JPH11279623A - Method for melting ferritic stainless steel containing high aluminum capable of suppressing erosion of refractory of refining container, and excellent in manufacture - Google Patents

Method for melting ferritic stainless steel containing high aluminum capable of suppressing erosion of refractory of refining container, and excellent in manufacture

Info

Publication number
JPH11279623A
JPH11279623A JP9991198A JP9991198A JPH11279623A JP H11279623 A JPH11279623 A JP H11279623A JP 9991198 A JP9991198 A JP 9991198A JP 9991198 A JP9991198 A JP 9991198A JP H11279623 A JPH11279623 A JP H11279623A
Authority
JP
Japan
Prior art keywords
mass
steel
slag
stainless steel
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9991198A
Other languages
Japanese (ja)
Other versions
JP3836249B2 (en
Inventor
Teruyoshi Iida
輝義 飯田
Takashi Yamauchi
隆 山内
Nobukazu Fujimoto
延和 藤本
Naoto Hiramatsu
直人 平松
Toshiaki Miyamoto
敏明 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP09991198A priority Critical patent/JP3836249B2/en
Publication of JPH11279623A publication Critical patent/JPH11279623A/en
Application granted granted Critical
Publication of JP3836249B2 publication Critical patent/JP3836249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To melt a ferritic stainless steel generating no dent and containing high Al by a method where the erosion of a refractory of a refining container lined with a MgO refractory is suppressed. SOLUTION: In manufacturing a ferritic stainless steel containing high Al having the composition consisting of, by mass, <=0.03% C, <=1.0% Si, 15-26% Cr, 2-6% Al, 0-0.5% Ti (including no addition), containing 0.02-0.12% one or two or more kinds of rare earth elements as necessary, and the balance Fe with inevitable impurities using a refining container lined with a MgO refractory, a slag in contact with a molten steel is formed of CaO-MgO-Al2 O3 substantially containing no CaF2 , and the slag composition after regulating the steel composition and before the casting is controlled so as to satisfy the inequality of (CaO mass %)/Al2 O3 mass %) <=0.8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スラグ組成をコン
トロールすることにより精錬容器のMgO系耐火物の溶
損を抑えた高Al含有フェライト系ステンレス鋼の溶製
方法であって、ヘゲ疵が発生しにくく製造性の良い高A
l含有フェライト系ステンレス鋼を得るための溶製方法
に関するものである。
The present invention relates to a method for producing a high Al-containing ferritic stainless steel in which the slag composition is controlled to suppress the erosion of MgO-based refractories in a smelting vessel. High A which hardly occurs and has good manufacturability
The present invention relates to a smelting method for obtaining an l-containing ferritic stainless steel.

【0002】[0002]

【従来の技術】高Al含有フェライト系ステンレス鋼は
耐高温酸化性に優れた材料であり、従来から電熱材,高
温炉部材,燃焼排気系部材,自動車排ガス系部品などに
使用されている。しかし、この系統の鋼種は一般的に熱
延時にヘゲ疵が発生しやすく、これがしばしば歩留りの
著しい低下を招いて問題になる。一例を示せば、連続鋳
造法により得られた高Al含有フェライト系ステンレス
鋼スラブの表層下には深さ20〜30mmにわたって管状の気
泡が生成し、熱延前のスラブ研削によってこれらは開放
疵となり、スラブ加熱時に疵内部が酸化され、それが熱
延時にヘゲ疵となって現れる。ヘゲ疵の発生したコイル
は表面研削工程で重研削を余儀なくされ、製品歩留りは
著しく低下する。ヘゲ疵が重度の場合にはコイル自体を
屑処理化しなければならない。
2. Description of the Related Art High Al-containing ferritic stainless steel is a material having excellent resistance to high-temperature oxidation, and has been conventionally used as an electric heating material, a high-temperature furnace member, a combustion exhaust system member, an automobile exhaust gas system component and the like. However, the steel type of this system generally tends to generate barbed flaws during hot rolling, and this often causes a significant decrease in yield, which is a problem. As an example, tubular bubbles are generated under the surface layer of the high Al-containing ferritic stainless steel slab obtained by the continuous casting method over a depth of 20 to 30 mm, and these become open flaws by slab grinding before hot rolling. When the slab is heated, the inside of the flaw is oxidized and appears as a scab on the hot rolling. The coil in which the flaw is generated is subjected to heavy grinding in the surface grinding process, and the product yield is significantly reduced. If the burrs are severe, the coil itself must be scrapped.

【0003】ステンレス鋼の量産プロセスとしてAOD
やVODがよく知られており、近年これらのプロセスの
発達により各種ステンレス鋼が経済的に量産できるよう
になった。これらのプロセスでは、脱硫,脱酸を促進し
鋼の品質を高めるため、精錬容器の内張り耐火物には一
般的に塩基性耐火物が使用される。例えば、マグクロれ
んが(代表的組成;MgO:60%,Al23:10%,C
23:19%,FeO:6%)、マグドロれんが(同;
MgO:57%,CaO:39%)など、MgOを主要成分
として含有する耐火物がよく使われている。これらのM
gO系耐火物は、耐スラグ侵食性,耐スポーリング性,
耐磨耗性等に優れており、一般的なステンレス鋼精錬に
は非常に適したものである。しかし、高Al含有フェラ
イト系ステンレス鋼の溶製においては、これらの耐火物
は侵食を受けやすく、また耐火物中のMgOが前述のよ
うな「管状気泡」の生成に関与することもわかってき
た。
AOD is used as a mass production process for stainless steel.
And VOD are well known, and in recent years, the development of these processes has enabled various stainless steels to be economically mass-produced. In these processes, a basic refractory is generally used as a lining refractory in a smelting vessel in order to promote desulfurization and deoxidation and improve the quality of steel. For example, Magukuro brick (typical composition; MgO: 60%, Al 2 O 3: 10%, C
r 2 O 3 : 19%, FeO: 6%), Magdro brick (same as above;
Refractories containing MgO as a main component, such as 57% MgO and 39% CaO, are often used. These M
gO-based refractories have slag erosion resistance, spalling resistance,
It has excellent abrasion resistance and the like, and is very suitable for general stainless steel refining. However, in refining ferritic stainless steel containing high Al, it has been found that these refractories are susceptible to erosion, and that MgO in the refractories contributes to the generation of the above-mentioned "tubular bubbles". .

