JP2001252747A - Method for treating molten steel excellent in quality characteristic - Google Patents
Method for treating molten steel excellent in quality characteristicInfo
- Publication number
- JP2001252747A JP2001252747A JP2000066137A JP2000066137A JP2001252747A JP 2001252747 A JP2001252747 A JP 2001252747A JP 2000066137 A JP2000066137 A JP 2000066137A JP 2000066137 A JP2000066137 A JP 2000066137A JP 2001252747 A JP2001252747 A JP 2001252747A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- concentration
- steel
- tin
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、溶鋼が凝固する際
に、凝固組織を微細にすることができる品質特性に優れ
た溶鋼の処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating molten steel having excellent quality characteristics and capable of refining a solidified structure when the molten steel is solidified.
【0002】[0002]
【従来の技術】従来、溶鋼は、上底吹き転炉や電気炉等
の精練炉を用いて脱炭精練を行い、炭素や燐、硫黄等を
除去してからFe−Mn、Fe−Si等の合金鉄を添加
し、成分調整をすることにより製造される。そして、連
続鋳造等により溶鋼を凝固させて鋳片を製造し、更に、
鋳片を加熱して圧延加工を施すことにより、鋼材を製造
している。しかし、鋳片は、溶鋼が凝固する際に凝固組
織が粗大になり、鋳片の内部に割れや中心偏析、センタ
ーポロシティ等の内部欠陥が発生し、良鋳片歩留りの低
下等を招く。更に、これを用いて加工した鋼材の品質を
低下させることにもなる。しかも、粗大な凝固組織の鋳
片を用いて圧延等の加工を施した鋼材には、ヘゲ疵、エ
ッジシーム疵やローピング等の表面欠陥が発生し、外観
不良、端部のトリム量の増加等から品質や良製品歩留り
が低下する等の問題がある。この対策として、特開昭5
2−47522号公報に記載されているように、連続鋳
造中の鋳型内の湯面から1.5〜3.0mの位置に電磁
攪拌装置を設けて、60mmHgの推力で攪拌すること
により、微細な凝固組織を備えた鋳片を製造するか、あ
るいは特開昭52−60231号公報に記載されている
ように、溶鋼の過熱度を10〜50℃にして鋳造を行
い、しかも、鋳造中の鋳片の未凝固層に電磁攪拌を行っ
て、鋳片の凝固組織を等軸晶からなる微細な組織にし
て、中心偏析やセンターポロシティ等の内部欠陥の無い
鋼材を製造することが行われている。更に、特開昭63
−1460061号公報に記載されているように、溶鋼
を鋳型に鋳造する際に、TiNの微粒子を添加すること
により、微細な凝固組織を備えた鋳片を製造することが
行われている。2. Description of the Related Art Conventionally, molten steel is subjected to decarburization scouring using a scouring furnace such as a top-bottom blow converter or an electric furnace to remove carbon, phosphorus, sulfur, etc., and then to remove Fe-Mn, Fe-Si, etc. It is manufactured by adding alloy iron and adjusting the components. Then, the molten steel is solidified by continuous casting or the like to produce a slab, and further,
A steel material is manufactured by heating and casting a slab. However, when the molten steel is solidified, the solidified structure of the slab becomes coarse, and internal defects such as cracks, center segregation, and center porosity occur inside the slab, resulting in a decrease in the yield of a good slab. Furthermore, the quality of the steel material processed using this is also reduced. In addition, surface defects such as barge flaws, edge seam flaws, and roping occur on steel materials that have been subjected to processing such as rolling using a slab having a coarse solidification structure, resulting in poor appearance, an increase in the amount of trim at the ends, and the like. Therefore, there is a problem that the quality and the yield of good products are reduced. As a countermeasure against this, Japanese Patent Laid-Open
As described in Japanese Patent Application Laid-Open No. 2-47522, an electromagnetic stirrer is provided at a position of 1.5 to 3.0 m from the surface of the molten metal in the mold during continuous casting, and is stirred with a thrust of 60 mmHg to obtain fine particles. Casting is performed by producing a slab having a solidified structure, or as described in JP-A-52-60231, by setting the degree of superheat of molten steel to 10 to 50 ° C. By performing electromagnetic stirring on the unsolidified layer of the slab, the solidified structure of the slab is made into a fine structure composed of equiaxed crystals, and steel materials without internal defects such as center segregation and center porosity are manufactured. I have. Further, JP-A-63
As described in -1460061, when a molten steel is cast into a mold, a slab having a fine solidified structure is produced by adding fine particles of TiN.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、特開昭
52−47522号公報では、鋳型内で凝固しつつある
溶鋼を電磁攪拌することによって、成長する柱状晶(デ
ンドライト組織)を抑制して、電磁攪拌を付与した部位
近傍の凝固組織をある程度微細にできるが、鋳片の全体
を微細にするには、多段の電磁攪拌装置が必要になり、
設備費が増大する。しかも、連続鋳造機内に多数の電磁
攪拌装置を設置することは設置スペースの点から困難で
ある。その結果、鋳片の全体を微細化した鋳片を製造す
るのに限界がある。更に、特開昭52−60231号公
報では、溶鋼の温度を低くした低温鋳造を行うため、浸
漬ノズル内面に介在物が付着してノズル詰まりを生じた
り、鋳型内溶鋼表面の湯面皮張りが生じて操業が不安定
になる等の問題がある。また、特開昭63−14600
61号公報では、溶鋼の凝固組織を微細にするために
0.15重量%のTiを添加する必要があり、合金コス
トが高くなり、しかも、TiNに起因したノズル詰ま
り、ヘゲ疵が生じる等の問題がある。However, in Japanese Patent Application Laid-Open No. 52-47522, the molten steel being solidified in a mold is electromagnetically stirred to suppress the growing columnar crystals (dendritic structure), Although the solidification structure in the vicinity of the part where stirring was given can be made fine to some extent, in order to make the entire slab fine, a multi-stage electromagnetic stirring device is required,
Equipment costs increase. Moreover, it is difficult to install a large number of electromagnetic stirring devices in the continuous casting machine in terms of installation space. As a result, there is a limit in manufacturing a slab in which the entire slab is miniaturized. Further, in Japanese Patent Application Laid-Open No. 52-60231, since low-temperature casting is performed by lowering the temperature of molten steel, inclusions may adhere to the inner surface of the immersion nozzle to cause nozzle clogging, or the surface of molten steel in the mold may be covered with molten metal. Operation becomes unstable. Also, JP-A-63-14600
In Japanese Patent No. 61, it is necessary to add 0.15% by weight of Ti in order to make the solidification structure of molten steel fine, so that the alloy cost becomes high, and nozzle clogging and scorching caused by TiN occur. There is a problem.
