JP4287974B2 - Method for processing molten steel with finely solidified structure characteristics - Google Patents

Method for processing molten steel with finely solidified structure characteristics Download PDF

Info

Publication number
JP4287974B2
JP4287974B2 JP2000086215A JP2000086215A JP4287974B2 JP 4287974 B2 JP4287974 B2 JP 4287974B2 JP 2000086215 A JP2000086215 A JP 2000086215A JP 2000086215 A JP2000086215 A JP 2000086215A JP 4287974 B2 JP4287974 B2 JP 4287974B2
Authority
JP
Japan
Prior art keywords
molten steel
oxide
slab
solidified structure
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000086215A
Other languages
Japanese (ja)
Other versions
JP2001269747A (en
Inventor
隆 諸星
昌文 瀬々
伸太郎 楠
龍介 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000086215A priority Critical patent/JP4287974B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to CA002334352A priority patent/CA2334352C/en
Priority to EP00915437A priority patent/EP1099498A4/en
Priority to RU2001101464/02A priority patent/RU2228235C2/en
Priority to CNB2005100068043A priority patent/CN1321766C/en
Priority to EP07005688.2A priority patent/EP1803512B1/en
Priority to EP10186285.2A priority patent/EP2308617B1/en
Priority to KR1020057018257A priority patent/KR100706973B1/en
Priority to EP10186277.9A priority patent/EP2308616B1/en
Priority to US09/719,206 priority patent/US6585799B1/en
Priority to KR1020007013895A priority patent/KR100550678B1/en
Priority to EP10186292.8A priority patent/EP2292352B1/en
Priority to AU36746/00A priority patent/AU753777B2/en
Priority to PCT/JP2000/002296 priority patent/WO2000061322A1/en
Publication of JP2001269747A publication Critical patent/JP2001269747A/en
Priority to US10/222,362 priority patent/US6918969B2/en
Application granted granted Critical
Publication of JP4287974B2 publication Critical patent/JP4287974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、脱炭精練を行った後の溶鋼を造塊法や連続鋳造等を用いて鋳塊や鋳片を製造した際に、凝固組織を微細にして品質や加工性等を向上することができる微細凝固組織特性を有する溶鋼の処理方法に関する。
【0002】
【従来の技術】
従来、溶鋼は、上底吹き転炉や電気炉等の精練炉を用いて脱炭精練を行い、炭素や燐、硫黄等を除去してから所望の機械特性が得られるように、合金鉄を添加して成分調整を行ない、造塊法や連続鋳造等により凝固させて、鋳塊や鋳片が製造されている。
そして、鋳塊や鋳片を加熱して圧延加工を施すことにより、鋼材が製造される。
しかし、溶鋼が凝固する際に、特に内部の凝固組織が粗大になると、鋳片の内部に割れや中心偏析、センターポロシティ等の内部欠陥が発生して屑化し、良鋳片歩留りの低下を招く。
更に、外観を重要視するステンレス鋼材においては、エッジシーム疵やローピング等の表面欠陥が発生し、外観不良、端部のトリム量の増加等から品質や良製品歩留りの低下を招く等の問題がある。
