JPS6012408B2 - Method for dephosphorizing metals or alloys - Google Patents
Method for dephosphorizing metals or alloysInfo
- Publication number
- JPS6012408B2 JPS6012408B2 JP51074852A JP7485276A JPS6012408B2 JP S6012408 B2 JPS6012408 B2 JP S6012408B2 JP 51074852 A JP51074852 A JP 51074852A JP 7485276 A JP7485276 A JP 7485276A JP S6012408 B2 JPS6012408 B2 JP S6012408B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- calcium
- alloy
- alloys
- cac2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Description
【発明の詳細な説明】
本発明はFe,Cr,Mn,Si,Mo,Zr,V,T
a,Nb,W,Niの一種もしくは二種以上からなる金
属又は合金からS,0,Sb等の不純物を除去すると同
時にPを極微量まで除去する方法に関するものである。Detailed Description of the Invention The present invention provides Fe, Cr, Mn, Si, Mo, Zr, V, T
The present invention relates to a method for removing impurities such as S, 0, Sb, etc. from a metal or alloy made of one or more of a, Nb, W, and Ni, and at the same time, removing P to a trace amount.
近年高品位資源の枯渇により、P,S等の有害不純物含
有量の多い低品位資源の使用をよぎなくされつつあり、
かかる低品位資源の使用によって製造される金属又は合
金中のP,Sの含有量は必然的に上昇傾向にある。一方
鋼材の諸特性に及ぼすP,S,Sb等の不純物元素の悪
影響が明らかにされるにつれ、特にステンレス鋼あるい
は超合金鋼、耐熱鋼のごとき合金鋼では上記不純物含有
量の低下が強く要望されるようになっている。従ってこ
れらの不純物含有量の少ない金属又は合金を得るために
は、原料合金製造過程ないいま最終製品の製造過程で上
記不純物を除去することが必要である。金属あるいは合
金のPを除去するために、通常Fe○の高いスラグを使
用して、酸化精錬が実施されている。一方Sの除去は通
常還元精錬によって達成されるので、低燐でしかも低硫
の金属あるいは合金を得るためには少なくとも二工程以
上の精錬工程を経なければならないのが現状である。さ
らにCr,Si,Mn等の酸化されやすい合金元素を含
有する合金ではCr,Si,Mn等の歩留を低下させず
にPを除去することは困難である。本発明者等は先に一
つの精錬工程で金属あるいは合金から酸化されやすい元
素の歩蟹を低下させることなくP,S,Sb等の不純物
を同時にしかも極微量まで除去する方法を発明した(特
鰯昭50−2943袴厭昭50−99143)。In recent years, due to the depletion of high-grade resources, the use of low-grade resources that contain high amounts of harmful impurities such as P and S is being avoided.
The content of P and S in metals or alloys manufactured by using such low-grade resources inevitably tends to increase. On the other hand, as the negative effects of impurity elements such as P, S, and Sb on various properties of steel materials have been revealed, there is a strong demand for reducing the content of impurities, especially in alloy steels such as stainless steel, superalloy steel, and heat-resistant steel. It has become so. Therefore, in order to obtain a metal or alloy with a low content of these impurities, it is necessary to remove the impurities during the process of manufacturing the raw material alloy or the process of manufacturing the final product. In order to remove P from metals or alloys, oxidative refining is usually carried out using slag high in Fe○. On the other hand, since the removal of S is usually accomplished by reduction refining, it is currently necessary to go through at least two or more refining steps in order to obtain a low phosphorus and low sulfur metal or alloy. Furthermore, in alloys containing easily oxidized alloy elements such as Cr, Si, Mn, etc., it is difficult to remove P without reducing the yield of Cr, Si, Mn, etc. The present inventors have previously invented a method for simultaneously removing impurities such as P, S, and Sb to minute amounts from metals or alloys in a single refining process without reducing the rate of oxidizable elements (particularly Sardine Sho 50-2943 Hakama Shou Sho 50-99143).
