JP5326201B2 - Method for melting aluminum killed steel - Google Patents

Method for melting aluminum killed steel Download PDF

Info

Publication number
JP5326201B2
JP5326201B2 JP2006296443A JP2006296443A JP5326201B2 JP 5326201 B2 JP5326201 B2 JP 5326201B2 JP 2006296443 A JP2006296443 A JP 2006296443A JP 2006296443 A JP2006296443 A JP 2006296443A JP 5326201 B2 JP5326201 B2 JP 5326201B2
Authority
JP
Japan
Prior art keywords
molten steel
steel
amount
alloy iron
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006296443A
Other languages
Japanese (ja)
Other versions
JP2008111181A (en
Inventor
英彰 曽根
雄司 小川
和道 ▲吉▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006296443A priority Critical patent/JP5326201B2/en
Publication of JP2008111181A publication Critical patent/JP2008111181A/en
Application granted granted Critical
Publication of JP5326201B2 publication Critical patent/JP5326201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アルミキルド処理を行った鋼の溶製方法に係り、更に詳しくは、例えば、連続鋳造で使用する各種ノズル(例えば、溶鋼鍋のスライディングノズル、ロングノズル、タンディッシュの上ノズル、スライディングノズル、または浸漬ノズル)内壁へのAl介在物の付着によるノズル閉塞を防止することに有効なアルミキルド鋼の溶製方法に関する。 The present invention relates to a method for melting aluminum killed steel, and more specifically, for example, various nozzles used in continuous casting (for example, a sliding nozzle of a molten steel pan, a long nozzle, an upper nozzle of a tundish, a sliding nozzle) The present invention relates to a method for melting aluminum killed steel effective in preventing nozzle clogging due to adhesion of Al 2 O 3 inclusions to the inner wall.

一般的に、Al脱酸を行った溶鋼の連続鋳造においては、ノズル内壁へのAl介在物の付着によるノズルの閉塞が問題となっている。従来、このノズル閉塞の防止方法として、精錬工程においては、Caを用いた以下のような閉塞防止技術があった。
例えば、特許文献1には、溶鋼中のCa含有量を、0.0015質量%以上、かつ、{0.004−0.11×溶鋼中S含有量(質量%)}質量%以下の範囲とすることにより、ノズルの閉塞を防止する技術が開示されている。この技術は、溶鋼中に十分な量のCaが存在することで、Al介在物が、図4(A)中に示す「○」で囲まれた部分の低融点のカルシウムアルミネートに改質されて液相化し、ノズル内壁へ付着することを抑制するものである。
また、特許文献2には、溶鋼へCa合金を添加し、溶鋼中のCa含有量を1〜5ppmに調整することにより、ノズルの閉塞を防止する技術が開示されている。
そして、特許文献3には、Caの添加によりAl介在物の改質を行った後、真空処理を行うことによって、溶存するCaを蒸発させて除去する技術が開示されている。
In general, in continuous casting of molten steel subjected to Al deoxidation, nozzle clogging due to adhesion of Al 2 O 3 inclusions to the nozzle inner wall is a problem. Conventionally, as a method for preventing this nozzle clogging, there has been the following clogging preventing technique using Ca in the refining process.
For example, Patent Document 1 discloses that the Ca content in molten steel is in the range of 0.0015% by mass or more and {0.004-0.11 × S content in molten steel (% by mass)} mass% or less. Thus, a technique for preventing the nozzle from being blocked is disclosed. In this technique, a sufficient amount of Ca is present in the molten steel, so that the Al 2 O 3 inclusions are converted into a low melting point calcium aluminate surrounded by “◯” shown in FIG. 4 (A). It is a liquid phase that is modified to prevent adhesion to the inner wall of the nozzle.
Patent Document 2 discloses a technique for preventing nozzle clogging by adding a Ca alloy to molten steel and adjusting the Ca content in the molten steel to 1 to 5 ppm.
Patent Document 3 discloses a technique for evaporating and removing dissolved Ca by performing a vacuum treatment after modifying the Al 2 O 3 inclusion by adding Ca.

特開2002−66702号公報JP 2002-66702 A 特開平9−192799号公報JP-A-9-192799 特開平9−41022号公報Japanese Patent Laid-Open No. 9-41022

しかしながら、特許文献1に開示された方法では、ノズルを構成する耐火物が、生成する液相介在物によって溶損される問題があった。また、目的とする合金成分を有する溶鋼を製造するために必要な成分以外に、Ca合金を添加する必要があるため、合金のコストが余分にかかり経済的でなかった。そして、生成する液相介在物は、一部の鋼種において、凝固した際に球状の介在物となって内部欠陥となり、製品品質が低下する問題があった。
また、特許文献2に開示された方法では、溶鋼に添加する合金の種類によっては、不純物であるCaを多く含む場合があるため、Caを溶鋼中へ意図的に添加しなくても、溶鋼中のCa含有量が5ppm以上、かつ0.0015質量%(15ppm:特許文献1)以下の範囲内となり、結果的にノズルが急速に閉塞する場合があった。これは、Caが図4(B)中に示す「○」で囲まれた部分の化合物となり、比較的融点が高いカルシウムアルミネートが生成し、固液共存の介在物となってノズル内壁への付着が促進されるためである。
上記した理由により、溶鋼へCa合金を添加し溶鋼中のCa含有量を1〜5ppmに調整することは困難であり、この技術の場合、合金に混入した不純物であるCaを除去する必要がある。
更に、特許文献3に開示された方法を応用することで、溶鋼中のCaを除去してノズル閉塞を防止できるが、この処理を実施するためには真空処理設備が必須であり、一般的であるとはいえず、また新たに設備を導入する場合は設備コストがかかり経済的でない。
However, the method disclosed in Patent Document 1 has a problem that the refractory constituting the nozzle is melted by the liquid phase inclusions that are generated. Further, since it is necessary to add a Ca alloy in addition to the components necessary for producing the molten steel having the target alloy component, the cost of the alloy is excessive and not economical. Then, the liquid phase inclusions that are produced become spherical inclusions when solidified in some steel types, resulting in an internal defect, resulting in a problem that the product quality deteriorates.
Moreover, in the method disclosed in Patent Document 2, depending on the type of alloy added to the molten steel, a large amount of Ca, which is an impurity, may be contained. Therefore, even if Ca is not intentionally added to the molten steel, Ca content in the range of 5 ppm or more and 0.0015% by mass (15 ppm: Patent Document 1) or less, and as a result, the nozzle sometimes closed rapidly. This is a compound in which Ca is surrounded by “◯” shown in FIG. 4 (B), and calcium aluminate having a relatively high melting point is generated, which becomes an inclusion in the coexistence of solid and liquid, and is applied to the inner wall of the nozzle. This is because adhesion is promoted.
For the reasons described above, it is difficult to add a Ca alloy to molten steel and adjust the Ca content in the molten steel to 1 to 5 ppm. In this technique, it is necessary to remove Ca which is an impurity mixed in the alloy. .
Furthermore, by applying the method disclosed in Patent Document 3, Ca in molten steel can be removed to prevent nozzle clogging, but in order to carry out this treatment, a vacuum treatment facility is indispensable. It cannot be said that there is such a thing, and when a new equipment is introduced, the equipment cost is high and it is not economical.