【0004】通常、高Al含有フェライト系ステンレス
鋼の溶鋼中にはかなりの濃度のMgが溶解しており、鋳
造時の凝固の際、過飽和となったMgがガス化して鋳造
材中に気泡を作ることが判明した。溶鋼中のMgは、主
としてスラグ中のMgOが溶鋼中のAlや希土類元素
(Re)によって以下のように還元されて増加する。 3(MgO)+2[Al]=(Al23)+3[Mg] 3(MgO)+2[Re]=(RE23)+3[Mg]
[0004] Usually, a considerable concentration of Mg is dissolved in the molten steel of a high-Al-containing ferritic stainless steel, and during the solidification during casting, supersaturated Mg is gasified to form bubbles in the cast material. Turned out to make. Mg in molten steel is increased by mainly reducing MgO in slag by Al and rare earth elements (Re) in molten steel as follows. 3 (MgO) +2 [Al] = (Al 2 O 3 ) +3 [Mg] 3 (MgO) +2 [Re] = (RE 2 O 3 ) +3 [Mg]

【0005】一方、スラグ中のMgO成分は、造滓剤や
MgO系耐火物から供給される。また、耐火物の侵食防
止の観点から、スラグ中にMgOを意図的に存在させる
ことも多い。このため、MgO系耐火物容器を用いた通
常の溶製方法に従う限り、高Al含有鋼や希土類元素添
加鋼の溶鋼中のMg濃度が増加することは、ある程度避
けられない。
On the other hand, the MgO component in the slag is supplied from a slag-making agent or an MgO-based refractory. Also, from the viewpoint of preventing erosion of refractories, MgO is often intentionally present in the slag. For this reason, as long as the usual melting method using the MgO-based refractory container is followed, it is inevitable to some extent that the Mg concentration in the molten steel of the high Al content steel or the rare earth element added steel is increased.

【0006】[0006]

【発明が解決しようとする課題】高Al含有フェライト
系ステンレス鋼の溶鋼中のMg濃度増加を防止する手段
として、例えば特開平7−116779号公報には以下のよう
な方法が提案されている。CaO−CaF2−Al2
3系スラグを使用する方法。CaF2はスラグ中のMgO
溶解度を大幅に減少させる作用を呈する。精錬容器の
耐火物をアルミナ系耐火物でライニングする方法。これ
により耐火物からのMgOの溶出が避けられる。
As means for preventing an increase in the Mg concentration in molten steel of a high Al-containing ferritic stainless steel, for example, Japanese Patent Application Laid-Open No. 7-116779 proposes the following method. CaO-CaF 2 -Al 2 O
How to use 3 series slag. CaF 2 is MgO in slag
It has the effect of significantly reducing solubility. A method of lining a refractory in a refining vessel with an alumina-based refractory. Thereby, elution of MgO from the refractory is avoided.

【0007】しかし、上記の方法ではCaF2含有ス
ラグを使用するので、MgO系耐火物は著しい損傷を受
ける。そのためMgO系耐火物の精錬容器を用いた場合
は耐火物補修コストがかさみ、容器自体も劣化しやす
い。一方、上記の方法ではアルミナ系耐火物でライニ
ングするためのコストが高くつき、かつ、高Al鋼を溶
製する毎に特殊な容器を準備することは操業上の様々な
制約を招く。本発明は、従来法のこれらの欠点を解消
し、通常の精錬容器を用いて経済的に管状気泡のない健
全な高Al含有フェライト系ステンレス鋼の鋳造材が得
られる、実用性の高い溶製方法を提供することを目的と
する。
However, since the above method uses a slag containing CaF 2 , the MgO-based refractory is significantly damaged. Therefore, when a refining vessel made of an MgO-based refractory is used, the cost for repairing the refractory increases, and the vessel itself tends to deteriorate. On the other hand, in the above method, the cost for lining with an alumina-based refractory is high, and preparing a special container every time the high-Al steel is melted causes various restrictions in operation. The present invention solves these drawbacks of the conventional method, and can provide a sound casting material of high Al-containing ferritic stainless steel free of tubular bubbles economically using a normal smelting vessel. The aim is to provide a method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、質量%で、C≦0.03%,Si≦
1.0%,Cr:15〜26%,Al:2〜6%,Ti:0〜0.5
%(無添加を含む)を含み、残部Feおよび不可避的不純
物からなる高Al含有フェライト系ステンレス鋼を、M
gO系耐火物で内張りされた精錬容器を用いて製造する
にあたり、溶鋼と接するスラグをCaF2が実質的に含
まれないCaO−MgO−Al23系とし、かつ鋼成分
調整後・鋳造前におけるスラグ組成が(質量%CaO)/
(質量%Al23)≦0.8となるようにコントロールす
る、精錬容器の耐火物溶損を抑えた製造性の良い高Al
含有フェライト系ステンレス鋼の溶製方法である。
In order to achieve the above object, the invention of claim 1 is characterized in that, in mass%, C ≦ 0.03%, Si ≦
1.0%, Cr: 15 to 26%, Al: 2 to 6%, Ti: 0 to 0.5
% (Including no additive), and the high Al-containing ferritic stainless steel consisting of the balance Fe and unavoidable impurities,
In producing using a refining vessel which is lined with gO-based refractories, and slag in contact with molten steel and CaF 2 are substantially not contained CaO-MgO-Al 2 O 3 system, and the steel composition adjusted and casting before Slag composition in (% by mass CaO) /
(% By mass Al 2 O 3 ) ≦ 0.8, high aluminum with good manufacturability with reduced refractory erosion in refining vessels
This is a method of melting ferrite-based stainless steel.

【0009】ここで、「MgO系耐火物」とはMgOを
概ね50質量%以上含有する耐火物であり、例えば先述の
マグクロれんがやマグドロれんがはこれに該当する。
「CaF2が実質的に含まれない」とはCaF2を含まな
いようにスラグの組成がコントロールされている(注意
がはらわれている)ことを意味し、不可避的に不純物と
して混入するCaF2は概ね1質量%以下の範囲で許容
される。「鋼成分調整後・鋳造前」とは、精錬および成
分元素の添加を全て終え、鋳造が開始できる状態にある
時期をいう。
Here, the "MgO-based refractory" is a refractory containing about 50% by mass or more of MgO, for example, the above-mentioned magcro brick or magdro brick.
CaF 2 that "CaF 2 is substantially free" means that the composition of the slag to not include CaF 2 are controlled from the (attention is paid), mixed as unavoidable impurities Is generally allowed in a range of 1% by mass or less. “After steel composition adjustment / before casting” refers to a time when all refining and addition of component elements have been completed and casting is ready to start.

【0010】請求項2の発明は、請求項1の発明におい
て、鋼成分調整後・鋳造前におけるスラグ組成が、Ca
O:25〜40質量%,MgO≦15質量%,(質量%CaO)
/(質量%Al23)≦0.8となるように、造滓剤の組成
および投入量をコントロールするものである。
According to a second aspect of the present invention, in the first aspect of the invention, the slag composition after adjusting the steel composition and before casting is Ca
O: 25 to 40% by mass, MgO ≦ 15% by mass, (% by mass CaO)
/ (Mass% Al 2 O 3 ) ≦ 0.8 controls the composition and amount of the slag-making agent.