【0004】本発明はかかる事情に鑑みてなされたもの
で、Tiの添加量を少なくし、ノズル詰まりや操業の不
安定化を防止し、有効な凝固核を生成させて凝固組織を
微細にすることができる品質特性に優れた溶鋼の処理方
法を提供することを目的とする。The present invention has been made in view of the above circumstances, and reduces the amount of Ti added to prevent clogging of a nozzle and instability of operation, to form an effective solidification nucleus and to make a solidified structure fine. It is an object of the present invention to provide a method for treating molten steel having excellent quality characteristics.
【0005】[0005]
【課題を解決するための手段】前記目的に沿う本発明の
品質特性に優れた溶鋼の処理方法は、溶鋼の液相線温度
以上でTiNが晶出する溶解度積を満たすTi濃度とN
濃度の溶鋼に、Mgを添加する。この方法により、Ti
Nが晶出しない高温時には、分散性の良好なMgOやM
gO・Al2 O3 のMg酸化物を生成し、溶鋼の温度が
低下するにつれ、このMg酸化物の上にTiNを晶出さ
せて溶鋼中に分散させることにより、多数の凝固核を生
成して鋳片の凝固組織を微細にできる。なお、Mgの添
加は、金属MgやFe−SI−Mg、Ni−Mg等のM
g合金を投入することによって行う。According to the present invention, there is provided a method for treating molten steel having excellent quality characteristics according to the present invention, comprising: a Ti concentration and an N which satisfy a solubility product at which TiN is crystallized at a temperature not lower than a liquidus temperature of molten steel;
Mg is added to the molten steel of the concentration. By this method, Ti
At a high temperature at which N does not crystallize, MgO or M
gO.Al 2 O 3 Mg oxide is produced, and as the temperature of the molten steel is lowered, TiN is crystallized on the Mg oxide and dispersed in the molten steel to produce a large number of solidification nuclei. Thus, the solidified structure of the slab can be made fine. In addition, the addition of Mg is performed by adding M such as metallic Mg, Fe-SI-Mg,
This is performed by charging the g alloy.
【0006】ここで、前記Ti濃度とN濃度は、(1)
式を満たすことが好ましい。 〔%Ti〕×〔%N〕≧(〔%Cr〕2.5 +150)×10-6 ・・・(1) 但し、〔%Ti〕は溶鋼中に含まれるTi重量%、〔%
N〕は溶鋼中に含まれるN重量%、〔%Cr〕は溶鋼中
に含まれるCr重量%である。これにより、溶鋼中に含
まれるTiとNの濃度を所定の範囲にしてMgを添加す
るので、生成したTiNを分散性の高いMg酸化物に随
伴させて、溶鋼中に安定して分散させることができ、溶
鋼が凝固する際に、凝固核として作用させて鋳片の凝固
組織をより微細にすることができる。Here, the Ti concentration and the N concentration are expressed by (1)
It is preferable to satisfy the formula. [% Ti] × [% N] ≧ ([% Cr] 2.5 +150) × 10 −6 (1) where [% Ti] is the Ti weight% contained in the molten steel, [%
[N] is the N weight% contained in the molten steel, and [% Cr] is the Cr weight% contained in the molten steel. Thereby, Mg is added within a predetermined range of the concentration of Ti and N contained in the molten steel, so that the generated TiN accompanies the highly dispersible Mg oxide and is stably dispersed in the molten steel. When the molten steel is solidified, it can act as a solidification nucleus to further refine the solidified structure of the slab.
