JP2001105108A - Method for continuously producing cast slab - Google Patents

Method for continuously producing cast slab

Info

Publication number
JP2001105108A
JP2001105108A JP28627199A JP28627199A JP2001105108A JP 2001105108 A JP2001105108 A JP 2001105108A JP 28627199 A JP28627199 A JP 28627199A JP 28627199 A JP28627199 A JP 28627199A JP 2001105108 A JP2001105108 A JP 2001105108A
Authority
JP
Japan
Prior art keywords
immersion nozzle
molten steel
solute element
magnetic field
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28627199A
Other languages
Japanese (ja)
Inventor
Hiromitsu Shibata
浩光 柴田
Yasuo Kishimoto
康夫 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28627199A priority Critical patent/JP2001105108A/en
Publication of JP2001105108A publication Critical patent/JP2001105108A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably produce a multi-layer cast slab capable of easily controlling the supply of molten steel and having no unevenness of solute element concentration over the width direction on the surface layer part of the cast slab. SOLUTION: When the molten steel is poured by using a single immersion nozzle in the state that DC magnetic field is impressed over the whole width of the cast slab in the thickness direction of the cast slab at the position aparted dounwardly in a fixed distance from the molten steel surface level in a continuous casting mold, the immersion nozzle is arranged at the position satisfying both of the following formulae (1) and (2) and also, a specified solute element is added into the position satisfying both of the following formulae (3) and (4). h<(1/2).w.tanθ...(1), 0<h<=0.3...(2), 0<z<=0.5...(3), -0.3<=y<=0.3...(4). Wherein, θis the downward angle ( deg.) of the spouting hole in the immersion nozzle, w is the length (m) in the width direction of the mold, h is the downward distance (m) from the lower end of the spouting hole in the immersion nozzle to the center in the height of a magnetic pole, z is the distance (m) from the adding position of the solute element to the center in the height of the magnetic pole and y is the distance (m) in the horizontal direction from the spouting hole in the immersion nozzle to the adding position of the solute element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳片の内部と比較
して表層部における特定の溶質元素の濃度が高い、傾斜
組成を有する連続鋳造鋳片の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a continuous cast slab having a gradient composition in which the concentration of a specific solute element is higher in a surface layer portion than in the inside of the slab.

【0002】[0002]

【従来の技術】従来から、成分組成が表層部と内部で異
なる鋳片を連続鋳造によって製造する方法が種々提案さ
れている。例えば、特公平3−20295 号公報には、連鋳
鋳型内の湯面レベルから一定の距離だけ離れた下方位置
で、鋳造方向と垂直な方向に鋳片全幅にわたって直流磁
束を付与し、その直流磁束によって形成される静磁場帯
を境界としてその上下に異なる金属を供給することによ
り、複層鋳片を得る方法が記載されている。
2. Description of the Related Art Conventionally, various methods have been proposed for producing a slab having a composition different from that of a surface layer in a surface layer portion by continuous casting. For example, Japanese Patent Publication No. 3-20295 discloses that a direct magnetic flux is applied over the entire width of a slab in a direction perpendicular to the casting direction at a position below a fixed distance from a molten metal level in a continuous casting mold. A method of obtaining a multilayer slab by supplying different metals above and below a static magnetic field zone formed by a magnetic flux as a boundary is described.