この対策として、特開昭52−47522号公報に記載されているように、連続鋳造中の鋳型内の湯面から1.5〜3.0mの位置に電磁攪拌装置を設けて、60mmHgの推力で攪拌を行うことにより、鋳片を製造している。あるいは特開昭52−60231号公報に記載されているように、溶鋼の過熱温度を10〜50℃とした低温鋳造を行い、しかも、鋳造中の鋳片の未凝固層に電磁攪拌を行って、鋳片の凝固組織を等軸晶からなる微細な組織にして、中心偏析やUST欠陥の無い鋼材を製造することが行われている。
更に、特開平7−48616号公報に記載されているように、取鍋等の容器内の溶鋼表面を覆うスラグの組成をMgOを3〜15質量%、FeOとFe23及びMnOを5質量%以下にしたCaO・SiO2・Al23系にしておき、このスラグを貫通してMg合金を添加することにより、溶鋼中へのMg歩留りを高め、しかも、微細なMgO、MgO・Al23の酸化物を生成して鋼材の品質を向上することが行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、特開昭52−47522号公報では、鋳型内で凝固しつつある溶鋼に電磁攪拌を行って、成長する柱状晶(デンドライト組織)を抑制するので、電磁攪拌を付与した部位近傍の凝固組織をある程度は微細にできる。しかし、鋳片の全体を微細にするには、多段の電磁攪拌装置が必要になり、設備費が増大し、設置スペースの観点からも極めて困難であり、鋳片の全体を微細化した鋳片を製造するのに限界が生じる。
更に、特開昭52−60231号公報では、低温鋳造を行うため、浸漬ノズルの内面に介在物が付着してノズル詰まりを生じたり、鋳型内溶鋼の温度が低下して湯面皮張りが生じ、場合によっては、鋳造中断をせざるを得ない等、操業が不安定になる。
また、特開平7−48616号公報に記載された方法では、CaO・SiO2・Al23系のスラグで溶鋼の表面を覆っているので、Mgの蒸発を抑制して歩留りの向上を図る利点を有する。しかし、スラグ組成によっては、溶鋼が凝固する際に凝固核として有効なMgO、MgO・Al23の酸化物を必ずしも安定して生成することができない場合がある。
即ち、スラグ中に含まれるAl23やCaO等によって、CaOを含む低融点の酸化物や表面をAl23が覆ったMg酸化物が形成され、凝固初晶のδフェライトとの格子整合性が悪化して接種核(凝固核)として作用しなくなる。
その結果、溶鋼が、これ等の酸化物を起点にして凝固することができず、微細な組織の鋳片を製造することができない。
凝固組織が粗大化すると、鋳片の内部に割れや中心偏析、センターポロシティ等の欠陥が発生し、良鋳片歩留りの低下等を招く。
更に、この鋳片を用いて加工した鋼材にも粗大な凝固組織に起因した表面及び内部欠陥が発生し、歩留りや品質の低下を招く等の問題がある。
【0004】
本発明はかかる事情に鑑みてなされたもので、有効な接種核を生成させて凝固組織を微細にし、鋳片や鋼材に発生する表面及び内部欠陥を防止して、品質を向上することができる微細凝固組織特性を有する溶鋼の処理方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明の微細凝固組織特性を有する溶鋼の処理方法は、表面がスラグで覆われたフェライト系ステンレス溶鋼中に含まれるスラグ(Al23及びCaOを含む)及び脱酸生成物からなる酸化物の組成を求め、前記フェライト系ステンレス溶鋼にMgを添加した際に生成する酸化物が下記(1)、(2)式を満たすように歩留りを考慮して、金属Mgの添加量を求めてMgを添加する。
17.4(kAl23)+3.9(kMgO)+0.3(kMgAl24)+18.7(kCaO)≦500 ・・・・・(1)
(kAl23)+(kMgO)+(kMgAl24)+(kCaO)≧95
・・・・・(2)
ここで、kは、酸化物のモル%を表す。
この方法により、δフェライトとの格子整合度が5%以下の接種核(凝固核)として有効な酸化物である図2の斜線で示す範囲にあるCaO・Al23・MgOの3元系と、MgO・Al23、MgO等からなる複合Mg酸化物を生成することができ、溶鋼が凝固する際に、これ等の複合Mg酸化物を凝固核として作用させることで、等軸晶を生成させて鋳片の凝固組織を微細にすることができる。
【0006】
ここで、前記溶鋼フェライト系ステンレス溶鋼である。
凝固組織が粗大化し易いフェライト系ステンレス溶鋼の凝固組織を微細な凝固組織にすることができ、鋳片に発生する内部割れや中心偏析、センターポロシティ等を抑制し、また、この鋳片を加工した鋼材に発生する粗大な凝固組織に起因したローピング、エッジシーム疵が生じるのを防止することができる。
【0007】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
Mgを溶鋼に添加することにより酸化物を生成し、鋳片の凝固組織を微細化する場合、他の添加元素やスラグ組成等により、MgO・Al23・CaO系の酸化物が形成されたり、MgO・CaO系の高融点の酸化物等が形成されたりする。
しかし、MgO・Al23・CaOの酸化物は、低融点であるので、溶鋼が凝固する際に、凝固核として作用しない。一方、MgO・CaOの酸化物は、融点が高いので固相状態で存在するが、凝固初晶のδフェライトとの格子整合性が悪くなり、凝固核として作用しない。
そこで、本発明者は、これ等のMgO・Al23・CaO系及びMgO・CaO系の酸化物について、鋭意研究を重ねた結果、その酸化物の組成のモル分率を適正な範囲にすることにより、この酸化物の低融点化を抑制し、且つ、凝固初晶であるδフェライトとの格子整合度を改善することができることを知見し、本発明の完成に至ったものである。