【0011】請求項3の発明は、質量%で、C≦0.03
%,Si≦1.0%,Cr:15〜26%,Al:2〜6%,T
i:0〜0.5%(無添加を含む),希土類元素のうち1種ま
たは2種以上:合計で0.02〜0.12%を含み、残部Feお
よび不可避的不純物からなる高Al含有フェライト系ス
テンレス鋼を、MgO系耐火物で内張りされた精錬容器
を用いて製造するにあたり、溶鋼と接するスラグをCa
2が実質的に含まれないCaO−MgO−Al23
とし、かつ希土類元素添加時期におけるスラグ組成が
(質量%CaO)/(質量%Al23)≦0.8となるように
コントロールする、精錬容器の耐火物溶損を抑えた製造
性の良い高Al含有フェライト系ステンレス鋼の溶製方
法である。
[0011] The invention according to claim 3 is that, in mass%, C ≦ 0.03
%, Si ≦ 1.0%, Cr: 15 to 26%, Al: 2 to 6%, T
i: 0 to 0.5% (including no addition), one or two or more rare earth elements: a high Al-containing ferritic stainless steel containing 0.02 to 0.12% in total, the balance being Fe and unavoidable impurities, In manufacturing using a refining vessel lined with MgO-based refractories, the slag in contact with molten steel is
A CaO—MgO—Al 2 O 3 system containing substantially no F 2 , and the slag composition at the time of rare earth element addition is
This is a method for producing a high-Al-containing ferritic stainless steel which is controlled so that (mass% CaO) / (mass% Al 2 O 3 ) ≦ 0.8 and which suppresses refractory erosion of a refining vessel and has good manufacturability. .

【0012】ここで、希土類元素はY,La,Ce,N
d等である。「希土類元素添加時期」とは希土類元素を
溶鋼に添加する直前を意味し、複数回に分けて添加する
場合は最初の添加の直前である。希土類元素の添加方法
は特に問わない。一般的に溶鋼への希土類元素の添加
は、他の鋼成分を全て調整した後、鋳造前に行われるこ
とが多い。
Here, the rare earth elements are Y, La, Ce, N
d and the like. The term “rare earth element addition time” means immediately before the rare earth element is added to the molten steel. In the case of adding the rare earth element in a plurality of times, it is immediately before the first addition. The method of adding the rare earth element is not particularly limited. Generally, the addition of a rare earth element to molten steel is often performed after adjusting all other steel components and before casting.

【0013】請求項4の発明は、請求項3の発明におい
て、希土類元素添加時期におけるスラグ組成が、Ca
O:25〜40質量%,MgO≦15質量%,(質量%CaO)
/(質量%Al23)≦0.8となるように、造滓剤の組成
および投入量をコントロールするものである。
According to a fourth aspect of the present invention, in the third aspect, the slag composition at the time of adding the rare earth element is Ca
O: 25 to 40% by mass, MgO ≦ 15% by mass, (% by mass CaO)
/ (Mass% Al 2 O 3 ) ≦ 0.8 controls the composition and amount of the slag-making agent.

【0014】請求項5の発明は、請求項1〜4の発明に
おいて、特に鋳造材中のMg濃度を0.014質量%以下に
するものである。
According to a fifth aspect of the present invention, in the first to fourth aspects of the present invention, in particular, the Mg concentration in the cast material is reduced to 0.014% by mass or less.

【0015】請求項6の発明は、精錬中、請求項1〜5
の発明において、精錬容器に設けられたガス吹き込み装
置から溶鋼中に不活性ガスを0.4〜20Nl/min・Tの供
給速度で吹き込んで溶鋼中のH(水素)濃度を低減し、
鋳造材中のH含有量を6質量ppm以下にするものである。
The invention according to claim 6 is the method according to claims 1 to 5, during refining.
In the invention of the above, the inert gas is blown into the molten steel at a supply rate of 0.4 to 20 Nl / min · T from a gas blowing device provided in the refining vessel to reduce the H (hydrogen) concentration in the molten steel,
The content of H in the cast material is set to 6 mass ppm or less.

【0016】ここで、「精錬容器に設けられたガス吹き
込み装置」とは、例えばポーラスプラグ,羽口,ノズル
などが挙げれれる。「Nl/min・T」とは、溶鋼1T
(トン)あたりの標準状態でのガス供給速度である。
Here, the "gas blowing device provided in the refining vessel" includes, for example, a porous plug, a tuyere, a nozzle and the like. "Nl / min.T" means 1T of molten steel
It is a gas supply rate in a standard state per (ton).

【0017】請求項7の発明は、請求項6の発明におい
て、特に不活性ガスがArである点を規定したものであ
る。
A seventh aspect of the present invention is the invention of the sixth aspect, in which the inert gas is Ar.

【0018】[0018]

【発明の実施の形態】図1は、高Al含有フェライト系
ステンレス鋼のスラブに気泡が発生しない限界のMg含
有量およびH含有量を調査した結果である。図1から、
Mg含有量が0.014質量%以下で、かつH含有量が6質量
ppm以下のスラブにおいて、気泡が見られないことがわ
かる。Mg含有量,H含有量がこれらの限界値を多少上
回った場合でも、そのスラブに気泡が少なければ熱延で
のヘゲ疵は大幅に減少するが、特にMg≦0.014質量、
かつH≦6質量ppmとしたとき、本系鋼に特有のヘゲ疵の
問題は生じない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the results of investigation on the Mg content and the H content at the limit where no bubbles are generated in a slab of a high Al-containing ferritic stainless steel. From FIG.
Mg content is 0.014% by mass or less, and H content is 6% by mass.
It can be seen that no air bubbles are observed in the slab of less than ppm. Even when the Mg content and the H content slightly exceed these limit values, if the slab has few bubbles, the scab defects in hot rolling are greatly reduced, but in particular, Mg ≦ 0.014 mass,
In addition, when H ≦ 6 mass ppm, the problem of the scab defect peculiar to the present system steel does not occur.