【0007】更に、前記溶鋼は、Crを10〜23重量
%含むフェライト系ステンレス溶鋼にすると良い。凝固
組織が粗大化し易いCrを含有するフェライト系スレン
レス鋼に対して、凝固組織の微細化の効果が発揮され、
鋳片や鋼材に発生する表面欠陥や内部欠陥を防止するこ
とができる。Crの含有量が10重量%より少ないと、
溶鋼から製造した鋼材の耐食性が低下し、凝固組織の粗
大化が小さいので微細化する効果が減少する。一方、C
rの含有量が23重量%を超えると、Cr合金鉄を添加
しても溶鋼から製造した鋼材の耐食性が向上しないため
合金鉄のコストが高くなる。Further, the molten steel is preferably a ferritic stainless steel molten steel containing 10 to 23% by weight of Cr. For ferritic stainless steel containing Cr whose solidification structure tends to coarsen, the effect of refining the solidification structure is exhibited,
Surface defects and internal defects occurring in the slab and steel material can be prevented. If the content of Cr is less than 10% by weight,
Corrosion resistance of the steel material manufactured from the molten steel is reduced, and the effect of refinement is reduced because the solidification structure is small in coarseness. On the other hand, C
When the content of r exceeds 23% by weight, the cost of ferroalloys increases because the corrosion resistance of steel materials manufactured from molten steel does not improve even if Cr alloy iron is added.
【0008】[0008]
【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。TiNは、δフェライトとの格子整
合度(TiNの格子定数とδフェライトとの格子定数の
差をδフェライトとの格子定数で除した値を言う)が4
%と良好であるが、このTiNは、凝集し易く、粗大な
TiNによって浸漬ノズルの詰まり、あるいは、鋼材の
スリバー疵等の欠陥の原因になる等の問題がある。本発
明の特徴となる点は、溶鋼が凝固する際にTiNが凝固
核として有効に作用することに基づいて、更に、Mgを
溶鋼に添加して生成するMg酸化物は、分散性が極めて
良好であること、しかも、TiNがMg酸化物上に優先
的に晶出することに着目し、Mg酸化物を利用してTi
Nの分散性を高めて、組織の微細化に有効な凝固核を多
数分散させることにある。以下、本発明の品質特性に優
れた溶鋼の処理方法について詳細に説明する。図1は本
発明の一実施の形態に係る品質特性に優れた溶鋼の処理
方法に適用される溶鋼の処理装置の全体図、図2
(A)、(B)はそれぞれ鋳片の凝固組織の模式図であ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. TiN has a lattice matching degree with δ ferrite (which is a value obtained by dividing the difference between the lattice constant of TiN and the lattice constant of δ ferrite by the lattice constant of δ ferrite).
%, But this TiN is liable to agglomerate, and has a problem that coarse TiN causes clogging of the immersion nozzle or causes defects such as sliver flaws of steel. The feature of the present invention is that, based on the fact that TiN effectively acts as a solidification nucleus when molten steel is solidified, Mg oxide added by adding Mg to molten steel has a very good dispersibility. And the fact that TiN is preferentially crystallized on Mg oxide.
An object of the present invention is to enhance the dispersibility of N to disperse a large number of coagulation nuclei effective for making the structure fine. Hereinafter, the method for treating molten steel having excellent quality characteristics of the present invention will be described in detail. FIG. 1 is an overall view of an apparatus for treating molten steel applied to a method for treating molten steel having excellent quality characteristics according to an embodiment of the present invention.
(A) and (B) are each a schematic diagram of a solidified structure of a slab.
【0009】図1に示すように、本発明の一実施の形態
に係る品質特性に優れた溶鋼の処理方法に用いられる溶
鋼の処理装置10は、溶鋼11を入れた取鍋12と、こ
の取鍋12の上方に設けられたスポンジTi、Fe−T
i等のTi(チタン)合金を貯蔵するホッパ13及びF
e−N、N−Mn、N−Cr等のN(窒素)合金を貯蔵
するホッパ14と、これ等ホッパ13、ホッパ14から
切り出されたTi合金やN含有合金を溶鋼11に添加す
るためのシュート15と、ガイドパイプ16により案内
しながら、表面を薄鋼板で被覆した金属Mgワイヤ17
をスラグ18を貫通して溶鋼11に添加する供給装置1
9を備えている。なお、符号20は、取鍋12内の溶鋼
11に不活性ガスの一例であるアルゴンガスを供給する
ためのポーラスプラグである。As shown in FIG. 1, a molten steel processing apparatus 10 used in a method for processing molten steel having excellent quality characteristics according to an embodiment of the present invention includes a ladle 12 containing molten steel 11, Sponge Ti, Fe-T provided above pan 12
hopper 13 for storing Ti (titanium) alloy such as i and F
a hopper 14 for storing N (nitrogen) alloys such as e-N, N-Mn, and N-Cr; and a hopper 13 for adding Ti alloy or N-containing alloy cut out from the hopper 14 to the molten steel 11. While being guided by a chute 15 and a guide pipe 16, a metal Mg wire 17 whose surface is covered with a thin steel plate
Supply device 1 which penetrates slag 18 and adds it to molten steel 11
9 is provided. Reference numeral 20 is a porous plug for supplying argon gas, which is an example of an inert gas, to the molten steel 11 in the ladle 12.
【0010】次に、本実施の形態に係る品質特性に優れ
た溶鋼の処理方法について説明する。上底吹き転炉や電
気炉等の精練炉を用いて、脱炭及び燐、硫黄等の不純物
を除去した溶鋼11を取鍋12に150トン受湯した。
この溶鋼11は、フェライト系ステンレス溶鋼であり、
Crを10〜23重量%含んでいる。その後、ポーラス
プラグ20から3〜5NL/分のアルゴンガスを吹き込
みながら、ホッパ13からTi合金の一例であるFe−
Tiを150kgと、ホッパ14からN含有合金の一例
であるN−Mnを30kg添加して溶鋼11を攪拌しな
がら均一に混合した。Next, a method for treating molten steel having excellent quality characteristics according to the present embodiment will be described. Using a refining furnace such as a top-bottom blow converter or an electric furnace, 150 tons of molten steel 11 having been subjected to decarburization and removal of impurities such as phosphorus and sulfur was placed in a ladle 12.