【0008】
ここで、図1は本発明の一実施の形態に係る微細凝固組織特性を有する溶鋼の処理方法に適用される溶鋼の処理装置の全体図、図2はCaO−Al23−MgO系の3元状態図、図3は鋳片の凝固組織の模式図である。
図1に示すように、本発明の一実施の形態に係る微細凝固組織特性を有する溶鋼の処理方法に用いる溶鋼の処理装置10は、クロムを10質量%以上含むフェライト系ステンレス溶鋼(以下溶鋼という)11を入れた取鍋12と、この取鍋12の上方に設けられた金属Alを貯蔵するホッパ13及びホッパ13から切り出された金属Alを溶鋼11に添加するためのシュート14と、表面を薄鋼板で被覆した金属Mgワイヤ16をガイドパイプ15により案内して、スラグ17を貫通して溶鋼11に添加する供給装置18を備えている。
なお、符号19は、取鍋12内の溶鋼11に不活性ガスの一例であるアルゴンガスを供給するためのポーラスプラグである。
【0009】
次に、本実施の形態に係る微細凝固組織特性を有する溶鋼の処理方法について説明する。
上底吹き転炉や電気炉等の精練炉を用いて、脱炭及び燐、硫黄等の不純物を除去した溶鋼11を取鍋12に150トン受湯した。
その後、ポーラスプラグ19から30〜50NL/分のアルゴンガスを吹き込みながら、ホッパ13から金属Alを50〜100kg添加して溶鋼11を攪拌しながら均一に混合して脱酸を行った。
その後、溶鋼11をサンプリングして、EPMA(Electron・Probe・Micro・Analyzer)により含まれる酸化物の組織を分析し、(3)式を用いて酸化物とδフェライトの格子整合度の指標であるα値を計算する。
α=17.4(kAl23)+3.9(kMgO)
+0.3(kMgAl24)+18.7(kCaO) ・・・・・(3)
なお、kは酸化物のモル%を表す。
α値は、500を超えると、酸化物が低融点化、あるいは高融点化したり、酸化物の表面を覆うMgOが少なくなって凝固核として作用しなくなる。
更に、下記(4)式によりβ値を求める。このβ値は、95未満になると、SiO2、FeO等の他の酸化物が増加して凝固核となる複合Mg酸化物の生成が阻害される。
β=(kAl23)+(kMgO)+(kMgAl24)+(kCaO)
・・・・・(4)
なお、kは、酸化物のモル(%)を表す。
従って、α値が500以下となり、β値が95以上となるように、歩留りを考慮して、金属Mgの添加量を求める。
このように求めた金属Mgの値に相当する金属Mgワイヤ16をガイドパイプ15で案内しながら供給装置18を作動して溶鋼11に添加する。
その結果、図2の斜線で示す範囲にあるCaO・Al23・MgOの3元系と、一部がAl23・MgO、MgO等からなる酸化物(複合Mg酸化物)を多数形成することができ、この複合Mg酸化物を溶鋼中に分散させ、温度が低下するにつれ、これ等の凝固核を起点にして溶鋼11が凝固を開始し、等軸晶を生成し、微細な凝固組織を備えた鋳片を製造することができる。
【0010】
このようにして、溶鋼11が凝固した鋳片の凝固組織は、図3の(A)に示すように微細組織となる。
凝固組織を微細にすることにより、鋳片の内部割れ、中心偏析、センターポロシティ等の内部欠陥を防止することができ、更に、凝固組織が微細な鋳片を加工した鋼材は、凝固組織が微細になるので、圧延等の加工性が良好になり、エッジシーム疵、ローピング等の表面欠陥等の発生も安定して防止することができる。
この金属Mgの添加量としては、0.0005〜0.010質量%の濃度に相当する範囲に調整することが好ましい。
Mg濃度が0.0005質量%より低くなると、δフェライトとの格子整合度が5%以下の複合Mg酸化物を生成できず、鋳片の凝固組織を微細化することができない。一方、Mg濃度を0.010質量%より高くしても、凝固組織の微細化効果が飽和し、金属Mgの合金コストが増大する。
【0011】
【実施例】
次に、微細凝固組織特性を有する溶鋼の処理方法の実施例について説明する。
上底吹き転炉を用いて、クロムを10〜23質量%含む溶鋼を取鍋に150トン受湯し、ポーラスプラグから50NL/分のアルゴンガスを吹き込みながら、ホッパから金属Alを100kg添加して溶鋼を攪拌しながら均一に混合して脱酸を行った。
その後、溶鋼をサンプリングして、EPMAにより酸化物を測定し、前述した(1)、(2)式を満たすように、金属Mgの添加量を調整し、複合Mg酸化物を生成させた。その後、溶鋼を連続鋳造して鋳片を製造した。
そして、鋳片の内部割れや中心偏析、センターポロシティ等の内部欠陥の有無、凝固組織の良否、加工後の鋼材の表面性状や加工性を含めた総合評価について調査した。その結果を表1に示す。
実施例1は、溶鋼に金属Mgを125kg添加して溶鋼を攪拌し、溶鋼中に含まれる複合の酸化物のα値((3)式で求めた酸化物とδフェライトとの格子整合度の指標)を326にした場合であり、鋳片に内部欠陥が発生しておらず、凝固組織が微細化されて良好であり、鋼材の表面性状や加工性も良く、総合評価として良好な結果が得られた。
実施例2は、金属Mgを30kg添加して溶鋼を攪拌し、溶鋼中に含まれる複合の酸化物のα値を497にした場合であり、鋳片の表面及び内部欠陥が発生しておらず、図3の(A)に示すように凝固組織が微細化されて良好であり、鋼材の表面性状や加工性も良く、総合評価として良好な結果が得られた。
【0012】
【表1】