【0019】図2は、鋼中のAl含有量とMg含有量の
関係を調べたものである。この実験は、Fe−18〜21質
量%Cr鋼においてAl量を種々変化させた鋼をMgO
るつぼ中で溶解し、溶鋼温度を1600℃とし、溶鋼表面に
は(質量%CaO)/(質量%Al23)を0.6〜0.8に調整
したCaO−MgO−Al23系スラグを浮かべた状態
で所定時間保持したのち鋳造し、得られた鋳塊の成分を
分析したものである。図2から、Al含有量が6質量%
以下において、Mg≦0.014質量%のものが安定的に得
られることがわかる。
FIG. 2 shows the relationship between the Al content and the Mg content in steel. In this experiment, a steel having a varied amount of Al in an Fe-18 to 21% by mass Cr steel was used for MgO.
Melt in a crucible, set the molten steel temperature to 1600 ° C., and float a CaO—MgO—Al 2 O 3 system slag in which (mass% CaO) / (mass% Al 2 O 3 ) is adjusted to 0.6 to 0.8 on the molten steel surface. After casting for a predetermined time in this state, casting is performed, and the components of the obtained ingot are analyzed. From FIG. 2, the Al content is 6% by mass.
In the following, it can be seen that Mg ≦ 0.014% by mass can be stably obtained.

【0020】図3は、鋼中の希土類元素(Re)含有量
とMg含有量の関係を調べたものである。この実験は、
Fe−18〜21質量%Cr−5〜6質量%Al鋼において希
土類元素の合計含有量を種々変化させた鋼をMgOるつ
ぼ中で溶解し、図2の場合と同様に得られた鋳塊の成分
を分析したものである。図3から、希土類元素の合計含
有量が0.12質量%以下において、Mg≦0.014質量%の
ものが安定的に得られることがわかる。
FIG. 3 shows the relationship between the rare earth element (Re) content and the Mg content in steel. This experiment is
A steel in which the total content of rare earth elements in Fe-18 to 21% by mass Cr-5 to 6% by mass Al steel was changed variously was melted in a MgO crucible, and the ingot obtained as in the case of FIG. It is an analysis of the components. FIG. 3 shows that when the total content of rare earth elements is 0.12% by mass or less, Mg ≦ 0.014% by mass can be stably obtained.

【0021】図4は、MgOるつぼ中で溶解した高Al
含有フェライト系ステンレス鋼のMg含有量に及ぼす、
CaO−MgO−Al23系スラグの(質量%CaO)/
(質量%Al23)値の影響を調べた実験例である。この
実験は、Fe−20質量%Cr−5質量%Al鋼をMgO
るつぼ中で30kg溶解し、溶鋼温度を1600℃とし、(質量
%CaO)/(質量%Al23)値を種々に変化させたC
aO−MgO−Al23系スラグを溶鋼表面に浮かべ、
希土類元素としてLaを添加し、La添加後0min(添加
直後),3min,6minの溶鋼をサンプリングして、Mg濃
度を調べたものである。図4中、横軸のC/Aは(質量
%CaO)/(質量%Al23)値を表す。図4から、(質
量%CaO)/(質量%Al23)値が1.0以下になると鋼
中Mg濃度が急激に低下し、0.8以下において低い値に
安定する傾向がわかる。このようなMg濃度の急激な低
下が生じる理由としては、(質量%CaO)/(質量%A
23)値の低下により、スラグ中のMgO溶解度が小
さくなるとともにスラグの粘性が増加し、これらの特性
がある臨界点を境にして、スラグ中MgOの還元反応を
鈍らせるように作用するのではないかと推測される。な
お、この実験では鋼中Mg濃度が0.005質量%程度以下
の極めて低い値が得られているが、これは、実験上の都
合により高純度原料を使用したこと等によるものであ
る。
FIG. 4 shows high Al dissolved in an MgO crucible.
Effect on the Mg content of ferritic stainless steel containing
CaO-MgO-Al 2 O 3 based slag (wt% CaO) /
5 is an experimental example in which the influence of (mass% Al 2 O 3 ) value was examined. In this experiment, Fe-20 mass% Cr-5 mass% Al steel was changed to MgO
30 kg was melted in a crucible, the temperature of the molten steel was set to 1600 ° C., and the (mass% CaO) / (mass% Al 2 O 3 ) value was variously changed.
aO-MgO-Al 2 O 3 slag is floated on the surface of molten steel,
La is added as a rare earth element, and molten steel at 0 min (immediately after addition), 3 min, and 6 min after La addition is sampled to determine the Mg concentration. In FIG. 4, C / A on the horizontal axis represents a value of (% by mass CaO) / (% by mass Al 2 O 3 ). FIG. 4 shows that when the (mass% CaO) / (mass% Al 2 O 3 ) value is 1.0 or less, the Mg concentration in the steel sharply decreases, and when the value is 0.8 or less, it tends to be stabilized at a low value. The reason why such a sharp decrease in the Mg concentration occurs is as follows: (% by mass CaO) / (% by mass A
(l 2 O 3 ) decreases, the solubility of MgO in the slag decreases and the viscosity of the slag increases, and these characteristics act to reduce the MgO reduction reaction in the slag at a certain critical point. It is presumed that it will be. In this experiment, an extremely low value of about 0.005% by mass or less of the Mg concentration in steel was obtained. This is due to the use of a high-purity raw material due to experimental reasons.

【0022】本発明では、希土類元素を添加しない場合
は「鋼成分調整後・鋳造前」の時点におけるスラグ組成
を規定する。この時点の溶鋼温度は、鋳造するのに最適
な温度に調整されており、鋼種毎にほぼ一定している。
このため、この時点でのスラグ組成を規定することでス
ラグ物性への温度の影響を実際上問題にする必要がな
く、現に、この時点でのスラグ組成を適正化することに
より気泡のない健全なスラブが得られる。本発明で規定
する範囲の鋼成分では、この時点の溶鋼温度は概ね1600
℃±15℃となる。
In the present invention, when the rare earth element is not added, the slag composition at the time of “after adjusting the steel composition / before casting” is defined. The molten steel temperature at this point is adjusted to an optimum temperature for casting, and is substantially constant for each steel type.
Therefore, by defining the slag composition at this point, the effect of temperature on the slag physical properties does not actually have to be a problem, and indeed, by optimizing the slag composition at this point, a sound without bubbles is obtained. A slab is obtained. In the steel composition within the range specified in the present invention, the molten steel temperature at this point is approximately 1600.
° C ± 15 ° C.

【0023】希土類元素を添加する場合は「希土類元素
添加時期」、すなわち、最初の希土類元素の添加直前に
おけるスラグ組成を規定する。希土類元素は極めて酸化
され易いため、鋼中に所望量を確実に歩留らせるには、
他の鋼成分調整後・鋳造前に添加するのが通常である。
上記のように、この時点の溶鋼温度はほぼ一定してお
り、現に、希土類元素添加直前のスラグ組成を適正化す
ることにより気泡のない健全なスラブが得られる。
In the case of adding a rare earth element, the “time of adding the rare earth element”, that is, the slag composition immediately before the first rare earth element is added is defined. Since rare earth elements are very easily oxidized, in order to ensure the desired yield in steel,
It is usually added after adjusting other steel components and before casting.
As described above, the molten steel temperature at this time is almost constant, and in fact, a sound slab without bubbles can be obtained by optimizing the slag composition immediately before the addition of the rare earth element.