この方法は非酸化性雰囲気中において、炭素含有量が飽
和炭素溶解濃度未満である溶融金属または合金と、炭化
カルシウムとアルカリ士類金属の弗化物からなるスラグ
とを接触させることによりCaC2→Ca+2〔C〕
の反応によりスラグ相中に金属カルシウムを生成せしめ
この生成せしめた金属カルシウムにより溶融金属相中の
P,Sを除去するものである。This method involves contacting a molten metal or alloy whose carbon content is less than the saturated carbon dissolved concentration with a slag consisting of calcium carbide and alkali metal fluorides in a non-oxidizing atmosphere to convert CaC2→Ca+2 [ C] Metallic calcium is produced in the slag phase by the reaction, and P and S in the molten metal phase are removed by the produced metallic calcium.
しかしこの方法では■飽和炭素溶解濃度である溶融金属
の脱リンはできず、■CaC2の分解によって、溶融金
属の炭素濃度が上昇する、■強力な脱リンを行うほどス
ラグ相中のCaの濃度を高める必要があり、そのために
スラグ相中のCaC2濃度を高めるため、溶融金属の炭
素濃度が高くなる、■CaC2の分解反応の後に脱リン
反応が進行するので、脱リン反応が多少おそい等の問題
点がある。本発明者等はこれらの問題点を解決すべく、
さらに種々検討、研究した結果、鋼および合金あるいは
合金原料合金等の効果的な不純物除去法を開発すること
に成功した。すなわち本発明は非酸化性雰囲気でかつ(
酸素ガス、水蒸気等の酸化性ガスの一種もしくは二種以
上の体積百分率の和が8%未満である雰囲気、)非窒化
性雰囲気(雰囲気中の窒素ガスの体積百分率が20%未
満である雰囲気)である雰囲気中で、精錬すべき金属ま
たは合金を、炭化カルシウムとアルカリ士類金属のハラ
ィドを主成分とし、これに金属カルシウム、あるいは金
属カルシウム含有合金(カルシウムシリコン、カルシウ
ムシリコンマンガン、カルシウムシリコン鉄等の金属カ
ルシウム合金)の1種もしくは2種以上を添加してなる
スラグと接触せしめることを特徴とする金属または合金
の同時脱リン、脱硫方法である。However, with this method, it is not possible to dephosphorize the molten metal, which has a saturated dissolved carbon concentration, and ■ the carbon concentration of the molten metal increases due to the decomposition of CaC2. It is necessary to increase the CaC2 concentration in the slag phase, which increases the carbon concentration in the molten metal.■The dephosphorization reaction progresses after the decomposition reaction of CaC2, so the dephosphorization reaction is somewhat slow. There is a problem. In order to solve these problems, the present inventors
As a result of further studies and research, we succeeded in developing an effective method for removing impurities from steel, alloys, and raw material alloys. That is, the present invention is carried out in a non-oxidizing atmosphere and (
An atmosphere in which the sum of the volume percentages of one or more oxidizing gases such as oxygen gas and water vapor is less than 8%, non-nitriding atmosphere (an atmosphere in which the volume percentage of nitrogen gas in the atmosphere is less than 20%) In an atmosphere of This is a method for simultaneous dephosphorization and desulfurization of metals or alloys, which is characterized by bringing the metal or alloy into contact with a slag prepared by adding one or more types of metal calcium alloys.
以下本発明の構成の詳細について説明する。The details of the configuration of the present invention will be explained below.
本発明の技術的思想の根本は溶融スラグ中のCaC2と
Ca、溶融金属相中の〔C〕との関係スラグ相 スラグ
相 金属相CaC2 こ Ca+〔C〕 ……
{1}式によりスラグ中にCaを存在せしめこのCaに
より溶融金属相中のP,S等の不純物を同時に、しかも
徴量まで除去する点にある。飽和炭素溶解濃度である溶
融金属では、CaC2をいくら添加してもm式の反応は
右側に進行せず、溶融スラグ中にはCaが存在しないた
め溶融金属の脱リン、脱硫は起らない。The basis of the technical idea of the present invention is the relationship between CaC2 and Ca in the molten slag and [C] in the molten metal phase.Slag phase Slag phase Metal phase CaC2 Ca+[C]...
The point is that Ca is present in the slag according to the formula {1}, and impurities such as P and S in the molten metal phase are simultaneously removed to a certain extent. In a molten metal with a saturated carbon concentration, no matter how much CaC2 is added, the m-type reaction will not proceed to the right, and since Ca is not present in the molten slag, dephosphorization and desulfurization of the molten metal will not occur.
しかし、該スラグに金属カルシウム、カルシウム合金を
添加することによってカルシウムがスラグ相に楠東され
、他の金属成分は該溶融金属相に溶けこむ。このCaに
よって該熔融金属相中のP,Sを除去することができる
。有効な脱リン、脱硫をはかるためにはスラグ量に対し
て、3%以上のCaが必要である。ここでP,Sを除去
するにあたり、スラグ相に存在するCaの濃度は高いほ
ど有利であるが、あまり高すぎるとCaの蒸発がはげし
くなりCaの有効利用ができない。さらに溶融金属相中
のCと反応してCaC2を生成し、脱リン、脱硫に関与
しなくなる。従って、Caの有効利用をはかり効果的な
脱リン、脱硫を行うために、スラグに添加されるCa濃
度は50%(重量百分率)が上限である。一方ただ単に
金属カルシウム、カルシウム合金を添加してもCaC2
がないと【1)式の反応は左側に進行し、Caが溶融金
属相中のCと反応してCaC2となり、Caが減少し、
有効なCaの利用がはかれず脱リン、脱硫ができない。
このためCaの有効な利用をはかるためには相応のCa
C2をあらかじめスラグに含有させる必要があり、すく
なくても30%以上含有させなければならない。一方飽
和炭素溶解濃度未満である溶融金属の脱リンを強力に行
うためには、スラグのCaの濃度を高める目的でスラグ
のCaC2の濃度を高める必要があり、その結果‘1}
式の反応は右側に進行し、溶融金属の〔C〕%が上昇す
る。この溶融金属相中の〔C〕%の増加をある一定限度
におさえるか、あるいは全く〔C〕%の増加をおさえて
脱リンを強力に行うためには、CaC2の濃度をかえず
にスラグのCaの濃度だけを必要に応じて高めることに
よってその目的を達成することができる。そのためには
金属カルシウムあるいはカルシウム含有合金を該スラグ
に添加すればよい。この場合でも有効な脱リン、脱硫を
行なわしめかつ溶融金属の〔C〕%を増加を防止するた
めに、Caは3%以上スラグに含有させる必要がある。However, by adding metallic calcium or a calcium alloy to the slag, calcium is absorbed into the slag phase, and other metal components are dissolved into the molten metal phase. This Ca can remove P and S in the molten metal phase. In order to achieve effective dephosphorization and desulfurization, 3% or more of Ca is required based on the amount of slag. In removing P and S, the higher the concentration of Ca present in the slag phase, the more advantageous it is, but if it is too high, evaporation of Ca will be rapid and Ca cannot be used effectively. Furthermore, it reacts with C in the molten metal phase to produce CaC2, and does not participate in dephosphorization and desulfurization. Therefore, in order to effectively utilize Ca and perform effective dephosphorization and desulfurization, the upper limit of the Ca concentration added to the slag is 50% (weight percentage). On the other hand, even if metallic calcium or calcium alloy is simply added, CaC2
Without this, the reaction in equation [1] proceeds to the left, Ca reacts with C in the molten metal phase to form CaC2, and Ca decreases.
Effective use of Ca cannot be achieved, and dephosphorization and desulfurization cannot be performed.
Therefore, in order to effectively utilize Ca, it is necessary to
It is necessary to contain C2 in the slag in advance, and the content must be at least 30%. On the other hand, in order to strongly dephosphorize molten metal whose concentration is less than the saturated carbon concentration, it is necessary to increase the concentration of CaC2 in the slag in order to increase the concentration of Ca in the slag.
The reaction in the equation proceeds to the right and the [C]% of the molten metal increases. In order to suppress the increase in [C]% in this molten metal phase to a certain limit, or to suppress the increase in [C]% at all and perform strong dephosphorization, it is necessary to increase the slag concentration without changing the CaC2 concentration. This objective can be achieved by increasing only the concentration of Ca as required. For this purpose, metallic calcium or a calcium-containing alloy may be added to the slag. Even in this case, in order to carry out effective dephosphorization and desulfurization and to prevent the [C]% of the molten metal from increasing, the slag must contain Ca in an amount of 3% or more.
CaC2がスラグに存在していないと【1ー式の反応が
左側に進行し添加したCaが有効に利用されないためC
aC2は3%以上スラグに含有させる必要がある。Ca
C2、金属カルシウム、カルシウム含有合金とともに必
要に応じて用いられるスラグ基剤は溶融金属相と接触す
る温度で化学的に安定でかつCaならびにCaC2と共
存し安定にスラグ相にCaを橘東しておくものである必
要がある。If CaC2 is not present in the slag, the reaction of equation 1 will proceed to the left and the added Ca will not be used effectively, so the C
It is necessary to include aC2 in the slag in an amount of 3% or more. Ca
The slag base used as necessary with C2, metallic calcium, and calcium-containing alloys is chemically stable at the temperature at which it comes into contact with the molten metal phase, and coexists with Ca and CaC2, stably adding Ca to the slag phase. It needs to be something to keep.
さらにCaと溶融金属相中のP,Sとの反応生成物を安
定にスラグ相に橋東するものでなければならない。これ
らの要求をみたすスラグ基剤を種々検討した結果アルカ
リ士類金属ハラィドが最適であることがわかった。なか
でも高温における化学的安定性、価格等の面からみて、
CaF2が最も優れている。このスラグ基剤は上記理由
により10%以上含有させなければならない。一方酸化
ケイ素、酸化アルミニウム、酸化鉄、酸化マンガン等の
酸化性酸化物はできるだけ少ない方が好ましく。スラグ
の原料からやむをえず混入する部分も含めて20%以下
におさえるべきである。これ等の酸化性酸化物がスラグ
に多量に存在すると、スラグ中のCaC2およびCaが
これ等の酸化物と反応して失なわれてしまい、スラグの
脱リン能力を失なわしめる。しかし酸化カルシウムはス
ラグの融点および流動性を調整するために必要に応じて
添加してもよいが、スラグの脱リン能を阻害しないため
に、添加量は50%を上限すべきである。本発明のスラ
グを用いて合金あるいは合金を脱リン処理するにあたり
、処理中の雰囲気の影響は重大である。Furthermore, the reaction product between Ca and P and S in the molten metal phase must be stably transferred to the slag phase. After examining various slag base materials that meet these requirements, it was found that alkali metal halides are most suitable. Among them, from the viewpoint of chemical stability at high temperatures, price, etc.
CaF2 is the best. This slag base must be contained in an amount of 10% or more for the above reasons. On the other hand, it is preferable that the amount of oxidizing oxides such as silicon oxide, aluminum oxide, iron oxide, and manganese oxide be as small as possible. It should be kept to 20% or less, including the portion unavoidably mixed in from the slag raw material. When these oxidizing oxides are present in large amounts in the slag, CaC2 and Ca in the slag react with these oxides and are lost, causing the slag to lose its dephosphorizing ability. However, although calcium oxide may be added as necessary to adjust the melting point and fluidity of the slag, the amount added should be limited to 50% so as not to inhibit the dephosphorizing ability of the slag. When dephosphorizing an alloy or an alloy using the slag of the present invention, the influence of the atmosphere during the treatment is significant.
酸素ガス、水蒸気等の酸化性ガス、窒素ガス雰囲気中で
は、添加したCaC2およびCa*が酸化されて失なわ
れたり、窒化されて失なわれ、上記金属等の脱リンに有
効に利用されない。従って、精錬中の雰囲気は酸化性ガ
スは8%以下、窒素ガスは20%以下に制御しなければ
ならない。本発明のスラグを用いて金属あるし、合金を
脱リン処理するにあたり、反応速度および反応効率を高
めるためにすでに公知の蝿梓方法を用いてもよい。In an atmosphere of an oxidizing gas such as oxygen gas or water vapor, or nitrogen gas, the added CaC2 and Ca* are oxidized and lost, or nitrided and lost, and are not effectively utilized for dephosphorizing the above-mentioned metals. Therefore, the atmosphere during refining must be controlled to contain 8% or less oxidizing gas and 20% or less nitrogen gas. When dephosphorizing metals or alloys using the slag of the present invention, the already known Hazusa method may be used in order to increase the reaction rate and reaction efficiency.
たとえば機械的な澄梓、スラグの全部あるいはスラグの
構成成分の一種もしくは二種以上をィンジェクションす
る縄拝などが有効である。実施例 1誘導熔解炉の精錬
容器内で溶解した約100k9の炭素飽和溶解濃度の下
記成分の溶融合金に本発明のスラグ5k9を添加して、
アルゴン雰囲気中で精錬し第1表に示す結果を得た。For example, mechanical slag and rope injection that inject all of the slag or one or more of the constituent components of slag are effective. Example 1 The slag 5k9 of the present invention was added to a molten alloy having the following components and having a carbon saturation dissolved concentration of about 100k9, which was melted in a refining vessel of an induction melting furnace.
The results shown in Table 1 were obtained by refining in an argon atmosphere.
第 1 表
単位は重量隊)
○aSiとしての○a:カルシウムシリコン合金を配合
した時の配合スラグ中のoa燐スラグの原料は、粒状C
aC2(純度85%、残りはほとんどCa○である)、
粉状CaF2(純度聡%)、粒状金属カルシウム(純度
99.9%)、粒状Ca○(純度戦%)、粒状カルシウ
ムシリコン(40%Ca−55%Sj)である。Table 1: Units are weight unit) ○a as Si: OA in the blended slag when calcium silicon alloy is blended The raw material of the phosphorus slag is granular C
aC2 (purity 85%, the rest is mostly Ca○),
They are powdered CaF2 (purity %), granular metallic calcium (purity 99.9%), granular Ca○ (purity %), and granular calcium silicon (40%Ca-55%Sj).
実施例 2
誘導溶解炉の精錬容器内で溶解した約100k9の炭素
飽和溶解濃度未満の下記成分の溶融合金に本発明のスラ
グ5kgを添加して、アルゴン雰囲気中で精錬し、第2
表に示す結果を得た。Example 2 5 kg of the slag of the present invention was added to a molten alloy of the following components having a carbon saturation dissolved concentration of less than about 100k9, which was melted in a refining container of an induction melting furnace, and was refined in an argon atmosphere.
The results shown in the table were obtained.
実験aでは脱IJン、脱硫が実行できるが溶融合金中の
炭素濃度は増加しているが、本発明のスラグを用いた実
験b、実験cにおいては溶融合金中の炭素濃度は増加せ
ずに、脱リン脱硫を実行することができる。In experiment a, de-IJ and desulfurization can be carried out, but the carbon concentration in the molten alloy increases, but in experiments b and c using the slag of the present invention, the carbon concentration in the molten alloy does not increase. , dephosphorization and desulfurization can be performed.
スラグの原料は粒状CaC2(純度85%、残分はほと
んどCa○である)、粉状CaF2(純度98%)、粒
状金属カルシウム(純度99.9%)、粒状カルシウム
シリコン(40%Ca−55%Si)である。第 2
表
単位は重量(孫)The raw materials for slag are granular CaC2 (purity 85%, the remainder is mostly Ca○), powdered CaF2 (purity 98%), granular metallic calcium (99.9% purity), granular calcium silicon (40% Ca-55). %Si). 2nd
Table unit is weight (grandchild)
Claims (1)
金属または合金を、炭化カルシウムとアルカリ土類金属
のハライドを主成分とし、これに金属カルシウム、カル
シウムシリコン、カルシウムシリコンマンガン等のカル
シウム含有金属の1種もしくは2種以上を添加してなる
スラグと接触せしめて脱リン処理するにあたり、該スラ
グに添加する上記カルシウム含有金属のカルシウム濃度
として該スラグの3〜50%添加したスラグを用いるこ
とを特徴とする金属または合金の脱リン方法。1 In a non-oxidizing, non-nitriding atmosphere, the metal or alloy to be dephosphorized is mainly composed of calcium carbide and alkaline earth metal halides, and calcium-containing metals such as metallic calcium, calcium silicon, calcium silicon manganese, etc. When dephosphorizing the slag by contacting it with the slag to which one or more of the following are added, it is recommended to use a slag to which the calcium concentration of the calcium-containing metal added is 3 to 50% of the slag. Characteristic method for dephosphorizing metals or alloys.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51074852A JPS6012408B2 (en) | 1976-06-24 | 1976-06-24 | Method for dephosphorizing metals or alloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51074852A JPS6012408B2 (en) | 1976-06-24 | 1976-06-24 | Method for dephosphorizing metals or alloys |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS531104A JPS531104A (en) | 1978-01-07 |
JPS6012408B2 true JPS6012408B2 (en) | 1985-04-01 |
Family
ID=13559253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51074852A Expired JPS6012408B2 (en) | 1976-06-24 | 1976-06-24 | Method for dephosphorizing metals or alloys |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6012408B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55134123A (en) * | 1979-04-04 | 1980-10-18 | Japan Steel Works Ltd:The | Dephosphorization method of high chromium content molten steel |
JPS5680928A (en) * | 1979-12-05 | 1981-07-02 | Nec Corp | Level change-over circuit |
CN100449153C (en) * | 2004-09-27 | 2009-01-07 | 株式会社Tbk | Fluid pump |
JP5266903B2 (en) * | 2008-06-20 | 2013-08-21 | 新日鐵住金株式会社 | Method for producing Mn alloy |
JP5010706B2 (en) * | 2010-04-01 | 2012-08-29 | 三井金属鉱業株式会社 | Tantalum recovery method |
-
1976
- 1976-06-24 JP JP51074852A patent/JPS6012408B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS531104A (en) | 1978-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR850000556B1 (en) | Process for dephorization desulfurization & denitrification-containing pig iron | |
US4363657A (en) | Process for obtaining manganese- and silicon-based alloys by silico-thermal means in a ladle | |
JPS6012408B2 (en) | Method for dephosphorizing metals or alloys | |
US4450004A (en) | Dephosphorization and desulfurization method for molten iron alloy containing chromium | |
JPS5934767B2 (en) | Method for removing impurities from metals or alloys | |
JPS6011099B2 (en) | Production method of low phosphorus manganese ferroalloy | |
JPS62158835A (en) | Refining method for al-li alloy | |
JP2607337B2 (en) | Method for dephosphorizing chromium-containing steel | |
US4657588A (en) | Method of keeping inductor spouts, downgates and outlet channels free of deposits in connection with a cast iron melt | |
JPS6031885B2 (en) | Dephosphorization method for high chromium molten steel | |
SU1110807A1 (en) | Slag forming mix for producing alloyed cast iron | |
SU799905A1 (en) | Composition for treating molten steel | |
SU1560569A1 (en) | Method of melting manganese-containing steel | |
JPS6067629A (en) | Reduction of impurity elements | |
SU1661221A1 (en) | Method of producing low-silicon nickel superalloy additives | |
JPS5934768B2 (en) | Method for refining molten metal or alloy | |
SU557119A1 (en) | Method of smelting siliceous ferroalloys | |
JPS62240744A (en) | Refining method for chromium-containing, high-nickel alloy | |
SU765372A1 (en) | Method of steel production | |
JPS586944A (en) | Dephosphorizing method | |
SU432203A1 (en) | SLAG FOR METAL REFINING | |
JPH0613431B2 (en) | Refining refractory material and refining method | |
SU631542A1 (en) | Solid oxidizing mixture for refining alloys outside furnace | |
SU1093709A1 (en) | Slag forming mix | |
SU1617003A1 (en) | Pulverulent mixture for dephosphorizing chromium-containing melts |