Figure 0004287974
【0013】
これに対し、比較例は、Mg添加前の溶鋼に含まれる酸化物の組成を何ら考慮せずに、金属Mgを85kg添加して溶鋼を攪拌した。その結果、溶鋼中に含まれる複合の酸化物のα値が500を超え、鋳片の内部欠陥が発生し、図3の(B)に示すように凝固組織が粗大化して悪くなり、総合評価として悪い結果になった。
【0014】
以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。例えば、溶鋼中に含まれる酸化物の測定について、EPMAの他に、スラグの組成や脱酸等の溶製条件をもとに、過去の実績から酸化物の組成を求めることもできる。
更に、添加するMgは、Al−Mg、Ni−Mg、Fe−Si−Mg等の合金を用いることができる。
【0015】
【発明の効果】
請求項記載の微細凝固組織特性を有する溶鋼の処理方法は、溶鋼中に含まれるスラグ及び脱酸生成物からなる酸化物と溶鋼にMgを添加した際に生成する酸化物を所定範囲になるように、Mgを添加するので、凝固核として作用し難いCaOやAl23を改質して、凝固核として有効な複合Mg酸化物を多数生成して鋳片の凝固組織を微細にすることができ、鋳片の内部に発生する割れや中心偏析、センタポロシティ等の発生を抑制し、良鋳片及び鋼材の歩留りや品質を向上することができる。
【0016】
特に、請求項記載の微細凝固組織特性を有する溶鋼の処理方法は、フェライト系ステンレス溶鋼を用いるので、組織の微細化効果が著しく、良鋳片及び鋼材の歩留り、鋼材に発生するローピング、エッジシーム疵を安定して防止して品質を向上することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る微細凝固組織特性を有する溶鋼の処理方法に適用される溶鋼の処理装置の全体図である。
【図2】CaO−Al23−MgO系の3元状態図である。
【図3】(A)、(B)はそれぞれ鋳片の凝固組織の模式図である。
【符号の説明】
10:溶鋼の処理装置、11:溶鋼、12:取鍋、13:ホッパ、14:シュート、15:ガイドパイプ、16:金属Mgワイア、17:スラグ、18:供給装置、19:ポーラスプラグ[0001]
BACKGROUND OF THE INVENTION
The present invention improves the quality, workability, etc. by making the solidified structure fine when producing ingots and cast pieces of molten steel after decarburizing and refining using the ingot forming method or continuous casting. The present invention relates to a method for treating molten steel having finely solidified structure characteristics.
[0002]
[Prior art]
Conventionally, molten steel is made of alloyed iron so that desired mechanical properties can be obtained after decarburization and refining using a refining furnace such as a top-bottom converter or electric furnace to remove carbon, phosphorus, sulfur, etc. Ingots and slabs are produced by adding components to adjust the ingredients and solidifying them by an ingot-making method or continuous casting.
And a steel material is manufactured by heating an ingot and a slab and performing a rolling process.
However, when the molten steel solidifies, especially when the internal solidification structure becomes coarse, internal defects such as cracks, center segregation, and center porosity are generated inside the slab, resulting in scrapping, resulting in a decrease in yield of good slab. .
In addition, stainless steel materials that emphasize the appearance have surface defects such as edge seam wrinkles and roping, resulting in problems such as poor appearance and increased trim amount at the end, leading to a decrease in quality and yield of good products. .
As a countermeasure against this, as described in JP-A-52-47522, an electromagnetic stirring device is provided at a position of 1.5 to 3.0 m from the molten metal surface in the mold during continuous casting, and a thrust of 60 mmHg. The slab is manufactured by stirring with. Alternatively, as described in JP-A-52-60231, low temperature casting is performed at a superheated temperature of the molten steel of 10 to 50 ° C., and electromagnetic stirring is performed on the unsolidified layer of the slab during casting. It has been practiced to produce a steel material free from center segregation and UST defects by making the solidified structure of the slab a fine structure consisting of equiaxed crystals.
Furthermore, as described in JP-A-7-48616, the composition of the slag covering the surface of the molten steel in a container such as a ladle is 3 to 15 % by mass of MgO, 5 of FeO, Fe 2 O 3 and MnO. By making the CaO.SiO 2 .Al 2 O 3 system less than mass% and adding an Mg alloy through this slag, the Mg yield in the molten steel is increased, and fine MgO, MgO. Production of oxides of Al 2 O 3 to improve the quality of steel materials has been performed.
[0003]
[Problems to be solved by the invention]
However, in Japanese Patent Laid-Open No. 52-47522, electromagnetic stirring is performed on molten steel that is solidifying in a mold to suppress growing columnar crystals (dendritic structure). Can be made fine to some extent. However, in order to make the entire slab finer, a multistage electromagnetic stirring device is required, which increases equipment costs and is extremely difficult from the viewpoint of installation space. There is a limit to the production.
Furthermore, in Japanese Patent Application Laid-Open No. 52-60231, since low temperature casting is performed, inclusions adhere to the inner surface of the immersion nozzle, resulting in nozzle clogging, or the temperature of the molten steel in the mold is lowered, resulting in hot water surface coating. In some cases, the operation becomes unstable, for example, casting must be interrupted.
Further, in the method described in JP-A-7-48616, the surface of the molten steel is covered with CaO · SiO 2 · Al 2 O 3 slag, so that the evaporation of Mg is suppressed and the yield is improved. Have advantages. However, depending on the slag composition, it may not always be possible to stably produce oxides of MgO and MgO.Al 2 O 3 effective as solidification nuclei when the molten steel solidifies.
That is, a low melting point oxide containing CaO or Mg oxide with the surface covered with Al 2 O 3 is formed by Al 2 O 3 or CaO contained in the slag, and a lattice with a solidified primary crystal δ ferrite. The consistency deteriorates and it does not act as an inoculum nucleus (coagulation nucleus).
As a result, the molten steel cannot be solidified starting from these oxides, and a slab having a fine structure cannot be produced.
When the solidified structure becomes coarse, defects such as cracks, center segregation, and center porosity occur inside the slab, leading to a decrease in the yield of good slabs.
Furthermore, the steel material processed using this slab also has problems such as surface and internal defects caused by a coarse solidified structure, resulting in a decrease in yield and quality.
[0004]
The present invention has been made in view of such circumstances, and it is possible to improve the quality by generating effective inoculation nuclei and making the solidified structure fine, preventing the surface and internal defects generated in slabs and steel materials. It aims at providing the processing method of the molten steel which has a fine solidification structure characteristic.