【0024】上記の時点におけるスラグ組成は、(質量
%CaO)/(質量%Al23)≦0.8であることが必要で
あるが、具体的には特にCaO:25〜40質量%,MgO
≦15質量%とすることが望ましい。本発明では精錬容器
にMgO系耐火物を用いるので、スラグ中のMgO濃度
は耐火物から溶け出すMgOの影響を受ける。また、精
錬の進行に伴い、スラグ組成は変化する。上記時点にお
けるスラグ組成を規定範囲内に調整するには、耐火物の
溶出や精錬反応の影響を考慮しながら、精錬中などに投
入する造滓剤の組成および投入量をコントロールするこ
とが好ましい。
It is necessary that the slag composition at the above time point is (mass% CaO) / (mass% Al 2 O 3 ) ≦ 0.8, but specifically, CaO: 25 to 40 mass%, MgO
It is desirable to be ≦ 15% by mass. In the present invention, since the refining vessel uses an MgO-based refractory, the MgO concentration in the slag is affected by the MgO dissolved from the refractory. Further, the slag composition changes as the refining progresses. In order to adjust the slag composition at the above time within the specified range, it is preferable to control the composition and amount of the slag-making agent to be charged during refining, etc., while taking into account the dissolution of the refractory and the influence of the refining reaction.

【0025】以上のようにスラグ組成を適正化すること
によって、鋼中のMg含有量を低減することができる
が、前述のように鋼中のH含有量を低減することも本系
鋼のヘゲ疵を防止するうえで非常に有効である。このた
め、精錬段階で積極的に溶鋼中のHを除去することが望
ましい。その方法として、溶鋼中に不活性ガスを吹き込
むことが効果的である。溶鋼中のHは、この吹き込みガ
スの気泡中に拡散されることにより除去される。実験の
結果、精錬容器に設けられたガス吹き込み装置から不活
性ガスを0.4Nl/min・T以上の供給速度で吹き込むこ
とにより、鋼中のH含有量を6質量ppm以下に低減できる
ことがわかった。不活性ガスの供給速度を大きくするこ
とによりHの除去速度は向上するが、過剰となると溶鋼
のスプラッシュが多くなり、溶鋼中のAl等が酸化され
るようになる。このため、不活性ガスの供給速度は20N
l/min・T以下とすることが望ましい。吹き込むガス
の種類は、Hの拡散・希釈に有効なガスならば利用可能
であるが、Al等の酸化を防止するためにAr等の不活
性ガスを用いることが好ましい。
By optimizing the slag composition as described above, the Mg content in the steel can be reduced. However, as described above, the reduction of the H content in the steel is also required in the present steel. It is very effective in preventing flaws. Therefore, it is desirable to actively remove H in the molten steel in the refining stage. As an effective method, blowing an inert gas into molten steel is effective. H in the molten steel is removed by diffusing into the bubbles of the blowing gas. As a result of the experiment, it was found that the H content in the steel can be reduced to 6 mass ppm or less by blowing the inert gas at a supply rate of 0.4 Nl / min · T or more from the gas blowing device provided in the refining vessel. . The removal rate of H is improved by increasing the supply rate of the inert gas, but if it is excessive, the splash of molten steel increases, and Al and the like in the molten steel are oxidized. Therefore, the supply speed of the inert gas is 20 N
It is desirable to be 1 / min · T or less. Any type of gas can be used as long as it is a gas that is effective in diffusing and diluting H. However, it is preferable to use an inert gas such as Ar to prevent oxidation of Al or the like.

【0026】本系鋼はHを吸収しやすい性質を有するの
で、用いる原料,材料の湿分管理に注意を払う必要があ
る。
Since the present steel has the property of easily absorbing H, it is necessary to pay attention to the moisture management of the raw materials and materials used.

【0027】次に、本発明で対象とする鋼の成分元素に
ついて説明する。 C:多すぎると鋼材の靭性が低下し、また高温で異常酸
化が生じやすくなるので、0.3質量%以下の含有量とす
る。
Next, the constituent elements of the steel targeted in the present invention will be described. C: If the content is too large, the toughness of the steel material decreases, and abnormal oxidation tends to occur at high temperatures. Therefore, the content is set to 0.3 mass% or less.

【0028】Si:耐高温酸化性に有効な元素である
が、多すぎると鋼材の靭性が低下するので、1.0質量%
以下の含有量とする。
Si: an element effective for high-temperature oxidation resistance, but if too much, the toughness of the steel material is reduced.
The content is as follows.

【0029】Cr:耐高温酸化性に有効な基本的成分で
あり、燃焼排気系部材その他の高温用途において優れた
耐高温酸化性を得るために、15質量%以上の含有量とす
る。しかし、多すぎると鋼材の靭性が低下するので、26
質量%を上限とする。
Cr is a basic component effective for high-temperature oxidation resistance, and has a content of 15% by mass or more in order to obtain excellent high-temperature oxidation resistance in combustion exhaust system members and other high-temperature applications. However, if too much, the toughness of the steel material will decrease.
The upper limit is mass%.

【0030】Al:耐高温酸化性の改善に不可欠の元素
であり、上記Cr含有量のフェライト系ステンレス鋼に
おいて2質量%以上の含有でその効果を発現する。しか
し、多すぎると鋼中Mg濃度が増加し、製造性が著しく
劣化するので、6質量%を上限とする。
Al: Indispensable element for improving high-temperature oxidation resistance, its effect is exhibited when the content of Cr is 2% by mass or more in ferritic stainless steel. However, if the content is too large, the Mg concentration in the steel increases, and the manufacturability deteriorates significantly. Therefore, the upper limit is 6% by mass.

【0031】Ti:C,Nの固定に有効な元素である
が、過剰となると耐高温酸化性を損なうので、添加する
場合は0.5質量%以下の含有量になるようにする。
Ti: An element effective for fixing C and N. However, if it is excessive, it impairs high-temperature oxidation resistance. Therefore, when added, the content should be 0.5% by mass or less.

【0032】希土類元素:代表的なものとしてY,C
e,La,Nd等の元素が挙げられる。これらは異常酸
化の防止に極めて有効であり、異常酸化防止効果を発現
するうえでいずれもほぼ均等作用を有する。このため、
単独で用いてもよいし、複合で用いてもよい。異常酸化
防止効果は、希土類元素の合計含有量が0.02質量%以上
で発揮される。しかし、過剰となると鋼中Mg濃度の増
加を招き、製造性が著しく劣化するので、0.12質量%を
上限とする。
Rare earth elements: Y, C
elements such as e, La, and Nd. These are extremely effective in preventing abnormal oxidation, and all have almost equivalent actions in exhibiting the effect of preventing abnormal oxidation. For this reason,
They may be used alone or in combination. The effect of preventing abnormal oxidation is exhibited when the total content of rare earth elements is 0.02% by mass or more. However, an excessive amount causes an increase in the Mg concentration in the steel, and remarkably deteriorates the manufacturability. Therefore, the upper limit is 0.12% by mass.

【0033】Mg:鋳塊中の気泡生成元素であり、ヘゲ
疵の原因になるので、0.014質量%以下に抑えることが
望ましい。
Mg: an element for forming bubbles in the ingot, which causes scabs, it is desirable to suppress the content to 0.014% by mass or less.

【0034】H:これも鋳塊中の気泡生成元素であり、
ヘゲ疵の原因になるので、6質量ppm以下に抑えることが
望ましい。
H: This is also a bubble forming element in the ingot,
It is desirable to keep the content to 6 ppm by mass or less, since it causes scabs.

【0035】これらの元素の他に、不可避的不純物とし
て、例えば、Mn,Ni,P,S,Cu,Mo,N,O
などを含有してもよい。
In addition to these elements, inevitable impurities such as Mn, Ni, P, S, Cu, Mo, N, O
And the like.

【0036】[0036]

【実施例】〔実施例1〕真空誘導溶解炉を用い、Ar雰
囲気下で、底部にポーラスプラグを取り付けたMgOる
つぼ中で所定の組成のFe−Cr合金30kgを溶解し、C
aO−MgO−Al23系スラグ4.5kgを添加し、溶鋼
温度を1600℃に保持し、所定量のAl,Tiを添加し
た。希土類元素を添加する場合はAl,Ti添加の5分
後に所定量の希土類元素を添加し、3分間保持した後、
鋳造した。希土類元素を添加しない場合はAl,Ti添
加の5分後に鋳造した。なお、溶鋼中にポーラスプラグ
を通じて所定量のArガスを吹き込んだ。得られた鋳塊
の成分分析を行うとともに、鋳塊の縦断面にて気泡の生
成有無を調査した。表1に結果を示す。
[Example 1] Using a vacuum induction melting furnace, 30 kg of an Fe-Cr alloy having a predetermined composition was melted in an MgO crucible having a porous plug attached to the bottom thereof in an Ar atmosphere under an Ar atmosphere.
It was added aO-MgO-Al 2 O 3 slag 4.5 kg, holds the molten steel temperature to 1600 ° C., a predetermined amount of Al, was added Ti. When the rare earth element is added, a predetermined amount of the rare earth element is added 5 minutes after the addition of Al and Ti, and after holding for 3 minutes,
Cast. When no rare earth element was added, the casting was performed 5 minutes after the addition of Al and Ti. A predetermined amount of Ar gas was blown into the molten steel through a porous plug. The components of the obtained ingot were analyzed, and the presence or absence of air bubbles was examined in the longitudinal section of the ingot. Table 1 shows the results.

【0037】[0037]

【表1】 [Table 1]

【0038】鋼組成、およびスラグ組成とも本発明規定
範囲内としたものは、いずれも鋳塊中に気泡の生成が無
かった(No.1〜7)。これに対し、スラグの(質量%Ca
O)/(質量%Al23)値が0.8を超えるものは、Mg含
有量が0.014質量%を超え、気泡の発生が見られた(No.
9,10,14,15)。希土類元素の含有量が0.12質量%を超え
るものは、スラグ組成が適正であってもMg含有量が0.
014質量%を超え、気泡の発生が見られた(No.11)。A
l含有量が6質量%を超えるものも同様であった(No.1
2)。No.13だけが溶鋼中へのArガス供給速度が0.4N
l/min・Tに満たなかったものであるが、これは他の
条件が適正であったにもかかわらず、H含有量が6質量p
pmを超えて高くなり、気泡の発生が見られた。
The steel composition and the slag composition within the range specified in the present invention did not produce any bubbles in the ingot (Nos. 1 to 7). On the other hand, (mass% Ca
(O) / (mass% Al 2 O 3 ) value exceeding 0.8, the Mg content exceeded 0.014 mass%, and generation of bubbles was observed (No.
9,10,14,15). Those having a rare earth element content of more than 0.12% by mass have a Mg content of 0.1 even if the slag composition is proper.
It exceeded 014% by mass, and generation of bubbles was observed (No. 11). A
The same was true for the case where the l content exceeded 6% by mass (No. 1).
2). No.13 only has an Ar gas supply rate of 0.4 N into molten steel
1 / min · T, but this is due to the H content of 6 mass p, despite other conditions being appropriate.
It was higher than pm, and the generation of bubbles was observed.

【0039】〔実施例2〕VODプロセスで、20Cr−
5Al鋼(希土類元素添加)と18Cr−3Al鋼(希土類
元素無添加)をそれぞれ70トン溶製した。VOD鍋の内張
り耐火物はマグドロれんがであり、VODで仕上脱炭,
合金添加を行った後、連続鋳造法によりスラブ形状に鋳
造した。20Cr−5Al鋼では鋼成分調整後・鋳造前、1
8Cr−3Al鋼では希土類元素添加直前のスラグ組成
が、それぞれ本発明規定範囲になるように、造滓剤の組
成および投入量をコントロールした。スラグ成分として
CaF2は添加しなかった。VODでの精錬中、ポーラ
スプラグを通じて200Nl/min(2.9Nl/min・T)の
Arガスを溶鋼中に吹き込んだ。得られたスラブを温間
で表面から深さ5mmまで表面研削し、直ちに加熱炉に送
り、熱間圧延し、熱延鋼帯におけるヘゲ疵の有無を調べ
た。また、スラブを切り出したサンプルについて、気泡
の生成有無を調べた。その結果をスラグ組成とともに表
2に示す。
[Embodiment 2] In the VOD process, 20Cr-
70 tonnes of 5Al steel (with rare earth element added) and 18Cr-3Al steel (without rare earth element added) were melted. The refractory lining of the VOD pot is Magdro brick.
After adding the alloy, it was cast into a slab shape by a continuous casting method. For 20Cr-5Al steel, after steel composition adjustment / before casting, 1
In the 8Cr-3Al steel, the composition and amount of the slag-making agent were controlled so that the slag composition immediately before the addition of the rare earth element was within the range specified by the present invention. CaF 2 was not added as a slag component. During refining by VOD, Ar gas of 200 Nl / min (2.9 Nl / min.T) was blown into the molten steel through a porous plug. The obtained slab was warmly ground to a depth of 5 mm from the surface, immediately sent to a heating furnace, hot-rolled, and examined for the presence of barbed flaws in the hot-rolled steel strip. In addition, the sample from which the slab was cut out was examined for the presence or absence of bubbles. Table 2 shows the results together with the slag composition.

