JP5266903B2 - Method for producing Mn alloy - Google Patents

Method for producing Mn alloy Download PDF

Info

Publication number
JP5266903B2
JP5266903B2 JP2008161823A JP2008161823A JP5266903B2 JP 5266903 B2 JP5266903 B2 JP 5266903B2 JP 2008161823 A JP2008161823 A JP 2008161823A JP 2008161823 A JP2008161823 A JP 2008161823A JP 5266903 B2 JP5266903 B2 JP 5266903B2
Authority
JP
Japan
Prior art keywords
dephosphorization
mass
concentration
alloy
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008161823A
Other languages
Japanese (ja)
Other versions
JP2010001533A (en
Inventor
隆之 西
鉄平 田村
誠 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2008161823A priority Critical patent/JP5266903B2/en
Publication of JP2010001533A publication Critical patent/JP2010001533A/en
Application granted granted Critical
Publication of JP5266903B2 publication Critical patent/JP5266903B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To produce Mn and an Mn alloy containing 0.03 mass% or less phosphorus and preferably 0.02 mass% or less phosphorus, by effectively dephosphorizing the Mn and the Mn alloy with an inexpensive method which is suitable for mass production. <P>SOLUTION: This production method includes dephosphorizing a molten Mn or Mn alloy containing 2.0 mass% or less carbon, 0.5 mass% or less oxygen and 60 mass% or more Mn at a molten metal temperature of 1,350 to 1,500&deg;C, by using a flux which contains 80 mass% or more in total of CaF<SB>2</SB>and CaC<SB>2</SB>and also has a mass ratio thereof in a range satisfying the expression of (CaC<SB>2</SB>)/ä(CaC<SB>2</SB>)+(CaF<SB>2</SB>)}&times;100=30 to 65%. It is preferable to add at least one metal Ca source selected from metal Ca and a Ca alloy to the flux. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、Mn及びMn合金の主要な不純物であるりん含有量が低減されたMn及びMn合金の製造方法に関する。   The present invention relates to a method for producing Mn and a Mn alloy having a reduced phosphorus content, which is a main impurity of Mn and a Mn alloy.

Mn及びMn合金は、その多くが鉄鋼生産に必要なMn源として使用されている。Mn合金の例としては、フェロマンガン(又はマンガン合金鉄)と呼ばれるMn−Fe合金、シリコマンガンと呼ばれるMn−Si合金、さらにマンガン合金鉄から派生して使用されるようになった従来規格よりもMn濃度の高いマンガン合金鉄などが挙げられる。なお、本明細書において「Mn合金」とは、Mn基合金、即ち、Mnが主合金元素である合金を意味する。   Mn and Mn alloys are mostly used as Mn sources necessary for steel production. Examples of Mn alloys include Mn-Fe alloys called ferromanganese (or manganese alloy iron), Mn-Si alloys called silicomanganese, and more than conventional standards derived from manganese alloy iron. Examples thereof include manganese alloy iron having a high Mn concentration. In the present specification, the “Mn alloy” means a Mn-based alloy, that is, an alloy in which Mn is a main alloy element.

Mn及びMn合金は主に、マンガン鉱石を合金の溶融温度域で熱炭素還元する方法、又はマンガン鉱石若しくはマンガン含有スラグを珪素還元する方法により製造される。そのため、製造されたMn及びMn合金は必然的に、炭素還元に由来する炭素若しくは珪素還元に由来する珪素、並びに鉱石や副原料から随伴するりんを高濃度に含有することになる。近年、より低品位なマンガン鉱石等の原料の利用が強く求められているが、その際にりん濃度の上昇は大きな足かせになるものと考えられる。   Mn and an Mn alloy are mainly produced by a method in which manganese ore is reduced by hot carbon in the melting temperature range of the alloy, or a method in which manganese ore or manganese-containing slag is reduced by silicon. Therefore, the produced Mn and the Mn alloy inevitably contain a high concentration of carbon derived from carbon reduction or silicon derived from silicon reduction, and phosphorus accompanying ores and auxiliary materials. In recent years, there has been a strong demand for the use of raw materials such as lower-grade manganese ore, and it is thought that the increase in phosphorus concentration will greatly hinder the use of such raw materials.

このようなMn又はMn合金をMn源として鉄鋼生産に使用すると、それに含まれる炭素若しくは珪素並びにりんも鉄鋼中に導入されてしまう。このうち炭素及び珪素は、鉄鋼にかなりの量で許容される成分であるため、その許容成分量に応じて添加量を定めれば、Mn源に伴うそれらの鉄鋼への添加は問題とならない。一方、りんは、最終製品である鉄鋼の品質に悪影響を及ぼすことが多く、近年製造される高級鋼の多くはその含有量が一般に厳しく制限される不純物元素である。従って、溶鋼にMn又はMn合金を添加して行われるMn濃度調整によって上昇した溶鋼中のりんが、その許容限度を超える濃度となった場合には、Mn濃度調整後に溶鋼からりんを除去する必要がある。   When such Mn or Mn alloy is used as a Mn source for steel production, carbon or silicon and phosphorus contained therein are also introduced into the steel. Of these, carbon and silicon are components that are permissible in a considerable amount for steel, so if the amount of addition is determined according to the amount of the permissible component, the addition of Mn source to the steel does not pose a problem. On the other hand, phosphorus often has an adverse effect on the quality of steel, which is the final product, and many high-grade steels manufactured in recent years are impurity elements whose content is generally strictly limited. Therefore, if the phosphorus in the molten steel increased by the Mn concentration adjustment performed by adding Mn or Mn alloy to the molten steel exceeds the allowable limit, it is necessary to remove the phosphorus from the molten steel after the Mn concentration adjustment. There is.

しかし、Mn濃度の調整は製鋼工程の末期である鋳造直前に行われる場合が多く、その場合には、溶鋼からりんを除去することは事実上不可能である。従って、この場合には、りん含有量の低いMn又はMn合金を使用して溶鋼のMn濃度を調整することが不可欠である。このように、りん含有量が高いMn及びMn合金は高級鋼などの鉄鋼生産への使用には不適当な場合があり、そのような場合に対応できるりん含有量が充分に低いMn及びMn合金が求められている。   However, the Mn concentration is often adjusted just before casting, which is the final stage of the steelmaking process, and in that case, it is virtually impossible to remove phosphorus from the molten steel. Therefore, in this case, it is essential to adjust the Mn concentration of the molten steel using Mn or Mn alloy having a low phosphorus content. As described above, Mn and Mn alloys having a high phosphorus content may be inappropriate for use in the production of steel such as high-grade steel, and Mn and Mn alloys having a sufficiently low phosphorus content that can be used in such cases. Is required.

高純度のMnとして、マンガン鉱石を硫酸水溶液に溶解した後、得られた硫酸マンガン水溶液を電気分解して金属マンガンを得ることにより製造される電解マンガンがある。電解マンガンは、りん含有量が10ppm程度と非常に高純度であるが、極めて高価で、その供給量にも限りがある。電解マンガンが高価となるのは、Mnが比較的卑な金属であるため電気分解における電流効率が悪く、電気エネルギーコストが高くなることと、大量に発生する硫酸廃液の処理コストや環境対策コストがかさむことに原因がある。従って、電気分解を利用せずにりん含有量の低いMn及びMn合金を製造することは工業的価値が極めて高い。   As high-purity Mn, there is electrolytic manganese produced by dissolving manganese ore in an aqueous sulfuric acid solution and then electrolyzing the obtained aqueous manganese sulfate solution to obtain metallic manganese. Although electrolytic manganese has a very high purity with a phosphorus content of about 10 ppm, it is very expensive and its supply is limited. Electrolytic manganese is expensive because Mn is a relatively base metal, resulting in poor current efficiency in electrolysis, high electrical energy costs, and a large amount of sulfuric acid waste treatment costs and environmental measures costs. There is a cause in the bulk. Therefore, manufacturing Mn and Mn alloys having a low phosphorus content without using electrolysis has a very high industrial value.

りん含有量の低いMn及びMn合金の工業的な大量製造を実現できる方法として、高温化学反応を用いて低濃度までりんを選択的に除去(即ち、脱りん)する方法が挙げられるが、高温のMn及びMn合金中のりんは化学的に安定であることから、実現は困難とされてきた。従来技術においても、この困難性を解決する技術が検討されている。   As a method capable of realizing industrial mass production of Mn and Mn alloys having a low phosphorus content, there is a method of selectively removing phosphorus (ie, dephosphorization) to a low concentration using a high temperature chemical reaction. Since Mn and phosphorus in Mn alloys are chemically stable, it has been difficult to realize. In the prior art, a technique for solving this difficulty has been studied.

高温化学反応を用いた溶鉄からの脱りん方法として、溶鉄を酸化して塩基性スラグにりんを吸収させる、いわゆる酸化脱りん法がある。この方法をMn合金に応用して、最も塩基性の高い酸化バリウムを主成分とするスラグを用いて高マンガン鉄合金を酸化脱りんする方法が、特公平5−80541号公報(特許文献1)に開示されている。しかし、この方法は、高価で資源的にも限られている酸化バリウムなどのバリウム化合物を使用すること、及び到達りん濃度が最も低くても0.04質量%、脱りん率は高くても67〜68%であって、特に脱りん限界が低いことから、実用的とは言い難かった。   As a dephosphorization method from molten iron using a high temperature chemical reaction, there is a so-called oxidative dephosphorization method in which molten iron is oxidized and phosphorus is absorbed by basic slag. Japanese Patent Publication No. 5-80541 (Patent Document 1) discloses a method in which this method is applied to a Mn alloy, and a high manganese iron alloy is oxidized and dephosphorized using slag composed mainly of barium oxide having the highest basicity. Is disclosed. However, this method uses a barium compound such as barium oxide, which is expensive and limited in terms of resources, and has a minimum phosphorus concentration of 0.04% by mass and a high dephosphorization rate of 67%. It was ˜68%, and since the dephosphorization limit was particularly low, it was difficult to say that it was practical.