本発明はかかる事情に鑑みてなされたもので、溶鋼中へCaを添加する必要がなく、しかも溶鋼中からCaを除去するために大規模な設備投資を行う必要がないため、低コストで簡易にノズル閉塞を防止できるアルミキルド鋼の溶製方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is not necessary to add Ca to the molten steel, and since it is not necessary to make a large-scale capital investment to remove Ca from the molten steel, the present invention is simple and inexpensive. Another object of the present invention is to provide a method for melting aluminum killed steel that can prevent nozzle clogging.

前記目的に沿う第1の発明に係るアルミキルド鋼の溶製方法は、不純物であるCaを含む合金鉄を溶鋼に添加して、目的とする合金成分を有するAlキルド鋼またはAl−Siキルド鋼を溶製する方法において、
前記溶鋼に添加する前記合金鉄中の前記Caの総重量が、前記合金鉄が添加された前記溶鋼の総重量の5ppmを超える場合、前記溶鋼を転炉から溶鋼鍋へ出鋼する際に、該溶鋼が前記合金成分となるまで該溶鋼に前記合金鉄を添加し、該溶鋼中の溶存酸素と前記Caとを反応させて該溶鋼中から該Caを除去し、前記合金鉄が添加された前記溶鋼中の前記Ca量を5ppm以下とすると共に、前記転炉から前記溶鋼鍋への前記溶鋼の出鋼開始から出鋼終了までの時間を100%とした場合、前記溶鋼への前記合金鉄の添加時期を出鋼開始から50%までの間とする
The method for melting aluminum killed steel according to the first aspect of the present invention includes adding an alloy iron containing Ca, which is an impurity, to molten steel to obtain an Al killed steel or an Al-Si killed steel having a desired alloy component. In the method of melting,
When the total weight of the Ca in the alloy iron to be added to the molten steel exceeds 5 ppm of the total weight of the molten steel to which the alloy iron is added, when the molten steel is discharged from the converter to the molten steel pan, The alloyed iron was added to the molten steel until the molten steel became the alloy component, the dissolved oxygen in the molten steel was reacted with the Ca to remove the Ca from the molten steel, and the alloyed iron was added. When the amount of Ca in the molten steel is 5 ppm or less, and the time from the start of the molten steel to the molten steel pan to the end of the molten steel is defined as 100%, the alloy iron to the molten steel Is added between 50% from the start of steel production .

第1の発明に係るアルミキルド鋼の溶製方法において、前記溶鋼中の溶存酸素量と該溶鋼への前記Caの混入量が以下の式を満足するように、前記溶鋼に前記合金鉄を添加することが好ましい。
F.O≧(I/P・Ca−5)×16/40
ここで、F.Oは溶鋼の溶存酸素量(ppm)、I/P・Caは溶鋼へのCaの混入量(ppm)を示す
In the method for melting aluminum killed steel according to the first invention, the alloyed iron is added to the molten steel so that the amount of dissolved oxygen in the molten steel and the amount of Ca mixed into the molten steel satisfy the following formula: It is preferable.
F. O ≧ (I / P · Ca-5) × 16/40
Here, F.R. O represents the amount of dissolved oxygen (ppm) in the molten steel, and I / P · Ca represents the amount of Ca mixed in the molten steel (ppm) .

前記目的に沿う第2の発明に係るアルミキルド鋼の溶製方法は、不純物であるCaを含む合金鉄を溶鋼に添加して、目的とする合金成分を有するAlキルド鋼またはAl−Siキルド鋼を溶製する方法において、
前記溶鋼に添加する前記合金鉄中の前記Caの総重量が、前記合金鉄が添加された前記溶鋼の総重量の5ppmを超える場合、前記溶鋼中の炭素量と該溶鋼への前記Caの混入量が以下の式を満足するまで吹酸した前記溶鋼を転炉から溶鋼鍋へ出鋼する際に、該溶鋼が前記合金成分となるまで該溶鋼に前記合金鉄を添加すると共に、前記転炉から前記溶鋼鍋への前記溶鋼の出鋼開始から出鋼終了までの時間を100%とした場合、前記溶鋼への前記合金鉄の添加時期を出鋼開始から50%までの間とする
[mass%C]≦11.3×{(I/P・Ca−5)×16/40}−0.865
ここで、[mass%C]は溶鋼中の炭素量(質量%)、I/P・Caは溶鋼へのCaの混入量(ppm)を示す。
The method for melting aluminum killed steel according to the second aspect of the present invention comprises adding an alloy iron containing Ca, which is an impurity, to the molten steel to obtain an Al killed steel or an Al-Si killed steel having a desired alloy component. In the method of melting,
When the total weight of the Ca in the alloy iron added to the molten steel exceeds 5 ppm of the total weight of the molten steel to which the alloy iron is added, the amount of carbon in the molten steel and the mixing of the Ca into the molten steel When the molten steel that has been blown until the amount satisfies the following formula is discharged from the converter to the molten steel pan, the alloy iron is added to the molten steel until the molten steel becomes the alloy component, and the converter When the time from the start of the molten steel to the molten steel pan to the end of the steel is defined as 100%, the addition time of the alloy iron to the molten steel is set to be between 50% and the start of the steel discharge .
[Mass% C] ≦ 11.3 × {(I / P · Ca−5) × 16/40 } −0.865
Here, [mass% C] indicates the amount of carbon (mass%) in the molten steel, and I / P · Ca indicates the amount of Ca mixed (ppm) in the molten steel.