[0005]
[Means for Solving the Problems]
The processing method of the molten steel having the fine solidification structure characteristics of the present invention that meets the above-mentioned object is the slag (including Al 2 O 3 and CaO) and deoxidation product contained in the ferritic stainless molten steel whose surface is covered with slag. The amount of metal Mg added is determined in consideration of the yield so that the oxide produced when Mg is added to the ferritic stainless steel molten steel satisfies the following formulas (1) and (2): And Mg is added.
17.4 (kAl 2 O 3 ) +3.9 (kmMgO) +0.3 (kmMgAl 2 O 4 ) +18.7 (kCaO) ≦ 500 (1)
(KAl 2 O 3 ) + (kmgO) + (kmgAl 2 O 4 ) + (kCaO) ≧ 95
(2)
Here, k represents the mol% of the oxide.
By this method, a CaO.Al 2 O 3 .MgO ternary system in the range shown by the oblique lines in FIG. 2 is an effective oxide as an inoculation nucleus (solidification nucleus) having a lattice matching degree of 5% or less with δ ferrite. And a composite Mg oxide composed of MgO.Al 2 O 3 , MgO, etc., and when molten steel solidifies, these composite Mg oxides act as solidification nuclei, thereby producing equiaxed crystals. The solidified structure of the slab can be made finer.
[0006]
Here, the molten steel is Ru ferritic stainless molten steel der.
The solidification structure of ferritic stainless steel, which tends to coarsen the solidification structure, can be made into a fine solidification structure, suppressing internal cracks, center segregation, center porosity, etc. occurring in the slab, and processing this slab It is possible to prevent the occurrence of roping and edge seam wrinkles due to the coarse solidified structure generated in the steel material.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
When Mg is added to molten steel to produce an oxide and the solidification structure of the slab is refined, MgO / Al 2 O 3 / CaO-based oxides are formed by other additive elements and slag composition. Or a high melting point oxide such as MgO / CaO is formed.
However, oxides of MgO · Al 2 O 3 · Ca O is, since a low melting point, when the molten steel solidifies, does not act as solidification nuclei. On the other hand, the oxide of MgO · Ca 2 O exists in a solid state because of its high melting point, but the lattice matching with the solidification primary crystal δ ferrite is deteriorated and does not act as a solidification nucleus.
Therefore, as a result of intensive studies on these MgO.Al 2 O 3 .CaO-based and MgO.CaO-based oxides, the present inventors have set the molar fraction of the oxide composition within an appropriate range. As a result, it has been found that the lowering of the melting point of the oxide can be suppressed and the degree of lattice matching with δ ferrite, which is a solidified primary crystal, can be improved, and the present invention has been completed.
[0008]
Here, FIG. 1 is an overall view of a processing apparatus for molten steel applied to a processing method for molten steel having finely solidified structure characteristics according to an embodiment of the present invention, and FIG. 2 is a diagram of a CaO—Al 2 O 3 —MgO system. A ternary phase diagram, FIG. 3 is a schematic diagram of a solidified structure of a slab.
As shown in FIG. 1, the molten steel processing apparatus 10 used for the processing method of the molten steel which has the fine solidification structure characteristic which concerns on one embodiment of this invention is ferritic stainless molten steel (henceforth molten steel) containing 10 mass% or more of chromium. ) A ladle 12 containing 11, a hopper 13 for storing metal Al provided above the ladle 12, a chute 14 for adding metal Al cut out from the hopper 13 to the molten steel 11, and the surface A metal Mg wire 16 covered with a thin steel plate is guided by a guide pipe 15, and a supply device 18 that penetrates through the slag 17 and is added to the molten steel 11 is provided.
In addition, the code | symbol 19 is a porous plug for supplying argon gas which is an example of inert gas to the molten steel 11 in the ladle 12. FIG.
[0009]
Next, the processing method of the molten steel which has the fine solidification structure characteristic based on this Embodiment is demonstrated.
Using a smelting furnace such as a top-bottom blowing converter or an electric furnace, 150 tons of molten steel 11 from which decarburization and impurities such as phosphorus and sulfur were removed was received in a ladle 12.
Then, while blowing argon gas of 30 to 50 NL / min from the porous plug 19, 50 to 100 kg of metal Al was added from the hopper 13, and the molten steel 11 was uniformly mixed while being deoxidized.
Thereafter, the molten steel 11 is sampled, and the structure of the oxide contained by EPMA (Electron, Probe, Micro, Analyzer) is analyzed, and is an index of the degree of lattice matching between the oxide and the δ ferrite using the equation (3). Calculate the α value.
α = 17.4 (kAl 2 O 3 ) +3.9 (kmMgO)
+0.3 (kmMgAl 2 O 4 ) +18.7 (kCaO) (3)
Note that k represents the mol% of the oxide.
When the α value exceeds 500, the oxide has a low melting point or a high melting point, or the MgO covering the surface of the oxide is reduced and does not act as a solidification nucleus.
Further, the β value is obtained by the following equation (4). When this β value is less than 95, other oxides such as SiO 2 and FeO increase to inhibit the formation of composite Mg oxides that become solidification nuclei.
β = (kAl 2 O 3 ) + (kmMgO) + (kmMgAl 2 O 4 ) + (kCaO)
(4)
Note that k represents the mole (%) of the oxide.
Therefore, the additive amount of metal Mg is determined in consideration of the yield so that the α value is 500 or less and the β value is 95 or more.
The supply device 18 is operated and added to the molten steel 11 while guiding the metal Mg wire 16 corresponding to the value of the metal Mg thus obtained by the guide pipe 15.