酸化脱りんと対比される方法として還元脱りん法がある。この方法では、高温でも安定なりん化物を形成する元素であるCaを用いて、下記の反応を生じさせる:
3Ca+2P=Ca32(s) (1)
このとき、Caは比較的低融点で反応性に富む活性な金属であるので、その供給方法が課題となる。
As a method contrasted with oxidative dephosphorization, there is a reductive dephosphorization method. In this method, Ca, which is an element that forms stable saponified substances even at high temperatures, is used to cause the following reaction:
3Ca + 2P = Ca 3 P 2 (s) (1)
At this time, since Ca is an active metal having a relatively low melting point and high reactivity, its supply method becomes a problem.

その課題に対処する解決策が特公昭60−11099号公報(特許文献2)に提示されている。特許文献2には、Mn含有量が60%以上、Si含有量(X%)とC含有量(Y%)が、0.27X+Y≦4.2を満たすマンガン合金鉄を調製し、このマンガン合金鉄をAr雰囲気で溶融しながら、CaC2:30〜70%とCaF2:15〜60%とを含む脱りん剤を該マンガン合金鉄の1〜10%の量で添加して脱りんすることからなる、低りんマンガン合金鉄の製造方法が開示されている。 A solution to deal with this problem is presented in Japanese Patent Publication No. 60-11099 (Patent Document 2). In Patent Document 2, a manganese alloy iron having a Mn content of 60% or more, a Si content (X%) and a C content (Y%) satisfying 0.27X + Y ≦ 4.2 is prepared. Dephosphorization by adding a dephosphorizing agent containing CaC 2 : 30 to 70% and CaF 2 : 15 to 60% in an amount of 1 to 10% of the manganese alloy iron while melting iron in an Ar atmosphere. The manufacturing method of the low phosphorus manganese alloy iron which consists of this is disclosed.

特許文献2の実施例には、上記方法を行うことによって、到達りん濃度が0.022〜0.067%(脱りん率は55〜85%)のマンガン合金鉄が得られたことが示されている。しかし、近年の鉄鋼製品の高級化や鉄鋼プロセスの高能率化を考慮すると、マンガン合金鉄中のりん濃度は、電解マンガンに可及的に近づく低濃度化が要求されており、その要請に応えるには不十分である。   In the example of Patent Document 2, it is shown that manganese alloy iron having an ultimate phosphorus concentration of 0.022 to 0.067% (dephosphorization rate of 55 to 85%) was obtained by performing the above method. ing. However, in consideration of recent upgrades in steel products and higher efficiency in the steel process, the phosphorus concentration in manganese alloy iron is required to be as low as possible as that of electrolytic manganese. Is not enough.

また、CaC2を用いることにより、CaC2の分解によって生じた炭素がマンガン合金鉄に吸収されるという、いわゆる炭素ピックアップの問題が出てくる。従って、CaC2の使用量を増やすと、炭素濃度が低いマンガン合金鉄(JISに規定される低炭素フェロマンガン)を出発原料として用いても、炭素濃度の上昇が大きくなり、炭素濃度の高い炭素合金鉄しか製造できない。さらに、Si含有量(X)に制限があることから、Si含有Mn合金、例えば、一般にSi含有量が14質量%以上であるシリコマンガン、への適用が不可能である。
特公平5−80541号公報 特公昭60−11099号公報
In addition, by using CaC 2 , there arises a problem of so-called carbon pickup in which carbon generated by decomposition of CaC 2 is absorbed by manganese alloy iron. Therefore, when the amount of CaC 2 used is increased, even if manganese alloy iron with a low carbon concentration (low carbon ferromanganese as defined in JIS) is used as a starting material, the increase in carbon concentration increases, and carbon with a high carbon concentration Only alloy iron can be produced. Furthermore, since the Si content (X) is limited, it cannot be applied to Si-containing Mn alloys, for example, silicomanganese generally having a Si content of 14% by mass or more.
Japanese Patent Publication No. 5-80541 Japanese Patent Publication No. 60-11099

本発明は、Mn及びMn合金中に含まれるりんを、鉄鋼生産におけるマンガンの添加に好適な濃度まで減ずることができる、大量生産に適した安価な低りんのMn及びMn合金の製造方法を提供することを目的とする。   The present invention provides an inexpensive method for producing low-phosphorus Mn and Mn alloys suitable for mass production, in which phosphorus contained in Mn and Mn alloys can be reduced to a concentration suitable for manganese addition in steel production. The purpose is to do.

本発明の別の目的は、金属Mn、フェロマンガンに加えて、ケイ素含有量が高いシリコマンガンなどの他のMn合金にも適用可能な、低りんのMn及びMn合金の製造方法を提供することである。   Another object of the present invention is to provide a method for producing low phosphorus Mn and a Mn alloy that can be applied to other Mn alloys such as silicon manganese having a high silicon content in addition to metal Mn and ferromanganese. It is.

Mn及びMn合金中に含まれるりんを除去するための脱りん法としては、上述したように、上記特許文献1に開示されているような酸化脱りん法と、上記特許文献2に開示されているような還元脱りん法とがある。   As described above, the dephosphorization method for removing phosphorus contained in Mn and the Mn alloy includes the oxidative dephosphorization method disclosed in Patent Document 1 and the above-mentioned Patent Document 2. There is a reductive dephosphorization method.

酸化脱りん法は、最も有効な塩基度の高い脱りん剤が高価なバリウム化合物であることから、経済的に不利である。一方、上記特許文献2に開示されている還元脱りん法で使用される脱りん剤は、いずれも工業的に大量使用されているCaC2(カルシウムカーバイド、アセチレンガス発生用などに使用)やCaF2(フッ化カルシウム、蛍石として天然に産出、融剤として製鉄・金属精錬に使用)であって、ずっと安価であり、かつ安定供給が可能である。また、到達りん濃度及び脱りん率についても、特許文献2に開示されている還元脱りん法の方が、好結果が得られている。 The oxidative dephosphorization method is economically disadvantageous because the most effective dephosphorization agent having a high basicity is an expensive barium compound. On the other hand, the dephosphorization agents used in the reductive dephosphorization method disclosed in Patent Document 2 are all CaC 2 (used for generating calcium carbide, acetylene gas, etc.) and CaF, which are used in large quantities industrially. 2 (naturally produced as calcium fluoride and fluorite and used as a flux for iron making and metal refining), it is much cheaper and stable supply is possible. Further, with respect to the ultimate phosphorus concentration and the dephosphorization rate, the reductive dephosphorization method disclosed in Patent Document 2 has obtained better results.

本発明者らは、このような還元脱りん法の利点に着目して、CaC2−CaF2系を基本とする脱りん用フラックスを用いて、到達りん濃度が0.02質量%以下を安定して実現できる方法を鋭意検討した。さらには、CaC2の使用時の欠点のひとつである炭素ピックアップを最低限に抑制する条件について検討した。 The present inventors, focusing on the advantages of such reducing dephosphorization method, a dephosphorization flux which is based on CaC 2 -CaF 2 system, phosphorus concentration reaches a stable 0.02 wt% or less The method that can be realized in this way was intensively studied. Furthermore, the conditions for suppressing carbon pickup, which is one of the drawbacks when using CaC 2 , to a minimum were examined.

まず、第一には脱りん限界に及ぼすフラックスの滓化性及び不純物量の関係を検討した。すなわち滓化性及び不純物量と脱りん限界には相互に関連がある点である。次に、上記フラックスによる還元脱りんでは、特許文献2に規定されているように、溶湯中の炭素濃度及び珪素濃度と脱りんとが密接に関係しているため、これらの濃度が制限されることが、還元脱りんのシリコマンガンへの適用を阻んでいた。溶湯中の炭素濃度と珪素濃度の許容範囲が広がれば、還元脱りんをシリコマンガンに適用することが可能となり、工業的な利点は大きい。   First, the relationship between the hatchability of the flux and the amount of impurities on the dephosphorization limit was examined. That is, hatchability, the amount of impurities and the dephosphorization limit are mutually related. Next, in the reductive dephosphorization by the flux, as defined in Patent Document 2, the carbon concentration and silicon concentration in the molten metal and dephosphorization are closely related, so that these concentrations are limited. However, it prevented the application of reductive dephosphorization to silicomanganese. If the allowable range of the carbon concentration and the silicon concentration in the molten metal is widened, it becomes possible to apply reductive dephosphorization to silicomanganese, and there are great industrial advantages.

そこで、還元脱りんに関して関係する機構と好適条件について検討したところ、炭素濃度と珪素濃度は相互の溶解度に影響を及ぼすのみならず、いずれも酸素濃度に影響を及ぼし、この酸素濃度が脱りん濃度に影響することを見出した。すなわち、従来は考慮されなかった溶湯中の酸素濃度に着眼したのである。溶湯中の酸素濃度を低減させることによって、脱りん率及び到達脱りん濃度が大きく向上するのみならず、炭素濃度及び珪素濃度の制限の緩和、さらにはCaC2からの炭素ピックアップの抑制が可能となった。その結果、脱りん率と脱りん限界の向上に加えて、炭素及び珪素濃度の適用範囲を著しく広げることができた。 Therefore, when the mechanism and preferred conditions related to reductive dephosphorization were examined, the carbon concentration and the silicon concentration not only affected the mutual solubility, but both affected the oxygen concentration. Found to affect. That is, attention was focused on the oxygen concentration in the molten metal, which was not considered in the past. By reducing the oxygen concentration in the molten metal, not only the dephosphorization rate and the ultimate dephosphorization concentration are greatly improved, but also the restriction of the carbon concentration and the silicon concentration can be relaxed, and further the carbon pickup from CaC 2 can be suppressed. became. As a result, in addition to improving the dephosphorization rate and dephosphorization limit, the applicable range of carbon and silicon concentrations could be significantly expanded.

第二に、還元脱りんには低温処理が有利であるとの考えから、処理温度と脱りんの関係を検討したところ、実際には低温ほど脱りんに有利であるわけではなく、好適な温度範囲があるとの新たな知見を得た。   Second, considering that low temperature treatment is advantageous for reductive dephosphorization, the relationship between the treatment temperature and dephosphorization was examined. I got new knowledge that there was a range.

第三に、還元脱りんをさらに促進しながら、上記フラックスの欠点である炭素ピックアップによる炭素汚染を回避するため、その一部をCa及び/又はCa合金と置き換えるという着想から、その具体的条件について検討を加えた。その結果、フラックスの一部をCa及び/又はCa合金に置換することで、炭素汚染が防止されるだけでなく、到達りん濃度についても明瞭な低減効果が得られることが判明した。こうすると、より高炭素濃度、より高珪素濃度の溶湯に対して還元脱りん法の適用が可能となる。   Thirdly, in order to avoid carbon contamination due to the carbon pickup, which is a drawback of the above flux, while further promoting reductive dephosphorization, the specific condition is based on the idea of replacing a part thereof with Ca and / or Ca alloy. Added consideration. As a result, it was found that by replacing part of the flux with Ca and / or Ca alloy, not only carbon contamination is prevented, but also a clear reduction effect can be obtained with respect to the ultimate phosphorus concentration. This makes it possible to apply the reductive dephosphorization method to a molten metal having a higher carbon concentration and a higher silicon concentration.

以上の知見に基づいて完成した本発明は、炭素濃度が2.0質量%以下、酸素濃度が0.5質量%以下であって、Mnを60質量%以上含有する溶融Mn又はMn合金を、CaF2及びCaC2を合計で80%以上含有し、かつそれらの質量比が(CaC2)/{(CaC2)+(CaF2)}×100=30〜65%であるフラックスを用いて、溶湯温度1350〜1500℃で脱りん処理することを特徴とする、Mn及びMn合金の製造方法である。 The present invention completed on the basis of the above findings is a molten Mn or Mn alloy having a carbon concentration of 2.0% by mass or less and an oxygen concentration of 0.5% by mass or less and containing Mn of 60% by mass or more. Using a flux containing at least 80% of CaF 2 and CaC 2 and having a mass ratio of (CaC 2 ) / {(CaC 2 ) + (CaF 2 )} × 100 = 30 to 65%, A dephosphorization treatment is performed at a molten metal temperature of 1350 to 1500 ° C.

上記脱りん処理は、前記フラックスに加えて、金属Ca及びCa合金から選ばれた少なくとも1種の金属Ca源を添加して行うことができる。それにより、さらなる低りん化と脱りん効率の向上が得られ、かつ脱りん処理による炭素濃度の増大が抑制される。   The dephosphorization treatment can be performed by adding at least one metal Ca source selected from metal Ca and Ca alloy in addition to the flux. Thereby, further low phosphatization and improvement in dephosphorization efficiency can be obtained, and an increase in carbon concentration due to dephosphorization treatment is suppressed.

本発明により、非常に高価な電解マンガンに代わって高付加価値の製鉄副原料として使用可能な、りん濃度が0.03質量%以下、好ましくは0.02質量%以下といった極低りん濃度の金属Mn及びMn合金を安価に大量製造することが可能となる。本発明の方法は、広範囲の炭素濃度と珪素濃度をもつMn及びMn合金の製造に適用可能であり、さらにはシリコマンガンのような高珪素マンガン合金の製造にも適用できる。   According to the present invention, a metal having an extremely low phosphorus concentration such as a phosphorus concentration of 0.03 mass% or less, preferably 0.02 mass% or less, which can be used as a high added-value ironmaking auxiliary material in place of very expensive electrolytic manganese. It becomes possible to mass-produce Mn and Mn alloys at low cost. The method of the present invention can be applied to the production of Mn and Mn alloys having a wide range of carbon concentrations and silicon concentrations, and can also be applied to the production of high silicon manganese alloys such as silicomanganese.

本発明は、CaC2−CaF2系を基本とする脱りん用フラックスを用いたMn又はMn合金の還元脱りんによって、りん濃度が0.02質量%以下の低りんMn又はMn合金を安定して製造することを目指している。 The present invention stabilizes a low phosphorus Mn or Mn alloy having a phosphorus concentration of 0.02% by mass or less by reducing dephosphorization of Mn or Mn alloy using a dephosphorization flux based on the CaC 2 -CaF 2 system. It aims to manufacture.

上記フラックスを使用した還元脱りんの機構は次の反応式で表される:
3CaC2+2P=Ca32(s)+6C (2)
CaC2がCaとCに分解し、生成したCaがPと化合して脱りんが行われる。分解で遊離したCは溶湯に吸収される。もう一方のフラックス成分であるCaF2は、フラックスの液相化のための融剤として作用する。
The mechanism of reductive dephosphorization using the above flux is represented by the following reaction formula:
3CaC 2 + 2P = Ca 3 P 2 (s) + 6C (2)
CaC 2 is decomposed into Ca and C, and the produced Ca combines with P to perform dephosphorization. C released by the decomposition is absorbed by the molten metal. The other flux component, CaF 2 , acts as a fluxing agent for the liquid phase of the flux.

この式によれば、処理前の溶湯(即ち、溶融Mn又はMn合金)中の炭素濃度を減じるほど、反応効率は上がると予想されたが、後述するように、実験では溶湯中の炭素濃度が2.0質量%でその効果は飽和し、それより炭素濃度を下げても、到達りん濃度の減少には影響が少ないことがわかった。そのため、本発明では、溶湯である溶融Mn又はMn合金の炭素濃度は2.0質量%以下とする。溶湯の炭素濃度が2.0質量%を超えると、上記の理由で脱りんの反応効率が低下し、脱りんが不十分となり、脱りん率が低下する。脱りん処理中の炭素吸収によって脱りん処理後の溶湯の炭素濃度が高くなることと、脱りん効率の一層の向上を考慮すると、溶湯の炭素濃度は好ましくは1.5質量%以下である。   According to this formula, the reaction efficiency was expected to increase as the carbon concentration in the molten metal before treatment (that is, molten Mn or Mn alloy) was reduced. However, as will be described later, in the experiment, the carbon concentration in the molten metal was The effect was saturated at 2.0% by mass, and it was found that even if the carbon concentration was lowered, the effect of reducing the ultimate phosphorus concentration was small. Therefore, in this invention, the carbon concentration of the molten Mn or Mn alloy which is a molten metal shall be 2.0 mass% or less. When the carbon concentration of the molten metal exceeds 2.0% by mass, the reaction efficiency of dephosphorization is lowered for the above reasons, and the dephosphorization becomes insufficient and the dephosphorization rate is lowered. In consideration of an increase in the carbon concentration of the molten metal after the dephosphorization treatment due to carbon absorption during the dephosphorization treatment and further improvement of the dephosphorization efficiency, the carbon concentration of the molten metal is preferably 1.5% by mass or less.

炭素については、原料のMn又はMn合金を溶融後に周囲の雰囲気や耐火物から増大することはないので、融解原料として炭素濃度が2.0質量%以下、好ましくは1.5質量%以下のMn又はMn合金原料を使用すればよい。   With respect to carbon, since Mn or Mn alloy of raw material does not increase from the surrounding atmosphere or refractory after melting, Mn having a carbon concentration of 2.0% by mass or less, preferably 1.5% by mass or less as a melting raw material Alternatively, a Mn alloy raw material may be used.

上記フラックスを用いた還元脱りんを阻害する要因として酸素がある。すなわち、酸素との下記(3)式のような反応である:
CaC2+1/2O2=CaO+2C (3)
CaC2が上式に従って酸化してしまうと、脱りんに寄与しなくなるのは当然であるが、生成したCaOが、CaC2やCaF2の活量を上げて、フラックス融体の固相比率を上げ、さらには還元脱りんで生成したCa32の溶解を妨げる作用をするとともに、遊離した炭素が溶湯に吸収され、溶湯の炭素濃度を増大させる。酸素源としては、溶湯中の酸素、フラックスの不純物に含まれる酸素、及び雰囲気や溶湯を収容する耐火物から溶湯中に溶け込む酸素が考えられる。
Oxygen is a factor that inhibits reductive dephosphorization using the flux. That is, the reaction with oxygen as shown in the following formula (3):
CaC 2 + 1 / 2O 2 = CaO + 2C (3)
When CaC 2 is oxidized according to the above formula, it is natural that it does not contribute to dephosphorization. However, the generated CaO increases the activity of CaC 2 and CaF 2 , thereby increasing the solid phase ratio of the flux melt. In addition, it acts to hinder the dissolution of Ca 3 P 2 produced by reductive dephosphorylation, and the liberated carbon is absorbed by the molten metal, increasing the carbon concentration of the molten metal. As the oxygen source, oxygen in the molten metal, oxygen contained in the impurities of the flux, and oxygen dissolved in the molten metal from the refractory containing the atmosphere and the molten metal are conceivable.