請求項1〜記載のアルミキルド鋼の溶製方法は、溶鋼中の溶存酸素とCaとを反応させ、溶鋼中からCaを除去しているので、従来のように、溶鋼へCaを添加して低融点化合物を生成させる必要がない。これにより、ノズルを構成する耐火物の溶損を防止でき、またCa合金を添加する必要がないので、経済的である。また、従来のように、真空処理設備を用いることなく、溶鋼中のCa含有量をノズル閉塞が発生し難い5ppm以下の濃度まで低減して、溶鋼を溶製することができる。
また、溶鋼を転炉から溶鋼鍋へ出鋼する際に、溶鋼鍋へ合金鉄を添加するので、溶鋼における合金鉄の撹拌効果が得られ、溶鋼への合金鉄の溶解を円滑に実施できる。更にまた、溶鋼の出鋼時に溶鋼鍋へ合金鉄を添加することで、溶鋼の表面を覆っているスラグに妨害されることなく、合金鉄を溶鋼中へ分散させることができる。これにより、例えば、脱酸後に溶け残った合金が溶鋼中へ溶解し、溶鋼中に合金鉄中のCaが混入するという問題を防止でき、より品質のよい成品を製造できる。
加えて、溶鋼への合金鉄の添加時期を規定することで、溶鋼中の溶存酸素とCaとの反応時間を十分に確保でき、溶鋼中のCa量を十分に低減できる。
このように、低コストで簡易にノズル閉塞を防止できる。
In the method for melting aluminum killed steel according to claims 1 to 3 , since dissolved oxygen in molten steel reacts with Ca and Ca is removed from the molten steel, Ca is added to the molten steel as in the prior art. There is no need to produce low melting point compounds. Thereby, the refractory constituting the nozzle can be prevented from being melted, and it is not necessary to add a Ca alloy, which is economical. Further, as in the prior art, the molten steel can be produced by reducing the Ca content in the molten steel to a concentration of 5 ppm or less where nozzle clogging is unlikely to occur without using vacuum processing equipment.
Further, when the molten steel is discharged from the converter to the molten steel pan, the alloy iron is added to the molten steel pan. Therefore, the effect of stirring the alloy iron in the molten steel is obtained, and the melting of the alloy iron into the molten steel can be performed smoothly. Furthermore, by adding the alloy iron to the molten steel pan when the molten steel is discharged, the alloy iron can be dispersed in the molten steel without being disturbed by the slag covering the surface of the molten steel. Thereby, for example, it is possible to prevent a problem that an alloy remaining undissolved after deoxidation is dissolved in the molten steel and Ca in the alloy iron is mixed into the molten steel, and a higher quality product can be manufactured.
In addition, by prescribing the addition time of the alloy iron to the molten steel, the reaction time between dissolved oxygen and Ca in the molten steel can be sufficiently secured, and the amount of Ca in the molten steel can be sufficiently reduced.
Thus, nozzle blockage can be easily prevented at low cost.

特に、請求項2記載のアルミキルド鋼の溶製方法は、溶鋼中の溶存酸素量と溶鋼へのCaの混入量とが、規定した式を満足するように、溶鋼に合金鉄を添加するので、溶鋼中のCa含有量をノズル閉塞を防止できる範囲内に容易に維持できる In particular, the method for melting aluminum killed steel according to claim 2 adds the iron alloy to the molten steel so that the dissolved oxygen amount in the molten steel and the amount of Ca mixed in the molten steel satisfy the prescribed formula. The Ca content in the molten steel can be easily maintained within a range in which nozzle clogging can be prevented .

請求項記載のアルミキルド鋼の溶製方法は、溶鋼中のCa量を溶鋼中の炭素量で規定しているので、溶鋼中の溶存酸素量を測定することなく、吹酸の時期によって調整できる。これにより、例えば、酸素センサーを使用することなく、溶鋼中のCa濃度をノズル閉塞が発生しない量まで低減できるので、作業性が良好であるとともに、酸素センサーが不要となって経済的である。また、溶鋼への合金鉄の添加時期を規定することで、溶鋼中の溶存酸素とCaとの反応時間を十分に確保でき、溶鋼中のCa量を十分に低減できる In the method for melting aluminum killed steel according to claim 3 , since the amount of Ca in the molten steel is defined by the amount of carbon in the molten steel, it can be adjusted by the timing of blowing acid without measuring the amount of dissolved oxygen in the molten steel. . As a result, for example, the Ca concentration in the molten steel can be reduced to an amount that does not cause nozzle clogging without using an oxygen sensor, so that the workability is good and the oxygen sensor is unnecessary and economical. Moreover , by prescribing the addition time of the alloy iron to the molten steel, a sufficient reaction time between dissolved oxygen and Ca in the molten steel can be secured, and the amount of Ca in the molten steel can be sufficiently reduced .