【0003】また、特開平7−51801 号公報には、連続
鋳造用の鋳型内へ溶鋼を気体と共に垂直方向に注入し、
この溶鋼注入位置より上部で鋳型内の幅方向全幅で直流
磁場を付与して溶鋼の上昇流を減速し、該直流磁場の付
与位置より上部の溶鋼中に該溶鋼とは異種の元素を添加
して、上記注入気体の浮上撹拌により上部の溶鋼を合金
溶鋼として合金鋼の表層を鋼表面に形成することからな
る複層鋼板の製造方法が記載されている。
[0003] Japanese Patent Application Laid-Open No. Hei 7-51801 discloses that molten steel is vertically injected together with gas into a mold for continuous casting.
Above this molten steel injection position, a DC magnetic field is applied over the entire width in the mold to reduce the ascending flow of the molten steel, and elements different from the molten steel are added to the molten steel above the DC magnetic field application position. Further, there is described a method for producing a multi-layered steel sheet, which comprises forming a surface layer of an alloy steel on a steel surface by using the molten steel at an upper portion as an alloy molten steel by floating stirring of the injected gas.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特公平
3−20295 号公報に記載の方法では、鋳片の表層用溶鋼
と内部用溶鋼を2基の別々のタンディッシュに確保し
て、磁場帯上下部での凝固速度に応じた溶鋼量を各々の
タンディッシュから独立に供給するという極めて難しい
制御を行う必要があったため、安定した製造が困難で、
その結果として、製品歩留りが低下するという問題があ
った。また、特開平7−51801 号公報に記載の製造方法
では、タンディッシュからの溶鋼は磁場帯下部のみに鋳
型内湯面レベルを一定に維持するように供給され、磁場
帯上部には供給されないため、磁場帯上部での凝固量に
対する不足分は磁場帯下部から自然に流入することにな
り、前記のような問題は発生しないものの、この場合、
磁場帯下部から上部への溶鋼流は直流磁場の影響により
幅方向にわたってほぼ均一に流入するため、気泡の撹拌
効果だけでは溶質元素を添加した部位とそこから離れた
部位での極端な濃度差を解消できないという問題があっ
た。
However, in the method described in Japanese Patent Publication No. 3-20295, the molten steel for the surface layer and the molten steel for the inside of the slab are secured in two separate tundishes, and the upper and lower magnetic zones are secured. Because it was necessary to perform extremely difficult control of independently supplying the amount of molten steel according to the solidification rate in each part from each tundish, stable production was difficult,
As a result, there is a problem that the product yield is reduced. Further, in the production method described in JP-A-7-51801, molten steel from the tundish is supplied only to the lower part of the magnetic field zone so as to maintain the level of the molten metal in the mold constant, and is not supplied to the upper part of the magnetic field zone. The deficiency with respect to the coagulation amount at the upper part of the magnetic field zone naturally flows from the lower part of the magnetic field zone, and the above-mentioned problem does not occur.
Since the molten steel flow from the lower part to the upper part of the magnetic field zone flows almost uniformly in the width direction due to the influence of the DC magnetic field, an extreme difference in concentration between the part where the solute element is added and the part distant therefrom can be obtained only by the bubble stirring effect. There was a problem that it could not be solved.

【0005】本発明は、前記の諸問題を有利に解決する
もので、鋳片表層部における溶質元素の濃度を簡便かつ
適切に調整することができる連続鋳造鋳片の製造方法を
提案することを目的とする。
The present invention advantageously solves the above-mentioned problems, and proposes a method for producing a continuous cast slab that can easily and appropriately adjust the concentration of solute elements in the surface layer of the slab. Aim.

【0006】[0006]

【課題解決のための手段】すなわち、本発明の要旨構成
は次のとおりである。 1.溶融金属の連続鋳造に際し、連鋳鋳型内の湯面レベ
ルから鋳造方向に一定の距離下方の位置において、鋳片
の厚みを横切る向きに鋳片全幅にわたり直流磁場帯を印
加した状態で、該直流磁場帯内または該直流磁場帯より
も上部のプールに、単一の浸漬ノズルを用いて溶鋼を注
入するものとし、その際、該浸漬ノズルを下記(1), (2)
式を共に満足する位置に配置すると共に、該直流磁場帯
内または該直流磁場帯よりも上部の溶鋼に特定の溶質元
素を添加することにより、上部プール内の溶鋼について
該溶質元素の濃度を高め、もって鋳片表層部の溶質元素
濃度を調整することを特徴とする、連続鋳造鋳片の製造
方法である。 記 h < (1/2)・w・ tanθ --- (1) 0 <h≦ 0.3 --- (2) ここで、θ:浸漬ノズル吐出孔の下向きの角度(°) w:鋳型の幅方向の長さ(m) h:浸漬ノズル吐出孔の下端から磁極の高さ中心までの
距離(m)
That is, the gist of the present invention is as follows. 1. At the time of continuous casting of the molten metal, at a position below a certain level in the casting direction from the level of the molten metal in the continuous casting mold, while applying a DC magnetic field band across the entire width of the slab in a direction across the thickness of the slab, the DC Into the pool in the magnetic field zone or in the pool above the DC magnetic field zone, molten steel shall be injected using a single immersion nozzle, and at this time, the immersion nozzle is set to the following (1), (2)
By arranging in a position satisfying both the expressions and adding a specific solute element to the molten steel in or above the DC magnetic field band, the concentration of the solute element in the molten steel in the upper pool is increased. A method for producing a continuously cast slab, which comprises adjusting the solute element concentration in the surface layer of the slab. Note h <(1/2) · w · tan θ --- (1) 0 <h ≦ 0.3 --- (2) where θ: downward angle (°) of the immersion nozzle discharge hole w: width of the mold Length in the direction (m) h: Distance from the lower end of the immersion nozzle discharge hole to the center of height of the magnetic pole (m)

【0007】2.上記1において、溶質元素の添加位置
を、溶鋼の上昇流中とすることを特徴とする、連続鋳造
鋳片の製造方法。
[0007] 2. In the above 1, the method for producing a continuously cast slab, characterized in that the position where the solute element is added is in the upward flow of the molten steel.

【0008】3.上記1または2において、溶質元素の
添加位置を、下記(3), (4)式を共に満足する位置とする
ことを特徴とする、連続鋳造鋳片の製造方法。 記 0 <z≦ 0.5 --- (3) −0.3 ≦y≦ 0.3 --- (4) ここで、z:溶質元素の添加位置から磁極の高さ中心ま
での距離(m) y:浸漬ノズル吐出孔から溶質元素の添加位置までの水
平方向の距離(m)
[0008] 3. In the above 1 or 2, the method for producing a continuous cast slab is characterized in that the position where the solute element is added is a position that satisfies both the following expressions (3) and (4). 0 <z ≦ 0.5 --- (3) -0.3 ≤y ≦ 0.3 --- (4) where, z: distance (m) from the addition position of the solute element to the center of height of the magnetic pole y: immersion nozzle Horizontal distance (m) from discharge hole to solute element addition position

【0009】[0009]

【発明の実施の形態】以下、本発明を図面に従い具体的
に説明する。図1に、本発明に従う溶鋼の注入要領の一
例を模式で示す。この例は、浸漬ノズルとして、単孔の
ストレートノズルを用いた場合で、溶鋼がほぼ鉛直方向
に供給される場合である。図中、番号1は鋳型、2は浸
漬ノズル、3は磁極であり、この磁極3により鋳片の厚
み方向に鋳片全幅にわたって直流磁場帯を印加できるよ
うになっている。そして4で磁極の高さ中心を示す。ま
た、5は浸漬ノズル2の吐出孔で、6で浸漬ノズル2か
らの噴流を、7で直流磁場帯の下部プールから上部プー
ルヘの逆流を示す。8は溶質元素(ワイヤー)、9は溶
質元素8の添加位置、そして10が凝固殻である。なお、
図中wは鋳型の幅、θは浸漬ノズル吐出孔の角度(水平
方向を0とした下向きの角度)、hは浸漬ノズル吐出孔
下端から磁極の高さ中心までの距離、zは溶質元素の添
加位置から磁極の高さ中心までの距離、yは浸漬ノズル
吐出孔から溶質元素の添加位置までの水平方向の距離を
表す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. FIG. 1 schematically shows an example of an injection procedure of molten steel according to the present invention. In this example, a single-hole straight nozzle is used as the immersion nozzle, and the molten steel is supplied in a substantially vertical direction. In the figure, reference numeral 1 denotes a mold, reference numeral 2 denotes an immersion nozzle, and reference numeral 3 denotes a magnetic pole. The magnetic pole 3 allows a DC magnetic field zone to be applied in the thickness direction of the slab over the entire width of the slab. Reference numeral 4 indicates the height center of the magnetic pole. Reference numeral 5 denotes a discharge hole of the immersion nozzle 2, 6 denotes a jet from the immersion nozzle 2, and 7 denotes a reverse flow from the lower pool to the upper pool in the DC magnetic field band. 8 is a solute element (wire), 9 is a position where the solute element 8 is added, and 10 is a solidified shell. In addition,
In the drawing, w is the width of the mold, θ is the angle of the immersion nozzle discharge hole (a downward angle with the horizontal direction being 0), h is the distance from the lower end of the immersion nozzle discharge hole to the center of the magnetic pole height, and z is the solute element. The distance from the addition position to the center of the height of the magnetic pole, and y represents the horizontal distance from the discharge hole of the immersion nozzle to the addition position of the solute element.

【0010】さて、図1に示したところにおいて、、浸
漬ノズル2から供給された溶鋼噴流6は殆どが一旦磁場
帯の下部プールに流入するが、上部プールヘの溶鋼の供
給源が存在しないため、一旦下部プールに流入した溶鋼
のうち必要な分だけは再度上部プールに逆流することに
なる。従って、本発明では、特開平7−51801 号公報に
記載の方法と同じように、溶鋼の供給速度の制御に関す
る問題はない。
As shown in FIG. 1, most of the molten steel jet 6 supplied from the immersion nozzle 2 once flows into the lower pool of the magnetic field zone. However, since there is no supply source of molten steel to the upper pool, Only the necessary part of the molten steel that once flows into the lower pool flows back to the upper pool again. Therefore, in the present invention, as in the method described in Japanese Patent Application Laid-Open No. Hei 7-51801, there is no problem regarding the control of the supply speed of molten steel.

【0011】また、本発明では、浸漬ノズル2から供給
される溶鋼噴流6は、直流磁場帯を横切るため、噴流6
の周りには図2に示すような誘導電流11が生じる。その
結果、この誘導電流11と直流磁場との相互作用により、
図3に示すような電磁力12が発生する。このように、噴
流部には、噴流6と逆向きの力いわゆる電磁ブレーキ力
が発生するが、かかる誘導電流は噴流部の両脇でも不可
避的に発生するため、両脇においても同様の力が発生
し、噴流部の両脇では逆向きの流れが発生し易くなる。
In the present invention, since the molten steel jet 6 supplied from the immersion nozzle 2 crosses the DC magnetic field zone, the jet 6
An induced current 11 as shown in FIG. As a result, due to the interaction between the induced current 11 and the DC magnetic field,
An electromagnetic force 12 as shown in FIG. 3 is generated. In this way, a so-called electromagnetic braking force is generated in the jet portion in a direction opposite to that of the jet 6, but such an induced current is inevitably generated on both sides of the jet portion. And the flow in the opposite direction is likely to occur on both sides of the jet.

【0012】そして、図4 に示すように、結果として前
記した磁場帯下部プールから上部プールヘの溶鋼の流入
は、この噴流部の両脇の部位においてのみ発生すること
になる。比較のため、特開平7−51801 号公報に記載の
方法のように、磁場帯の下部プールに浸漬ノズルを介し
て溶鋼を供給する場合の溶鋼流れについて調べた結果を
図5に示す。同図に示したとおり、この方法では、ノズ
ルの内部には誘導電流が発生するが、浸漬ノズルによっ
てその電流は遮蔽されるため、逆向きの流れが発生する
ことはない。
As shown in FIG. 4, as a result, the inflow of molten steel from the lower pool to the upper pool in the magnetic field zone occurs only at both sides of the jet part. For comparison, FIG. 5 shows the results of a study on the flow of molten steel when molten steel is supplied to the lower pool in the magnetic field zone through an immersion nozzle as in the method described in Japanese Patent Application Laid-Open No. 7-51801. As shown in the figure, in this method, an induced current is generated inside the nozzle, but the current is shielded by the immersion nozzle, so that no reverse flow occurs.

【0013】このように、本発明では、下部プールから
上部プールヘの溶鋼の流入部位が、噴流部の両脇という
特定の領域に限定されるので、かかる流入部の上部プー
ル側に特定の溶質元素を供給することによって、上部プ
ール側のみへの溶質元素の供給が可能となり、また下部
プールへの溶鋼流の影響により、上部プール内には、図
1中に示したような回転流が発生し撹拌もスムーズにい
くので、上部プール内の溶鋼中における溶質元素の濃度
分布も均一なものとなる。また、ノズルから下方への噴
流は、磁場帯を通過する際に減速するため、内部欠陥の
原因となる介在物の下方への巻き込みも減少し、内部品
質も向上する。
As described above, in the present invention, since the molten steel inflow from the lower pool to the upper pool is limited to a specific region on both sides of the jet, a specific solute element is provided on the upper pool side of the inflow. The supply of solutes enables the supply of solute elements only to the upper pool, and the flow of molten steel to the lower pool generates a rotating flow as shown in FIG. 1 in the upper pool. Since the stirring also proceeds smoothly, the concentration distribution of the solute element in the molten steel in the upper pool becomes uniform. In addition, since the downward jet from the nozzle is decelerated when passing through the magnetic field zone, the entrapment that causes an internal defect is also reduced, and the internal quality is improved.

【0014】上述したとおり、本発明では、浸漬ノズル
からの噴流が拡散する前に磁場帯を貫通させる必要があ
るため、ノズルの位置および吐出角度ならびに磁場の印
加位置を適切に設定することが重要である。そこで、こ
の点について、種々検討した結果、ノズルの位置および
吐出角度と磁場の印加位置について、次の関係を満足さ
せる必要があることが判明した。 h < (1/2)・w・ tanθ --- (1) 0 <h≦ 0.3 --- (2) ここで、θ:浸漬ノズル吐出孔の下向きの角度(°) w:鋳型の幅方向の長さ(m) h:浸漬ノズル吐出孔の下端から磁極の高さ中心までの
距離(m)
As described above, in the present invention, it is necessary to penetrate the magnetic field zone before the jet flow from the immersion nozzle diffuses, so it is important to appropriately set the nozzle position, the discharge angle, and the magnetic field application position. It is. Therefore, as a result of various studies on this point, it has been found that it is necessary to satisfy the following relationship with respect to the position of the nozzle, the discharge angle, and the position where the magnetic field is applied. h <(1/2) · w · tanθ --- (1) 0 <h ≦ 0.3 --- (2) where θ: downward angle (°) of the immersion nozzle discharge hole w: width direction of the mold Length (m) h: Distance (m) from lower end of immersion nozzle discharge hole to center of height of magnetic pole

【0015】また、溶質元素は、下部プールから上部プ
ールヘの溶鋼流入部に的確に添加する必要があることか
ら、溶鋼の上昇流中に添加することが好ましく、さらに
この点について詳しく検討した結果、以下の関係を満足
する条件下で添加することが極めて有効であることが判
明した。 0 <z≦ 0.5 --- (3) −0.3 ≦y≦ 0.3 --- (4) ここで、z:溶質元素の添加位置から磁極の高さ中心ま
での距離(m) y:浸漬ノズル吐出孔から溶質元素の添加位置までの水
平方向の距離(m)
Further, since the solute element needs to be accurately added to the molten steel inflow portion from the lower pool to the upper pool, it is preferable to add the solute element to the ascending flow of the molten steel. It has been found that the addition under the conditions satisfying the following relationship is extremely effective. 0 <z ≦ 0.5 --- (3) −0.3 ≦ y ≦ 0.3 --- (4) where, z: distance (m) from the position where the solute element is added to the center of height of the magnetic pole y: immersion nozzle discharge Horizontal distance from hole to solute element addition position (m)

【0016】そして、上記した (1)〜(4) 式を満足する
条件下で操業を行った場合には、溶質元素が上部プール
のみに均質に添加されて、鋳片の表層部のみ溶質元素の
濃度が高い鋳片を効果的に製造できることが究明された
のである。
When the operation is performed under the conditions satisfying the above equations (1) to (4), the solute element is uniformly added only to the upper pool, and the solute element is added only to the surface layer of the slab. It has been found that a slab having a high concentration of can be effectively produced.

【0017】なお、上記の例では、浸漬ノズルが単孔の
ストレートノズルの場合についてのみ説明したが、本発
明では下部プールから上部プールヘの溶鋼の流入部位を
局所的に発生させることが重要であり、従って図6に示
すように、通常の連続鋳造で用いられるような2孔ノズ
ルなどの場合でも、上記(1), (2)の条件を満足すれば、
所望の局所的な流入部位を生成することが可能である。
さらに、局所的な流入部位の形成効果と、ノズル噴流の
減衰効果をより一層大きくするため、ノズル噴出孔の位
置は磁極中心から上方に配置することが好ましい。
In the above example, only the case where the immersion nozzle is a single-hole straight nozzle has been described. However, in the present invention, it is important to locally generate a molten steel inflow portion from the lower pool to the upper pool. Therefore, as shown in FIG. 6, even in the case of a two-hole nozzle or the like used in normal continuous casting, if the conditions (1) and (2) are satisfied,
It is possible to create the desired local inflow site.
Further, in order to further increase the effect of locally forming the inflow portion and the effect of damping the nozzle jet, the nozzle outlet is preferably located above the center of the magnetic pole.

【0018】また、印加磁場の強さについては、あまり
に小さいと、磁場による制動効果が弱くなって、上部プ
ールと下部プールの溶鋼が混合するおそれが生じ、一
方、強すぎると上部プール内への流入が強くなり過ぎ、
必要以上の溶鋼が上部プールに供給されることになるた
め、結果として、該流入位置から離れた部位において上
部プールの溶鋼が流出するおそれがあるので、印加磁場
は、上部プールと下部プールの溶鋼の混合や合金元素の
均一溶解不良が発生しない、適切な強さとすることが重
要である。また、同様に、ノズルに注入されるArガスの
流量が多すぎると、上部プールへの流入が強くなりすぎ
るため、Arガス流量は 20 l/min 以下とすることが望ま
しい。
If the strength of the applied magnetic field is too small, the braking effect by the magnetic field is weakened, and the molten steel in the upper pool and the lower pool may be mixed. The inflow is too strong,
Unnecessary molten steel is supplied to the upper pool, and as a result, the molten steel in the upper pool may flow out at a position distant from the inflow position. It is important to have an appropriate strength that does not cause mixing of alloying or poor dissolution of alloying elements. Similarly, if the flow rate of the Ar gas injected into the nozzle is too large, the flow into the upper pool becomes too strong. Therefore, the Ar gas flow rate is desirably 20 l / min or less.

【0019】さらに、印加する直流磁場帯の幅(高さ方
向)については、あまりに小さいと制動効果が十分でな
く、一方あまりに大きいと磁場を発生させるのに必要な
電源容量あるいはコイルサイズが大きなものとなり、設
備コストが増大するので、磁極の高さ方向の幅で 0.1〜
0.5 m程度とするのが好適である。
Regarding the width (height direction) of the applied DC magnetic field band, if it is too small, the braking effect is not sufficient, while if it is too large, the power supply capacity or coil size required to generate the magnetic field is large. Since the equipment cost increases, the width of the magnetic pole in the height direction is 0.1 to
It is preferable that the thickness is about 0.5 m.

【0020】[0020]

【実施例】図1に示した連鋳鋳型を用い、次の条件で、
連続鋳造鋳片を製造した。 ・鋳型の内径寸法 長辺:1.2 m、短辺:0.27m ・直流磁場 印加位置:鋳型内湯面レベルから 0.5m下方(磁極の高
さ中心まで) 印加磁場の強さ:0.3 T ・浸漬ノズル 単孔のストレートノズル(吐出角θ=90°) ノズルの吐出孔から磁極の高さ中心までの距離:0.1 m ・溶質元素(純Niワイヤー) 純Niワイヤーの供給位置:浸漬ノズルの両脇 0.1mの部
位 純Niワイヤーの溶融位置:鋳型内湯面レベルから 0.3〜
0.4 m ・鋳造速度:1.6 m/min
EXAMPLE A continuous casting mold shown in FIG. 1 was used under the following conditions.
Continuous cast slabs were produced.・ Inner diameter of the mold Long side: 1.2 m, Short side: 0.27 m ・ DC magnetic field applied position: 0.5 m below the mold level in the mold (up to the center of the magnetic pole height) Applied magnetic field strength: 0.3 T ・ Immersion nozzle only Hole straight nozzle (discharge angle θ = 90 °) Distance from nozzle discharge hole to center of magnetic pole height: 0.1 m ・ Solute element (pure Ni wire) Supply position of pure Ni wire: 0.1 m on both sides of immersion nozzle Location of melting point of pure Ni wire: 0.3 ~ from mold level in mold
0.4 m ・ Casting speed: 1.6 m / min

【0021】なお、上記の連鋳機における凝固殻の成長
厚d(m)は次式(5) で与えられることが分かってい
る。 d=0.022 ×(L/Vc)0.5 --- (5) ここで、Lは湯面レベルから磁極の高さ中心までの距離
(m)、またVcは鋳造速度(m/min)である。従って、
上記(5)式から、上下プール境界部での凝固殻厚さは12
mm程度であることが分かる。
It is known that the growth thickness d (m) of the solidified shell in the above-mentioned continuous caster is given by the following equation (5). d = 0.022 × (L / Vc) 0.5 --- (5) Here, L is the distance (m) from the level of the molten metal to the center of the height of the magnetic pole, and Vc is the casting speed (m / min). Therefore,
From the above equation (5), the solidified shell thickness at the upper and lower pool boundaries is 12
It turns out that it is about mm.

【0022】さて、上記の条件で連続鋳造した鋳片表層
部の幅方向におけるNiの濃度分布について調べた結果
を、図7に示す。また、比較のため、吐出孔位置が磁極
の高さ中心より下方:0.1 m、吐出角度が下向き90°、
Arガス吹き込み量:3.0 l/min の浸漬ノズルを用い、か
つ上記のNiワイヤーを浸漬ノズルの両脇:0.3 mの部位
に垂直に添加した場合のNi濃度分布について調べた結果
を、図8に示す。図8に示したとおり、従来例の場合に
は、Niの添加位置に近い部分のみのNi濃度しか上昇して
いない。これに対し、本発明に従った場合には、図7に
示したとおり、鋳片の全幅にわたってNiが均一に濃化し
ていることが分かる。
FIG. 7 shows the result of investigation on the Ni concentration distribution in the width direction of the surface layer of the slab continuously cast under the above conditions. For comparison, the position of the discharge hole is below the center of the height of the magnetic pole: 0.1 m, the discharge angle is 90 ° downward,
Fig. 8 shows the results of investigation on the Ni concentration distribution when an immersion nozzle with an Ar gas injection rate of 3.0 l / min was used and the above-mentioned Ni wire was vertically added to a 0.3 m portion on both sides of the immersion nozzle. Show. As shown in FIG. 8, in the case of the conventional example, only the Ni concentration in the portion near the Ni addition position is increased. In contrast, according to the present invention, as shown in FIG. 7, it can be seen that Ni is uniformly concentrated over the entire width of the slab.

【0023】[0023]

【発明の効果】かくして、本発明によれば、一基のタン
ディッシュおよび単一の浸漬ノズルで溶鋼を磁場帯の上
下プールに供給可能であるため、溶鋼供給制御が極めて
容易なだけでなく、鋳片表層部の幅方向にわたる溶質元
素濃度のばらつきがない鋳片を安定して製造することが
でき、ひいては製品の歩留りを格段に向上させることが
できる。
Thus, according to the present invention, it is possible to supply molten steel to the upper and lower pools of the magnetic field zone with one tundish and a single immersion nozzle, so that not only is molten steel supply control extremely easy, A slab having no variation in solute element concentration in the width direction of the slab surface layer can be stably manufactured, and the product yield can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に従う溶鋼の注入要領の一例(単孔ス
トレートノズルを用いた場合)を示す模式図である。
FIG. 1 is a schematic diagram showing an example of a molten steel injection procedure (when a single-hole straight nozzle is used) according to the present invention.

【図2】 ノズルからの溶鋼噴流の周りに発生する誘導
電流の説明図である。
FIG. 2 is an explanatory diagram of an induced current generated around a molten steel jet from a nozzle.

【図3】 ノズルからの溶鋼噴流の周りに発生する電磁
力の説明図である。
FIG. 3 is an explanatory view of an electromagnetic force generated around a molten steel jet from a nozzle.

【図4】 本発明における、磁場帯の下部プールから上
部プールヘの溶鋼の流入分布を示した図である。
FIG. 4 is a diagram showing an inflow distribution of molten steel from a lower pool to an upper pool in a magnetic field zone according to the present invention.

【図5】 比較例における、磁場帯の下部プールから上
部プールヘの溶鋼の流入分布を示した図である。
FIG. 5 is a diagram showing a distribution of molten steel flowing from a lower pool to an upper pool in a magnetic field zone in a comparative example.

【図6】 本発明に従う溶鋼の注入要領の別例(2孔ノ
ズルを用いた場合)を示す模式図である。
FIG. 6 is a schematic view showing another example (in the case of using a two-hole nozzle) of the injection procedure of molten steel according to the present invention.

【図7】 本発明の実施例における、鋳片表層部の幅方
向にわたるNi分布を示した図である。
FIG. 7 is a diagram showing a distribution of Ni in a width direction of a surface layer portion of a slab in an example of the present invention.

【図8】 本発明の比較例における、鋳片表層部の幅方
向にわたるNi分布を示した図である。
FIG. 8 is a view showing a Ni distribution in a width direction of a surface layer portion of a slab in a comparative example of the present invention.

【符号の説明】[Explanation of symbols]

1 鋳型 2 浸漬ノズル 3 磁極 4 磁極の高さ中心 5 浸漬ノズルの注入孔 6 浸漬ノズルからの噴流 7 磁場帯の下部プールから上部プールヘの逆流 8 溶質元素(ワイヤー) 9 溶質元素の添加位置 10 凝固殻 11 誘導電流 12 電磁力 13 磁界の方向 14 ノズルからの噴流の存在範囲 15 ノズルからの噴流の方向 DESCRIPTION OF SYMBOLS 1 Mold 2 Immersion nozzle 3 Magnetic pole 4 Center of magnetic pole height 5 Injection hole of immersion nozzle 6 Jet from immersion nozzle 7 Backflow from lower pool to upper pool of magnetic field zone 8 Solute element (wire) 9 Addition position of solute element 10 Solidification Shell 11 Induced current 12 Electromagnetic force 13 Magnetic field direction 14 Existence range of jet from nozzle 15 Direction of jet from nozzle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 27/02 B22D 27/02 U ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B22D 27/02 B22D 27/02 U