そこで、これらの酸素源について検討したところ、溶湯中の酸素が最も脱りん反応に影響し、溶湯中の酸素濃度が低位であるほど、脱りん率が向上し、さらには酸素とCaが反応することによる脱りんへの阻害も抑制できるために、脱りん用フラックスの原単位も削減できることがわかった。即ち、後述する許容される他の酸素源を考慮しても、溶湯の酸素濃度が0.5質量%以下であれば、りん濃度0.03質量%以下まで脱りんすることが可能となる。望ましくは酸素濃度は0.4質量%以下であり、この場合には安定してりん濃度0.02質量%以下まで脱りんすることが可能となる。   Therefore, when these oxygen sources were examined, oxygen in the molten metal most affected the dephosphorization reaction, and the lower the oxygen concentration in the molten metal, the higher the dephosphorization rate, and further, oxygen and Ca reacted. It was found that the basic unit of the dephosphorization flux can be reduced because the inhibition of dephosphorization due to the above can be suppressed. That is, even if other allowable oxygen sources described later are taken into account, if the oxygen concentration of the molten metal is 0.5 mass% or less, it is possible to dephosphorize to a phosphorus concentration of 0.03 mass% or less. Desirably, the oxygen concentration is 0.4% by mass or less, and in this case, it is possible to stably dephosphorize the phosphorus concentration to 0.02% by mass or less.

従って、本発明では、脱りんすべき溶湯である溶融Mn又はMn合金は、酸素濃度が0.5質量%以下、好ましくは0.4質量%以下とする。溶湯中の酸素濃度が高い場合には、脱りんに先立って溶湯の酸素を減じる処理を行って、酸素濃度を上記のように制御する。そのための脱酸方法は特に限定されない。例えば、合金要求成分や脱りんに影響を及ぼさない範囲で、酸素と親和力があり脱酸効果を期待できる珪素及び/又はアルミニウムを適宜添加する方法がある。後者の場合、そのAl濃度は0.1質量%で効果が認められ、2.0質量%でその効果が飽和する。また、その際にCaF2系フラックスを添加して脱酸することも可能である。この場合には、後の脱りん工程への影響を考慮して、添加したフラックスは脱りん前に除去することが適当である。 Therefore, in the present invention, the molten Mn or Mn alloy, which is the molten metal to be dephosphorized, has an oxygen concentration of 0.5 mass% or less, preferably 0.4 mass% or less. When the oxygen concentration in the molten metal is high, a treatment for reducing the oxygen in the molten metal is performed prior to dephosphorization, and the oxygen concentration is controlled as described above. The deoxidation method for that is not specifically limited. For example, there is a method of appropriately adding silicon and / or aluminum that has an affinity for oxygen and can be expected to have a deoxidizing effect within a range that does not affect alloy-required components and dephosphorization. In the latter case, the effect is recognized when the Al concentration is 0.1% by mass, and the effect is saturated at 2.0% by mass. At that time, it is also possible to deoxidize by adding CaF 2 flux. In this case, it is appropriate to remove the added flux before dephosphorization in consideration of the influence on the subsequent dephosphorization process.

フラックスに含有される不純物として含有される酸化物も酸素源となる。工業的に使用されるCaC2では、CaC2純度は一般的には80%〜90質量%程度であり、残部はCaOや製造上含有される不純物である。CaC2純度は高い方が望ましいが、CaOは脱りん反応生成物でもあるので、初期濃度としては全フラックスに対して10質量%までは許容される。CaF2としては、天然に産出される蛍石が一般に使用され、その純度は95〜99質量%程度であり、主な不純物としてSiO2が挙げられる。SiO2濃度は低い方が望ましいが、一方で生成したCaOの活量を押し下げる効果もあり、全フラックスに対して5質量%までは許容される。 Oxides contained as impurities contained in the flux also serve as oxygen sources. In CaC 2 used industrially, the CaC 2 purity is generally about 80% to 90% by mass, and the balance is CaO and impurities contained in production. Although higher CaC 2 purity is desirable, since CaO is also a dephosphorization reaction product, the initial concentration is allowed up to 10% by mass with respect to the total flux. As CaF 2 , naturally produced fluorite is generally used, and its purity is about 95 to 99% by mass, and SiO 2 can be mentioned as a main impurity. A lower SiO 2 concentration is desirable, but on the other hand, it has the effect of lowering the activity of the generated CaO, and up to 5% by mass is allowed for the total flux.

第三の酸素源として溶湯を収容する耐火物がある。Mn及びMn合金の溶湯保持に適した耐火物として、これらの溶湯に対する化学的安定性が高い、MgOやCaOを主体とした塩基性耐火物、MgOAl23系耐火物、MgOCr23系耐火物などがある。フラックスを保持する領域の耐火物は、より塩基性の高いものが好適と考えられる。このような安定な塩基性耐火物を使用し、短時間に効率的な脱りん処理を行い、一回あたり処理量を増大させることによって、耐火物からの酸素による影響を最小限にできる。なお、脱りんフラックスは耐火物を溶損し易いので、フラックスを保持する部分の耐火物の溶損抑制の観点から、安定酸化物であるMgO及びAl23をフラックス中に含有させてもよく、その場合、それぞれ5質量%までなら許容される。 There is a refractory that contains molten metal as a third oxygen source. As refractories suitable for holding molten metal of Mn and Mn alloys, basic chemical refractories mainly composed of MgO and CaO, MgOAl 2 O 3 refractories, MgOCr 2 O 3 refractories, which have high chemical stability against these melts There are refractories. A refractory in the region holding the flux is considered to have a higher basicity. By using such a stable basic refractory, performing an efficient dephosphorization process in a short time, and increasing the treatment amount per time, the influence of oxygen from the refractory can be minimized. In addition, since the dephosphorized flux easily melts the refractory, it may contain MgO and Al 2 O 3 which are stable oxides in the flux from the viewpoint of suppressing the refractory of the refractory that holds the flux. In that case, up to 5% by mass is permitted.

第四の酸素源として、雰囲気から溶湯に溶け込む酸素がある。したがって、本発明では、脱りんを大気を遮断した雰囲気中、例えば、不活性ガス(典型的にはアルゴンガス)雰囲気中で行うことが好ましい。こうすれば、雰囲気からの酸素は実質的に無視することができる。実操業において雰囲気から大気を完全に遮断することが困難であれば、脱りん雰囲気が多少の大気を含有することは許容される。   As a fourth oxygen source, there is oxygen dissolved in the molten metal from the atmosphere. Therefore, in the present invention, the dephosphorization is preferably performed in an atmosphere in which the atmosphere is shut off, for example, in an inert gas (typically argon gas) atmosphere. In this way, oxygen from the atmosphere can be substantially ignored. If it is difficult to completely shut off the atmosphere from the atmosphere in actual operation, the dephosphorization atmosphere is allowed to contain some atmosphere.

十分な脱りん効果を達成するために、CaC2とCaF2を主体とするフラックスは、CaC2及びCaF2の合計量が80質量%以上であるものを使用する。フラックスの残部は、CaC2又はCaF2中に不純物として含まれる成分(CaO、SiO2など)と、場合により耐火物保護などの目的で添加される成分(CaC2、CaF2など)とからなる。残部として、質量%で、CaOが10%以下、SiO2が5%以下、MgOが5%以下、Al23以下、及び可及的少量の不可避的不純物が許容される。 To achieve sufficient dephosphorization effect, the flux mainly containing CaC 2 and CaF 2 is to use a total amount of CaC 2 and CaF 2 is 80 mass% or more. The balance of the flux is composed of components (CaO, SiO 2, etc.) contained as impurities in CaC 2 or CaF 2 and components (CaC 2 , CaF 2, etc.) added for the purpose of protecting refractories in some cases. . The balance by mass%, CaO 10% or less, SiO 2 is less than 5%, MgO 5% or less, Al 2 O 3 or less, and as much as possible a small amount of inevitable impurities is acceptable.

フラックス中のCaC2とCaF2の比率については、液相を有する比率であること、反応生成物のCa32及びCaOをある程度溶解すること、充分なCaが供給される比率とする必要がある。そのため、[(CaC2)/{(CaC2)+(CaF2)}×100)(式中、カッコ内はフラックス中の該成分の質量%)で示される、両成分の合計量に対するCaC2の質量比が30〜65%の範囲となるようにする。この質量比が30%未満では、液相のCaC2−CaF2融体を充分な量で形成できず、りん濃度が0.03質量%以下、有利には0.02質量%以下に達するまで脱りんすることができない。一方、上記質量比が65%を超えると、CaC2固相が形成されることによる液相比率の低下が顕著となって、反応速度が低下し、反応生成物であるCaの溶湯への溶解が困難となって、やはり、上記のようなりん濃度に達するまで充分に脱りんすることができなくなる。また、添加したCaC2に含有されるCのほとんどは溶湯に吸収されるので、脱りん後のMn及びMn合金の炭素濃度上昇も著しくなる。 The ratio of CaC 2 and CaF 2 in the flux should be a ratio having a liquid phase, dissolving the reaction products Ca 3 P 2 and CaO to some extent, and a ratio at which sufficient Ca is supplied. is there. Therefore, CaC 2 with respect to the total amount of both components represented by [(CaC 2 ) / {(CaC 2 ) + (CaF 2 )} × 100) (wherein the parenthesis is the mass% of the component in the flux). So that the mass ratio is in the range of 30 to 65%. In this mass ratio is less than 30%, can not be formed in an amount sufficient to CaC 2 -CaF 2 melt in the liquid phase, until the phosphorus concentration of 0.03 wt% or less, preferably reaches 0.02 mass% or less I can't dephosphorize. On the other hand, when the mass ratio exceeds 65%, a decrease in the liquid phase ratio due to the formation of the CaC 2 solid phase becomes remarkable, the reaction rate decreases, and the reaction product Ca dissolves in the molten metal. After that, it becomes impossible to sufficiently dephosphorize until the phosphorus concentration as described above is reached. In addition, since most of the C contained in the added CaC 2 is absorbed by the molten metal, the increase in the carbon concentration of Mn and the Mn alloy after dephosphorization becomes significant.