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係るアルミキルド鋼の溶製方法の説明図、図2は出鋼時の合金鉄添加のタイミングと出鋼中合金鉄の未溶解発生頻度との関係を示す説明図、図3は本発明の変形例に係るアルミキルド鋼の溶製方法の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory view of a method for melting aluminum killed steel according to an embodiment of the present invention, and FIG. 2 shows the timing of addition of alloy iron at the time of steel output and the frequency of unmelting of alloy iron in the steel output. FIG. 3 is an explanatory view showing a relationship, and FIG. 3 is an explanatory view of a method for melting aluminum killed steel according to a modification of the present invention.

図1に示すように、本発明の一実施の形態に係るアルミキルド鋼の溶製方法は、不純物であるCaを含む合金鉄を溶鋼に添加して、目的とする合金成分を有するAlキルド鋼またはAl−Siキルド鋼を溶製する方法であり、溶鋼中の溶存酸素とCaとを反応させて溶鋼中からCaを除去してCa量を5ppm以下とする方法である。なお、溶鋼は、転炉10で吹酸された後、転炉10から溶鋼鍋11へ出鋼される。以下、詳しく説明する。 As shown in FIG. 1, the method for melting aluminum killed steel according to one embodiment of the present invention includes adding an alloy iron containing Ca as an impurity to the molten steel, This is a method of melting Al-Si killed steel, which is a method in which dissolved oxygen in molten steel reacts with Ca to remove Ca from the molten steel so that the amount of Ca is 5 ppm or less. In addition, after molten acid is blown in the converter 10, the molten steel is discharged from the converter 10 to the molten steel pan 11. This will be described in detail below.

溶鋼に添加する合金鉄とは、例えば、Fe−Si、Fe−Cr、Fe−Ni、およびFe−Mnである。この合金鉄を溶鋼に添加することにより、目的とする合金成分を有するAlキルド鋼またはAl−Siキルド鋼を溶製できる。
この合金鉄中には、不純物であるCaが含まれているが、このCaは溶鋼中で酸化されてCaOになる。ここで、合金鉄が添加された溶鋼中のCa(以下、Caともいう)と溶鋼中の酸素(以下、ともいう)との反応を、以下に示す。
Ca=CaO
The alloy iron added to the molten steel is, for example, Fe—Si, Fe—Cr, Fe—Ni, and Fe—Mn. By adding this alloy iron to molten steel, Al killed steel or Al-Si killed steel having the desired alloy component can be produced.
This alloy iron contains Ca as an impurity, but this Ca is oxidized in molten steel to become CaO. Here, the reaction between Ca (hereinafter also referred to as Ca ) in molten steel to which alloy iron is added and oxygen (hereinafter also referred to as O ) in the molten steel is shown below.
Ca + O = CaO

この反応により、Caを酸化させ、溶鋼中から浮上させて除去する。
なお、上記平衡反応は、ほとんど右へ進むため、化学量論的に必要な酸素量があれば、溶鋼中にCaが残存しなくなる。
そこで、本願発明においては、溶鋼に添加する合金鉄中のCaの総重量が、合金鉄が添加された溶鋼の総重量の5ppmを超える場合、溶鋼が目的とする合金成分となるまで溶鋼に合金鉄を添加する。このとき、溶鋼中の溶存酸素とCaとを反応させて、溶鋼中からCaを除去し、合金鉄が添加された溶鋼中のCa量を5ppm以下とする。
By this reaction, Ca is oxidized and levitated and removed from the molten steel.
Since the equilibrium reaction proceeds almost to the right, if there is a stoichiometrically necessary oxygen amount, Ca does not remain in the molten steel.
Therefore, in the present invention, when the total weight of Ca in the alloy iron added to the molten steel exceeds 5 ppm of the total weight of the molten steel to which the alloy iron is added, the molten steel is alloyed until the molten steel becomes the target alloy component. Add iron. At this time, dissolved oxygen in molten steel reacts with Ca to remove Ca from the molten steel, and the Ca content in the molten steel to which alloy iron is added is set to 5 ppm or less.

なお、溶鋼中のCa量を5ppm以下としたのは、5ppmを超える場合、前記した従来技術の特許文献2で示したように、比較的融点が高いカルシウムアルミネートが生成し、固液共存の介在物となってノズル内壁へ付着し、ノズル詰まりが発生するからである。
一方、溶鋼中のCa量が少なければ少ないほど、ノズル詰まりの発生を無くすことができるため、溶鋼中のCa量の下限については規定していないが、例えば、前記した反応の進行時間に影響される溶製効率を考慮すれば1ppm程度である。
The Ca content in the molten steel is 5 ppm or less. When the Ca content exceeds 5 ppm, a calcium aluminate having a relatively high melting point is generated as described in Patent Document 2 of the above-described prior art, and the solid-liquid coexistence occurs. This is because it becomes an inclusion and adheres to the inner wall of the nozzle, causing nozzle clogging.
On the other hand, the smaller the amount of Ca in the molten steel, the more nozzle clogging can be eliminated. Therefore, the lower limit of the amount of Ca in the molten steel is not specified, but it is influenced by, for example, the reaction progress time described above. If the melting efficiency is considered, it is about 1 ppm.

以上に示した内容から、ノズル詰まりが発生しない条件を、溶鋼中の溶存酸素量と溶鋼へのCaの混入量との関係を用いて、以下に示す。
F.O≧(I/P・Ca−5)×16/40
ここで、F.Oは溶鋼の溶存酸素量(ppm)、I/P・Caは溶鋼へのCaの混入量(ppm)を示す。なお、F.Oは、O吹き(吹酸ともいう)により溶鋼へ供給することができ、Oセンサーで測定可能である。また、I/P・Caは、Σ{(合金鉄i中のCa濃度)×(合金鉄iの添加量)}/(溶鋼重量)(ppm)により求まる。ここで、iは合金鉄の数(i=1、2、3、・・・)を意味する。従って、I/P・Caは、事前に合金鉄中のCa濃度を分析して算出する。
上記した式は、(I/P・Ca−5)ppmのCaと反応してCaOを生成する化学量論的なF.O量を超える量のF.Oがあれば、Ca濃度をノズル閉塞が防止できるところまで低減できることを意味している。
From the above-described contents, the conditions under which nozzle clogging does not occur are shown below using the relationship between the amount of dissolved oxygen in molten steel and the amount of Ca mixed into the molten steel.
F. O ≧ (I / P · Ca-5) × 16/40
Here, F.R. O represents the amount of dissolved oxygen (ppm) in the molten steel, and I / P · Ca represents the amount of Ca mixed in the molten steel (ppm). F. O can be supplied to molten steel by O 2 blowing (also referred to as blowing acid) and can be measured with an O 2 sensor. I / P · Ca is determined by Σ {(Ca concentration in alloy iron i) × (addition amount of alloy iron i)} / (molten steel weight) (ppm). Here, i means the number of alloy irons (i = 1, 2, 3,...). Therefore, I / P · Ca is calculated by analyzing the Ca concentration in the alloy iron in advance.
The above formula shows a stoichiometric F.S. that reacts with (I / P · Ca-5) ppm Ca to produce CaO. An amount of F. exceeding the amount of O. If O is present, it means that the Ca concentration can be reduced to a point where nozzle blockage can be prevented.

従って、溶鋼への合金鉄の添加は、溶鋼中の溶存酸素量と溶鋼へのCaの混入量が、上記式を満足するように、徐々にまたは一度に行う。
なお、溶鋼への合金鉄の添加時期は、転炉10から溶鋼鍋11への溶鋼の出鋼開始から出鋼終了までの時間を100%とした場合、出鋼開始から50%(好ましくは40%)までの間であることが好ましい。
ここで、図2に、溶鋼の出鋼開始から出鋼終了までの間に合金鉄を添加した場合の合金鉄の溶解状況を、目視により観察した結果を示す。なお、図2の縦軸は、出鋼終了時に溶鋼へ合金鉄を添加した場合の合金鉄の未溶解発生頻度を1としたときの各添加時期毎の指数を示している。
Therefore, the addition of the alloy iron to the molten steel is performed gradually or at a time so that the dissolved oxygen amount in the molten steel and the amount of Ca mixed into the molten steel satisfy the above formula.
Note that the addition time of the alloy iron to the molten steel is 50% (preferably 40% from the start of the steel discharge) when the time from the start of the steel discharge to the molten steel pan 11 from the converter 10 to the end of the steel output is 100%. %).
Here, in FIG. 2, the result of having observed visually the melting condition of the alloy iron at the time of adding alloy iron between the start of the steel extraction of molten steel and the completion | finish of steel output is shown. In addition, the vertical axis | shaft of FIG. 2 has shown the index | exponent for every addition time when the undissolved generation | occurrence | production frequency of alloy iron is set to 1 at the time of adding alloy iron to molten steel at the time of the completion of steel production.

図2に示すように、合金鉄の添加のタイミングが遅くなると、合金鉄の未溶解による影響が出易くなる。特に、出鋼時間に対して50%を超えると影響が出始め(50%までは合金鉄が全て溶解している)、出鋼が終わってしまうと、溶鋼を覆うスラグの上に合金鉄が載って、溶鋼中に合金鉄が混入しづらくなる。このとき、例えば、合金鉄の溶鋼への溶解と溶鋼の撹拌ができなければ、合金鉄の未溶解が発生し、脱酸後に溶け残った合金鉄が溶鋼中に溶解して、Caが混入する可能性がある。また、脱酸後の溶鋼に合金鉄が混入すると、Caが十分に酸化除去されず、前記した5ppmを超える原因となるため、ノズル閉塞の危険性が増大する。
以上のことから、合金鉄の溶解を円滑に完了させ、前記した反応式の反応時間を十分に確保するためには、合金鉄の撹拌効果がある出鋼中、特に出鋼時間の前半が望ましい。
As shown in FIG. 2, if the timing of adding the alloy iron is delayed, the influence of undissolved alloy iron is likely to occur. In particular, when it exceeds 50% with respect to the time of steel production, the effect starts to appear (up to 50% all of the alloy iron is dissolved), and when steel production ends, the alloy iron is placed on the slag that covers the molten steel. As a result, it becomes difficult for iron alloy to be mixed into the molten steel. At this time, for example, if the melting of the alloy iron into the molten steel and the stirring of the molten steel cannot be performed, the undissolved alloy iron is generated, and the alloy iron remaining undissolved after deoxidation is dissolved in the molten steel and Ca is mixed therein. there is a possibility. Further, when alloy iron is mixed into the molten steel after deoxidation, Ca is not sufficiently oxidized and removed, which causes the above-mentioned exceeding 5 ppm, and the risk of nozzle clogging increases.
From the above, in order to complete the melting of the alloy iron smoothly and sufficiently ensure the reaction time of the above-described reaction formula, the first half of the steel output time is desirable during the steel output with the stirring effect of the alloy iron. .

また、溶鋼への合金鉄の添加は、溶鋼中の溶存酸素量を確認しながら行うことなく、溶鋼中の炭素量を確認して行うこともできる。
この場合、溶鋼中の炭素量と溶鋼へのCaの混入量が、以下の式を満足するまで吹酸した溶鋼を転炉10から溶鋼鍋11へ出鋼する際に、溶鋼が目的とする合金成分となるまで、溶鋼に合金鉄を添加する。
[mass%C]≦11.3×{(I/P・Ca−5)×16/40}−0.865
ここで、[mass%C]は溶鋼中の炭素量(質量%)、I/P・Caは溶鋼へのCaの混入量(ppm)を示す。
Moreover, addition of alloy iron to molten steel can also be performed by confirming the amount of carbon in molten steel, without confirming the amount of dissolved oxygen in molten steel.
In this case, when the molten steel blown acid is discharged from the converter 10 to the molten steel pan 11 until the amount of carbon in the molten steel and the amount of Ca contained in the molten steel satisfy the following formula, the alloy that the molten steel is intended for Alloy iron is added to the molten steel until it becomes a component.
[Mass% C] ≦ 11.3 × {(I / P · Ca−5) × 16/40 } −0.865
Here, [mass% C] indicates the amount of carbon (mass%) in the molten steel, and I / P · Ca indicates the amount of Ca mixed (ppm) in the molten steel.

これは、図3に示すグラフに基づいて得られた関係式である。なお、図3は、日本学術振興会の発行する製鋼反応の推奨平衡値を用いて得られた結果であり、溶鋼温度1670℃で算出した転炉吹止時の溶鋼中の炭素量[mass%C]とF.Oとの関係を示している。この図3中のプロット点は、算出した平衡濃度であり、実線は近似曲線である。
図3から明らかなように、平衡濃度は、図中の式[mass%C]=11.27×(F.O)−0.865で、よく近似されている(相関係数:R=0.9985)。
従って、上記した関係式を満たす量のF.Oを確保するためには、この関係式を満足するまで吹酸を行えばよいこととなる。これにより、F.O量を直接測定しなくても、吹酸の吹止時期、即ち[mass%C]で、溶鋼中のCa量を管理できる。
This is a relational expression obtained based on the graph shown in FIG. FIG. 3 shows the results obtained using the recommended equilibrium value of the steelmaking reaction issued by Japan Society for the Promotion of Science. The amount of carbon in molten steel at the time of converter blowing calculated at a molten steel temperature of 1670 ° C. [mass% C] and F.R. The relationship with O is shown. The plotted points in FIG. 3 are the calculated equilibrium concentrations, and the solid line is an approximate curve.
As is apparent from FIG. 3, the equilibrium concentration is well approximated by the equation [mass% C] = 111.27 × ( FO ) −0.865 in the figure (correlation coefficient: R 2 = 0.9985).
Therefore, an amount of F.I. In order to ensure O, blowing acid may be performed until this relational expression is satisfied. As a result, F.I. Even if the amount of O is not directly measured, the amount of Ca in the molten steel can be managed by the blowing-off timing of the blowing acid, that is, [mass% C].

以上に示した方法により、溶鋼中のCa量を、5ppm以下まで低減できる。
なお、合金鉄は、前記した出鋼中に全量添加することができるが、図1に示すように、その合金鉄の一部を、溶鋼鍋11に出鋼された溶鋼の二次精錬(真空処理を伴わない精錬)にて溶鋼へ添加することもできる。
この二次精錬にて添加される合金鉄の量は、例えば、使用する全合金鉄量の30質量%以下程度である。なお、下限については規定していないが、二次精錬にて合金鉄を添加する効果が得られることを考慮すれば、例えば、0.5質量%(更には10質量%)程度である。
以上の方法で溶製したAlキルド鋼またはAl−Siキルド鋼を、タンディッシュ(図示しない)に供給することで、ノズル詰まりを抑制、更には防止しながら、安定して鋳片を製造できる。
By the method shown above, the amount of Ca in molten steel can be reduced to 5 ppm or less.
In addition, although the total amount of alloy iron can be added to the above-described steel output, as shown in FIG. 1, secondary refining (vacuum) of a part of the alloy iron is output to the steel ladle 11 as shown in FIG. It can also be added to molten steel by refining without treatment.
The amount of alloy iron added in the secondary refining is, for example, about 30% by mass or less of the total amount of alloy iron used. In addition, although it does not prescribe | regulate about a minimum, if it considers that the effect of adding alloy iron by secondary refining will be acquired, it will be about 0.5 mass% (further 10 mass%), for example.
By supplying Al killed steel or Al-Si killed steel melted by the above method to a tundish (not shown), a slab can be stably produced while suppressing and further preventing nozzle clogging.

次に、本発明の作用効果を確認するために行った実施例について説明する。
溶製した350トンのAl−Siキルド鋼を使用して、連続鋳造を行った結果を表1に示す。なお、溶鋼に添加した合金鉄は、Fe−Si、Fe−Mn、およびFe−Crである。また、表1において、吹止[mass%C]とは吹酸を停止したときの溶鋼中の炭素量であり、推定F.Oとはこの炭素量を前記した関係式に代入して得られた値であり、Ca混入量とは出鋼中と二次精錬にて溶鋼に添加した合金鉄中のCa量である。そして、T.[Ca]分析値の処理終とは、二次精錬が終了したときの溶鋼中のCa濃度であり、成品とは連続鋳造時のタンディッシュ内溶鋼のCa濃度である。
Next, examples carried out for confirming the effects of the present invention will be described.
Table 1 shows the results of continuous casting using 350 tons of molten Al-Si killed steel. In addition, the alloy iron added to molten steel is Fe-Si, Fe-Mn, and Fe-Cr. In Table 1, blow-off [mass% C] is the amount of carbon in molten steel when blown acid is stopped. O is a value obtained by substituting this amount of carbon into the above-described relational expression, and the amount of mixed Ca is the amount of Ca in the alloy iron added to the molten steel during steelmaking and secondary refining. And T. [Ca] Analytical processing end is the Ca concentration in the molten steel when the secondary refining is finished, and the product is the Ca concentration of the molten steel in the tundish during continuous casting.

Figure 0005326201
Figure 0005326201

合金鉄を、溶鋼の出鋼中に全量添加した実施例1および2では、処理終の[Ca]濃度を1ppmで溶製することができ、その全量を連続鋳造(完鋳)できた。
また、溶鋼の出鋼中と二次精錬において合金鉄を添加し、二次精錬でのCa混入量が5ppm以下の参考例1〜3においても、処理終の[Ca]濃度を1ppm以上3ppm以下で溶製することができ、その全量を連続鋳造できた。
そして、Ca含有量の少ない合金鉄を、溶鋼の出鋼中に全量添加した参考例4(出鋼中のCa混入量が0.7ppm)では、処理終の[Ca]濃度を1ppmで溶製することができ、その全量を連続鋳造できた。
In Examples 1 and 2 in which the total amount of alloy iron was added to the molten steel, the [Ca] concentration at the end of the treatment could be melted at 1 ppm, and the entire amount could be continuously cast (complete casting).
Also, in Reference Examples 1 to 3 in which the alloy iron is added during the steel refining and in the secondary refining of the molten steel, and the Ca mixing amount in the secondary refining is 5 ppm or less, the [Ca] concentration at the treatment end is 1 ppm or more and 3 ppm or less The whole amount could be continuously cast.
And in Reference Example 4 (the amount of Ca mixed in the steel output is 0.7 ppm) in which the total amount of alloy iron having a low Ca content is added to the steel output of the molten steel, the [Ca] concentration at the end of the treatment is 1 ppm. The entire amount could be continuously cast.

一方、比較例1〜4では、出鋼中のF.Oは十分であったと考えられるが、二次精錬において、5ppmを超えるCaが混入しており、ノズル詰まりによる返送が発生している。なお、比較例1〜4の返送は、タンディッシュから流れ出る溶鋼の流出速度が遅くなり、鋳型への溶鋼の供給速度が、鋳片の鋳造速度に追いつかなくなった時点の未鋳造溶鋼の量をさす。
以上のことから、本願発明を適用することで、低コストで簡易にノズル閉塞を防止できることを確認できた。
On the other hand, in Comparative Examples 1 to 4, the F. Although it is considered that O was sufficient, in the secondary refining, more than 5 ppm of Ca is mixed, and return due to nozzle clogging occurs. The return of Comparative Examples 1 to 4 indicates the amount of uncast molten steel when the outflow speed of the molten steel flowing out from the tundish becomes slow and the supply speed of the molten steel to the mold cannot keep up with the casting speed of the slab. .
From the above, it was confirmed that the nozzle blockage can be easily prevented at low cost by applying the present invention.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部または全部を組合せて本発明のアルミキルド鋼の溶製方法を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the method for melting aluminum killed steel according to the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the present invention.

本発明の一実施の形態に係るアルミキルド鋼の溶製方法の説明図である。It is explanatory drawing of the melting method of the aluminum killed steel which concerns on one embodiment of this invention. 出鋼時の合金鉄添加のタイミングと出鋼中合金鉄の未溶解発生頻度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the timing of the addition of alloy iron at the time of steel output, and the undissolved occurrence frequency of alloy iron in steel output. 本発明の変形例に係るアルミキルド鋼の溶製方法の説明図である。It is explanatory drawing of the melting method of the aluminum killed steel which concerns on the modification of this invention. (A)、(B)はそれぞれ従来例に係るノズル閉塞の防止方法で使用するCaO−Al二元系状態図である。(A), (B) is a CaO-Al 2 O 3 binary phase diagram used in the method for preventing nozzle clogging according to a conventional example, respectively.

符号の説明Explanation of symbols

10:転炉、11:溶鋼鍋 10: Converter, 11: Molten steel pan

Claims (3)

不純物であるCaを含む合金鉄を溶鋼に添加して、目的とする合金成分を有するAlキルド鋼またはAl−Siキルド鋼を溶製する方法において、
前記溶鋼に添加する前記合金鉄中の前記Caの総重量が、前記合金鉄が添加された前記溶鋼の総重量の5ppmを超える場合、前記溶鋼を転炉から溶鋼鍋へ出鋼する際に、該溶鋼が前記合金成分となるまで該溶鋼に前記合金鉄を添加し、該溶鋼中の溶存酸素と前記Caとを反応させて該溶鋼中から該Caを除去し、前記合金鉄が添加された前記溶鋼中の前記Ca量を5ppm以下とすると共に、前記転炉から前記溶鋼鍋への前記溶鋼の出鋼開始から出鋼終了までの時間を100%とした場合、前記溶鋼への前記合金鉄の添加時期を出鋼開始から50%までの間とすることを特徴とするアルミキルド鋼の溶製方法。
In a method of adding an alloy iron containing Ca which is an impurity to molten steel, and melting Al killed steel or Al-Si killed steel having a target alloy component,
When the total weight of the Ca in the alloy iron to be added to the molten steel exceeds 5 ppm of the total weight of the molten steel to which the alloy iron is added, when the molten steel is discharged from the converter to the molten steel pan, The alloyed iron was added to the molten steel until the molten steel became the alloy component, the dissolved oxygen in the molten steel was reacted with the Ca to remove the Ca from the molten steel, and the alloyed iron was added. When the amount of Ca in the molten steel is 5 ppm or less, and the time from the start of the molten steel to the molten steel pan to the end of the molten steel is defined as 100%, the alloy iron to the molten steel A method for melting aluminum killed steel, characterized in that the addition time of the steel is between 50% from the start of steel production.
請求項1記載のアルミキルド鋼の溶製方法において、前記溶鋼中の溶存酸素量と該溶鋼への前記Caの混入量が以下の式を満足するように、前記溶鋼に前記合金鉄を添加することを特徴とするアルミキルド鋼の溶製方法。
F.O≧(I/P・Ca−5)×16/40
ここで、F.Oは溶鋼の溶存酸素量(ppm)、I/P・Caは溶鋼へのCaの混入量(ppm)を示す。
The method for melting aluminum killed steel according to claim 1, wherein the alloy iron is added to the molten steel so that the amount of dissolved oxygen in the molten steel and the amount of Ca mixed in the molten steel satisfy the following formula: A method for melting aluminum killed steel.
F. O ≧ (I / P · Ca-5) × 16/40
Here, F.R. O represents the amount of dissolved oxygen (ppm) in the molten steel, and I / P · Ca represents the amount of Ca mixed in the molten steel (ppm).
不純物であるCaを含む合金鉄を溶鋼に添加して、目的とする合金成分を有するAlキルド鋼またはAl−Siキルド鋼を溶製する方法において、
前記溶鋼に添加する前記合金鉄中の前記Caの総重量が、前記合金鉄が添加された前記溶鋼の総重量の5ppmを超える場合、前記溶鋼中の炭素量と該溶鋼への前記Caの混入量が以下の式を満足するまで吹酸した前記溶鋼を転炉から溶鋼鍋へ出鋼する際に、該溶鋼が前記合金成分となるまで該溶鋼に前記合金鉄を添加すると共に、前記転炉から前記溶鋼鍋への前記溶鋼の出鋼開始から出鋼終了までの時間を100%とした場合、前記溶鋼への前記合金鉄の添加時期を出鋼開始から50%までの間とすることを特徴とするアルミキルド鋼の溶製方法。
[mass%C]≦11.3×{(I/P・Ca−5)×16/40}−0.865
ここで、[mass%C]は溶鋼中の炭素量(質量%)、I/P・Caは溶鋼へのCaの混入量(ppm)を示す。
In a method of adding an alloy iron containing Ca which is an impurity to molten steel, and melting Al killed steel or Al-Si killed steel having a target alloy component,
When the total weight of the Ca in the alloy iron added to the molten steel exceeds 5 ppm of the total weight of the molten steel to which the alloy iron is added, the amount of carbon in the molten steel and the mixing of the Ca into the molten steel When the molten steel that has been blown until the amount satisfies the following formula is discharged from the converter to the molten steel pan, the alloy iron is added to the molten steel until the molten steel becomes the alloy component, and the converter When the time from the start of the molten steel to the molten steel pan to the end of the steel is defined as 100%, the addition time of the alloy iron to the molten steel is between 50% and the start of the steel. A characteristic method for melting aluminum killed steel.
[Mass% C] ≦ 11.3 × {(I / P · Ca−5) × 16/40 } −0.865
Here, [mass% C] indicates the amount of carbon (mass%) in the molten steel, and I / P · Ca indicates the amount of Ca mixed (ppm) in the molten steel.
JP2006296443A 2006-10-31 2006-10-31 Method for melting aluminum killed steel Active JP5326201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296443A JP5326201B2 (en) 2006-10-31 2006-10-31 Method for melting aluminum killed steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296443A JP5326201B2 (en) 2006-10-31 2006-10-31 Method for melting aluminum killed steel

Publications (2)

Publication Number Publication Date
JP2008111181A JP2008111181A (en) 2008-05-15
JP5326201B2 true JP5326201B2 (en) 2013-10-30

Family

ID=39443858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296443A Active JP5326201B2 (en) 2006-10-31 2006-10-31 Method for melting aluminum killed steel

Country Status (1)

Country Link
JP (1) JP5326201B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074462A (en) * 2013-02-01 2013-05-01 首钢水城钢铁(集团)有限责任公司 Deoxidation method used in converter steelmaking process
JP6737304B2 (en) * 2017-06-12 2020-08-05 Jfeスチール株式会社 Steel melting method and continuous casting method
CN112779380A (en) * 2020-12-24 2021-05-11 云南云铝润鑫铝业有限公司 Efficient deoxidizing table aluminum for steelmaking and casting process thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194107A (en) * 1985-02-25 1986-08-28 Kawasaki Steel Corp Method for effectively utilizing quick lime in steel manufacturing process
JP3289614B2 (en) * 1996-09-26 2002-06-10 日本鋼管株式会社 Desulfurization method of molten steel
JP4460462B2 (en) * 2005-01-11 2010-05-12 新日本製鐵株式会社 Method for preventing nozzle clogging in continuous casting of steel

Also Published As

Publication number Publication date
JP2008111181A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP5092245B2 (en) Denitrification method for molten steel
JP5326201B2 (en) Method for melting aluminum killed steel
JP2999671B2 (en) Melting method of Ca-added steel
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP5047477B2 (en) Secondary refining method for high Al steel
WO2014191783A1 (en) Production process of ultra high purity microalloyed steel containing sulphure, affecting metallurgical resulphurization processes
JP5266903B2 (en) Method for producing Mn alloy
FI67094C (en) FOERFARANDE FOER ATT FOERHINDRA ATT SLAGGMETALL VAELLER UPP VI PNEUMATISK UNDER YTAN SKEENDE RAFFINERING AV STAOL
JP2001026811A (en) Si ALLOY IRON USED FOR REFINING OF STAINLESS STEEL AND METHOD FOR REFINING STAINLESS STEEL
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JP2009191290A (en) Method for producing ingot of extra-low carbon steel
JPH11279631A (en) Method for refining molten stainless steel
JP2019000903A (en) Smelting method and continuous casting method of steel
JP3836249B2 (en) Method for melting high ferritic stainless steel with high Al content that suppresses refractory melting of refining vessel
JP2000087128A (en) Secondary refining method of molten steel
KR100406411B1 (en) Method of deoxidize molten steel for hard steel wire rods at steel tapping
JP7020601B1 (en) Manufacturing method of low phosphorus molten iron
JP3994641B2 (en) Manufacturing method of high clean ultra low carbon steel
JP2007186729A (en) TREATMENT METHOD FOR MOLTEN IRON BY Nd ADDITION
JP3033004B2 (en) Refining method of low Ti content molten steel
JP2011080102A (en) Continuous casting steel and method of manufacturing the same
JP2021070855A (en) Steel smelting method
JPH08291317A (en) Production of medium-carbon aluminum killed steel
RU2140458C1 (en) Vanadium cast iron conversion method
KR100910471B1 (en) Method for Improving Cleanliness and Desulfurization Efficiency of Molten Steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5326201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350