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属の連続鋳造に際し、連鋳鋳型内
の湯面レベルから鋳造方向に一定の距離下方の位置にお
いて、鋳片の厚みを横切る向きに鋳片全幅にわたり直流
磁場帯を印加した状態で、該直流磁場帯内または該直流
磁場帯よりも上部のプールに、単一の浸漬ノズルを用い
て溶鋼を注入するものとし、その際、該浸漬ノズルを下
記(1), (2)式を共に満足する位置に配置すると共に、該
直流磁場帯内または該直流磁場帯よりも上部の溶鋼に特
定の溶質元素を添加することにより、上部プール内の溶
鋼について該溶質元素の濃度を高め、もって鋳片表層部
の溶質元素濃度を調整することを特徴とする、連続鋳造
鋳片の製造方法。 記 h < (1/2)・w・ tanθ --- (1) 0 <h≦ 0.3 --- (2) ここで、θ:浸漬ノズル吐出孔の下向きの角度(°) w:鋳型の幅方向の長さ(m) h:浸漬ノズル吐出孔の下端から磁極の高さ中心までの
距離(m)
In a continuous casting of a molten metal, a DC magnetic field zone is applied across the entire width of a slab in a direction crossing the thickness of the slab at a position below a predetermined level in a casting direction from a molten metal level in a continuous casting mold. In this state, the molten steel shall be injected using a single immersion nozzle into the DC magnetic field zone or into the pool above the DC magnetic field zone, and at this time, the immersion nozzle is set to the following (1), (2) By arranging in a position satisfying both the expressions and adding a specific solute element to the molten steel in or above the DC magnetic field band, the concentration of the solute element in the molten steel in the upper pool is increased. A method for producing a continuously cast slab, comprising adjusting the solute element concentration in the surface layer of the slab. Note h <(1/2) · w · tan θ --- (1) 0 <h ≦ 0.3 --- (2) where θ: downward angle (°) of the immersion nozzle discharge hole w: width of the mold Length in the direction (m) h: Distance from the lower end of the immersion nozzle discharge hole to the center of height of the magnetic pole (m)
【請求項2】 請求項1において、溶質元素の添加位置
を、溶鋼の上昇流中とすることを特徴とする、連続鋳造
鋳片の製造方法。
2. The method for producing a continuous cast slab according to claim 1, wherein the position where the solute element is added is in the upward flow of the molten steel.
【請求項3】 請求項1または2において、溶質元素の
添加位置を、下記(3), (4)式を共に満足する位置とする
ことを特徴とする、連続鋳造鋳片の製造方法。 記 0 <z≦ 0.5 --- (3) −0.3 ≦y≦ 0.3 --- (4) ここで、z:溶質元素の添加位置から磁極の高さ中心ま
での距離(m) y:浸漬ノズル吐出孔から溶質元素の添加位置までの水
平方向の距離(m)
3. The method for producing a continuously cast slab according to claim 1, wherein the addition position of the solute element is a position that satisfies both the following expressions (3) and (4). 0 <z ≦ 0.5 --- (3) -0.3 ≤y ≦ 0.3 --- (4) where, z: distance (m) from the addition position of the solute element to the center of height of the magnetic pole y: immersion nozzle Horizontal distance (m) from discharge hole to solute element addition position
JP28627199A 1999-10-07 1999-10-07 Method for continuously producing cast slab Pending JP2001105108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28627199A JP2001105108A (en) 1999-10-07 1999-10-07 Method for continuously producing cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28627199A JP2001105108A (en) 1999-10-07 1999-10-07 Method for continuously producing cast slab

Publications (1)

Publication Number Publication Date
JP2001105108A true JP2001105108A (en) 2001-04-17

Family

ID=17702213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28627199A Pending JP2001105108A (en) 1999-10-07 1999-10-07 Method for continuously producing cast slab

Country Status (1)

Country Link
JP (1) JP2001105108A (en)

Similar Documents

Publication Publication Date Title
EP2682201A1 (en) Method and apparatus for the continuous casting of aluminium alloys
KR100618362B1 (en) Production method for continuous casting cast billet
JP2001232450A (en) Method for manufacturing continuous cast slab
JP2003117636A (en) Method for controlling fluidity of molten steel in mold and device for forming electromagnetic field for this purpose
JP3988538B2 (en) Manufacturing method of continuous cast slab
JP2001105108A (en) Method for continuously producing cast slab
JP3573096B2 (en) Manufacturing method of continuous cast slab
JP2002001501A (en) Method of manufacturing continuous cast slab
JP6500682B2 (en) Method and apparatus for continuous casting of multi-layer cast slab
JP3617484B2 (en) Manufacturing method of continuous cast slab
RU2419508C2 (en) Mixer
JP2003275849A (en) Method for producing continuously cast slab
JP7389335B2 (en) Method for producing thin slabs
JP4508209B2 (en) Continuous casting method of multi-layer slab and slab
JPH08257692A (en) Production of continuously cast slab and immersion nozzle for continuous casting
JP4765774B2 (en) Continuous casting method for multi-layer slabs
JP3399627B2 (en) Flow control method of molten steel in mold by DC magnetic field
JP2627136B2 (en) Continuous casting method of multilayer slab
JP2003080352A (en) Continuous cast slab manufacturing method
JPH0839196A (en) Production of continuously cast slab
JP2001321907A (en) Method for producing continuous casting slab and continuous casting slab
JPH0464782B2 (en)
JP2002001500A (en) Production method for continuous casting product
JP2003326344A (en) Method for continuously casting cast bloom
JPH07115127B2 (en) Continuous casting method for multi-layer slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051026

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218