This molten steel 11 is a ferritic stainless steel molten steel,
Cr is contained by 10 to 23% by weight. Thereafter, while blowing argon gas at 3 to 5 NL / min from the porous plug 20, Fe—
150 kg of Ti and 30 kg of N-Mn, which is an example of an N-containing alloy, were added from the hopper 14, and the molten steel 11 was uniformly mixed with stirring.
【0011】溶鋼に、Ti及びNを添加すると、Ti濃
度とN濃度の積いわゆる溶解度積〔%Ti〕×〔%N〕
からTiNの晶出温度が決まる。溶鋼に添加したTi及
びNは、TiNの晶出温度より高い温度では、溶鋼中に
固溶したままであり、晶出温度以下に冷却された際にT
iNとして晶出し始める。TiNは、δフェライトとの
格子整合度が4%と低く、δフェライトの接種核(凝固
核)となり易い。そして、溶鋼が凝固する際に等軸晶を
容易に生成して凝固組織を微細にする効果に優れてい
る。TiNを凝固核として作用させるには、凝固を開始
する溶鋼の液相線温度(例えば、約1500℃)以上で
TiNが晶出し始める必要があり、液相線温度より低温
で晶出しても凝固組織の微細化の効果が得られない。従
って、液相線温度以上でTiNが晶出する溶解度積とな
る量のTi及びNを溶鋼11に添加する必要がある。具
体的には、下記(1)式から求められる溶解度積を満た
すTi濃度及びN濃度となるようにTi及びNを添加す
ることが好ましい。 〔%Ti〕×〔%N〕≧(〔%Cr〕2.5 +150)×10-6 ・・・(1) なお、〔%Ti〕は溶鋼中に含まれるTi重量%、〔%
N〕は溶鋼中に含まれるN重量%、〔%Cr〕は溶鋼中
に含まれるCr重量%を表す。本実施の形態では、
(1)式を満たす濃度として、例えば、Tiが0.02
0濃度%、Nが0.024濃度%となるように、Ti及
びNを溶鋼11に添加する。When Ti and N are added to molten steel, the product of Ti concentration and N concentration, so-called solubility product [% Ti] × [% N]
Determines the crystallization temperature of TiN. At temperatures higher than the crystallization temperature of TiN, Ti and N added to the molten steel remain in solid solution in the molten steel, and when cooled below the crystallization temperature, T
Start crystallization as iN. TiN has a low degree of lattice matching with δ ferrite of 4%, and is likely to become an inoculation nucleus (solidification nucleus) of δ ferrite. And, when the molten steel is solidified, it is excellent in the effect of easily forming equiaxed crystals to make the solidified structure fine. In order for TiN to act as a solidification nucleus, it is necessary that TiN starts to crystallize at a liquidus temperature (eg, about 1500 ° C.) or higher of molten steel at which solidification starts. The effect of making the structure finer cannot be obtained. Therefore, it is necessary to add Ti and N to the molten steel 11 in such amounts that the solubility product at which TiN is crystallized at a temperature equal to or higher than the liquidus temperature. Specifically, it is preferable to add Ti and N so that the Ti concentration and the N concentration satisfy the solubility product obtained from the following equation (1). [% Ti] × [% N] ≧ ([% Cr] 2.5 +150) × 10 −6 (1) where [% Ti] is the weight percent of Ti contained in the molten steel, [%
[N] represents N weight% contained in the molten steel, and [% Cr] represents Cr weight% contained in the molten steel. In the present embodiment,
As a concentration satisfying the expression (1), for example, Ti is 0.02
Ti and N are added to the molten steel 11 so that 0% concentration and N become 0.024% concentration.
【0012】このTiNによる微細化の効果をより高め
るには、TiとNの添加量を増やして、同一温度におけ
るTiN晶出量を増すことが考えられる。しかし、鋼に
よって、Ti、N量が制限されている。例えTi、N量
を増加した場合でも、晶出してからの時間経過につれT
iNが凝集して粗大化し、必ずしも凝固核の個数が増加
しない現象が見られ、むしろ、粗大TiNによるノズル
詰まり、鋼材のヘゲ疵の発生等の弊害が生じる。このよ
うな現象を防ぐために、Ti、Nを添加する前、あるい
はTi、Nを添加した後に、TiNの晶出温度より高い
温度でMgを添加し、Mg酸化物を生成させる。これに
より、溶鋼の温度が低下するにつれてTiNが晶出する
とき、Mg酸化物とTiNの格子整合度が近いため、微
細に分散したMg酸化物の上に優先してTiNが晶出
し、Mgの無添加時よりもTiNが効率良く分散して多
数晶出するようになる。更に、溶鋼に添加したMgの歩
留りを高位に維持するため、Ti、Nを添加した後にM
gを添加し、鋳造までの時間を短縮することにより好ま
しい結果が得られる。In order to further enhance the effect of miniaturization by TiN, it is conceivable to increase the amounts of TiN and N added to increase the amount of TiN crystallized at the same temperature. However, the amount of Ti and N is limited by steel. Even if the amounts of Ti and N are increased, T increases with time after crystallization.
A phenomenon is observed in which iN is aggregated and coarsened, and the number of solidified nuclei does not always increase. Rather, adverse effects such as clogging of nozzles by coarse TiN and generation of barbed flaws of steel material occur. In order to prevent such a phenomenon, Mg is added at a temperature higher than the crystallization temperature of TiN before adding Ti and N or after adding Ti and N to generate Mg oxide. Thereby, when TiN crystallizes as the temperature of the molten steel decreases, since the lattice matching between Mg oxide and TiN is close, TiN crystallizes preferentially on finely dispersed Mg oxide, and Mg TiN is more efficiently dispersed and crystallized in large numbers than in the case of no addition. Further, in order to maintain the yield of Mg added to the molten steel at a high level, after adding Ti and N, M
Preferred results are obtained by adding g and reducing the time to casting.
【0013】従って、溶鋼11中に、供給装置19を作
動して、金属Mgワイヤ17をガイドパイプ16で案内
しながら、75kgのMgを供給して0.0005〜
0.010重量%の濃度にして、Mg酸化物を生成する
ことで、晶出したTiNを微細な状態に分散する。その
結果、Ti、Nを添加した(Mg無添加)場合に生じる
粗大なTiNに起因するノズル詰まり等の操業の不安定
化が防止でき、少ないTi、Nの添加量でもって、溶鋼
11が凝固した鋳片の凝固組織を図2(A)に示すよう
に微細にすることができた。凝固組織を微細にすること
により、凝固時の収縮や粗大組織に起因する内部割れ、
中心偏析、センターポロシティ等の内部欠陥を防止する
ことができる。このように、凝固組織が微細な鋳片を加
工した鋼材は、凝固組織が微細なので、ヘゲ疵、エッジ
シーム疵、ローピング等の製品の表面欠陥等の発生も安
定して防止することができる。Accordingly, while supplying the metal Mg wire 17 through the guide pipe 16, 75 kg of Mg is supplied into the molten steel 11 while the supply device 19 is operated and 0.0005 to 0.0005.
By generating Mg oxide at a concentration of 0.010% by weight, the crystallized TiN is dispersed in a fine state. As a result, unstable operations such as nozzle clogging due to coarse TiN caused when Ti and N are added (no Mg added) can be prevented, and the molten steel 11 solidifies with a small amount of Ti and N added. The solidified structure of the cast slab could be made fine as shown in FIG. By making the solidification structure fine, shrinkage during solidification and internal cracks caused by coarse structure,
Internal defects such as center segregation and center porosity can be prevented. As described above, since the steel material obtained by processing a slab having a fine solidification structure has a fine solidification structure, it is possible to stably prevent the occurrence of surface defects such as barbed flaws, edge seam flaws, and roping.
【0014】[0014]
【実施例】次に、品質特性に優れた溶鋼の処理方法の実
施例について説明する。上底吹き転炉を用いて、脱炭及
び燐、硫黄等の不純物を除去した溶鋼を取鍋に150ト
ン受湯し、ポーラスプラグから70NL/分のアルゴン
ガスを吹き込みながら、Fe−TiとN−Mnを添加し
て、溶鋼のTi濃度を0.013〜0.125重量%、
N濃度を0.012〜0.024重量%にしてから、金
属Mgを添加して連続鋳造を行って鋳片を製造した。そ
して、鋳造時の操業の安定良否、鋳片の凝固組織の微細
化の良否、鋳片の内部欠陥及び鋼材の表面欠陥の有無、
総合評価を調査した。その結果を表1に示す。実施例1
は、溶鋼のTi濃度を0.013重量%、N濃度を0.
012重量%にしてから、金属Mgを0.0035重量
%添加した場合であり、鋳造時の操業が安定し、鋳片の
凝固組織が微細であり、鋳片及び鋼材に欠陥が無く、総
合評価として良い(○)が得られた。実施例2は、溶鋼
のCr濃度を10重量%、Ti濃度を0.020重量
%、N濃度を0.024重量%にしてから、金属Mgを
0.0015重量%添加した場合であり、鋳造時の操業
が安定し、鋳片の凝固組織が微細であり、鋳片及び鋼材
に欠陥が無く、総合評価として良い(○)が得られた。
実施例3は、溶鋼のCr濃度を10重量%、Ti濃度を
0.125重量%、N濃度を0.022重量%にしてか
ら、金属Mgを0.0025重量%添加した場合であ
り、鋳造時の操業が安定し、鋳片の凝固組織が微細であ
り、鋳片及び鋼材に欠陥が無く、総合評価として良い
(○)が得られた。Next, an embodiment of a method for treating molten steel having excellent quality characteristics will be described. Using a top-bottom blow converter, 150 tons of molten steel from which decarburized and impurities such as phosphorus and sulfur have been removed are received in a ladle, and 70 NL / min of argon gas is blown from a porous plug while Fe-Ti and N -Mn is added to increase the Ti concentration of the molten steel to 0.013 to 0.125% by weight,
After the N concentration was adjusted to 0.012 to 0.024% by weight, metal Mg was added and continuous casting was performed to produce a slab. And the stability of casting operation, the fineness of the solidification structure of the slab, the presence of internal defects in the slab and the presence of surface defects in the steel,
The comprehensive evaluation was investigated. Table 1 shows the results. Example 1
Means that the Ti concentration of molten steel is 0.013% by weight and the N concentration is 0.1%.
This is a case in which 0.0035% by weight of metallic Mg is added after 012% by weight, the operation at the time of casting is stable, the solidification structure of the slab is fine, and there is no defect in the slab and the steel material. Good ()) was obtained. Example 2 is a case where the Cr concentration of molten steel was 10% by weight, the Ti concentration was 0.020% by weight, the N concentration was 0.024% by weight, and then 0.0015% by weight of metallic Mg was added. The operation at the time was stable, the solidification structure of the slab was fine, the slab and the steel material were free from defects, and good (○) was obtained as a comprehensive evaluation.
Example 3 was a case where the molten steel had a Cr concentration of 10% by weight, a Ti concentration of 0.125% by weight, an N concentration of 0.022% by weight, and then added Mg of 0.0025% by weight. The operation at the time was stable, the solidification structure of the slab was fine, the slab and the steel material were free from defects, and good (○) was obtained as a comprehensive evaluation.
【0015】[0015]
【表1】 [Table 1]
【0016】これに対し、比較例1は、溶鋼のCr濃度
を10重量%、Ti濃度を0.021重量%、N濃度を
0.023重量%にして、金属Mgを添加しなかった場
合であり、鋳造時にノズル詰まり等が発生して操業が不
安定になり、鋳片の凝固組織が図2(B)に示すよう
に、粗大化して鋳片及び鋼材に欠陥が発生し、総合評価
として悪い(×)結果になった。比較例2は、溶鋼のC
r濃度を23重量%、溶鋼のTi濃度を0.198重量
%、N濃度を0.038重量%にして両元素の溶解度積
をTiNの析出しない範囲とし、金属Mgを添加しなか
った場合であり、鋳造時にノズル詰まり等が発生して操
業が不安定になり、粗大TiNに起因した欠陥が鋼材の
表面に発生し、総合評価として悪い(×)結果になっ
た。On the other hand, in Comparative Example 1, the molten steel had a Cr concentration of 10% by weight, a Ti concentration of 0.021% by weight, an N concentration of 0.023% by weight, and no metallic Mg was added. Yes, operation becomes unstable due to nozzle clogging and the like during casting, and the solidified structure of the slab becomes coarse as shown in FIG. 2 (B), causing defects in the slab and steel material. Bad (x) result. Comparative Example 2 shows the C
When the r concentration was 23% by weight, the Ti concentration of the molten steel was 0.198% by weight, and the N concentration was 0.038% by weight, the solubility product of both elements was within the range where TiN was not precipitated, and no metallic Mg was added. In addition, nozzle clogging and the like occurred at the time of casting, the operation became unstable, and defects caused by coarse TiN occurred on the surface of the steel material, resulting in a poor (×) result as an overall evaluation.
【0017】以上、本発明の実施の形態を説明したが、
本発明は、上記した形態に限定されるものでなく、要旨
を逸脱しない条件の変更等は全て本発明の適用範囲であ
る。例えば、精練炉としては、脱炭等の一次精練によっ
て溶製された溶鋼の他に、真空精練や一般の取鍋精練等
の二次精練装置を用いて溶製した溶鋼に適用することが
できる。更に、溶鋼にNを添加する際に、窒素ガスを溶
鋼に吹き込んで溶鋼中の窒素濃度を高くしたり、窒素ガ
スの吹き込みと合金鉄を併用することができる。The embodiment of the present invention has been described above.
The present invention is not limited to the above-described embodiment, and all changes in conditions that do not depart from the gist are within the scope of the present invention. For example, as a refining furnace, in addition to molten steel produced by primary refining such as decarburization, it can be applied to molten steel produced using a secondary refining device such as vacuum refining or general ladle refining. . Further, when N is added to the molten steel, nitrogen gas can be blown into the molten steel to increase the nitrogen concentration in the molten steel, or the nitrogen gas can be used in combination with the blowing of the nitrogen gas.
【0018】[0018]
【発明の効果】請求項1〜3記載の品質特性に優れた溶
鋼の処理方法は、溶鋼の液相線温度以上でTiNが晶出
する溶解度積を満たすTi濃度とN濃度の溶鋼に、Mg
を添加するので、TiNを分散性の良好なMgOやMg
O・Al2 O3 のMg酸化物上に晶出させて溶鋼中に分
散させることができ、鋳造等の作業の安定化が可能にな
り、鋳片の凝固組織を微細にし、鋳片の内部欠陥や鋼材
の表面欠陥を防止して良製品歩留りを向上することがで
きる。The method for treating molten steel having excellent quality characteristics according to the first to third aspects is characterized in that molten steel having a Ti concentration and an N concentration satisfying a solubility product in which TiN is crystallized at a temperature higher than a liquidus temperature of the molten steel is added to the molten steel.
Is added, so that TiN can be easily dispersed in MgO or Mg.
It can be crystallized on the Mg oxide of O.Al 2 O 3 and dispersed in molten steel, which makes it possible to stabilize the work such as casting, makes the solidification structure of the slab fine, Defects and surface defects of steel materials can be prevented, and the yield of good products can be improved.
【0019】特に、請求項2記載の品質特性に優れた溶
鋼の処理方法は、溶鋼中に含まれるTiとNの濃度を所
定の範囲にしてMg合金を添加するので、生成したTi
NをMg酸化物により、溶鋼中に安定して分散させるこ
とができ、溶鋼が凝固する際に、凝固核として作用させ
て鋳片の凝固組織をより微細にすることができる。In the method for treating molten steel having excellent quality characteristics, the Mg alloy is added with the concentrations of Ti and N contained in the molten steel within a predetermined range.
N can be stably dispersed in the molten steel by the Mg oxide, and when the molten steel is solidified, it can act as a solidification nucleus to further refine the solidified structure of the slab.
【0020】請求項3記載の品質特性に優れた溶鋼の処
理方法は、溶鋼を、Crを10〜23重量%含むフェラ
イト系スレンレス溶鋼にするので、凝固組織の微細化の
効果が十分に発揮され、鋳片や鋼材に発生する表面欠陥
や内部欠陥を防止することができる。According to the third aspect of the present invention, since the molten steel is a ferritic stainless steel molten steel containing 10 to 23% by weight of Cr, the effect of refining the solidification structure is sufficiently exhibited. In addition, surface defects and internal defects occurring in slabs and steel materials can be prevented.
【図1】本発明の一実施の形態に係る品質特性に優れた
溶鋼の処理方法に適用される溶鋼の処理装置の全体図で
ある。FIG. 1 is an overall view of an apparatus for treating molten steel applied to a method for treating molten steel having excellent quality characteristics according to an embodiment of the present invention.
【図2】(A)、(B)はそれぞれ鋳片の凝固組織の模
式図である。FIGS. 2A and 2B are schematic diagrams of a solidified structure of a cast slab, respectively.
10:溶鋼の処理装置、11:溶鋼、12:取鍋、1
3:ホッパ、14:ホッパ、15:シュート、16:ガ
イドパイプ、17:金属Mgワイヤ、18:スラグ、1
9:供給装置、20:ポーラスプラグ10: molten steel processing device, 11: molten steel, 12: ladle, 1
3: hopper, 14: hopper, 15: chute, 16: guide pipe, 17: metal Mg wire, 18: slag, 1
9: supply device, 20: porous plug
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 11/108 B22D 11/108 C D 11/114 11/114 C21C 7/00 C21C 7/00 H (72)発明者 三浦 龍介 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 楠 伸太郎 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 小山 祐司 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 Fターム(参考) 4E004 MB14 NC02 4K013 AA02 BA14 CA02 CB01 CC02 CC06 CF13 DA03 DA05 DA09 DA13 EA23 EA32 Continuation of the front page (51) Int.Cl. 7 Identification code FI Theme coat II (reference) B22D 11/108 B22D 11/108 CD 11/114 11/114 C21C 7/00 C21C 7/00 H (72) Inventor Ryusuke Miura 1-1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Works (72) Inventor Shintaro Kusunoki 1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Inside the steelworks (72) Inventor Yuji Koyama 1-1, Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Works F-term (reference) 4E004 MB14 NC02 4K013 AA02 BA14 CA02 CB01 CC02 CC06 CF13 DA03 DA05 DA09 DA13 EA23 EA32
Claims (3)
る溶解度積を満たすTi濃度とN濃度の溶鋼に、Mgを
添加することを特徴とする品質特性に優れた溶鋼の処理
方法。1. A method for treating molten steel having excellent quality characteristics, comprising adding Mg to molten steel having a Ti concentration and an N concentration satisfying a solubility product in which TiN is crystallized at a temperature not lower than a liquidus temperature of the molten steel.
処理方法において、前記Ti濃度とN濃度が下記式を満
たすことを特徴とする品質特性に優れた溶鋼の処理方
法。 〔%Ti〕×〔%N〕≧(〔%Cr〕2.5 +150)×
10-6 但し、〔%Ti〕は溶鋼中に含まれるTi重量%、〔%
N〕は溶鋼中に含まれるN重量%、〔%Cr〕は溶鋼中
に含まれるCr重量%である。2. The molten steel having excellent quality characteristics according to claim 1.
In the treatment method, the Ti concentration and the N concentration satisfy the following equation.
How to process molten steel with excellent quality characteristics
Law. [% Ti] × [% N] ≧ ([% Cr]2.5 +150) ×
10-6 However, [% Ti] is the Ti weight% contained in the molten steel, [%
[N] is N wt% contained in molten steel, and [% Cr] is in molten steel.
% Of Cr contained in the steel.
溶鋼の処理方法において、前記溶鋼は、Crを10〜2
3重量%含むフェライト系ステンレス溶鋼であることを
特徴とする品質特性に優れた溶鋼の処理方法。3. The method for treating molten steel having excellent quality characteristics according to claim 1, wherein the molten steel contains 10 to 2% of Cr.
A method for treating molten steel having excellent quality characteristics, characterized by being a ferritic stainless steel molten steel containing 3% by weight.