【0040】[0040]

【表2】 [Table 2]

【0041】いずれのチャージも、スラブに気泡は無
く、ヘゲ疵も発生しなかった。また、使用した鍋の耐火
物の溶損は、通常のステンレス鋼精錬時の2〜3倍程度
に抑えられ、再使用が十分可能な状態であった。なお、
実施例2と同様の溶製を、15質量%のCaF2を添加し
たスラグを用いて試みた。その結果、鍋の内張りに使用
したマグドロれんがはスラグライン部での溶損が顕著で
あり、再使用に耐えない程度のダメージを受けた。
In each of the charges, the slab had no air bubbles and no scorch was generated. In addition, the erosion of the refractory of the used pot was suppressed to about 2 to 3 times that of ordinary refining of stainless steel, and it was in a state where it could be reused sufficiently. In addition,
The same smelting as in Example 2 was attempted using slag to which 15% by mass of CaF 2 was added. As a result, the magdro brick used for the lining of the pot was significantly damaged at the slag line, and was damaged to the extent that it could not be reused.

【0042】[0042]

【発明の効果】以上のように、本発明によれば、通常の
MgO系耐火物で内張りした精錬容器を用いて、ヘゲ疵
の発生しない高Al含有フェライト系ステンレス鋼が容
易に、かつ安定して製造できるようになった。
As described above, according to the present invention, a high Al-containing ferritic stainless steel free of bark flaws can be easily and stably used by using a refining vessel lined with ordinary MgO-based refractories. It can now be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高Al含有フェライト系ステンレス鋼の鋳塊中
の気泡生成に及ぼす、鋼中Mg含有量およびH含有量の
影響を表すグラフである。
FIG. 1 is a graph showing the influence of the Mg content and the H content in steel on the formation of bubbles in an ingot of a high Al-containing ferritic stainless steel.

【図2】高Al含有フェライト系ステンレス鋼の、鋼中
Al含有量とMg含有量の関係を表すグラフである。
FIG. 2 is a graph showing the relationship between the Al content and the Mg content in steel of a high Al content ferritic stainless steel.

【図3】高Al含有フェライト系ステンレス鋼の、鋼中
希土類元素含有量とMg含有量の関係を表すグラフであ
る。
FIG. 3 is a graph showing a relationship between a rare earth element content and a Mg content in steel of a high Al-containing ferritic stainless steel.

【図4】高Al含有フェライト系ステンレス鋼の鋼中M
g濃度に及ぼす、スラグの(質量%CaO)/(質量%A
23)値の影響を表すグラフである。
FIG. 4 M in steel of high Al content ferritic stainless steel
(% by mass CaO) / (% by mass A)
12 is a graph showing the effect of l 2 O 3 ) value.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/28 C22C 38/28 (72)発明者 平松 直人 山口県新南陽市野村南町4976番地 日新製 鋼株式会社技術研究所内 (72)発明者 宮本 敏明 山口県新南陽市野村南町4976番地 日新製 鋼株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/28 C22C 38/28 (72) Inventor Naoto Hiramatsu 4976 Nomura Minamicho, Shinnanyo-shi, Yamaguchi Prefecture In-house (72) Inventor Toshiaki Miyamoto 4976 Nomura Minamicho, Shinnanyo-shi, Yamaguchi Prefecture Inside Nisshin Steel Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C≦0.03%,Si≦1.0%,
Cr:15〜26%,Al:2〜6%,Ti:0〜0.5%(無添
加を含む)を含み、残部Feおよび不可避的不純物から
なる高Al含有フェライト系ステンレス鋼を、MgO系
耐火物で内張りされた精錬容器を用いて製造するにあた
り、溶鋼と接するスラグをCaF2が実質的に含まれな
いCaO−MgO−Al23系とし、かつ鋼成分調整後
・鋳造前におけるスラグ組成が(質量%CaO)/(質量
%Al23)≦0.8となるようにコントロールする、精錬
容器の耐火物溶損を抑えた製造性の良い高Al含有フェ
ライト系ステンレス鋼の溶製方法。
(1) In terms of mass%, C ≦ 0.03%, Si ≦ 1.0%,
A high Al-containing ferritic stainless steel containing Cr: 15 to 26%, Al: 2 to 6%, Ti: 0 to 0.5% (including no addition), the balance being Fe and unavoidable impurities, in in manufacturing using a lined been refined container, and the slag in contact with molten steel and CaF 2 are substantially not contained CaO-MgO-Al 2 O 3 system, and slag composition before the steel components adjusted and casting A method for producing a high-Al-containing ferritic stainless steel having good productivity and suppressing refractory erosion of a refining vessel, which is controlled so that (mass% CaO) / (mass% Al 2 O 3 ) ≦ 0.8.
【請求項2】 鋼成分調整後・鋳造前におけるスラグ組
成が、CaO:25〜40質量%,MgO≦15質量%,(質
量%CaO)/(質量%Al23)≦0.8となるように、造
滓剤の組成および投入量をコントロールする、請求項1
に記載の高Al含有フェライト系ステンレス鋼の溶製方
法。
2. The slag composition after steel composition adjustment and before casting is such that CaO: 25 to 40% by mass, MgO ≦ 15% by mass, (% by mass CaO) / (% by mass Al 2 O 3 ) ≦ 0.8. And controlling the composition and the amount of the slag-making agent.
3. The method for producing a ferritic stainless steel having a high Al content according to item 1.
【請求項3】 質量%で、C≦0.03%,Si≦1.0%,
Cr:15〜26%,Al:2〜6%,Ti:0〜0.5%(無添
加を含む),希土類元素のうち1種または2種以上:合
計で0.02〜0.12%を含み、残部Feおよび不可避的不純
物からなる高Al含有フェライト系ステンレス鋼を、M
gO系耐火物で内張りされた精錬容器を用いて製造する
にあたり、溶鋼と接するスラグをCaF2が実質的に含
まれないCaO−MgO−Al23系とし、かつ希土類
元素添加時期におけるスラグ組成が(質量%CaO)/
(質量%Al23)≦0.8となるようにコントロールす
る、精錬容器の耐火物溶損を抑えた製造性の良い高Al
含有フェライト系ステンレス鋼の溶製方法。
3. The method according to claim 1, wherein C ≦ 0.03%, Si ≦ 1.0%,
Cr: 15 to 26%, Al: 2 to 6%, Ti: 0 to 0.5% (including no addition), one or more of rare earth elements: including 0.02 to 0.12% in total, with the balance Fe and High Al content ferritic stainless steel, which is composed of unavoidable impurities,
In producing using a refining vessel which is lined with gO-based refractories, and slag in contact with molten steel and CaF 2 are substantially not contained CaO-MgO-Al 2 O 3 system, and slag composition in addition timing rare earth elements Is (% by mass CaO) /
(% By mass Al 2 O 3 ) ≦ 0.8, high aluminum with good manufacturability with reduced refractory erosion in refining vessels
For producing ferrite-based stainless steels.
【請求項4】 希土類元素添加時期におけるスラグ組成
が、CaO:25〜40質量%,MgO≦15質量%,(質量
%CaO)/(質量%Al23)≦0.8となるように、造滓
剤の組成および投入量をコントロールする、請求項3に
記載の高Al含有フェライト系ステンレス鋼の溶製方
法。
4. The slag composition at the time of adding the rare earth element is adjusted so that CaO: 25 to 40% by mass, MgO ≦ 15% by mass, (% by mass CaO) / (% by mass Al 2 O 3 ) ≦ 0.8. The method for melting a high Al-containing ferritic stainless steel according to claim 3, wherein the composition and the amount of the slag are controlled.
【請求項5】 鋳造材中のMg濃度を0.014質量%以下
にする、請求項1〜4に記載の高Al含有フェライト系
ステンレス鋼の溶製方法。
5. The method according to claim 1, wherein the Mg concentration in the cast material is 0.014% by mass or less.
【請求項6】 精錬中、精錬容器に設けられたガス吹き
込み装置から溶鋼中に不活性ガスを0.4〜20Nl/min・
Tの供給速度で吹き込んで溶鋼中のH濃度を低減し、鋳
造材中のH含有量を6質量ppm以下にする、請求項1〜5
に記載の高Al含有フェライト系ステンレス鋼の溶製方
法。
6. During the refining, an inert gas is introduced into the molten steel from a gas blowing device provided in the refining vessel in an amount of 0.4 to 20 Nl / min.
The H content in molten steel is reduced by blowing at a supply rate of T to reduce the H content in the cast material to 6 ppm by mass or less.
3. The method for producing a ferritic stainless steel having a high Al content according to item 1.
【請求項7】 不活性ガスがArである請求項6に記載
の高Al含有フェライト系ステンレス鋼の溶製方法。
7. The method for producing a high Al-containing ferritic stainless steel according to claim 6, wherein the inert gas is Ar.
JP09991198A 1998-03-30 1998-03-30 Method for melting high ferritic stainless steel with high Al content that suppresses refractory melting of refining vessel Expired - Fee Related JP3836249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09991198A JP3836249B2 (en) 1998-03-30 1998-03-30 Method for melting high ferritic stainless steel with high Al content that suppresses refractory melting of refining vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09991198A JP3836249B2 (en) 1998-03-30 1998-03-30 Method for melting high ferritic stainless steel with high Al content that suppresses refractory melting of refining vessel

Publications (2)

Publication Number Publication Date
JPH11279623A true JPH11279623A (en) 1999-10-12
JP3836249B2 JP3836249B2 (en) 2006-10-25

Family

ID=14259970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09991198A Expired - Fee Related JP3836249B2 (en) 1998-03-30 1998-03-30 Method for melting high ferritic stainless steel with high Al content that suppresses refractory melting of refining vessel

Country Status (1)

Country Link
JP (1) JP3836249B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544533B1 (en) * 2001-12-14 2006-01-24 주식회사 포스코 Method for Manufacturing Ferrite Stainless Steel for Tableware
JP2007031790A (en) * 2005-07-28 2007-02-08 Sanyo Special Steel Co Ltd Secondary refining method for high aluminum steel
JP2007231372A (en) * 2006-03-01 2007-09-13 Nisshin Steel Co Ltd Method for producing aluminum-killed steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544533B1 (en) * 2001-12-14 2006-01-24 주식회사 포스코 Method for Manufacturing Ferrite Stainless Steel for Tableware
JP2007031790A (en) * 2005-07-28 2007-02-08 Sanyo Special Steel Co Ltd Secondary refining method for high aluminum steel
JP2007231372A (en) * 2006-03-01 2007-09-13 Nisshin Steel Co Ltd Method for producing aluminum-killed steel

Also Published As

Publication number Publication date
JP3836249B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
JP2018059148A (en) Fe-Cr-Ni ALLOY AND MANUFACTURING METHOD THEREFOR
JP6786964B2 (en) How to prevent blockage of continuous casting nozzle of sulfur-added steel
JP6990337B1 (en) Ni-based alloy with excellent surface properties and its manufacturing method
JP6937190B2 (en) Ni-Cr-Mo-Nb alloy and its manufacturing method
CN113046616B (en) Stainless steel excellent in surface properties and method for producing same
JP6903182B1 (en) Ni-Cr-Al-Fe alloy with excellent surface properties and its manufacturing method
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP5047477B2 (en) Secondary refining method for high Al steel
JP2005023346A (en) METHOD OF REFINING Ni BASED ALLOY HAVING EXCELLENT HOT WORKABILITY
JP2008101259A (en) METHOD FOR PRODUCING MOLTEN STEEL CONTAINING Zr IN ADDITION TO Cr, AND METHOD FOR INHIBITING CLOGGING OF IMMERSED NOZZLE
JP5205799B2 (en) Method for melting Cr-containing low alloy steel
JPH11279623A (en) Method for melting ferritic stainless steel containing high aluminum capable of suppressing erosion of refractory of refining container, and excellent in manufacture
JP4653629B2 (en) Method for producing Ti-containing chromium-containing molten steel
KR101082297B1 (en) A method for manufacturing ferritic stainless steel having improved equiaxed crystals in slab
JP3395699B2 (en) Method for producing ferritic stainless steel
JP2008111181A (en) Method for smelting aluminum killed steel
JPH09310113A (en) Refining method for highly clean stainless steel
JP7282246B1 (en) Ni--Cr--Fe--Mo alloy with excellent surface properties and method for producing the same
CN114981460B (en) Ferritic stainless steel
JP7438435B1 (en) Stainless steel with excellent surface quality
JPH08193245A (en) Bearing steel and its production
JP2007063581A (en) Method for refining molten chromium-containing steel
JP4207324B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
WO2024085002A1 (en) Fe-Cr-Ni-BASED ALLOY HAVING EXCELLENT SURFACE PROPERTIES, AND METHOD FOR MANUFACTURING SAME
JP3837790B2 (en) Method for producing oxide-dispersed steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060726

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100804

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100804

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120804

LAPS Cancellation because of no payment of annual fees