溶湯がMn合金である場合、溶湯のMn含有量は60質量%以上とする。これは、Mn含有量が60質量%以上になると、製鋼プロセスで一般的に実施される酸化脱りんの適用が事実上困難となることと、溶湯の液相線温度が1300℃以下となるためである。それにより、還元脱りん法を原理とする本発明の利点が享受できるようになる。本発明の方法に従って脱りんするのに適したMn合金としては、Fe含有量が25質量%以下のフェロマンガン(Mn−Fe合金)、Si含有量が23質量%以下のシリコマンガン(Mn−Si合金)などが挙げられる。   When the molten metal is a Mn alloy, the Mn content of the molten metal is 60% by mass or more. This is because when the Mn content is 60% by mass or more, it becomes practically difficult to apply oxidative dephosphorization generally performed in the steelmaking process, and the liquidus temperature of the molten metal becomes 1300 ° C. or less. It is. Thereby, the advantage of the present invention based on the reductive dephosphorization method can be enjoyed. Mn alloys suitable for dephosphorization according to the method of the present invention include ferromanganese (Mn—Fe alloy) with an Fe content of 25% by mass or less, and silicomanganese (Mn—Si) with an Si content of 23% by mass or less. Alloy).

脱りん処理は、炭素濃度と酸素濃度がそれぞれ上述した上限を超えないように調整されたMn又はMn合金の溶湯に、前述したCaF2−CaC2系フラックスを添加し、好ましくは不活性ガス(通常はアルゴンガス)雰囲気中において、溶湯温度1350〜1500℃で行う。 The dephosphorization treatment is performed by adding the aforementioned CaF 2 -CaC 2 -based flux to a molten Mn or Mn alloy adjusted so that the carbon concentration and the oxygen concentration do not exceed the above-mentioned upper limits, and preferably an inert gas ( Usually, it is performed at a molten metal temperature of 1350 to 1500 ° C. in an atmosphere of argon gas.

フラックスの添加量は、脱りん処理を適用する溶湯の処理前りん濃度と目標とする到達りん濃度、脱りん元素であるCaを消費する溶湯の処理前酸素濃度、並びに炭素濃度及び珪素濃度によって見込める脱りん率などの脱りんに直接的に関与する要素と、使用する耐火物、雰囲気などの影響によって脱りん元素であるCaが消費されるといった、脱りんに間接的に関与する要素とを考慮して設定できる。   The amount of flux added can be estimated by the phosphorus concentration before treatment of the melt to which the dephosphorization treatment is applied, the target reached phosphorus concentration, the oxygen concentration before treatment of the melt that consumes the dephosphorization element Ca, the carbon concentration and the silicon concentration. Consider factors that are directly involved in dephosphorization, such as dephosphorization rate, and factors that are indirectly involved in dephosphorization, such as the consumption of Ca, which is a dephosphorizing element, due to the effects of refractories and atmospheres used. Can be set.

上記(2)に示すように、CaC2の分解により生じたCaによる脱りんはCの遊離を伴う。また、この脱りんは、上述したように、溶湯の酸素濃度、炭素濃度、処理温度、及びフラックス組成の影響を受ける。脱りんのさらなる促進及び安定性向上と炭素濃度上昇の抑制のためには、溶湯へのCa供給量を増大させることが有利である。すなわち、上記脱りん用フラックスに加えて、金属Caの供給源を溶湯に供給して、炭素遊離を伴わない上記(1)式に示した脱りんを並行して行わせるのである。 As shown in (2) above, the dephosphorization by Ca generated by the decomposition of CaC 2 is accompanied by the release of C. Moreover, this dephosphorization is affected by the oxygen concentration, carbon concentration, treatment temperature, and flux composition of the molten metal as described above. In order to further promote dephosphorization, improve stability, and suppress increase in carbon concentration, it is advantageous to increase the amount of Ca supplied to the molten metal. That is, in addition to the dephosphorization flux, a metal Ca supply source is supplied to the molten metal, and the dephosphorization shown in the above equation (1) without carbon release is performed in parallel.

しかし、金属Caは蒸気圧の高い活性な金属であり、Caを添加した脱りん用フラックスの相平衡に関しても、Ca−CaF2系やCa−CaO系の状態図が知られるだけであった。また、金属CaやCa合金はCaC2と比較して高価であるので、それを効果的に使用する必要がある。 However, the metal Ca is an active metal having a high vapor pressure, and only the phase diagrams of the Ca—CaF 2 system and the Ca—CaO system are known regarding the phase equilibrium of the dephosphorization flux to which Ca is added. The metal Ca or Ca alloy because it is expensive in comparison with CaC 2, it is necessary to use it effectively.

本発明の好適態様においては、上述したCaF2−CaC2系の脱りん用フラックスに加えて、金属Ca及びCa合金から選ばれた少なくとも1種の金属Ca源を添加して脱りん処理を行う。それにより、溶湯のC濃度上昇を緩和しながら、より安定して効率的に脱りんを行うことが可能となる。Ca合金としてはカルシウムシリコン合金、カルシウムアルミニウム合金等の工業生産されているCa合金を使用することができる。 In a preferred embodiment of the present invention, in addition to the CaF 2 -CaC 2 -based dephosphorization flux described above, at least one metal Ca source selected from metal Ca and Ca alloy is added to perform the dephosphorization treatment. . Thereby, dephosphorization can be performed more stably and efficiently while mitigating the increase in the C concentration of the molten metal. As the Ca alloy, industrially produced Ca alloys such as calcium silicon alloy and calcium aluminum alloy can be used.

この金属Ca源の添加量は、上記フラックスに対してCa金属換算で15質量%以下であることが好ましく、より好ましくは10質量%以下である。金属Ca源の添加量が多すぎるとCaの蒸発や酸化反応による発熱、高価な金属であるCa又はCa合金によるコスト悪化などが生じる。また、金属Ca源がCa合金である場合には、合金元素(例、シリコン又はアルミニウム)の大半が溶湯に移行するので、Mn合金としての許容成分量を超えたり、あるいは酸化して酸化物としてフラックスに移行して脱りん率をかえって悪化させることがある。金属Ca源の効果を十分に得るには、上記添加量が1質量%以上、特に3質量%以上となる量で金属Ca源を添加することが好ましい。   The addition amount of the metal Ca source is preferably 15% by mass or less, more preferably 10% by mass or less, in terms of Ca metal, with respect to the flux. If the added amount of the metallic Ca source is too large, heat generation due to evaporation or oxidation reaction of Ca, cost deterioration due to expensive metal such as Ca or Ca alloy, and the like occur. Further, when the metal Ca source is a Ca alloy, most of the alloy elements (eg, silicon or aluminum) are transferred to the molten metal, so that the allowable component amount as the Mn alloy is exceeded or oxidized to form an oxide. It may shift to flux and worsen the dephosphorization rate. In order to sufficiently obtain the effect of the metallic Ca source, it is preferable to add the metallic Ca source in such an amount that the added amount is 1% by mass or more, particularly 3% by mass or more.

金属Ca源を併用する場合、この金属Ca源による脱りん効果が得られるため、前述した脱りん用フラックスの添加量を低減することができる。こうして脱りん用フラックスの添加量を抑制することによって、脱りんによる溶湯の炭素濃度増大が抑えられる。   When the metal Ca source is used in combination, the dephosphorization effect of the metal Ca source can be obtained, so that the amount of the dephosphorization flux described above can be reduced. By suppressing the addition amount of the dephosphorization flux in this way, an increase in the carbon concentration of the molten metal due to dephosphorization can be suppressed.

この金属Ca源の添加は、脱りん用フラックスを介して溶湯に供給されるように、脱りん用フラックスの添加の後に行うことが好ましい。金属Caよりも、カルシウムシリコン合金やカルシウムアルミニウム合金を使用する方が、脱りん効率の向上効果はより顕著に現れる。ただし、溶湯へのSi又はAlピックアップを生じ、配合によっては、例えばSi濃度が1.5質量%を超えることがあるので、これを許容する用途へ適用すべきである。   The addition of the metallic Ca source is preferably performed after the addition of the dephosphorization flux so that the metal Ca source is supplied to the molten metal via the dephosphorization flux. The effect of improving the dephosphorization efficiency appears more markedly when calcium silicon alloy or calcium aluminum alloy is used than metal Ca. However, Si or Al pick-up is generated in the molten metal, and depending on the composition, for example, the Si concentration may exceed 1.5% by mass, so it should be applied to applications that allow this.

脱りん温度(溶湯温度)は、低い方が脱りん限界が高くなって、脱りん効率が高まると予想されたが、後述するように、実際には1350℃以下になると脱りん率が低下した。そのため、1350〜1500℃の範囲とする。   The lower dephosphorization temperature (molten metal temperature) was expected to increase the dephosphorization limit and increase the dephosphorization efficiency. However, as will be described later, the dephosphorization rate actually decreased at 1350 ° C. or below. . Therefore, it is set as the range of 1350-1500 degreeC.

脱りん処理は、溶湯を撹拌しながら行うことが反応効率の向上のために好ましい。この撹拌は電磁誘導などの撹拌手段を用いて行うこともできるが、撹拌強度や設備投資や維持の点で有利であるのはガス撹拌である。例えば、不活性ガス(例、アルゴンガス)を底吹きによって溶湯に吹き込むことによって溶湯とフラックスを撹拌することができる。この場合は、底部からガス吹込みが可能な精錬炉、例えば、取鍋を不活性ガス雰囲気下に保持可能な取鍋精錬炉を用いて脱りんを行うことができる。   The dephosphorization treatment is preferably performed while stirring the molten metal in order to improve the reaction efficiency. This stirring can be performed using stirring means such as electromagnetic induction, but gas stirring is advantageous in terms of stirring strength, equipment investment, and maintenance. For example, the molten metal and the flux can be agitated by blowing an inert gas (eg, argon gas) into the molten metal by bottom blowing. In this case, dephosphorization can be performed using a refining furnace capable of blowing gas from the bottom, for example, a ladle refining furnace capable of holding the ladle in an inert gas atmosphere.