As a result, there are many ternary systems of CaO.Al 2 O 3 .MgO in the range shown by the oblique lines in FIG. 2 and a large number of oxides (composite Mg oxides) partially made of Al 2 O 3 .MgO, MgO, etc. As this composite Mg oxide is dispersed in the molten steel and the temperature decreases, the molten steel 11 starts to solidify starting from these solidification nuclei, producing equiaxed crystals, A slab having a solidified structure can be produced.
[0010]
In this way, the solidified structure of the slab solidified by the molten steel 11 becomes a fine structure as shown in FIG.
By making the solidification structure fine, internal defects such as internal cracks, center segregation, and center porosity of the slab can be prevented, and the steel material processed from a slab with a fine solidification structure has a fine solidification structure. Therefore, workability such as rolling is improved, and surface defects such as edge seam wrinkling and roping can be stably prevented.
The addition amount of the metal Mg is preferably adjusted to a range corresponding to a concentration of 0.0005 to 0.010 mass% .
When the Mg concentration is lower than 0.0005 mass%, a composite Mg oxide having a lattice matching degree with δ ferrite of 5% or less cannot be generated, and the solidified structure of the slab cannot be refined. On the other hand, even if the Mg concentration is higher than 0.010 % by mass , the effect of refining the solidified structure is saturated, and the alloy cost of metallic Mg increases.
[0011]
【Example】
Next, an example of a processing method for molten steel having finely solidified structure characteristics will be described.
Using an upper-bottom blowing converter, 150 tons of molten steel containing 10 to 23 % by mass of chromium is received in a ladle, and 100 kg of metal Al is added from a hopper while argon gas is blown at 50 NL / min from a porous plug. The molten steel was uniformly mixed with stirring to perform deoxidation.
Thereafter, the molten steel was sampled, the oxide was measured by EPMA, and the amount of metal Mg added was adjusted so as to satisfy the above-described formulas (1) and (2), thereby generating a composite Mg oxide. Thereafter, the molten steel was continuously cast to produce a slab.
And the comprehensive evaluation including the presence or absence of internal defects, such as an internal crack of a slab, center segregation, a center porosity, the quality of a solidification structure, and the surface property and workability of the steel material after a process was investigated. The results are shown in Table 1.
In Example 1, 125 kg of metal Mg was added to molten steel and the molten steel was stirred, and the α value of the composite oxide contained in the molten steel (of the lattice matching degree of the oxide and δ ferrite determined by the equation (3)) The index) is set to 326. Internal defects are not generated in the slab, the solidified structure is refined and good, the surface properties and workability of the steel are good, and the overall evaluation is good. Obtained.
Example 2 is a case where 30 kg of metal Mg is added and the molten steel is stirred, and the α value of the composite oxide contained in the molten steel is set to 497, and the surface of the slab and internal defects are not generated. As shown in FIG. 3 (A), the solidified structure was refined and good, and the surface properties and workability of the steel were good, and good results were obtained as a comprehensive evaluation.
[0012]
[Table 1]
Figure 0004287974
[0013]
In contrast, Comparative Example 1, the composition of oxides contained in molten steel before Mg addition, without any consideration was stirred molten steel was 8 5k g added pressure to the metal Mg. As a result, the α value of the composite oxide contained in the molten steel exceeds 500, an internal defect of the slab is generated , and the solidified structure becomes coarse and deteriorates as shown in FIG. As a bad result.
[0014]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention. For example, regarding the measurement of oxides contained in molten steel, in addition to EPMA, based on melting conditions such as slag composition and deoxidation, the oxide composition can also be obtained from past results.
Furthermore, as the added Mg, an alloy such as Al—Mg, Ni—Mg, Fe—Si—Mg can be used.
[0015]
【The invention's effect】
The processing method of the molten steel which has the fine solidification structure characteristic of Claim 1 becomes the oxide which produces | generates when the oxide which consists of slag contained in molten steel and the deoxidation product, and Mg is added to molten steel into a predetermined range. As described above, since Mg is added, CaO and Al 2 O 3 which do not easily act as solidification nuclei are modified, and a large number of composite Mg oxides effective as solidification nuclei are produced to refine the solidification structure of the slab. It is possible to suppress the occurrence of cracks, center segregation, center porosity, etc. occurring in the slab, and improve the yield and quality of the good slab and steel material.
[0016]
In particular, since the processing method for molten steel having finely solidified structure characteristics according to claim 1 uses ferritic stainless molten steel, the effect of refining the structure is remarkable, yield of good slabs and steel materials, roping generated in steel materials, and edge seams. It is possible to stably prevent wrinkles and improve quality.
[Brief description of the drawings]
FIG. 1 is an overall view of a molten steel processing apparatus applied to a method for processing molten steel having finely solidified structure characteristics according to an embodiment of the present invention.
FIG. 2 is a ternary phase diagram of a CaO—Al 2 O 3 —MgO system.
FIGS. 3A and 3B are schematic diagrams of solidification structures of slabs, respectively.
[Explanation of symbols]
10: Molten steel processing device, 11: Molten steel, 12: Ladle, 13: Hopper, 14: Chute, 15: Guide pipe, 16: Metal Mg wire, 17: Slag, 18: Feeder, 19: Porous plug

