Cr)の含量が2.0%を超えると、それ以上の効果が得られず、延性が低下する可能性が高い。よってクロム(Cr)の含量は、0.01乃至2.0%が好ましい。
The chromium (Cr) content is preferably in the range of 0.01 to 2.0%.
Chromium (Cr) is a component added to improve the hardness of the steel and ensure the strength. When the chromium (Cr) content is less than 0.01%, it is difficult to ensure the above effect. On the other hand, if the chromium (Cr) content exceeds 2.0%, no further effect can be obtained, and the ductility is likely to deteriorate. Therefore, the chromium (Cr) content is preferably 0.01 to 2.0%.

モリブデン(Mo)の含量は、0.005乃至0.5%の範囲が好ましい。
モリブデン(Mo)は、加工脆性及びメッキ性を改善させるために添加される。しかし、モリブデン(Mo)の含量が0.005%未満では、所定の効果が表れない。一方モリブデン(Mo)の量が、0.5%を超える場合は、大きな改善効果が得られず、経済的にも不利である。よって、モリブデン(Mo)の含量は、0.005乃至0.5%が好ましい。
The molybdenum (Mo) content is preferably in the range of 0.005 to 0.5%.
Molybdenum (Mo) is added to improve work brittleness and plating properties. However, when the molybdenum (Mo) content is less than 0.005%, the predetermined effect cannot be obtained. On the other hand, when the amount of molybdenum (Mo) exceeds 0.5%, a large improvement effect cannot be obtained, which is disadvantageous economically. Therefore, the content of molybdenum (Mo) is preferably 0.005 to 0.5%.

アンチモン(Sb)の含量は0.005乃至0.1%の範囲が好ましい。
アンチモン(Sb)自身は高温で酸化被膜を形成することはないが、鋼の表面及び結晶粒界に濃縮され、成分が表面に拡散することを抑制する。結果として酸化物の生成を抑制する。またアンチモン(Sb)は、薄層鋼板の結晶粒界に沿って成長する選択的酸化を抑制するのに著しい効果がある。アンチモン(Sb)は、ケイ素(Si)、マンガン(Mn)、アルミニウム(Al)が多量含有されているため、熱延工程で鋼板表面の粒界に沿って生成される各種の酸化物の浸透を抑制するために添加される。
The content of antimony (Sb) is preferably in the range of 0.005 to 0.1%.
Antimony (Sb) itself does not form an oxide film at a high temperature, but is concentrated on the surface and grain boundaries of the steel and suppresses diffusion of components to the surface. As a result, the formation of oxides is suppressed. Moreover, antimony (Sb) has a remarkable effect in suppressing the selective oxidation which grows along the crystal grain boundary of the thin steel plate. Since antimony (Sb) contains a large amount of silicon (Si), manganese (Mn), and aluminum (Al), it penetrates various oxides generated along the grain boundaries on the surface of the steel sheet in the hot rolling process. Added to suppress.

熱延薄層鋼板の結晶粒界酸化物の深さが1μmを超えると、酸洗の後にも金属の内部に酸化物が残存し、それによって後続の冷間圧延工程で種々のスケールによる欠陥の原因となる。従って、熱延鋼板の粒界酸化物の深さは1μm以下に制御することが重要である。熱延鋼板の結晶粒界の選的択酸化を効果的に抑制するために添加されたアンチモン(Sb)は、同時にスケールによる欠陥の抑制に顕著な効果がある。アンチモン(Sb)は、ケイ素(Si)、マンガン(Mn)、及びアルミニウム(Al)が多量に加えられたために生ずる焼鈍中の酸化物の生成を防ぐために添加され、メッキ性を増進する。特にアンチモン(Sb)は、マンガン(Mn)及びホウ素(B)と配合して添加された場合、表面酸化物層の粗大化を効果的に抑制する。   When the grain boundary oxide depth of the hot-rolled thin steel sheet exceeds 1 μm, the oxide remains inside the metal even after pickling, thereby causing defects of various scales in the subsequent cold rolling process. Cause. Therefore, it is important to control the depth of the grain boundary oxide of the hot-rolled steel sheet to 1 μm or less. Antimony (Sb) added in order to effectively suppress the selective selective oxidation of the crystal grain boundaries of the hot-rolled steel sheet has a remarkable effect on the suppression of defects due to scale. Antimony (Sb) is added to prevent the formation of oxides during annealing caused by the addition of large amounts of silicon (Si), manganese (Mn), and aluminum (Al), and promotes plating properties. In particular, antimony (Sb) effectively suppresses the coarsening of the surface oxide layer when added in combination with manganese (Mn) and boron (B).

焼鈍酸化物が粗大に成長した場合、酸化物がロール(Roll)に繰り返し積層され、冷延鋼板及びメッキ鋼板の表面にくぼみ(dent)を生じる。ここで、このようなくぼみ欠陥の抑制にアンチモン(Sb)添加による表面酸化物の抑制は、非常に効果的である。適当な量を添加されたアンチモン(Sb)は、鋼材の強度及び延性を高め、これによって鋼材の機械的な性質を改善する。   When the annealing oxide grows coarsely, the oxide is repeatedly laminated on a roll, and a dent is generated on the surface of the cold-rolled steel sheet and the plated steel sheet. Here, the suppression of the surface oxide by the addition of antimony (Sb) is very effective in suppressing the dent defect. Antimony (Sb) added in an appropriate amount increases the strength and ductility of the steel material, thereby improving the mechanical properties of the steel material.

アンチモン(Sb)の他にも錫(Sn)、セレン(Se)、及びイットリウム(Y)のような成分も類似な効果をくわえることができるかもしれないが、しかしSnは熱延鋼板の結晶粒界の酸化を抑制する効果が少ない。その上、セレン(Se)及びイットリウム(Y)は他の成分より鋼板の表面に濃縮される可能性が高く、またこれらの酸化物は鋼板の表面に形成されたSiO2やAl2O3の下に生成するから粗大化する可能性が高い。   In addition to antimony (Sb), components such as tin (Sn), selenium (Se), and yttrium (Y) may have similar effects, but Sn is a grain of hot-rolled steel sheets. There is little effect to suppress the oxidation of the boundary. In addition, selenium (Se) and yttrium (Y) are more likely to be concentrated on the surface of the steel sheet than other components, and these oxides are formed under SiO2 and Al2O3 formed on the surface of the steel sheet. There is a high possibility of coarsening.

従って、添加されたアンチモン(Sb)は、冷延鋼板の焼鈍時にMnO、SiO、及びAlが表面濃縮化を抑制するのに優れた効果を示し、そして機械的性質を増進する。アンチモン(Sb)は、少なくとも0.005%以上必要であるが、特定限度以上に添加した場合はそれ以上向上された効果を得ることができない。そため、アンチモン(Sb)の量は0.1%を超えないことが好ましい。 Therefore, the added antimony (Sb) exhibits an excellent effect of suppressing the surface concentration of MnO, SiO 2 and Al 2 O 3 during the annealing of the cold-rolled steel sheet, and enhances the mechanical properties. Antimony (Sb) is required to be at least 0.005% or more, but when it is added in excess of a specific limit, an improved effect cannot be obtained. Therefore, it is preferable that the amount of antimony (Sb) does not exceed 0.1%.

前記成分含有量範囲を有する鋼板の合金を設計する時は、下式(1)を満たすことが好ましい。

Figure 0005354600
When designing an alloy of a steel sheet having the component content range, it is preferable to satisfy the following formula (1).
Figure 0005354600

マンガン(Mn)、ケイ素(Si)、アルミニウム(Al)、及びホウ素(B)は、焼鈍工程で鋼板の表面に濃縮物を形成する性質がある。これらの成分の濃縮物の量が多くなればメッキ特性が低下する。一方、炭素(C)、りん(P)、及びアンチモン(Sb)は結晶粒界に偏在しやすい。炭素(C)、りん(P)、及びアンチモン(Sb)のような成分の偏在によって、濃縮された成分は、結晶粒界に於いてマンガン(Mn)、ケイ素(Si)、アルミニウム(Al)、及びホウ素(B)の拡散を妨害し、表面の特性に貢献する。   Manganese (Mn), silicon (Si), aluminum (Al), and boron (B) have the property of forming a concentrate on the surface of the steel sheet in the annealing process. If the amount of the concentrate of these components is increased, the plating characteristics are degraded. On the other hand, carbon (C), phosphorus (P), and antimony (Sb) tend to be unevenly distributed at the grain boundaries. Due to the uneven distribution of components such as carbon (C), phosphorus (P), and antimony (Sb), the concentrated components are manganese (Mn), silicon (Si), aluminum (Al), And hinders the diffusion of boron (B) and contributes to the surface properties.

しかし、過多な量の成分が結晶粒界に偏在する場合は、伸び率などの材質特性が劣化する。一方、過多な量の成分が表面に濃縮された場合には、表面特性が低下するため、適切な量に制御することが必要である。上記の式(1)は、各成分が、表面に濃縮する挙動と偏在する挙動とによって、鋼板の特性の劣化を阻止することができる経験的数値、及び表面品質を保証することができる経験的数値を提示する。例えば、式(1)により計算した値が5より小さい値を有する例では、鋼板の機械的性質が低下する。一方では、式(1)により計算した値が18より大きい値を有する例では、鋼板は所望の表面品質を得ることができない。   However, when an excessive amount of components are unevenly distributed at the grain boundaries, material properties such as elongation are deteriorated. On the other hand, when an excessive amount of components is concentrated on the surface, the surface characteristics are deteriorated, so it is necessary to control the amount to an appropriate amount. The above formula (1) is an empirical value that can prevent deterioration of the properties of the steel sheet, and an empirical value that can guarantee the surface quality, depending on the behavior that each component concentrates on the surface and the uneven distribution behavior. Present a numerical value. For example, in an example in which the value calculated by the formula (1) has a value smaller than 5, the mechanical properties of the steel sheet are deteriorated. On the other hand, in an example in which the value calculated by equation (1) has a value greater than 18, the steel sheet cannot obtain the desired surface quality.

本発明によれば、上記の成分を含む鋼板は、更に、コバルト(Co)0.01乃至1.0%、ジルコニウム(Zr)0.001乃至0.1%、チタン(Ti)0.001乃至0.1%、ニオブ(Nb)0.001乃至0.1%、ランタン(La)0.0005乃至0.040%、セリウム(Ce)0.0005乃至0.040%、及びカルシウム(Ca)005乃至0.030%の中から選ばれる1以上の成分を含むことができる。   According to the present invention, the steel sheet containing the above components further comprises cobalt (Co) 0.01 to 1.0%, zirconium (Zr) 0.001 to 0.1%, titanium (Ti) 0.001 to 0.1%, niobium (Nb) 0.001 to 0.1%, lanthanum (La) 0.0005 to 0.040%, cerium (Ce) 0.0005 to 0.040%, and calcium (Ca) 005 Or one or more components selected from 0.030%.

Coの含量は0.01乃至1.0%の範囲が好ましい。
コバルト(Co)は、鋼の強度を向上させるため添加される。コバルト(Co)は、高温焼鈍時に酸化物の形成を抑制し、それによって、溶融メッキ時に溶融亜鉛鋼板に対する濡れ性を向上させることができる。上記効果を確保するため、コバルト(Co)は少なくとも0.01%以上加えなければならない。一方、特定限度以上に添加した場合、鋼の伸び率が大きく減少する。よって、コバルト(Co)の量は1.0%以下が好ましい。
The Co content is preferably in the range of 0.01 to 1.0%.
Cobalt (Co) is added to improve the strength of the steel. Cobalt (Co) can suppress the formation of oxides during high temperature annealing, thereby improving the wettability of the hot dip galvanized steel sheet during hot dip plating. In order to ensure the above effect, cobalt (Co) must be added at least 0.01% or more. On the other hand, when added above a specific limit, the elongation of steel is greatly reduced. Therefore, the amount of cobalt (Co) is preferably 1.0% or less.

ジルコニウム(Zr)の含量は0.001乃至0.1%が好ましい。
ジルコニウム(Zr)は、柱状晶粒界に固溶され、アルミニウム(Al)濃縮物と低融点化合物との溶融温度を高め、1300℃以下で液状膜の形成を防ぎ、柱状晶粒界を強化させる。0.001%未満のジルコニウム(Zr)は、このような効果を保証することができない。一方、0.1%以上加えたジルコニウム(Zr)は、それ以上の効果を得ることができない。従って、ジルコニウム(Zr)は0.001乃至0.1%加えることが好ましい。
The zirconium (Zr) content is preferably 0.001 to 0.1%.
Zirconium (Zr) is dissolved in the columnar grain boundaries, increases the melting temperature of the aluminum (Al) concentrate and the low melting point compound, prevents the formation of a liquid film at 1300 ° C. or less, and strengthens the columnar grain boundaries. . Less than 0.001% zirconium (Zr) cannot guarantee such an effect. On the other hand, zirconium (Zr) added in an amount of 0.1% or more cannot obtain further effects. Therefore, it is preferable to add 0.001 to 0.1% of zirconium (Zr).

チタン(Ti)およびニオブ(Nb)は夫々0.001乃至0.1%の範囲が好ましい。
チタン(Ti)およびニオブ(Nb)は鋼板の強度を増加させ微細な結晶粒を得るのに効果的である。チタン(Ti)およびニオブ(Nb)の含量が0.001%未満の場合には、このような効果を得ることが難しい。一方、チタン(Ti)およびニオブ(Nb)を0.1%以上超えると、製造コストを上昇させ、過剰の析出物によりフェライト延性を低下させる。従って、チタン(Ti)およびニオブ(Nb)は、夫々0.001乃至0.1%加え得ることが好ましい。
Titanium (Ti) and niobium (Nb) are each preferably in the range of 0.001 to 0.1%.
Titanium (Ti) and niobium (Nb) are effective in increasing the strength of the steel sheet and obtaining fine crystal grains. When the content of titanium (Ti) and niobium (Nb) is less than 0.001%, it is difficult to obtain such an effect. On the other hand, if the content of titanium (Ti) and niobium (Nb) exceeds 0.1%, the manufacturing cost is increased, and the ferrite ductility is lowered due to excessive precipitates. Therefore, it is preferable that 0.001 to 0.1% of titanium (Ti) and niobium (Nb) can be added respectively.

ランタニウム(La)およびセリウム(Ce)の含量は夫々0.0005乃至0.04%が好ましい。
ランタニウム(La)およびセリウム(Ce)は、結晶粒界の脆化の原因となる柱状晶粒のサイズと量を減少させ、高温延性に優れた等軸結晶粒の量を増加させて鋳造物組織の熱間加工性を向上させる。また、ランタニウム(La)およびセリウム(Ce)は、粒界に偏析され結晶粒界の破断強度を低下させるリン(P)及び硫黄(S)と化合物を形成して、リン(P)及び硫黄(S)の悪影響が殆どなくなることを保証する。しかし、ランタニウム(La)およびセリウム(Ce)の添加量が夫々0.0005%未満の場合にはその添加効果が無い。一方、ランタニウム(La)およびセリウム(Ce)の添加量がが0.04%を超えると添加効果が飽和する。よって、ランタニウム(La)およびセリウム(Ce)は、それぞれ0.0005乃至0.04%の量を加えることが好ましい。
The contents of lanthanum (La) and cerium (Ce) are each preferably 0.0005 to 0.04%.
Lanthanum (La) and cerium (Ce) reduce the size and amount of columnar grains that cause grain boundary embrittlement, and increase the amount of equiaxed grains with excellent high-temperature ductility. Improves hot workability. Also, lanthanum (La) and cerium (Ce) form a compound with phosphorus (P) and sulfur (S) that are segregated at the grain boundaries and reduce the fracture strength of the crystal grain boundaries, thereby forming phosphorus (P) and sulfur ( It is guaranteed that the adverse effects of S) are almost eliminated. However, when the addition amount of lanthanium (La) and cerium (Ce) is less than 0.0005%, the addition effect is not obtained. On the other hand, when the addition amount of lanthanum (La) and cerium (Ce) exceeds 0.04%, the addition effect is saturated. Therefore, it is preferable to add 0.0005 to 0.04% of lanthanium (La) and cerium (Ce), respectively.

カルシウム(Ca)の含量は0.0005乃至0.03%の範囲が好ましい。
カルシウム(Ca)は、溶鋼中でMnO、MnSなどの非金属性含有物と化合物を作って非金属性含有物を球状化させる。これが柱状晶粒界の破断強度を高め、鋼板のフランジクラック発生を緩和させ、鋼板の孔拡張性を高める。しかし、カルシウム(Ca)の含量が、0.03%超える場合にはその効果が飽和する。よって、カルシウム(Ca)を0.0005乃至0.030%加えることが好ましい。
The content of calcium (Ca) is preferably in the range of 0.0005 to 0.03%.
Calcium (Ca) forms a compound with nonmetallic inclusions such as MnO and MnS in molten steel to spheroidize the nonmetallic inclusions. This increases the breaking strength of the columnar grain boundaries, alleviates the occurrence of flange cracks in the steel sheet, and improves the hole expandability of the steel sheet. However, the effect is saturated when the content of calcium (Ca) exceeds 0.03%. Therefore, it is preferable to add 0.0005 to 0.030% of calcium (Ca).

本発明によれば、上記の成分の残部はFe及びその他の不可避な不純物で組成される。
本発明によれば、鋼板表面の酸化物層の厚さが1μm以下である。
According to the present invention, the balance of the above components is composed of Fe and other inevitable impurities.
According to the present invention, the thickness of the oxide layer on the steel sheet surface is 1 μm or less.

冷間圧延後の焼鈍工程によって金属表面に形成される酸化物層は、メッキする時に金属素地とメッキ層の間に妨害物として作用してメッキ密着性を阻害する役割をする。酸化物層の厚さが1μmを超えて成長すると、酸化物の脱落によるくぼみ欠陥の発生及びメッキの欠陥を誘発する。従って、焼鈍によって厚すぎることなくなく均一に形成された酸化物層は、メッキ層の高品質を保証する。本発明によれば、0.005乃至0.1%の量が添加されたアンチモン(Sb)は、酸化されず金属表層に濃縮されて酸化反応を抑制する。この反応が、酸化物層が1μm以下の均一の厚さで形成されること保証する。   The oxide layer formed on the metal surface by the annealing process after cold rolling acts as an obstruction between the metal substrate and the plating layer during plating, thereby inhibiting the plating adhesion. When the thickness of the oxide layer exceeds 1 μm, the formation of a dent defect due to the falling off of the oxide and the defect of plating are induced. Therefore, the oxide layer uniformly formed without being too thick by annealing ensures the high quality of the plating layer. According to the present invention, antimony (Sb) added in an amount of 0.005 to 0.1% is not oxidized and is concentrated on the metal surface layer to suppress the oxidation reaction. This reaction ensures that the oxide layer is formed with a uniform thickness of 1 μm or less.

以下、上記の範囲の成分を含有する薄層鋼板の製造方法を詳細に述べる。
最初に、上記の組成を有する鋼スラブを1100乃至1250℃に再加熱する。1100℃未満の再加熱温度では、鋼スラブの組成が均一ではなく、チタン(Ti)及びネオビウムの再溶解が十分でない。一方、1250℃を超える再加熱温度では、酸化スケールが生成し、大量のSiO、MnO、及びAlのような酸化物が、酸化スケールと金属との境界面及び金属の内部に生成し、それによって表面の品質を減じる。
従って、再加熱温度は1100乃至1250℃の範囲にすることが好ましい。
Hereafter, the manufacturing method of the thin-layer steel plate containing the component of said range is described in detail.
First, a steel slab having the above composition is reheated to 1100 to 1250 ° C. At a reheating temperature of less than 1100 ° C., the composition of the steel slab is not uniform, and the remelting of titanium (Ti) and neobium is not sufficient. On the other hand, at a reheating temperature exceeding 1250 ° C., an oxide scale is generated, and a large amount of oxides such as SiO 2 , MnO, and Al 2 O 3 are generated at the interface between the oxide scale and the metal and inside the metal. And thereby reduce the quality of the surface.
Therefore, the reheating temperature is preferably in the range of 1100 to 1250 ° C.

その後、鋼スラブをAr変態点から950℃の範囲で熱間仕上圧延する。Ar3変態点の温度で熱間仕上げ圧延すると、熱変形に対する抵抗が急激に増加する可能性が高く、製造上の問題が発生することがある。一方、950℃を超える熱間仕上圧延では、酸化スケールが厚くなりすぎ、粗大化する可能性が高い。よって、熱間仕上げ圧延温度はAr変態点〜950℃の範囲にすることが好ましい。 Thereafter, the steel slab is hot-finished in the range of 950 ° C. from the Ar 3 transformation point. If hot finish rolling is performed at the temperature of the Ar3 transformation point, the resistance to thermal deformation is likely to increase rapidly, and manufacturing problems may occur. On the other hand, in hot finish rolling exceeding 950 ° C., the oxide scale becomes too thick and is likely to become coarse. Therefore, the hot finish rolling temperature is preferably in the range of Ar 3 transformation point to 950 ° C.

熱間仕上げ圧延に引き続き、熱延巻取り作業を行う。巻取り作業においては、下式(2)の関係を満足す巻取り温度(CT)±20℃の温度範囲で巻取りしなければならない。

Figure 0005354600
Following hot finish rolling, hot rolling is performed. In the winding operation, the winding must be performed in a temperature range of winding temperature (CT) ± 20 ° C. that satisfies the relationship of the following expression (2).
Figure 0005354600

本発明によれば、マンガン(Mn)、ケイ素(Si)、りん(P)、クロム(Cr)、及びMoなどの成分は、微細組織のうちのマルテンサイトの形成に関係する合金成分として添加される。しかし、これら成分は巻取り温度温度が高いほど偏析が発生する可能性が増加する。この場合、加えられたマンガン(Mn)、ケイ素(Si)、りん(P)、クロム(Cr)、及びモリブデン(Mo)の添加効果を殆ど示さず所望の強度及び加工性を確保できなくなる。   According to the present invention, components such as manganese (Mn), silicon (Si), phosphorus (P), chromium (Cr), and Mo are added as alloy components related to the formation of martensite in the microstructure. The However, the higher the coiling temperature, the higher the possibility that segregation will occur. In this case, the added strength of manganese (Mn), silicon (Si), phosphorus (P), chromium (Cr), and molybdenum (Mo) is hardly exhibited and desired strength and workability cannot be ensured.

上記関係式は、巻取り温度と合金成分の量との関係によって決まる、所望の強度と加工性を確保する方法として経験的に導かれた。上記の巻取り方法は、より良好な材質の鋼を得ることを保証する。   The above relational expression has been derived empirically as a method for ensuring desired strength and workability, which is determined by the relationship between the coiling temperature and the amount of alloy components. The above winding method ensures that a better quality steel is obtained.

上記工程によって作られた熱延板は、酸洗され、目標の厚さに冷延された後、微細組織の欠陥を除去するために700〜860℃の温度で再結晶及び焼鈍される。焼鈍温度が700℃未満では、焼鈍酸化物は少量しか生成されず、そのため添加されたアンチモン(Sb)は顕著な効果が得られない。一方、860℃を超える焼鈍温度の場合は、酸化物が過度に成長しそのため表面濃縮を十分抑制することができない。
以下、本発明の実施例を、添付した図面を参照して通して詳細に説明する。
The hot-rolled sheet produced by the above process is pickled, cold-rolled to a target thickness, and then recrystallized and annealed at a temperature of 700 to 860 ° C. to remove fine structure defects. When the annealing temperature is less than 700 ° C., only a small amount of annealing oxide is generated, and thus the added antimony (Sb) does not have a remarkable effect. On the other hand, in the case of the annealing temperature exceeding 860 ° C., the oxide grows excessively, and therefore surface concentration cannot be sufficiently suppressed.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

製造するために、下記の表1に示す成分を含む鋼スラブを1200℃の温度範囲で加熱した。次いで、鋼スラブを熱延加工し、式(2)を満足する温度(+20℃)で巻取り、冷間圧延して冷間圧延薄層鋼板を製造した。その後、冷間圧延薄層鋼板を水蒸気10%を含む窒素ガス雰囲気中で780乃至830℃の温度で90秒間3℃/secの昇温速度で熱処理した。その後、薄層鋼板を、浴温が460℃で、アルミニウム(Al)含量が0.12乃至0.19%の亜鉛(Zn)浴を用いてメッキし、メッキされた薄層鋼板を540乃至560℃で24秒間合金化加熱処理を行った。その後、表面の品質を確認するために薄層鋼板を観察した。   In order to manufacture, the steel slab containing the components shown in Table 1 below was heated in a temperature range of 1200 ° C. Next, the steel slab was hot-rolled, wound at a temperature (+ 20 ° C.) satisfying the formula (2), and cold-rolled to manufacture a cold-rolled thin steel sheet. Thereafter, the cold-rolled thin steel sheet was heat-treated in a nitrogen gas atmosphere containing 10% water vapor at a temperature of 780 to 830 ° C. for 90 seconds at a rate of 3 ° C./sec. Thereafter, the thin steel plate is plated using a zinc (Zn) bath having a bath temperature of 460 ° C. and an aluminum (Al) content of 0.12 to 0.19%, and the plated thin steel plates are 540 to 560. Alloying heat treatment was carried out at 24 ° C. for 24 seconds. Thereafter, in order to confirm the surface quality, the thin-layer steel sheet was observed.

下記の表2におけるメッキ外観の分類は、未メッキ、その他のメッキ欠陥を含まない場合の○、及びメッキ欠陥が発生した場合の欠陥名、を含む。また、メッキ密着性の評価をするために、メッキ板を20mm×50mmに切断した後、60°曲げ試験を実施した。再び直線に開いて曲げられたところにテープを貼った。剥がれ落ちるメッキ層の幅を次のような基準で評価した。   The classification of the plating appearance in Table 2 below includes ◯ when there is no plating defect and other plating defects, and a defect name when a plating defect occurs. In order to evaluate the plating adhesion, the plated plate was cut into 20 mm × 50 mm, and then a 60 ° bending test was performed. The tape was affixed where it was opened again and bent. The width of the plating layer that peeled off was evaluated according to the following criteria.

◎:剥がれ落ちたメッキが無いか、幅が1mm未満
○:剥がれ落ちたメッキの幅が1乃至3mm未満
△:剥がれ落ちたメッキの幅が3乃至5mm未満
X:剥がれ落ちたメッキの幅が5mm以上
A: There is no peeling-off plating, or the width is less than 1 mm. O: The peeling-off plating width is less than 1 to 3 mm. Δ: The peeling-off plating width is less than 3 to 5 mm. that's all

Figure 0005354600
Figure 0005354600

Figure 0005354600
Figure 0005354600

上記表2に示したように、本発明に係る成分含有範囲と製造方法を満たす発明鋼(1〜)から、優れたメッキの表面特性及び強度延伸率のバランス(TS×El)を有する高強度DP鋼を製造できる。
しかし、本発明の成分範囲と製造方法を満足しない比較鋼(8〜12)は、メッキ表面特性及び強度延伸率バランスにおいて劣った特性を示した。
As shown in Table 2, the invention steels satisfying the manufacturing process and component content range according to the present invention (1-7), high with a balance of surface properties and strength elongation excellent plating (TS × El) Strength DP steel can be manufactured.
However, the comparative steels ( 8 to 12 ) that do not satisfy the component range and the production method of the present invention exhibited inferior properties in terms of plating surface properties and strength draw ratio balance.

更に、図1は、アンチモン(Sb)添加の有無による本発明鋼と比較例鋼の酸化物の形状を示す写真である。図1(a)は比較鋼であり、図1(b)は発明鋼である。図1に示したように、発明鋼の場合、酸化物の粒度が著しく小さくい。即ち、アンチモン(Sb)添加により酸化物生成が抑制された。

Furthermore, FIG. 1 is a photograph showing the shapes of oxides of the steel of the present invention and the comparative steel with and without antimony (Sb) addition. FIG. 1 (a) is a comparative steel, and FIG. 1 (b) is an invented steel . As shown in FIG. 1, in the case of the inventive steel, the particle size of the oxide is remarkably small. That is, oxide formation was suppressed by adding antimony (Sb).

また、図2は、本発明の鋼の表面に形成された酸化物のサイズ分布を表すグラフである。本発明鋼において焼鈍工程で金属表面に形成される酸化物のサイズ分布は1μm以下で安定した確率分布を見せている。すなわち、微細な酸化物の均一な分布はより均質なメッキ層の生成に役立つことがわかる。   FIG. 2 is a graph showing the size distribution of the oxide formed on the surface of the steel of the present invention. In the steel of the present invention, the size distribution of the oxide formed on the metal surface in the annealing process shows a stable probability distribution at 1 μm or less. That is, it can be seen that the uniform distribution of fine oxides helps to produce a more uniform plating layer.

Claims (6)

重量%で、炭素(C)0.01乃至0.2%、ケイ素(Si)0.01乃至1.5%、マンガン(Mn)0.2乃至4.0%、リン(P)0.001乃至0.1%、硫黄(S)0.03%以下、アルミニウム(Al)0.01乃至1.5%、窒素(N)0.001乃至0.03%、及びアンチモン(Sb)0.005乃至0.1%を含み、選択的にホウ素(B)0.0002乃至0.005%、クロム(Cr)0.01乃至2.0%、及びモリブデン(Mo)0.005乃至0.5%の中の1種以上を含み、残部の鉄(Fe)とその他の不可避な不純物から成る組成を有し、
前記組成が、下式(1)の関係を満たし、
且つ、表面に厚さが1μm以下の酸化物層を有することを特徴とする機械的な性質及び表面品質に優れた高強度亜鉛メッキDP鋼板。
Figure 0005354600
By weight percent, carbon (C) 0.01 to 0.2%, silicon (Si) 0.01 to 1.5%, manganese (Mn) 0.2 to 4.0%, phosphorus (P) 0.001 To 0.1%, sulfur (S) 0.03% or less, aluminum (Al) 0.01 to 1.5%, nitrogen (N) 0.001 to 0.03%, and antimony (Sb) 0.005. To 0.1%, selectively boron (B) 0.0002 to 0.005%, chromium (Cr) 0.01 to 2.0%, and molybdenum (Mo) 0.005 to 0.5% Including one or more of the above, the balance consisting of iron (Fe) and other inevitable impurities,
The composition satisfies the relationship of the following formula (1),
A high-strength galvanized DP steel sheet excellent in mechanical properties and surface quality, characterized by having an oxide layer having a thickness of 1 μm or less on the surface.
Figure 0005354600
前記鋼板の、熱延工程における前記酸化物層の臨界厚さが1μm以下であることを特徴とする請求項1記載の機械的な性質及び表面品質に優れた高強度亜鉛メッキDP鋼板。 The high-strength galvanized DP steel sheet excellent in mechanical properties and surface quality according to claim 1, wherein the critical thickness of the oxide layer in the hot rolling step of the steel sheet is 1 µm or less. 前記酸化物層は、冷延工程後の焼鈍工程で生成されたことを特徴とする請求項1記載の機械的な性質及び表面品質に優れた高強度亜鉛メッキDP鋼板。 The high-strength galvanized DP steel sheet having excellent mechanical properties and surface quality according to claim 1, wherein the oxide layer is formed in an annealing process after the cold rolling process. 前記鋼板には、更に、重量%で、コバルト(Co)0.01乃至1.0%、ジルコニウム(Zr)0.001乃至0.1%、チタン(Ti)0.001乃至0.1%、ニオブ(Nb)0.001乃至0.1%、ランタン(La)0.0005乃至0.040%、セリウム(Ce)0.0005乃至0.040%、及びカルシウム(Ca)0.0005乃至0.030%から選ばれる成分のうちの少なくとも1種を含むことを特徴とする請求項1記載の機械的な性質及び表面品質に優れた高強度亜鉛メッキDP鋼板。 Further, the steel sheet further includes, by weight, cobalt (Co) 0.01 to 1.0%, zirconium (Zr) 0.001 to 0.1%, titanium (Ti) 0.001 to 0.1%, Niobium (Nb) 0.001-0.1%, Lanthanum (La) 0.0005-0.040%, Cerium (Ce) 0.0005-0.040%, and Calcium (Ca) 0.0005-0. The high-strength galvanized DP steel sheet excellent in mechanical properties and surface quality according to claim 1, comprising at least one component selected from 030%. 重量%で、炭素(C)0.01乃至0.2%、ケイ素(Si)0.01乃至1.5%、マンガン(Mn)0.2乃至4.0%、リン(P)0.001乃至0.1%、硫黄(S)0.03%以下、アルミニウム(Al)0.01乃至1.5%、窒素(N)0.001乃至0.03%、及びアンチモン(Sb)0.005乃至0.1%を含み、選択的にホウ素(B)0.0002乃至0.005%、クロム(Cr)0.01乃至2.0%、及びモリブデン(Mo)0.005乃至0.5%の中の1種以上を含み、残部の鉄(Fe)とその他の不可避な不純物から成る組成を有し、且つ前記組成が下式(1)を満たす鋼スラブを、1100℃乃至1250℃に再加熱する工程と、
該鋼スラブを熱間圧延する工程と、
下式(2)を満たす巻取り温度(CT)±20℃の温度範囲で巻取りする工程と、
酸洗及び冷間圧延を実施する工程と、
700℃乃至860℃で焼鈍する工程と、
を含むことを特徴とする機械的な性質及び表面品質に優れた高強度亜鉛メッキDP鋼板の製造方法。
Figure 0005354600
By weight percent, carbon (C) 0.01 to 0.2%, silicon (Si) 0.01 to 1.5%, manganese (Mn) 0.2 to 4.0%, phosphorus (P) 0.001 To 0.1%, sulfur (S) 0.03% or less, aluminum (Al) 0.01 to 1.5%, nitrogen (N) 0.001 to 0.03%, and antimony (Sb) 0.005. To 0.1%, selectively boron (B) 0.0002 to 0.005%, chromium (Cr) 0.01 to 2.0%, and molybdenum (Mo) 0.005 to 0.5% A steel slab containing one or more of the above, having the balance of iron (Fe) and other inevitable impurities, and having the composition satisfying the following formula (1) is returned to 1100 ° C. to 1250 ° C. Heating, and
Hot rolling the steel slab;
Winding temperature (CT) satisfying the following formula (2) winding within a temperature range of ± 20 ° C.,
Carrying out pickling and cold rolling;
Annealing at 700 ° C. to 860 ° C .;
A method for producing a high-strength galvanized DP steel sheet excellent in mechanical properties and surface quality, characterized by comprising:
Figure 0005354600
前記鋼板は、更に、重量%で、コバルト(Co)0.01乃至1.0%、ジルコニウム(Zr)0.001乃至0.1%、チタン(Ti)0.001乃至0.1%、ニオブ(Nb)0.001乃至0.1%、ランタン(La)0.0005乃至0.040%、セリウム(Ce)0.0005乃至0.040%、及びカルシウム(Ca)0.0005乃至0.030%から選ばれる成分のうちの少なくとも1種を含むことを特徴とする請求項5記載の機械的な性質及び表面品質に優れた高強度亜鉛メッキDP鋼板の製造方法。
The steel sheet is further comprised of, by weight, cobalt (Co) 0.01 to 1.0%, zirconium (Zr) 0.001 to 0.1%, titanium (Ti) 0.001 to 0.1%, niobium. (Nb) 0.001 to 0.1%, lanthanum (La) 0.0005 to 0.040%, cerium (Ce) 0.0005 to 0.040%, and calcium (Ca) 0.0005 to 0.030 The method for producing a high-strength galvanized DP steel sheet excellent in mechanical properties and surface quality according to claim 5, comprising at least one component selected from the group consisting of:
JP2009528186A 2006-12-28 2007-12-27 High-strength galvanized DP steel sheet with excellent mechanical properties and surface quality and method for producing the same Active JP5354600B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020060136999A KR20080061853A (en) 2006-12-28 2006-12-28 High strength zn-coated steel sheet having excellent mechanical properites and surface quality and the method for manufacturing the same
KR10-2006-0136999 2006-12-28
PCT/KR2007/006867 WO2008082146A1 (en) 2006-12-28 2007-12-27 High strength zn-coated steel sheet having excellent mechanical properites and surface quality and the method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2010502845A JP2010502845A (en) 2010-01-28
JP5354600B2 true JP5354600B2 (en) 2013-11-27

Family

ID=39588758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009528186A Active JP5354600B2 (en) 2006-12-28 2007-12-27 High-strength galvanized DP steel sheet with excellent mechanical properties and surface quality and method for producing the same

Country Status (5)

Country Link
EP (1) EP2097547A1 (en)
JP (1) JP5354600B2 (en)
KR (1) KR20080061853A (en)
CN (1) CN101495661A (en)
WO (1) WO2008082146A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101153485B1 (en) * 2008-12-24 2012-06-11 주식회사 포스코 High-strength colled rolled steel sheet having excellent deep-drawability and yield ratio, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet using the same and method for manufacturing thereof
JP4623233B2 (en) 2009-02-02 2011-02-02 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5659604B2 (en) * 2010-07-30 2015-01-28 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
WO2013046476A1 (en) 2011-09-28 2013-04-04 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
KR101353787B1 (en) * 2011-12-26 2014-01-22 주식회사 포스코 Ultra high strength colde rolled steel sheet having excellent weldability and bendability and method for manufacturing the same
CN102876967B (en) * 2012-08-06 2014-08-13 马钢(集团)控股有限公司 Aluminum hot galvanizing dual-phase steel plate with tensile strength of 600 MPa and preparation method of aluminum hot galvanizing dual-phase steel plate
JP2014198874A (en) * 2013-03-29 2014-10-23 株式会社神戸製鋼所 Steel material excellent in corrosion resistance and magnetic properties and method of producing the same
EP3284841A4 (en) * 2015-04-15 2018-12-19 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for manufacturing same
KR101786318B1 (en) * 2016-03-28 2017-10-18 주식회사 포스코 Cold-rolled steel sheet and plated steel sheet having excellent yield strength and ductility and method for manufacturing thereof
KR101899688B1 (en) * 2016-12-23 2018-09-17 주식회사 포스코 High strength hot-rolled steel sheet having excellent continuously producing property, high strength gavanized steel sheet having excellent surface property and plating adhesion and method for manufacturing thereof
CN107058853A (en) * 2017-03-17 2017-08-18 广西浩昌敏再生资源利用有限公司 A kind of preparation method of galvanized alloy steel
CN106987758A (en) * 2017-03-17 2017-07-28 广西浩昌敏再生资源利用有限公司 A kind of preparation method of plated film alloy steel products

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951282B2 (en) * 2000-01-28 2007-08-01 Jfeスチール株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
JP3809074B2 (en) * 2001-03-30 2006-08-16 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet with excellent plating adhesion and press formability and method for producing the same
JP2002249847A (en) * 2001-02-23 2002-09-06 Kawasaki Steel Corp Steel having pitting resistance
JP4288085B2 (en) * 2003-02-13 2009-07-01 新日本製鐵株式会社 Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same
JP2006274288A (en) * 2005-03-28 2006-10-12 Jfe Steel Kk High strength hot dip galvanized steel sheet having excellent surface appearance

Also Published As

Publication number Publication date
JP2010502845A (en) 2010-01-28
WO2008082146A1 (en) 2008-07-10
KR20080061853A (en) 2008-07-03
WO2008082146A9 (en) 2008-10-23
CN101495661A (en) 2009-07-29
EP2097547A1 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP5354600B2 (en) High-strength galvanized DP steel sheet with excellent mechanical properties and surface quality and method for producing the same
JP5884210B1 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
TWI472627B (en) Method for manufacturing high strength steel sheet with excellent formability
JP4589880B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP5541263B2 (en) High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5487203B2 (en) High-strength steel sheet and galvanized steel sheet for high processing with excellent surface characteristics and method for producing the same
JP7055171B2 (en) TWIP steel sheet with austenitic matrix
JP2019504196A (en) High strength hot-dip galvanized steel sheet excellent in surface quality and spot weldability and method for producing the same
KR101585311B1 (en) Method for manufacturing high strength galvanized steel sheet having excellent stability of mechanical properties, formability, and coating appearance
JP4542515B2 (en) High strength cold-rolled steel sheet excellent in formability and weldability, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, manufacturing method of high-strength cold-rolled steel sheet, and manufacturing method of high-strength hot-dip galvanized steel sheet , Manufacturing method of high strength galvannealed steel sheet
JP5564432B2 (en) High-strength cold-rolled steel sheet excellent in workability, galvanized steel sheet, and manufacturing method thereof
JP6475840B2 (en) High-strength hot-dip galvanized steel sheet excellent in surface quality, plating adhesion, and formability, and its manufacturing method
JP5648237B2 (en) Galvanized steel sheet with excellent surface quality and manufacturing method thereof
JP2011168879A (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and method for producing same
JP5953693B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method
WO2004061137A1 (en) Alloyed-molten-zinc-plated steel sheet with excellent processability and high strength and process for producing the same
JP6682661B2 (en) Method for producing TWIP steel sheet having austenite type matrix
JPH11131145A (en) Production of high strength and high ductility hot-dip galvanized steel sheet
JP2006274378A (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and method for producing them
JP4150277B2 (en) High strength galvannealed steel sheet excellent in press formability and method for producing the same
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP2004211140A (en) Hot-dip galvanized steel sheet and manufacturing method therefor
JP2003105513A (en) High strength galvanized steel sheet having excellent appearance and workability, and production method therefor
JPH06306533A (en) High-strength galvannealed hot rolled steel sheet excellent in formability and weldability and production thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Ref document number: 5354600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250