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000066137A JP2001252747A (en) | 2000-03-10 | 2000-03-10 | Method for treating molten steel excellent in quality characteristic |
EP10186292.8A EP2292352B1 (en) | 1999-04-08 | 2000-04-07 | Method for processing molten steel for cast steel and steel material with excellent workability |
KR1020057018257A KR100706973B1 (en) | 1999-04-08 | 2000-04-07 | Cast steel piece with fine solidification sturcture and excellent forming characteristics and steel product and seamless steel pipe produced by using the same |
EP07005688.2A EP1803512B1 (en) | 1999-04-08 | 2000-04-07 | Cast steel with excellent workability and method for manufacturing the cast steel |
US09/719,206 US6585799B1 (en) | 1999-04-08 | 2000-04-07 | Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof |
EP10186277.9A EP2308616B1 (en) | 1999-04-08 | 2000-04-07 | Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material |
KR1020007013895A KR100550678B1 (en) | 1999-04-08 | 2000-04-07 | Method for treatment of molten steel for making solidification structure of cast steel piece fine |
RU2001101464/02A RU2228235C2 (en) | 1999-04-08 | 2000-04-07 | Steel casting (variants) and steel material with improved workability, method for processing melt steel (variants) and method for making steel casting and steel material |
AU36746/00A AU753777B2 (en) | 1999-04-08 | 2000-04-07 | Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof |
PCT/JP2000/002296 WO2000061322A1 (en) | 1999-04-08 | 2000-04-07 | Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof |
CNB2005100068043A CN1321766C (en) | 1999-04-08 | 2000-04-07 | Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material |
CA002334352A CA2334352C (en) | 1999-04-08 | 2000-04-07 | Cast steel piece and steel material with excellent workability, method for processing molten steel therefor and method for manufacutring the cast steel and steel material |
EP00915437A EP1099498A4 (en) | 1999-04-08 | 2000-04-07 | Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof |
EP10186285.2A EP2308617B1 (en) | 1999-04-08 | 2000-04-07 | Method for processing molten steel |
US10/222,362 US6918969B2 (en) | 1999-04-08 | 2002-08-16 | Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000066137A JP2001252747A (en) | 2000-03-10 | 2000-03-10 | Method for treating molten steel excellent in quality characteristic |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001252747A true JP2001252747A (en) | 2001-09-18 |
Family
ID=18585546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000066137A Pending JP2001252747A (en) | 1999-04-08 | 2000-03-10 | Method for treating molten steel excellent in quality characteristic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001252747A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100922067B1 (en) | 2007-12-18 | 2009-10-16 | 주식회사 포스코 | Continuous casting method for ferritic stainless steel |
KR102599924B1 (en) * | 2023-08-04 | 2023-11-08 | (주)용진 | Molding apparatus for vessel engine |
KR102630323B1 (en) * | 2023-10-30 | 2024-01-29 | (주)용진 | Molding apparatus for vessel engine that can control the movement speed of additives |
-
2000
- 2000-03-10 JP JP2000066137A patent/JP2001252747A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100922067B1 (en) | 2007-12-18 | 2009-10-16 | 주식회사 포스코 | Continuous casting method for ferritic stainless steel |
KR102599924B1 (en) * | 2023-08-04 | 2023-11-08 | (주)용진 | Molding apparatus for vessel engine |
KR102630323B1 (en) * | 2023-10-30 | 2024-01-29 | (주)용진 | Molding apparatus for vessel engine that can control the movement speed of additives |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003521582A (en) | Steel grain refining method, steel grain refining alloy and method for producing grain refining alloy | |
JPH0754103A (en) | Oxide inclusion super-finely dispersed steel | |
JP2999671B2 (en) | Melting method of Ca-added steel | |
JP3896650B2 (en) | Method for producing Ti-containing ultra-low carbon steel | |
JP2001252747A (en) | Method for treating molten steel excellent in quality characteristic | |
KR20040059785A (en) | Method for manufacturing the ferritic stainless steel improved the equiaxed structure ratio thereof | |
JP6728934B2 (en) | Continuous casting method for molten steel | |
JP5326201B2 (en) | Method for melting aluminum killed steel | |
JP2961448B2 (en) | Method for finely dispersing MnS in high S content steel | |
JP2866147B2 (en) | Method for producing steel in which fine oxides are dispersed | |
JPH11323426A (en) | Production of high clean steel | |
JP3680470B2 (en) | Melting method for non-oriented silicon steel with excellent electromagnetic characteristics | |
JP4422362B2 (en) | Method for producing a slab having a fine solidified structure | |
JP4287974B2 (en) | Method for processing molten steel with finely solidified structure characteristics | |
JP2000273525A (en) | Production of high cleanliness steel | |
JP6728933B2 (en) | Continuous casting method for molten steel | |
JP4718739B2 (en) | Demanganese treatment method for cast iron | |
JP4592974B2 (en) | Continuous casting method of molten steel for non-oriented electrical steel sheet and slab for non-oriented electrical steel sheet | |
JPH11279623A (en) | Method for melting ferritic stainless steel containing high aluminum capable of suppressing erosion of refractory of refining container, and excellent in manufacture | |
JP4279947B2 (en) | Mg treatment method for molten steel | |
JP2002322509A (en) | METHOD FOR TREATING MOLTEN STEEL EXCELLENT IN SOLIDIFIED STRUCTURE BY UTILIZING CaO | |
JP2001150111A (en) | METHOD FOR ADDING Bi INTO MOLTEN STEEL | |
JP2004276042A (en) | Method for continuously casting molten steel for non-oriented magnetic steel sheet and its cast slab | |
JP2002129223A (en) | Method for treating molten steel for high carbon steel and its cast slab | |
JPH04314844A (en) | Steel material excellent in toughness at low temperature and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080916 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090203 |