Claims (1)

表面がスラグで覆われたフェライト系ステンレス溶鋼中に含まれるスラグ(Al23及びCaOを含む)及び脱酸生成物からなる酸化物の組成を求め、前記フェライト系ステンレス溶鋼にMgを添加した際に生成する酸化物が下記(1)、(2)式を満たすように歩留りを考慮して、金属Mgの添加量を求めてMgを添加することを特徴とする微細凝固組織特性を有する溶鋼の処理方法。
17.4(kAl23)+3.9(kMgO)+0.3(kMgAl24)+18.7(kCaO)≦500 ・・・・・(1)
(kAl23)+(kMgO)+(kMgAl24)+(kCaO)≧95
・・・・・(2)
ここで、kは、酸化物のモル%を表す。
The composition of oxides composed of slag (including Al 2 O 3 and CaO) and deoxidation products contained in the ferritic stainless steel with the surface covered with slag was determined, and Mg was added to the ferritic stainless steel In consideration of the yield so that the oxide produced at the time satisfies the following formulas (1) and (2), the amount of metal Mg is obtained and Mg is added to obtain molten steel having finely solidified structure characteristics Processing method.
17.4 (kAl 2 O 3 ) +3.9 (kmMgO) +0.3 (kmMgAl 2 O 4 ) +18.7 (kCaO) ≦ 500 (1)
(KAl 2 O 3 ) + (kmgO) + (kmgAl 2 O 4 ) + (kCaO) ≧ 95
(2)
Here, k represents the mol% of the oxide.
JP2000086215A 1999-04-08 2000-03-27 Method for processing molten steel with finely solidified structure characteristics Expired - Fee Related JP4287974B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2000086215A JP4287974B2 (en) 2000-03-27 2000-03-27 Method for processing molten steel with finely solidified structure characteristics
KR1020007013895A KR100550678B1 (en) 1999-04-08 2000-04-07 Method for treatment of molten steel for making solidification structure of cast steel piece fine
RU2001101464/02A RU2228235C2 (en) 1999-04-08 2000-04-07 Steel casting (variants) and steel material with improved workability, method for processing melt steel (variants) and method for making steel casting and steel material
CNB2005100068043A CN1321766C (en) 1999-04-08 2000-04-07 Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material
EP07005688.2A EP1803512B1 (en) 1999-04-08 2000-04-07 Cast steel with excellent workability and method for manufacturing the cast steel
EP10186285.2A EP2308617B1 (en) 1999-04-08 2000-04-07 Method for processing molten steel
KR1020057018257A KR100706973B1 (en) 1999-04-08 2000-04-07 Cast steel piece with fine solidification sturcture and excellent forming characteristics and steel product and seamless steel pipe produced by using the same
EP10186277.9A EP2308616B1 (en) 1999-04-08 2000-04-07 Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material
CA002334352A CA2334352C (en) 1999-04-08 2000-04-07 Cast steel piece and steel material with excellent workability, method for processing molten steel therefor and method for manufacutring the cast steel and steel material
EP00915437A EP1099498A4 (en) 1999-04-08 2000-04-07 Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
EP10186292.8A EP2292352B1 (en) 1999-04-08 2000-04-07 Method for processing molten steel for cast steel and steel material with excellent workability
AU36746/00A AU753777B2 (en) 1999-04-08 2000-04-07 Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
PCT/JP2000/002296 WO2000061322A1 (en) 1999-04-08 2000-04-07 Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
US09/719,206 US6585799B1 (en) 1999-04-08 2000-04-07 Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
US10/222,362 US6918969B2 (en) 1999-04-08 2002-08-16 Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000086215A JP4287974B2 (en) 2000-03-27 2000-03-27 Method for processing molten steel with finely solidified structure characteristics

Publications (2)

Publication Number Publication Date
JP2001269747A JP2001269747A (en) 2001-10-02
JP4287974B2 true JP4287974B2 (en) 2009-07-01

Family

ID=18602424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000086215A Expired - Fee Related JP4287974B2 (en) 1999-04-08 2000-03-27 Method for processing molten steel with finely solidified structure characteristics

Country Status (1)

Country Link
JP (1) JP4287974B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357471C (en) 2002-03-27 2007-12-26 新日本制铁株式会社 Cast piece and sheet of ferritic stainless steel, and method for production thereof
TWI464271B (en) * 2011-12-20 2014-12-11 Univ Nat Cheng Kung A metallurgical method by adding mg-al to modify the inclusions and grain refinement of steel

Also Published As

Publication number Publication date
JP2001269747A (en) 2001-10-02

Similar Documents

Publication Publication Date Title
EP2308617B1 (en) Method for processing molten steel
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
TWI394843B (en) Melt Method of Ti - containing Very Low Carbon Steel and Manufacturing Method of Ti - containing Very Low Carbon Steel Casting
KR100943014B1 (en) Metallurgical product of carbon steel, intended especially for galvanization, processes for its production, and processes for producing a metallurgical imtermidiate product for its production
JP5053042B2 (en) Continuous casting method of ultra-low carbon steel
JP4287974B2 (en) Method for processing molten steel with finely solidified structure characteristics
CN113913676B (en) Metallurgy method for improving morphology of as-cast sulfide of medium-carbon high-sulfur free-cutting steel
RU2228235C2 (en) Steel casting (variants) and steel material with improved workability, method for processing melt steel (variants) and method for making steel casting and steel material
JP3732006B2 (en) Casting method for ferritic stainless steel
JP4081218B2 (en) Continuous casting method
JP4283434B2 (en) Treatment method of molten steel with excellent solidification structure characteristics
KR100362659B1 (en) A method of manufacturing medium carbon steel plate for offshore structure
JP4279947B2 (en) Mg treatment method for molten steel
JP2004276042A (en) Method for continuously casting molten steel for non-oriented magnetic steel sheet and its cast slab
JP2002321043A (en) Manufacturing method for piece of cast which has fine solidification structure and steel product which is processed from it
JP2002129223A (en) Method for treating molten steel for high carbon steel and its cast slab
JP2002035906A (en) Method of casting magnesium-added molten steel
JP2002322509A (en) METHOD FOR TREATING MOLTEN STEEL EXCELLENT IN SOLIDIFIED STRUCTURE BY UTILIZING CaO
US20100158746A1 (en) Extremely Low Carbon Steel Plate Excellent in Surface Characteristics, Workability, and Formability and a Method of Producing Extremely Low Carbon Cast Slab
JP2001089807A (en) Treating method of molten steel
JPH0747764B2 (en) Method for producing Ti-containing non-aging cold rolled steel sheet with few defects caused by non-metallic inclusions
JP2003027180A (en) Cast slab of high carbon steel with fine solidification structure and pearlite transformation structure
JP2002339040A (en) Thin steel sheet and deoxidation treatment method for molten steel for thin steel sheet
JPH11320033A (en) Method for casting molten ferritic stainless steel
JP2004276041A (en) Method for continuously casting molten steel for non-oriented magnetic steel sheet and steel slab for non-oriented magnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4287974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees