JP2006274288A - High strength hot dip galvanized steel sheet having excellent surface appearance - Google Patents

High strength hot dip galvanized steel sheet having excellent surface appearance Download PDF

Info

Publication number
JP2006274288A
JP2006274288A JP2005090550A JP2005090550A JP2006274288A JP 2006274288 A JP2006274288 A JP 2006274288A JP 2005090550 A JP2005090550 A JP 2005090550A JP 2005090550 A JP2005090550 A JP 2005090550A JP 2006274288 A JP2006274288 A JP 2006274288A
Authority
JP
Japan
Prior art keywords
steel sheet
less
dip galvanized
hot
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005090550A
Other languages
Japanese (ja)
Inventor
Toshinori Ando
壽規 安藤
Yoshihiko Ono
義彦 小野
Kenichi Mitsuzuka
賢一 三塚
Kozo Harada
耕造 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005090550A priority Critical patent/JP2006274288A/en
Publication of JP2006274288A publication Critical patent/JP2006274288A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength hot dip galvanized steel sheet having excellent surface appearance by preventing the generation of the defect in plating properties considered to be caused by Mn in steel added for solid solution strengthening. <P>SOLUTION: The high strength hot dip galvanized steel sheet having excellent surface appearance is characterized in that a steel sheet having a composition comprising, by mass, 0.0040 to 0.010% C, ≤0.05% Si, 1.0 to 2.5% Mn, 0.02 to 0.1% P, ≤0.02% S, 0.01 to 0.1% sol.Al, ≤0.0100% N, 0.0055 to 0.0160% Sb, 0.036 to 0.14% Nb and ≤0.0015% B, and the balance substantially Fe with inevitable impurities is galvanized. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表面外観に優れた高強度溶融亜鉛系めっき鋼板に関する。   The present invention relates to a high-strength hot-dip galvanized steel sheet having an excellent surface appearance.

自動車の高強度軽量化のニーズを受けて、自動車の外板等またはメンバー、レインフォースメント等の自動車構造部材に適用されるめっき鋼板には、強度、成形性、および特に良好な表面性状が求められている。成形性に対しては伸びと同様にr値が重要である。近年は高強度鋼板に対しても成形性向上の要求が高く、高r値化が求められている。高いr値を得るためには、C濃度30ppm程度以下の極低炭素鋼をベースとしてTi,Nbなどの炭窒化物生成元素を添加することが有効であり、一般的にInterstitial Free鋼(以下IF鋼と略す)として広く用いられている。さらにこの鋼をベースとしてMn,P,Siなどの固溶強化元素を添加した高強度鋼板が開発されている。しかしながら固溶強化元素は高価であるので、鋼板のコストが上昇する問題がある。また高いr値の確保とプレス成形時の耐肌荒れ性の両立も困難である。つまりr値向上に対して高温焼鈍が不可欠であるが、結晶粒成長性の高いIF鋼では高いr値を得るため高温焼鈍すると結晶粒が粗大となり肌荒れ発生しやすくなる。   In response to the need for higher strength and lighter weight of automobiles, plated steel sheets applied to automobile structural members such as outer panels or members of automobiles and reinforcements require strength, formability, and particularly good surface properties. It has been. The r value is important for the formability as well as the elongation. In recent years, there is a high demand for improving formability even for high-strength steel sheets, and high r-values are required. In order to obtain a high r value, it is effective to add carbonitride-forming elements such as Ti and Nb based on an ultra-low carbon steel with a C concentration of about 30 ppm or less. Generally, Interstitial Free steel (hereinafter referred to as IF) Widely used as abbreviated steel). In addition, high strength steel sheets with solid solution strengthening elements such as Mn, P, and Si have been developed based on this steel. However, since the solid solution strengthening element is expensive, there is a problem that the cost of the steel sheet increases. Moreover, it is difficult to ensure both high r value and rough skin resistance during press molding. In other words, high-temperature annealing is indispensable for improving the r value, but IF steel with high crystal grain growth property obtains a high r value. When high-temperature annealing is performed, crystal grains become coarse and rough skin is likely to occur.

Mn,P,Siなどの固溶元素を削減するために、Cを極低炭素鋼としてはやや高めの30〜100ppm添加し、TiCで析出強化する技術が開示されている(特許文献1、特許文献2)。TiCは析出硬化に寄与はするものの、A3点以上の高温で生成するため析出物のサイズが大きく、熱延板組織の微細化、冷延板組織の微細化、析出強化への効果は小さい。また、Ti,Nbを複合添加すると冷却中にCがTiCとして高温で先に析出してしまうため、NbC微細析出物は生成しない。従って、Nbを単独添加した場合に特有のNbCの微細な析出の効果による表面性状とプレス成形性に優れた鋼板は製造できなかった。 In order to reduce solid solution elements such as Mn, P, Si, etc., a technique of adding 30 to 100 ppm, which is slightly higher as an ultra-low carbon steel, and precipitation strengthening with TiC is disclosed (Patent Document 1, Patent) Reference 2). Although TiC contribution to precipitation hardening to a large size of the precipitates to produce at a high temperature of at least three points A, miniaturization of the hot-rolled sheet structure, miniaturization of the cold-rolled sheet structure, the effect of the precipitation strengthening is small . Further, when Ti and Nb are added in combination, C precipitates as TiC first at high temperature during cooling, so that NbC fine precipitates are not generated. Therefore, a steel sheet excellent in surface properties and press formability due to the effect of fine precipitation of NbC unique to the case of adding Nb alone could not be produced.

特許文献1、特許文献2の問題点を解消する技術として、特許文献3には、Cを0.0040〜0.010%という限られた範囲に制御し、かつNbをCとのバランスが最適になるように添加することで、NbCが微細析出し、この微細析出物の効果により熱延板の結晶粒を微細化し、そのため冷延焼鈍後の製品のr値を際立って向上させる技術が開示されている。
特開平10-46289号公報 特開平5-195080号公報 特開2001-131692号公報
As a technique for solving the problems of Patent Document 1 and Patent Document 2, Patent Document 3 discloses that C is controlled within a limited range of 0.0040 to 0.010% and Nb is balanced with C optimally. By adding, NbC is finely precipitated, and the effect of this fine precipitate has refined the crystal grain of the hot-rolled sheet, and therefore a technique for significantly improving the r value of the product after cold rolling annealing is disclosed.
Japanese Patent Laid-Open No. 10-46289 Japanese Patent Laid-Open No. 5-195080 Japanese Patent Laid-Open No. 2001-131692

特許文献3によれば、高成形性、耐肌荒れ性に優れ、概ね原板およびプレス後に表面欠陥のない高強度鋼板が得られるが、溶融亜鉛めっき鋼板では、固溶強化のために添加された鋼中のMnに起因すると思われるめっき性状不良が発生する場合がある。   According to Patent Document 3, a high-strength steel sheet that is excellent in high formability and skin roughness resistance and that is generally free of surface defects after pressing and pressing is obtained. In a hot-dip galvanized steel sheet, steel added for solid solution strengthening is obtained. Plating property defects that may be caused by Mn inside may occur.

本発明の目的は、固溶強化のために添加された鋼中のMnに起因すると思われるめっき性状不良の発生を防止し、表面外観に優れた高強度溶融亜鉛系めっき鋼板を提供することである。   An object of the present invention is to provide a high-strength hot-dip galvanized steel sheet that prevents the occurrence of poor plating properties that may be attributed to Mn in steel added for solid solution strengthening and has an excellent surface appearance. is there.

上記課題を解決する本発明の要旨は、次の通りである。   The gist of the present invention for solving the above problems is as follows.

第1発明は、質量%で、C:0.0040〜0.010%、Si:0.05%以下、Mn:1.0〜2.5%、P:0.02〜0.1%、S:0.02%以下、sol.Al:0.01〜0.1%、N:0.0100%以下、Sb:0.0055〜0.0160%、Nb:0.036〜0.14%、B:0.0015%以下を含有し、残部が実質的にFeおよび不可避的不純物からなる鋼板に亜鉛系めっきを施したことを特徴とする表面外観に優れた高強度溶融亜鉛系めっき鋼板である。   1st invention is the mass%, C: 0.0040-0.010%, Si: 0.05% or less, Mn: 1.0-2.5%, P: 0.02-0.1%, S: 0.02% or less, sol.Al:0.01-0.1% , N: 0.0100% or less, Sb: 0.0055-0.0160%, Nb: 0.036-0.14%, B: 0.0015% or less, with the remainder substantially zinc and galvanized plating made of unavoidable impurities This is a high-strength hot-dip galvanized steel sheet having an excellent surface appearance.

本発明によれば、Mnに起因するめっき性状不良の発生が防止され、良好な外観の溶融亜鉛系めっき鋼板を安定製造できる。   According to the present invention, the occurrence of poor plating properties due to Mn is prevented, and a hot-dip galvanized steel sheet having a good appearance can be stably produced.

本発明の添加元素の組成の限定理由について説明する。なお、%は質量%を示す。   The reason for limiting the composition of the additive element of the present invention will be described. In addition,% shows the mass%.

C:0.0040〜0.010%
CはNbと結合し、本発明の特徴であるNbCの微細炭化物を形成させる。C濃度を適正化することは微細なNbCを適当な体積率で析出させるため必須であり、C濃度の制御は本発明の最も重要な構成要件のひとつである。微細に析出したNbCは熱延板結晶粒径を微細化し、冷延焼鈍後のr値を向上させる効果がある。また、NbCは極めて微細に析出させることが出来るため、大きな析出強化の効果が得られ、Mn,P,Siなどの固溶元素の多量の添加を必要とせずに高強度化できる。そのため固溶元素によるめっき表面の色ムラが軽減し、表面性状が良好となる。C濃度が0.0040%未満ではNbC析出物の体積率が本発明の効果を得るには十分でなく、0.010%を超えるとNbCによる冷延焼鈍板の粒成長の抑制効果が大きくなりすぎ、r値を劣化させる。また、NbCが過剰に生成し、伸びが劣化するため、0.0040〜0.010%とする。さらに表面性状を向上させるためにはCは0.0050%以上、成形性を向上させるためには0.0080%以下が望ましい。さらに成形性を向上させるためには0.0074%以下であることが望ましい。
C: 0.0040 to 0.010%
C combines with Nb to form a fine carbide of NbC, which is a feature of the present invention. Optimizing the C concentration is essential in order to precipitate fine NbC at an appropriate volume ratio, and control of the C concentration is one of the most important constituent elements of the present invention. Finely precipitated NbC has the effect of refining the hot rolled plate crystal grain size and improving the r value after cold rolling annealing. In addition, since NbC can be precipitated very finely, a great effect of precipitation strengthening can be obtained, and the strength can be increased without requiring the addition of a large amount of solid solution elements such as Mn, P, and Si. For this reason, uneven color on the plating surface due to the solid solution element is reduced, and the surface properties are improved. If the C concentration is less than 0.0040%, the volume fraction of NbC precipitates is not sufficient to obtain the effect of the present invention, and if it exceeds 0.010%, the effect of suppressing the grain growth of the cold-rolled annealed sheet by NbC becomes too large, and the r value Deteriorate. Moreover, since NbC produces | generates excessively and elongation deteriorates, it is 0.0040 to 0.010%. Further, C is preferably 0.0050% or more for improving surface properties, and 0.0080% or less for improving moldability. Furthermore, in order to improve moldability, it is desirable that it is 0.0074% or less.

Si:0.05%以下
Siは添加により低コストで高強度化できるので添加してもよいが、0.05%を超えて添加すると焼鈍時にSiが表面濃化し、めっき性が劣化する。従ってSiは0.05%以下にしなければならない。
Si: 0.05% or less
Si can be added because it can be strengthened at a low cost by addition, but if added over 0.05%, the surface of Si will be concentrated during annealing, and the plating properties will deteriorate. Therefore, Si must be 0.05% or less.

Mn:1.0〜2.5%
Mnは固溶強化により高強度化するために添加される。1.0%未満では固溶強化の効果が十分でない。2.5%以上では鋼板の表面性状および伸びを著しく劣化させるのでMnは1.0〜2.5%にしなければならない。
Mn: 1.0-2.5%
Mn is added to increase the strength by solid solution strengthening. If it is less than 1.0%, the effect of solid solution strengthening is not sufficient. If it is 2.5% or more, the surface properties and elongation of the steel sheet are remarkably deteriorated, so Mn must be 1.0 to 2.5%.

P:0.02〜0.1%
Pは固溶強化により高強度化するために添加される。表面性状と高強度化を両立するためには0.02%以上の添加が不可欠である。一方P濃度が0.1%を超えるとスラブ中心偏析によりスラブ割れが発生する可能性がある。Pは0.02〜0.1%とする必要がある。さらにP濃度が0.08%を超えると亜鉛系めっき層を合金化処理する際、合金化処理に長時間を要するので望ましくは0.08%以下にする必要がある。
P: 0.02-0.1%
P is added to increase the strength by solid solution strengthening. Addition of 0.02% or more is indispensable in order to achieve both surface properties and high strength. On the other hand, if the P concentration exceeds 0.1%, slab cracking may occur due to segregation of the slab center. P needs to be 0.02 to 0.1%. Further, when the P concentration exceeds 0.08%, when alloying the zinc-based plating layer, it takes a long time for the alloying treatment.

S:0.02%以下
Sは鋼中不純物として存在するが、板表面外観を著しく劣化するために0.02%以下に除去する必要がある。
S: 0.02% or less
S exists as an impurity in steel, but it must be removed to 0.02% or less in order to significantly deteriorate the appearance of the plate surface.

sol.Al:0.01〜0.1%
Alは脱酸素材として添加される。固溶Al濃度が0.01%未満では脱酸が十分でなく、0.1%を超えると、Alの固溶強化で鋼板が強化し、延性が劣化する。
sol.Al: 0.01-0.1%
Al is added as a deoxidizing material. If the solid solution Al concentration is less than 0.01%, deoxidation is not sufficient, and if it exceeds 0.1%, the steel sheet is strengthened by solid solution strengthening of Al, and the ductility deteriorates.

N:0.0100%以下
Nは鋼板組織中に固溶し、過剰に含有するとストレッチャーストレインマークなどの表面欠陥を発生させる原因となる。従ってNは0.0100%以下とする必要がある。
N: 0.0100% or less
N forms a solid solution in the steel sheet structure, and if it is excessively contained, it causes surface defects such as stretcher strain marks. Therefore, N must be 0.0100% or less.

Sb:0.0055〜0.0160%
Mnに起因すると思われるめっき性状不良を防止するためにSbは必須の成分である。Sbが0.0055%未満ではMnに起因するめっき性状不良の発生を防止する効果が十分でなく、0.0160%を超えると製造コスト面で不経済となる。Mnに起因するめっき性状不良は焼鈍時に鋼板表面にMn酸化物が生成するためと考えられる。Sbを添加すると、焼鈍時にSbが鋼板表面に濃化し、鋼板表面に生成するMn酸化物を覆うため、Mnに起因するめっき性状不良の発生を防止できると考えられる。
Sb: 0.0055-0.0160%
Sb is an indispensable component in order to prevent poor plating properties that may be caused by Mn. If Sb is less than 0.0055%, the effect of preventing the occurrence of poor plating properties due to Mn is not sufficient, and if it exceeds 0.0160%, the production cost becomes uneconomical. The poor plating properties due to Mn are thought to be due to the formation of Mn oxide on the steel sheet surface during annealing. When Sb is added, Sb is concentrated on the surface of the steel sheet during annealing and covers the Mn oxide generated on the surface of the steel sheet, so that it is considered that the occurrence of poor plating properties due to Mn can be prevented.

Nb:0.036〜0.14%
NbはCと結合して本発明必須のNbCの微細析出物を生成し、これにより組織を微細化し、表面性状、機械的特性を向上させるため添加する。炭化物生成元素の中でNbはA3点直下で析出するため極めて微細な析出物が得られるという点で最も好適な元素である。一方、同じ炭化物生成元素であるTiの析出物はA3点以上の高温で析出するため、析出物が本発明の効果を得るためには粗大となりすぎる。従ってNbを適正に添加することは本発明の必須の構成要件である。0.036%未満ではNbCの析出量が不足し、析出物生成の効果が得られず、0.14%を超えるとNbCの体積率が高くなりすぎ強度が著しく上昇し、成形性を劣化させる。さらにNb添加によるNbC析出の効果を高めるためには0.08%超えが望ましい。
Nb: 0.036 to 0.14%
Nb combines with C to form a fine precipitate of NbC essential for the present invention, which is added to refine the structure and improve the surface properties and mechanical properties. Nb in the carbide-forming elements is the most preferred element in that very fine precipitates is obtained to precipitate just below 3 points A. On the other hand, precipitates Ti is the same carbide-forming elements for precipitation at a high temperature of at least three points A, precipitates in order to obtain the effect of the present invention is too coarse. Therefore, it is an essential constituent requirement of the present invention to add Nb appropriately. If it is less than 0.036%, the precipitation amount of NbC is insufficient and the effect of forming precipitates cannot be obtained. If it exceeds 0.14%, the volume fraction of NbC becomes too high and the strength is remarkably increased and the moldability is deteriorated. Further, in order to enhance the effect of NbC precipitation by adding Nb, it is desirable to exceed 0.08%.

また、12Nb/93Cが1.1以下では非平衡に固溶Cが残留し、ストレッチャーストレインなどの表面欠陥が発生しやすく、また、深絞り成形に好適な(111)面を板面方向に有する集合組織の生成を妨げる効果があるので、1.1超えとすることが好ましい。一方、2.5以上ではNbがFe中に過剰に含まれるため、延性が劣化するばかりか熱間加工性が劣化し、歩留まりの低下を招くので2.5未満とすることが好ましい。さらにNbCの微細析出の効果を高めるためには12Nb/93Cが1.5超えであることがより好ましい。さらにその効果を高めるためには1.7以上であることがさらに好ましい。   In addition, when 12 Nb / 93C is 1.1 or less, solid solution C remains in a non-equilibrium state, surface defects such as stretcher strain are likely to occur, and the assembly has a (111) surface suitable for deep drawing in the plate surface direction. Since it has the effect of preventing the generation of tissue, it is preferable to exceed 1.1. On the other hand, if it is 2.5 or more, Nb is excessively contained in Fe, so that not only ductility is deteriorated but also hot workability is deteriorated and yield is reduced. Furthermore, in order to enhance the effect of fine precipitation of NbC, it is more preferable that 12Nb / 93C exceeds 1.5. In order to further enhance the effect, it is more preferably 1.7 or more.

B:0.0015%以下
Bは2次加工脆化を防止するために添加してもよい。しかし0.0015%を超えて添加するとr値および伸びが著しく劣化するので、添加する場合は0.0015%以下とする必要がある。
B: 0.0015% or less
B may be added to prevent secondary processing embrittlement. However, if added over 0.0015%, the r value and elongation deteriorate significantly, so when added, it is necessary to make it 0.0015% or less.

金属組織は、平均結晶粒径が10μm以下であることが好ましい。結晶粒径は、プレスなど成形加工後の表面性状を良好にするために重要である。10μmを超えると成形加工後の表面性状が劣化するので結晶粒径は10μm以下とすることが好ましい。   The metal structure preferably has an average crystal grain size of 10 μm or less. The crystal grain size is important for improving surface properties after molding such as pressing. If it exceeds 10 μm, the surface properties after the molding process deteriorate, so the crystal grain size is preferably 10 μm or less.

次に本発明の鋼板の製造方法に関して説明する。   Next, the manufacturing method of the steel plate of this invention is demonstrated.

本発明に記載の成分組成を有する鋼を連続鋳造後、直接または1100〜1250℃に再加熱後、熱間圧延を行う。1150℃未満では圧延荷重が高く、作業能率が悪くなり、1250℃を超えると製品の表面性状が悪くなるためである。最終2段の圧下率の合計を10%〜40%、仕上温度をAr3〜920℃で熱間圧延後する。本発明鋼の特性を発揮させるためにはここでの圧下率の制御が重要で10%未満では熱延組織が粗大化してr値向上の効果が得られない。一方40%超えでは熱延後一部未再結晶オーステナイトとなるため、不均一な熱間圧延組織となり、r値および表面性状が劣化する。また仕上温度がAr3未満では表層がフェライト化し、熱延組織が粗大化するのでr値が低下する。一方920℃超えでも冷却中のオーステナイト粒の成長が速く、熱延組織の微細化が困難となり、r値を向上できない。 The steel having the component composition described in the present invention is subjected to hot rolling directly or after reheating to 1100 to 1250 ° C. after continuous casting. This is because if the temperature is lower than 1150 ° C, the rolling load is high and the work efficiency deteriorates, and if it exceeds 1250 ° C, the surface properties of the product deteriorate. The hot rolling is performed at a final temperature of 10% to 40% and a finishing temperature of Ar 3 to 920 ° C. in the final two stages. In order to exhibit the characteristics of the steel of the present invention, it is important to control the rolling reduction here. If it is less than 10%, the hot rolled structure becomes coarse and the effect of improving the r value cannot be obtained. On the other hand, if it exceeds 40%, it becomes partially non-recrystallized austenite after hot rolling, resulting in a non-uniform hot rolled structure, and the r value and surface properties deteriorate. On the other hand, if the finishing temperature is less than Ar 3 , the surface layer becomes ferritic and the hot rolled structure becomes coarse, so the r value decreases. On the other hand, even when the temperature exceeds 920 ° C., the growth of austenite grains during cooling is fast, making it difficult to refine the hot-rolled structure, and the r value cannot be improved.

熱延後の冷却速度は15℃/sec以上で700℃以下まで冷却しなければならない。15℃/sec未満では冷却中に結晶粒成長が起こり、熱延組織が粗大化し、1.5以上のr値が得られない。この効果は700℃超えで顕著になるのでこの温度以下まで冷却を行うことが重要である。   The cooling rate after hot rolling must be 15 ° C / sec or more and 700 ° C or less. If it is less than 15 ° C./sec, crystal grain growth occurs during cooling, the hot rolled structure becomes coarse, and an r value of 1.5 or more cannot be obtained. Since this effect becomes remarkable above 700 ° C., it is important to cool to this temperature or lower.

冷間圧延の圧延率は50%以上なければならない。冷間圧延の圧延率は鋼成分によって適宜制御されるが、本発明鋼では50%未満では1.5以上のr値が得られない。   The rolling rate of cold rolling must be 50% or more. Although the rolling rate of cold rolling is appropriately controlled depending on the steel component, an r value of 1.5 or more cannot be obtained with less than 50% of the steel of the present invention.

次に冷間圧延後、焼鈍工程を備える連続溶融めっきラインを用いて、焼鈍し、次いで溶融めっきを行う。1.5以上のr値と10μm以下の結晶粒径を両立させるため、連続焼鈍は780℃〜Ac3で行う。焼鈍温度が780℃未満では1.5以上のr値が得られず、Ac3を超えるとオーステナイト化により10μm以下の等軸結晶粒が得られないばかりでなく、r値も1.5未満となるため、780℃〜Ac3とする。さらに本発明鋼では焼鈍温度を860℃以上とすることにより、結晶粒径を10μmでさらにr値を向上させることができるので、焼鈍温度は860℃以上とすることが望ましい。連続焼鈍とするのは加熱速度を20℃/sec以上とするためで、20℃/sec未満では、深絞り成形に有利な集合組織を形成せず、r値が1.5未満となるためである。 Next, after cold rolling, annealing is performed using a continuous hot dipping line equipped with an annealing step, followed by hot dipping. In order to achieve both an r value of 1.5 or more and a crystal grain size of 10 μm or less, continuous annealing is performed at 780 ° C. to Ac 3 . When the annealing temperature is less than 780 ° C., an r value of 1.5 or more cannot be obtained. When Ac 3 is exceeded, not only equiaxed crystal grains of 10 μm or less can be obtained due to austenitization, but also the r value becomes less than 1.5. C to Ac 3 . Furthermore, in the steel of the present invention, by setting the annealing temperature to 860 ° C. or higher, the r value can be further improved at a crystal grain size of 10 μm. Therefore, the annealing temperature is preferably set to 860 ° C. or higher. The reason for continuous annealing is that the heating rate is 20 ° C./sec or more, and if it is less than 20 ° C./sec, a texture that is advantageous for deep drawing is not formed and the r value is less than 1.5.

溶融めっき条件は特に限定されない。めっき後、またはさらに合金化処理後に調質圧延を行う。調質圧延は、圧延率を0.4〜1.0%とする。調質圧延率の制御が発明では重要で、0.4%未満ではN時効の影響を十分に抑制することが出来ない場合があり、1.0%を超えると本発明鋼では降伏点が著しく上昇し、成形性を劣化させる。   The hot dipping conditions are not particularly limited. Temper rolling is performed after plating or after alloying. In temper rolling, the rolling rate is 0.4 to 1.0%. The control of the temper rolling ratio is important in the invention. If it is less than 0.4%, the influence of N aging may not be sufficiently suppressed. Deteriorate the sex.

めっき層を合金化処理する場合は合金化処理時間を短縮するため誘導加熱型の合金化処理炉を用いることが望ましい。   When the plating layer is alloyed, it is desirable to use an induction heating type alloying furnace in order to shorten the alloying time.

表1に示す鋼番No.1〜5の鋼を連続鋳造後、1200℃で再加熱した後、熱間圧延により板厚3.4mmとした。熱間圧延仕上げ温度は840℃であった。その際、最終2段の圧下率の合計を15%とした。その後平均冷却速度20℃/secで冷却後、560℃で巻き取った。さらに1.015mmまで冷間圧延し(冷間圧延率70.1%)、連続焼鈍設備を備える溶融亜鉛めっきラインを用いて800℃で約90sec間保持した後溶融亜鉛めっき、めっき層の合金化処理、その後圧延率0.7%の調質圧延を施し試験材を得た。溶融亜鉛めっきは、480℃の鋼板を浴温460℃の溶融亜鉛浴(Al:0.15%含有)に浸漬させた後、溶融亜鉛浴から引き上げて亜鉛めっき量を48g/m2に調整した。次に誘導加熱型の合金化処理炉を用いて、めっき皮膜中のFe含有量が10.5%になるように合金化処理を行い、さらに圧延率0.5%で調質圧延を行った。 Steels Nos. 1 to 5 shown in Table 1 were continuously cast, reheated at 1200 ° C., and then hot rolled to a thickness of 3.4 mm. The hot rolling finish temperature was 840 ° C. At that time, the total of the final two stages of rolling reduction was set to 15%. Then, after cooling at an average cooling rate of 20 ° C./sec, it was wound up at 560 ° C. Further cold-rolled to 1.015 mm (cold rolling rate: 70.1%), held at 800 ° C for about 90 seconds using a hot-dip galvanizing line equipped with continuous annealing equipment, then hot-dip galvanized, alloyed coating layer, A test material was obtained by temper rolling with a rolling rate of 0.7%. In the hot dip galvanizing, a steel sheet at 480 ° C. was immersed in a hot dip zinc bath (containing Al: 0.15%) at a bath temperature of 460 ° C. and then pulled up from the hot dip zinc bath to adjust the galvanizing amount to 48 g / m 2 . Next, using an induction heating type alloying furnace, alloying was performed so that the Fe content in the plating film was 10.5%, and temper rolling was further performed at a rolling rate of 0.5%.

Figure 2006274288
Figure 2006274288

前記で製造した合金化溶融亜鉛めっき鋼板の表面性状を目視観察し、Mnに起因するめっき性状不良の有無を評価した。また機械特性を調査した。r値測定はめっき層の影響を除去するため塩酸により酸洗後実施し、3方向のr値測定結果から平均r値:mean-r=(r0+2*r45+r90)/4を計算した。ここで、r0:圧延方向と平行な方向のr値、r45:圧延方向と45度方向のr値、r90:圧延方向と直角方向のr値である。表面性状はめっき鋼板の外観を目視観察し、Mnに起因するめっき性状不良の有無により、○:発生無し、×:発生有りと評価した。調査結果を表2に示す。 The surface properties of the alloyed hot-dip galvanized steel sheet produced as described above were visually observed to evaluate the presence or absence of poor plating properties due to Mn. The mechanical properties were also investigated. The r-value measurement is carried out after pickling with hydrochloric acid in order to remove the influence of the plating layer, and the average r-value from the r-value measurement results in three directions: mean-r = (r 0 + 2 * r 45 + r 90 ) / 4 Was calculated. Here, r 0 is the r value in the direction parallel to the rolling direction, r 45 is the r value in the rolling direction and the 45 ° direction, and r 90 is the r value in the direction perpendicular to the rolling direction. The surface properties were evaluated by visually observing the appearance of the plated steel sheet and evaluated as “O”: no occurrence and “X”: occurrence depending on the presence or absence of plating property failure caused by Mn. The survey results are shown in Table 2.

Figure 2006274288
Figure 2006274288

比較鋼はMnに起因するめっき性状不良が発生したが、本発明鋼は、Mnに起因するめっき性状不良の発生はなかった。また、本発明鋼は何れも高強度であり、またr値が1.5以上でプレス成形性にも優れる。   In the comparative steel, plating property defects due to Mn occurred, but in the steel according to the present invention, plating property defects due to Mn did not occur. In addition, all the steels of the present invention have high strength, and an r value of 1.5 or more is excellent in press formability.

本発明の溶融亜鉛系めっき鋼板は、表面外観に優れ、r値が1.5以上で成形性に優れるので、表面外観と成形性が要求されるフード、ドア、フェンダー、サイドパネル等の自動車外板パネルまたはメンバー、レインフォースメント等の自動車構造部材に使用される鋼板として利用することができる。   The hot dip galvanized steel sheet of the present invention is excellent in surface appearance, and has an r value of 1.5 or more and excellent formability. Therefore, automotive exterior panels such as hoods, doors, fenders and side panels that require surface appearance and formability are required. Or it can utilize as a steel plate used for automobile structural members, such as a member and reinforcement.

Claims (1)

質量%で、C:0.0040〜0.010%、Si:0.05%以下、Mn:1.0〜2.5%、P:0.02〜0.1%、S:0.02%以下、sol.Al:0.01〜0.1%、N:0.0100%以下、Sb:0.0055〜0.0160%、Nb:0.036〜0.14%、B:0.0015%以下を含有し、残部が実質的にFeおよび不可避的不純物からなる鋼板に亜鉛系めっきを施したことを特徴とする表面外観に優れた高強度溶融亜鉛系めっき鋼板。   In mass%, C: 0.0040 to 0.010%, Si: 0.05% or less, Mn: 1.0 to 2.5%, P: 0.02 to 0.1%, S: 0.02% or less, sol.Al: 0.01 to 0.1%, N: 0.0100% In the following, a steel sheet containing Sb: 0.0055 to 0.0160%, Nb: 0.036 to 0.14%, B: 0.0015% or less, and the balance being substantially composed of Fe and inevitable impurities is characterized by being subjected to zinc-based plating. High strength hot-dip galvanized steel sheet with excellent surface appearance.
JP2005090550A 2005-03-28 2005-03-28 High strength hot dip galvanized steel sheet having excellent surface appearance Pending JP2006274288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005090550A JP2006274288A (en) 2005-03-28 2005-03-28 High strength hot dip galvanized steel sheet having excellent surface appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005090550A JP2006274288A (en) 2005-03-28 2005-03-28 High strength hot dip galvanized steel sheet having excellent surface appearance

Publications (1)

Publication Number Publication Date
JP2006274288A true JP2006274288A (en) 2006-10-12

Family

ID=37209322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005090550A Pending JP2006274288A (en) 2005-03-28 2005-03-28 High strength hot dip galvanized steel sheet having excellent surface appearance

Country Status (1)

Country Link
JP (1) JP2006274288A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078912A1 (en) * 2006-12-27 2008-07-03 Posco Zn-coated steel sheet having excellent surface quality and the method for manufacturing the same
WO2008082146A1 (en) * 2006-12-28 2008-07-10 Posco High strength zn-coated steel sheet having excellent mechanical properites and surface quality and the method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131692A (en) * 1999-11-05 2001-05-15 Nkk Corp High strength cold rolled steel sheet or high strength galvanized steel sheet excellent in surface property and press formability and producing method therefor
JP2002146475A (en) * 2000-11-02 2002-05-22 Kawasaki Steel Corp Galvannealed steel sheet
JP2002294397A (en) * 2001-03-30 2002-10-09 Nippon Steel Corp High strength galvanized steel sheet having excellent plating adhesion and press formability and production method therefor
JP2004263295A (en) * 2003-02-10 2004-09-24 Jfe Steel Kk Alloyed galvanized steel sheet excellent in solder plated adhesion and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131692A (en) * 1999-11-05 2001-05-15 Nkk Corp High strength cold rolled steel sheet or high strength galvanized steel sheet excellent in surface property and press formability and producing method therefor
JP2002146475A (en) * 2000-11-02 2002-05-22 Kawasaki Steel Corp Galvannealed steel sheet
JP2002294397A (en) * 2001-03-30 2002-10-09 Nippon Steel Corp High strength galvanized steel sheet having excellent plating adhesion and press formability and production method therefor
JP2004263295A (en) * 2003-02-10 2004-09-24 Jfe Steel Kk Alloyed galvanized steel sheet excellent in solder plated adhesion and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078912A1 (en) * 2006-12-27 2008-07-03 Posco Zn-coated steel sheet having excellent surface quality and the method for manufacturing the same
WO2008082146A1 (en) * 2006-12-28 2008-07-10 Posco High strength zn-coated steel sheet having excellent mechanical properites and surface quality and the method for manufacturing the same
JP2010502845A (en) * 2006-12-28 2010-01-28 ポスコ High strength galvanized steel sheet with excellent mechanical properties and surface quality and method for producing the same

Similar Documents

Publication Publication Date Title
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
EP2772556B1 (en) Method for producing high-strength steel sheet having superior workability
JP5884210B1 (en) Method for producing high-strength hot-dip galvanized steel sheet
WO2010119971A1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
JP5532088B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
KR20120113791A (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JP5305149B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
CN110629000A (en) Cold-rolled hot-dip galvanized steel sheet with yield strength of 280MPa and manufacturing method thereof
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP4537865B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP5655381B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet
JP5397141B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3528716B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet excellent in surface properties and press formability, and manufacturing method thereof
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JP5381154B2 (en) Cold-rolled steel sheet excellent in strength-ductility balance after press working and paint baking and method for producing the same
JP2007119842A (en) Method for producing high-strength galvanized steel sheet excellent in stretch-flanging property
JP2010018852A (en) High strength steel sheet having excellent deep drawability and method for producing the same
JP2006274288A (en) High strength hot dip galvanized steel sheet having excellent surface appearance
JP2013076132A (en) High strength thin steel sheet having excellent bake hardenability and formability and method for manufacturing the same
JP3812248B2 (en) High-strength cold-rolled steel sheet with excellent surface properties and press formability and method for producing the same
JP3422549B2 (en) Cold-rolled steel sheet for enamel having high strength after enamel firing and method for producing the same
JP4930393B2 (en) Cold rolled steel sheet manufacturing method
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JP2808014B2 (en) Manufacturing method of good workability cold rolled steel sheet with excellent bake hardenability

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20060921

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A621 Written request for application examination

Effective date: 20080225

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920