脱りん処理時間は、脱りん処理する溶湯量や目的とする低いりん濃度が達成されるように選択すればよいが、通常は3〜30分間の範囲内とすることが好ましい。処理後は常法に従って、発生した脱りんスラグを除去し、容器から脱りんされた溶湯を鋳型に鋳造することにより、脱りんされたMn又はMn合金を得る。   The dephosphorization time may be selected so as to achieve the amount of molten metal to be dephosphorized and the target low phosphorus concentration, but it is usually preferable to be within a range of 3 to 30 minutes. After the treatment, the generated dephosphorization slag is removed according to a conventional method, and the dephosphorized Mn or Mn alloy is obtained by casting the molten metal dephosphorized from the container into a mold.

次に、本発明の基礎となる実験の結果について説明する。実験では、炉内をアルゴンガス雰囲気にできる小型タンマン炉を用いて、1.5kgの80%Mn-18.5%Fe合金溶湯の脱りん試験を行った。脱りん前の処理前P濃度は0.20質量%、炭素濃度は0.1〜3.0質量%、珪素濃度は0.50質量%であった。   Next, the results of experiments that are the basis of the present invention will be described. In the experiment, a dephosphorization test of 1.5 kg of 80% Mn-18.5% Fe alloy molten metal was performed using a small Tamman furnace in which the inside of the furnace could be an argon gas atmosphere. The P concentration before treatment before dephosphorization was 0.20% by mass, the carbon concentration was 0.1-3.0% by mass, and the silicon concentration was 0.50% by mass.

脱りん用フラックスとしては、試薬級CaC2(CaC2純度81.4質量%)及びCaF2(CaC2純度99.0質量%)を用いた。配合比率はCaC2を60質量%、フラックスの全添加量は150gを基本とした。反応温度は1400℃を基本とし、場合により変動させた。溶湯の保持容器として緻密質のマグネシアルツボを使用し、溶湯及びスラグを撹拌するためにアルゴンガスを0.3Nl/分の流量で吹き込んだ。脱りん用フラックス添加後の脱りん処理時間は8分間とした。 As the dephosphorization flux, reagent grade CaC 2 (CaC 2 purity 81.4% by mass) and CaF 2 (CaC 2 purity 99.0% by mass) were used. The blending ratio was based on 60 mass% CaC 2 and the total amount of flux added was 150 g. The reaction temperature was basically 1400 ° C. and varied depending on the case. A dense magnetic crucible was used as a molten metal holding container, and argon gas was blown at a flow rate of 0.3 Nl / min to stir the molten metal and slag. The dephosphorization time after adding the dephosphorization flux was 8 minutes.

図1に、初期酸素濃度と脱りん用フラックス添加後8分におけるりん濃度である到達P濃度との関係を示す。図2には、初期炭素濃度と到達P濃度との関係を、図3には初期炭素濃度と脱りん用フラックス添加後8分における脱りん率との関係をそれぞれ示す。   FIG. 1 shows the relationship between the initial oxygen concentration and the reached P concentration, which is the phosphorus concentration 8 minutes after the addition of the dephosphorization flux. FIG. 2 shows the relationship between the initial carbon concentration and the reached P concentration, and FIG. 3 shows the relationship between the initial carbon concentration and the dephosphorization rate 8 minutes after the addition of the dephosphorization flux.

図1に示すように、初期酸素濃度0.5質量%以下の場合、到達P濃度は0.030質量%以下となり、初期酸素0.4質量%以下では到達P濃度が0.020質量%以下まで脱りすることができる。図2、3に示すように、炭素濃度2.0質量%以下では、到達P濃度は0.030質量%以下となり、炭素濃度1.5質量%以下では、安定して到達P濃度は0.020質量%以下となり、その時の脱りん率は90%以上になる。   As shown in FIG. 1, when the initial oxygen concentration is 0.5% by mass or less, the reached P concentration is 0.030% by mass or less, and when the initial oxygen is 0.4% by mass or less, the reached P concentration is 0.020% by mass or less. Can be taken off. As shown in FIGS. 2 and 3, when the carbon concentration is 2.0% by mass or less, the ultimate P concentration is 0.030% by mass or less, and when the carbon concentration is 1.5% by mass or less, the ultimate P concentration is stably 0.5%. The dephosphorization rate at that time becomes 90% or more.

図4には、溶湯処理温度と脱りん用フラックス添加後8分における脱りん率との関係を示す。溶湯温度が1350℃以上、1500℃以下の範囲で、90%以上の脱りん率が得られる。溶湯温度が高い場合に脱りん率が低下する理由は、脱りん反応の脱りん限界が低下するためである。また溶湯温度が低下した場合に脱りん率が低下する理由は、脱りん用フラックスの滓化性が悪くなることと、CaC2の分解反応にともなうMn及びMn合金溶湯への溶解速度が低下するためと推定される。 FIG. 4 shows the relationship between the melt treatment temperature and the dephosphorization rate 8 minutes after the addition of the dephosphorization flux. When the molten metal temperature is in the range of 1350 ° C. or more and 1500 ° C. or less, a dephosphorization rate of 90% or more can be obtained. The reason that the dephosphorization rate decreases when the molten metal temperature is high is that the dephosphorization limit of the dephosphorization reaction decreases. Moreover, the reason why the dephosphorization rate decreases when the molten metal temperature is lowered is that the hatchability of the dephosphorizing flux is deteriorated and the dissolution rate in the molten Mn and Mn alloy due to the decomposition reaction of CaC 2 is decreased. It is estimated that.

図5には、脱りん用フラックスの成分質量比と添加後8分における脱りん率との関係を示す。質量比が(CaC2)/{(CaC2)+(CaF2)}×100=30〜65%の範囲で90%以上の脱りん率が得られる。 FIG. 5 shows the relationship between the component mass ratio of the dephosphorization flux and the dephosphorization rate 8 minutes after the addition. A dephosphorization rate of 90% or more can be obtained when the mass ratio is (CaC 2 ) / {(CaC 2 ) + (CaF 2 )} × 100 = 30 to 65%.

上述したように、脱りん用フラックスに加えてさらに金属Ca源を添加すると、炭素のピックアップを抑制しながら更なる脱りん促進が図れる。図6及び図7は、それぞれ金属Ca及びCaSi合金を、フラックスに対するCa金属の質量比が0.05及び0.10となる量でフラックス添加の直後に添加したときの到達P濃度(フラックス添加8分後、左軸)及び△C(初期炭素濃度に対する処理後の炭素濃度の増大量(質量%)、右軸)との関係を示す。   As described above, when a metal Ca source is added in addition to the dephosphorization flux, further dephosphorization can be promoted while suppressing carbon pickup. FIG. 6 and FIG. 7 show the reached P concentration when the metal Ca and the CaSi alloy are added immediately after the addition of the flux in amounts such that the mass ratio of the Ca metal to the flux is 0.05 and 0.10 (flux addition 8). Minutes, left axis) and ΔC (the amount of increase in carbon concentration after treatment relative to the initial carbon concentration (mass%), right axis).

図からわかるように、これらの金属Ca源の添加量がCaC2−CaF2系脱りん用フラックスに対してCa金属として5質量%以上になると、到達P濃度と脱りん率の安定効果が得られ、炭素ピックアップ(ΔC)も約10%程度抑制できる。この添加量が10質量%以上になると、到達P濃度は0.015質量%を下回り、その時の脱りん率は93%以上を期待できる。金属Caよりも、カルシウムシリコン合金の方が脱りん促進効果が高く、Ca金属換算でフラックスに対して10%質量%以上を添加すると、到達P濃度は0.010質量%を下回り、脱りん率は95%以上となる。また、カルシウムシリコン合金を使用すると、炭素ピックアップも20%程度抑制できる。 As can be seen from the figure, when the added amount of these metallic Ca sources is 5 mass% or more as Ca metal with respect to the CaC 2 -CaF 2 dephosphorization flux, the effect of stabilizing the ultimate P concentration and the dephosphorization rate is obtained. In addition, the carbon pickup (ΔC) can be suppressed by about 10%. When this addition amount is 10% by mass or more, the reached P concentration is less than 0.015% by mass, and the dephosphorization rate at that time can be expected to be 93% or more. Calcium silicon alloy has a higher dephosphorization promoting effect than metallic Ca. When 10% by mass or more is added to the flux in terms of Ca metal, the reached P concentration is less than 0.010% by mass, and the dephosphorization rate. Becomes 95% or more. In addition, when a calcium silicon alloy is used, carbon pickup can be suppressed by about 20%.

最後に本実験に基づいてフラックス添加量と脱りんの関係についてより具体的に述べる。フラックス添加量は、フラックス中に含有されるCa量を考慮する必要がある。すなわち脱りん反応に直接消費されるCa量と、溶湯量や選択プロセスによって間接消費されるCa量である。   Finally, based on this experiment, the relationship between flux addition and dephosphorization will be described more specifically. The amount of flux added needs to consider the amount of Ca contained in the flux. That is, the amount of Ca directly consumed by the dephosphorization reaction and the amount of Ca indirectly consumed by the molten metal amount and the selection process.

CaC−40質量%CaFのフラックスを使用した場合、その量は溶湯1kgあたり100gでCa量は約30.4gとなる。溶湯量1kgあたり脱りんに直接消費されるCaは脱りん濃度△「%P」=0.182%として約4.0g、溶湯の脱酸に消費されるCaは脱酸濃度△「%O」=0.4質量%程度であるので10.0g、脱りんする際に溶湯中に含有されるCa濃度が0.05質量%程度であるので0.5gである。すなわち、約47%程度は必要Ca量である。一方、本実験条件に関連する間接消費されるCaは、ルツボ材質であるMgOを還元したCa量が約10.9g、雰囲気からの酸化及び不明な理由で消費されたCa量が約5.3gである。すなわち、約53%程度が間接消費されたCa量である。 When using the CaC 2 -40 wt% CaF 2 in the flux, the amount of Ca amount per 100g melt 1kg is about 30.4 g. Ca consumed for dephosphorization per 1 kg of molten metal is approximately 4.0 g as dephosphorization concentration Δ “% P” = 0.182%, and Ca consumed for deoxidation of molten metal is deoxidation concentration Δ “% O”. Since it is about 0.4% by mass, it is 10.0 g, and when the dephosphorization, the Ca concentration contained in the molten metal is about 0.05% by mass, it is 0.5 g. That is, about 47% is a necessary amount of Ca. On the other hand, the indirectly consumed Ca related to this experimental condition is about 10.9 g of Ca reduced by reducing the crucible material MgO, and about 5.3 g of Ca consumed due to oxidation from the atmosphere and unknown reasons. It is. That is, about 53% is the amount of Ca consumed indirectly.

上述のように使用するフラックス量及び金属Ca源量は、処理前りん濃度、目標処理後りん濃度、脱りん率及び処理前酸素濃度、及び選択したプロセスに応じて間接消費されるCa量を勘案して決定すれば良い。   The amount of flux and the amount of metallic Ca source used as described above take into account the pre-treatment phosphorus concentration, target post-treatment phosphorus concentration, dephosphorization rate and pre-treatment oxygen concentration, and the amount of Ca consumed indirectly depending on the selected process. And decide.

高周波誘導加熱方式の雰囲気調整が可能な精錬炉で、炭素濃度約1質量%の77%Mn−Fe合金の溶湯1.3tを1400℃前後の所定温度に加熱して溶解させた。溶湯の温度は高周波出力を制御して調整した。溶解後の溶湯の組成(Mn,C,Si,P,及びO濃度)を測定した結果を表1に示す。   In a refining furnace capable of adjusting the atmosphere of the high frequency induction heating method, a molten metal of 77% Mn—Fe alloy having a carbon concentration of about 1% by mass was heated to a predetermined temperature of about 1400 ° C. to be melted. The temperature of the molten metal was adjusted by controlling the high frequency output. Table 1 shows the results of measuring the composition (Mn, C, Si, P, and O concentration) of the molten metal after melting.

炉内の溶湯に、工業用CaC2及び製鋼副原料として使用されるCaF2を所定比率で混合した脱りんフラックスを添加した。CaC2の純度は81.4質量%、CaF2の純度は99.0質量%であった。この脱りん用フラックスの添加量は、溶湯1tあたり23〜28.5kgであった。処理中の雰囲気はArガス(1気圧)であった。溶湯及びスラグを撹拌するため、2カ所の炉底ポーラスレンガよりアルゴンガスを15Nl/分の流量で導入した。 The melt in the furnace, the dephosphorization flux mixed with CaF 2 in a predetermined ratio to be used as an industrial CaC 2 and steelmaking auxiliary materials were added. The purity of CaC 2 was 81.4% by mass, and the purity of CaF 2 was 99.0% by mass. The addition amount of the dephosphorization flux was 23 to 28.5 kg per ton of molten metal. The atmosphere during the treatment was Ar gas (1 atm). In order to stir the molten metal and slag, argon gas was introduced at a flow rate of 15 Nl / min from two furnace bottom porous bricks.

溶湯に添加した脱りん用フラックスはすぐに溶融した。フラックスの添加後、脱りん処理を20分間実施した。処理後、精錬炉を傾動して脱りんスラグを分離し、その後、脱りん処理されたMn合金の溶湯を鋳型に上注ぎで鋳造して、Mn合金を作製した。使用したフラックスの添加量及びその成分、処理温度、及び脱りん処理後のC及びP濃度と脱りん率を表1に併記する。   The dephosphorization flux added to the melt immediately melted. After the addition of the flux, dephosphorization treatment was performed for 20 minutes. After the treatment, the refining furnace was tilted to separate the dephosphorization slag, and then the dephosphorized Mn alloy melt was poured onto a mold and cast to prepare a Mn alloy. Table 1 shows the added amount of flux and its components, the treatment temperature, the C and P concentrations after dephosphorization, and the dephosphorization rate.

Figure 0005266903
Figure 0005266903

表1に示すように、本発明の実施例であるaからeでは、到達P濃度で0.03質量%以下、脱りん率で85%以上を得ることができた。特に、処理前の酸素濃度が0.40質量%より低い実施例d及びeでは、到達P濃度は0.018質量%以下、脱りん率で90%以上を得ることができた。   As shown in Table 1, in the examples a to e of the present invention, it was possible to obtain 0.03 mass% or less in the reached P concentration and 85% or more in the dephosphorization rate. In particular, in Examples d and e in which the oxygen concentration before treatment was lower than 0.40% by mass, the reached P concentration was 0.018% by mass or less and the dephosphorization rate was 90% or more.

一方、比較例であるfは、脱りん前溶湯中酸素濃度が0.55質量%と高く、実施例と同様の条件で脱りん処理したにもかかわらず、到達P濃度は0.043質量%に過ぎず、脱りん率も80%に達しなかった。   On the other hand, in Comparative Example f, the oxygen concentration in the molten metal before dephosphorization was as high as 0.55% by mass, and the ultimate P concentration was 0.043% by mass despite the dephosphorization treatment under the same conditions as in the examples. The dephosphorization rate did not reach 80%.

比較例gは、脱りん処理フラックスのCaC2/(CaC2+CaF2)比が本発明の範囲よりも高い場合、比較例hは本発明の範囲よりも低い場合、比較例iは脱りん処理フラックスの(CaC2+CaF2)濃度が本発明の範囲よりも低い場合であるが、いずれも到達P濃度は0.04質量%を上回り、脱りん率も80%に満たなかった。 In comparative example g, the dephosphorization flux has a CaC 2 / (CaC 2 + CaF 2 ) ratio higher than the range of the present invention, comparative example h is lower than the range of the present invention, and comparative example i is dephosphorized. In this case, the concentration of (CaC 2 + CaF 2 ) in the flux was lower than the range of the present invention, but in all cases, the reached P concentration exceeded 0.04 mass% and the dephosphorization rate did not reach 80%.

比較例jは脱りん処理温度が本発明の範囲より高い場合、比較例kは脱りん処理温度が本発明の範囲より低い場合であるが、いずれもは到達P濃度は0.04質量%を上回り、脱りん率も80%に満たなかった。   Comparative Example j is a case where the dephosphorization temperature is higher than the range of the present invention, and Comparative Example k is a case where the dephosphorization temperature is lower than the range of the present invention. In either case, the ultimate P concentration is 0.04% by mass. The dephosphorization rate was less than 80%.

実施例1と同様に、高周波誘導加熱方式の雰囲気調製が可能な精錬炉で、炭素濃度が約1.0質量の77%Mn−Fe合金(一部はシリコマンガン合金)の溶湯1.3tの溶解を行った。その後、炉内に実施例1と同じCaC2及びCaF2を混合した脱りん用フラックス、続いて金属Ca源として金属Ca又はCaSi合金を添加した。金属Caは純度98質量%であり、CaSi合金はCa:30質量%、Si:60質量%、残部鉄及び不可避的不純物からなるものであった。脱りん用フラックスの添加量は溶湯1tあたり19〜24kgであり、金属Ca源の添加量は溶湯1tあたり0.2〜2.1kg(フラックスに対する質量%で約3.3〜10質量%)であった。反応温度は1400℃を基本とし、所望の温度になるように高周波出力を制御した。処理中の雰囲気はArガス(1気圧)であった。溶湯及びスラグを撹拌するため、2カ所の炉底ポーラスレンガよりアルゴンガスを15Nl/分の流量で導入した。 As in Example 1, a refining furnace capable of high-frequency induction heating type atmosphere adjustment, and a 1.3% molten 77% Mn-Fe alloy (partially a silicomanganese alloy) with a carbon concentration of about 1.0 mass. Dissolution was performed. Thereafter, a dephosphorization flux in which the same CaC 2 and CaF 2 as in Example 1 were mixed in the furnace, and then metal Ca or CaSi alloy was added as a metal Ca source. The metal Ca had a purity of 98% by mass, and the CaSi alloy was composed of Ca: 30% by mass, Si: 60% by mass, the balance iron and inevitable impurities. The addition amount of the dephosphorization flux is 19 to 24 kg per ton of the molten metal, and the addition amount of the metallic Ca source is 0.2 to 2.1 kg per 1 ton of the molten metal (about 3.3 to 10% by mass with respect to the flux). there were. The reaction temperature was basically 1400 ° C., and the high-frequency output was controlled so that the desired temperature was obtained. The atmosphere during the treatment was Ar gas (1 atm). In order to stir the molten metal and slag, argon gas was introduced at a flow rate of 15 Nl / min from two furnace bottom porous bricks.

脱りん用フラックスの添加から20分間脱りん処理を実施した。処理後、炉を傾動して脱りんスラグを分離した後、脱りん処理されたMn合金の溶湯を鋳型に上注ぎで鋳造して、Mn合金を作製した。脱りん処理条件及び処理前後の合金組成を表2に示す。   Dephosphorization treatment was performed for 20 minutes after the addition of the dephosphorization flux. After the treatment, the furnace was tilted to separate the dephosphorization slag, and then the dephosphorized molten Mn alloy was poured onto a mold and cast to prepare a Mn alloy. Table 2 shows the dephosphorization treatment conditions and the alloy compositions before and after the treatment.

Figure 0005266903
Figure 0005266903

表2に示すように、表1に示した金属Ca源を添加しない実施例1の結果bと比較して、処理前の初期酸素濃度が0.4質量%より高い(即ち、0.4質量%超0.5質量%以下)場合でも、到達P濃度が0.012〜0.015質量%とさらに低下し、脱りん率も90%を超えた(l,n)。   As shown in Table 2, the initial oxygen concentration before the treatment is higher than 0.4% by mass (that is, 0.4% by mass) as compared with the result b of Example 1 in which the metal Ca source shown in Table 1 is not added. Even in the case of more than 0.5% by mass or less), the reached P concentration further decreased to 0.012 to 0.015% by mass, and the dephosphorization rate exceeded 90% (l, n).

初期酸素濃度が0.4質量%以下である実施例について比較すると、表2のm,oでは、金属Ca源を添加しなかった表1のd,eと比べて、到達P濃度は0.008〜0.009質量%とさらに低くなり、脱りん率も95%を超える高さになった。   Comparing the examples in which the initial oxygen concentration is 0.4% by mass or less, in m and o in Table 2, the ultimate P concentration is 0.1 in comparison with d and e in Table 1 in which the metal Ca source was not added. 008 to 0.009% by mass, and the dephosphorization rate was higher than 95%.

表2のpは、シリコマンガンに相当するMn合金の溶湯での脱りん処理である。従来は還元脱りんが効率的でなかったシリコマンガンについても、本発明に従って脱りん処理することによって、到達P濃度は0.019質量%、脱りん率81%という結果が得られた。さらに表2のqには、Mn含有量が90質量%を超えるMn合金の脱りん例を示したが、到達P濃度は0.005質量%、脱りん率も90%となった。この結果から、本発明の方法は金属Mnに対しても適用可能であることが推測され、実際に金属マンガンに適用した場合には表2のqと同等の結果が得られることも確認した。   P in Table 2 is a dephosphorization treatment with a molten Mn alloy corresponding to silicomanganese. Even for silicomanganese, which has not been efficient in reducing dephosphorization in the past, by performing the dephosphorization process according to the present invention, the ultimate P concentration was 0.019% by mass and the dephosphorization rate was 81%. Further, q in Table 2 shows an example of dephosphorization of an Mn alloy having a Mn content exceeding 90% by mass. The reached P concentration was 0.005% by mass and the dephosphorization rate was 90%. From this result, it was speculated that the method of the present invention can be applied to metal Mn, and it was confirmed that the result equivalent to q in Table 2 was obtained when actually applied to metal manganese.

実施例2では、実施例1に比べてフラックスの添加量は実施例1より少なくしたにもかかわらず、到達P濃度は実施例1より低くなり、脱りん率は向上した。また、フラックス量、特にCaC2量の低減によって、処理後の溶湯の炭素濃度増大(炭素ピックアップ)を抑制でき、より高純度のMn合金の製造が可能となった。 In Example 2, although the amount of flux added was smaller than that in Example 1, the reached P concentration was lower than in Example 1 and the dephosphorization rate was improved. Further, by reducing the amount of flux, particularly the amount of CaC 2, the increase in carbon concentration (carbon pickup) of the molten metal after treatment can be suppressed, and a higher purity Mn alloy can be produced.

初期酸素濃度と脱りん用フラックス添加後8分におけるりん濃度である到達P濃度との関係を示すグラフ。The graph which shows the relationship between an initial oxygen concentration and the reached P concentration which is a phosphorus concentration 8 minutes after adding the flux for dephosphorization. 初期炭素濃度と到達P濃度との関係を示すグラフ。The graph which shows the relationship between initial carbon concentration and ultimate P concentration. 初期炭素濃度と脱りん用フラックス添加後8分における脱りん率との関係を示すグラフ。The graph which shows the relationship between an initial carbon concentration and the dephosphorization rate in 8 minutes after the flux for dephosphorization is added. 溶湯処理温度と脱りん率との関係を示すグラフ。The graph which shows the relationship between molten metal processing temperature and a dephosphorization rate. 脱りん用フラックスの成分配合質量比[(CaC2)/{(CaC2)+(CaF2)}×100]と脱りん率との関係を示すグラフ。The graph which shows the relationship between the component mixing mass ratio [(CaC 2 ) / {(CaC 2 ) + (CaF 2 )} × 100] of the dephosphorization flux and the dephosphorization rate. 金属Caをフラックスに対する質量比が0.05及び0.10となる割合で添加したときの到達P濃度及び△C濃度との関係を示すグラフ。The graph which shows the relationship between the reached P density | concentration and (DELTA) C density | concentration when adding metal Ca in the ratio from which the mass ratio with respect to a flux will be 0.05 and 0.10. CaSi合金をフラックスに対する質量比が0.05及び0.10となる割合で添加したときの到達P濃度及び△C濃度との関係を示すグラフ。The graph which shows the relationship with the ultimate P density | concentration and (DELTA) C density | concentration when a CaSi alloy is added in the ratio from which the mass ratio with respect to a flux becomes 0.05 and 0.10.

Claims (2)

炭素濃度が2.0質量%以下、酸素濃度が0.5質量%以下であって、Mnを60質量%以上含有する溶融Mn又はMn合金を、CaF2及びCaC2を合計で80%以上含有し、かつそれらの質量比が(CaC2)/{(CaC2)+(CaF2)}×100=30〜65%であるフラックスを用いて、溶湯温度1350〜1500℃で脱りん処理することを特徴とする、Mn及びMn合金の製造方法。 A molten Mn or Mn alloy having a carbon concentration of 2.0% by mass or less and an oxygen concentration of 0.5% by mass or less and containing Mn of 60% by mass or more, and CaF 2 and CaC 2 in total of 80% or more And dephosphorizing at a melt temperature of 1350-1500 ° C. using a flux whose mass ratio is (CaC 2 ) / {(CaC 2 ) + (CaF 2 )} × 100 = 30-65%. A method for producing Mn and a Mn alloy. 前記フラックスに加えて、金属Ca及びCa合金から選ばれた少なくとも1種の金属Ca源を添加して脱りん処理を行う、請求項1に記載のMn及びMn合金の製造方法。   The method for producing Mn and Mn alloy according to claim 1, wherein in addition to the flux, at least one metal Ca source selected from metal Ca and Ca alloy is added to perform dephosphorization treatment.
JP2008161823A 2008-06-20 2008-06-20 Method for producing Mn alloy Expired - Fee Related JP5266903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161823A JP5266903B2 (en) 2008-06-20 2008-06-20 Method for producing Mn alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161823A JP5266903B2 (en) 2008-06-20 2008-06-20 Method for producing Mn alloy

Publications (2)

Publication Number Publication Date
JP2010001533A JP2010001533A (en) 2010-01-07
JP5266903B2 true JP5266903B2 (en) 2013-08-21

Family

ID=41583478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161823A Expired - Fee Related JP5266903B2 (en) 2008-06-20 2008-06-20 Method for producing Mn alloy

Country Status (1)

Country Link
JP (1) JP5266903B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9871259B2 (en) 2009-12-28 2018-01-16 Posco Method for manufacturing composite ceramic material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5928168B2 (en) * 2012-06-07 2016-06-01 品川リフラクトリーズ株式会社 How to use ladle for collecting ferromanganese slag and ladle for collecting ferromanganese slag
CN105671247B (en) * 2016-03-07 2017-10-27 重庆大学 A kind of secondary refining method of silicomangan liquid powder dephosphorization

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012408B2 (en) * 1976-06-24 1985-04-01 新日本製鐵株式会社 Method for dephosphorizing metals or alloys
JPS6011099B2 (en) * 1981-03-31 1985-03-23 中央電気工業株式会社 Production method of low phosphorus manganese ferroalloy
JPS58100608A (en) * 1981-12-11 1983-06-15 Nippon Steel Corp Dephosphorizing and desulfurizing method for molten high alloy
JPS6267148A (en) * 1985-09-19 1987-03-26 Kobe Steel Ltd Manufacture of low-phosphorous ferromanganese
JPS6274046A (en) * 1985-09-26 1987-04-04 Kobe Steel Ltd Method for decarburizing and dephosphorizing high-carbon ferromanganese

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9871259B2 (en) 2009-12-28 2018-01-16 Posco Method for manufacturing composite ceramic material

Also Published As

Publication number Publication date
JP2010001533A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP2007211298A (en) Method for denitrifying molten steel
JP2013049908A (en) Method for producing high-purity steel by electroslag remelting method
JP2011520040A (en) Production method of extremely low carbon and extremely low phosphorus ferromanganese using ferromanganese slag
KR20080072786A (en) Method and melting system for manufacturing a steel containing high contents of manganese and low contents of carbon
CN107653358A (en) The method of the quick deoxidation of LF refining furnace smelting process
JP6984731B2 (en) How to remove phosphorus from hot metal
JP5266903B2 (en) Method for producing Mn alloy
JP5553167B2 (en) How to remove hot metal
JP5379583B2 (en) Manufacturing method of ultra high purity alloy ingot
JP2010248536A (en) Method for manufacturing high manganese content metal
CN113994015A (en) Method for adding Ca to molten steel
JP5406516B2 (en) Method for producing high nitrogen content stainless steel
US11441211B2 (en) Method for producing alloy steel
JP5326201B2 (en) Method for melting aluminum killed steel
JP2008101232A (en) Method for producing high manganese steel
JP7114734B2 (en) Silicon-based alloys, methods of making same, and uses of such alloys
US5085691A (en) Method of producing general-purpose steel
JP2011084777A (en) Steel-making refining method performed by using electric furnace
KR100718285B1 (en) Method for refining Molten Steel for controlling phosphorus content in Converter
WO2022259806A1 (en) Molten steel denitrification method and steel production method
WO2022259805A1 (en) Molten steel denitrification method and steel production method
KR100224635B1 (en) Slag deoxidation material for high purity steel making
JP5387045B2 (en) Manufacturing method of bearing steel
JP5333423B2 (en) Hot metal dephosphorization method
JPWO2017122536A1 (en) Converter blowing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R151 Written notification of patent or utility model registration

Ref document number: 5266903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees