JPH0464782B2 - - Google Patents

Info

Publication number
JPH0464782B2
JPH0464782B2 JP28545887A JP28545887A JPH0464782B2 JP H0464782 B2 JPH0464782 B2 JP H0464782B2 JP 28545887 A JP28545887 A JP 28545887A JP 28545887 A JP28545887 A JP 28545887A JP H0464782 B2 JPH0464782 B2 JP H0464782B2
Authority
JP
Japan
Prior art keywords
molten metal
meniscus
surface layer
slab
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP28545887A
Other languages
Japanese (ja)
Other versions
JPH01127158A (en
Inventor
Eiichi Takeuchi
Takeshi Saeki
Hisashi Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28545887A priority Critical patent/JPH01127158A/en
Publication of JPH01127158A publication Critical patent/JPH01127158A/en
Publication of JPH0464782B2 publication Critical patent/JPH0464782B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表層部及び内層部が異種の金属材料
でできた複合金属材料を連続鋳造法によつて溶融
状態の金属から製造する方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a composite metal material whose surface layer and inner layer are made of different metal materials from molten metal by continuous casting. .

(従来の技術) 連続鋳造法によつて複合材料を製造する方法と
して、長さの異なる2本の浸漬ノズルを鋳型内の
溶湯プールに挿入し、鋳造方向に関して異なる位
置に設定したそれぞれの浸漬ノズルの吐出口から
異種の溶融金属を注湯し、これを鋳型内壁を介し
た抜熱および二次冷却帯での抜熱によつて凝固さ
せて鋳片とすることが特公昭44−27361号公報で
開示されている。
(Prior art) As a method for manufacturing composite materials by continuous casting, two immersion nozzles of different lengths are inserted into a molten metal pool in a mold, and each immersion nozzle is set at a different position with respect to the casting direction. Japanese Patent Publication No. 44-27361 discloses that molten metal of different types is poured from the outlet of the mold, and is solidified into a slab by heat removal through the inner wall of the mold and heat removal in a secondary cooling zone. It is disclosed in.

本発明者等も、この形式の複合材料の製造を研
究しており、その一環として内層部及び表層部と
の間の混合を抑制する静磁場を印加することによ
り、明瞭な界面をもつ複合材料が得られることを
見い出し、これを特願昭61−252898号として出願
した。
The present inventors have also been researching the production of this type of composite material, and as part of this research, we have created a composite material with a clear interface by applying a static magnetic field that suppresses mixing between the inner layer and the surface layer. He discovered that this could be obtained and filed his patent application as Japanese Patent Application No. 1983-252898.

第3図は、この出願で提案した連続鋳造方法に
おける鋳型内の状況を説明するための図である。
FIG. 3 is a diagram for explaining the situation inside the mold in the continuous casting method proposed in this application.

鋳型1内に、それぞれ長さの異なる浸漬ノズル
2,3が配置されている。そして、これら浸漬ノ
ズル2,3から鋳型1内の溶湯プール4にそれぞ
れ異種の溶融金属が注湯される。注湯された溶融
金属は、鋳型内壁を介した抜熱および二次冷却帯
での抜熱によつて表層部5及び内層凝固部6とな
る。この内層凝固部6は、鋳片が下降するに従つ
て成長し、中実の複層鋳片となる。このとき、磁
石7によつて、鋳造方向に直交する磁力線が延在
する静磁場が形成され、溶湯プール4内の流れが
制動される。その結果、上下の異種金属が接する
位置での両者の混合が抑制され、表層及び内層の
成分が異なる複層鋳片が得られる。
In the mold 1, immersion nozzles 2 and 3 having different lengths are arranged. Different kinds of molten metals are poured into the molten metal pool 4 in the mold 1 from these immersion nozzles 2 and 3, respectively. The poured molten metal becomes a surface layer portion 5 and an inner layer solidified portion 6 by heat removal through the inner wall of the mold and heat removal in a secondary cooling zone. This inner layer solidified portion 6 grows as the slab descends, and becomes a solid multilayer slab. At this time, the magnet 7 forms a static magnetic field in which lines of magnetic force extend perpendicular to the casting direction, and the flow within the molten metal pool 4 is braked. As a result, mixing of the upper and lower dissimilar metals at the positions where they come into contact is suppressed, and a multilayer slab having different components in the surface layer and the inner layer is obtained.

(発明が解決しようとする問題点) 溶湯プール4内の上部にある溶融金属と下部に
ある溶融金属との混合は、静磁場によつて抑制さ
れる。これによつて、鋳造長さ方向に安定した複
層鋳片が製造できる。しかし、溶湯プール4内に
2本の浸漬ノズル2,3を挿入しなければならな
いため、特にメニスカス付近での湯流れが悪くな
り、メニスカス部で溶融金属の温度が局部的に低
下し、その部分が凝固していわゆるデイツケルと
なつて、凝固シエルの引き抜きに伴つて溶湯プー
ル内へ持ち込まれることが発生する。このような
場合、鋳造した鋳片は複層となつておらず、内層
となる部位に表層用溶融金属の凝固片(デイツケ
ル)が巻き込まれる。当然このような鋳片は複層
金属素材として好ましいものではない。また、上
記のようにデイツケルが内層部に巻き込まれるこ
とが発生しないまでも、溶湯プール4上部での溶
湯流れが不十分な場合には、表層部5に相当する
凝固シエルの発達が鋳型内の周方向で不均一とな
る。
(Problems to be Solved by the Invention) Mixing of the molten metal in the upper part and the molten metal in the lower part of the molten metal pool 4 is suppressed by the static magnetic field. This makes it possible to produce a multilayer slab that is stable in the casting length direction. However, since the two immersion nozzles 2 and 3 must be inserted into the molten metal pool 4, the flow of the molten metal becomes poor, especially near the meniscus, and the temperature of the molten metal locally decreases in that area. When the solidified shell is pulled out, the solidified shell is brought into the molten metal pool. In such a case, the cast slab does not have multiple layers, and solidified pieces of molten metal for the surface layer (deitzkel) are rolled up in the portion that will become the inner layer. Naturally, such slabs are not preferred as multilayer metal materials. Furthermore, even if Deitzkel does not get caught up in the inner layer as described above, if the flow of the molten metal at the upper part of the molten metal pool 4 is insufficient, the solidification shell corresponding to the surface layer 5 will develop in the mold. It becomes non-uniform in the circumferential direction.

このようにして製造された鋳片の表層−内層厚
は周方向で不均一となるため、鋳片を加工して得
られる成品の表層−内層厚比も一定とはならず、
大きな問題となる。
Since the thickness of the surface layer to the inner layer of the slab produced in this way is non-uniform in the circumferential direction, the ratio of the surface layer to inner layer thickness of the product obtained by processing the slab is also not constant.
It becomes a big problem.

そこで、本発明は、このような問題を解消すべ
く案出されたものであり、鋳型内の溶湯プールに
おいて、静磁場帯までに凝固し、形成される表層
に相当する凝固シエルの厚みを鋳片周方向に均一
化するとともに、メニスカス部でのデイツケル発
生を防止することを目的とする。
Therefore, the present invention was devised to solve such problems, and the thickness of the solidified shell corresponding to the surface layer formed by solidifying in the molten metal pool in the mold up to the static magnetic field zone is reduced by casting. The purpose is to make it uniform in one circumferential direction and to prevent Deitzkel from occurring in the meniscus portion.

(問題点を解決するための手段) 本発明の複合金属材料の製造方法は、その目的
を達成するため、連鋳ストランドのメニスカスか
ら一定の距離の位置に形成した静磁場帯を境界と
して上下に注湯された異種の溶融金属を鋳造する
ことによつて複合金属材料を製造するに当り、前
記メニスカスと静磁場帯の間にある溶融金属を水
平方向に撹拌することを特徴とする。
(Means for Solving the Problems) In order to achieve the objective, the method for manufacturing a composite metal material of the present invention has the following objectives: When producing a composite metal material by casting poured molten metals of different types, the method is characterized in that the molten metal between the meniscus and the static magnetic field is stirred horizontally.

(実施例) 以下、図面を参照しながら、実施例により本発
明の特徴を具体的に説明する。
(Example) Hereinafter, the features of the present invention will be specifically explained by examples with reference to the drawings.

第1図は、本発明の実施例における鋳型内の状
況を説明する図である。同図において、第3図に
示した部材等については、同一の符番で指示し、
その説明を省略した。
FIG. 1 is a diagram illustrating the situation inside a mold in an example of the present invention. In the figure, the parts shown in Figure 3 are indicated by the same reference numbers.
The explanation was omitted.

本発明に使用する浸漬ノズル2として、本発明
者等が先に提案した側面が開孔され、底面が閉塞
された浸漬ノズルを介して、溶融金属を注湯する
ことが望ましい。この浸漬ノズル2から注湯され
る溶融金属4aは、開孔部2aから水平流となつ
て溶湯プール4に供給される。
As the immersed nozzle 2 used in the present invention, it is desirable to pour molten metal through the immersed nozzle previously proposed by the present inventors, which has a hole in the side surface and a closed bottom surface. The molten metal 4a poured from the immersion nozzle 2 is supplied to the molten metal pool 4 from the opening 2a in a horizontal flow.

本発明の方法は、同図においてメニスカスから
静磁場帯に至るまでの間に電磁撹拌装置8を設
け、浸漬ノズル2から注湯される溶融金属4aを
水平方向に旋回流動させることにある。即ち、溶
融金属4aの流れがメニスカスからある深さまで
水平方向に撹拌されることによつて、メニスカス
が均一な温度分布となり、表層に相当する凝固シ
エル厚の発達が均一になるとともに、メニスカス
部で溶湯が滞留することによつて発生するデイツ
ケルの発生および溶湯内への巻き込みの問題が解
消される。
The method of the present invention is to provide an electromagnetic stirring device 8 between the meniscus and the static magnetic field zone in the figure, and to make the molten metal 4a poured from the immersion nozzle 2 swirl in the horizontal direction. That is, by stirring the flow of molten metal 4a horizontally to a certain depth from the meniscus, the meniscus becomes uniform in temperature distribution, the thickness of the solidified shell corresponding to the surface layer becomes uniform, and the thickness of the solidified shell at the meniscus becomes uniform. The problems of Deitzkel generation and entrainment in the molten metal caused by stagnation of the molten metal are solved.

なお、溶融金属4aに付与する水平方向の流動
は、たえず一定方向である必要はなく、電磁撹拌
装置8によつて溶融金属4aを周期的に流動方向
を逆向きに変化させても何ら問題はない。溶融金
属4aの水平方向の撹拌流速は、0.1m/sec以上
であれば、デイツケル発生防止に十分な効果が得
られる。撹拌流速0.1m/sec未満の場合には、デ
イツケル発生が認められるとともに、表層の凝固
シエル厚の均一化に効果が見られなかつた。
Note that the horizontal flow applied to the molten metal 4a does not always have to be in a constant direction, and there is no problem even if the direction of the flow of the molten metal 4a is periodically reversed by the electromagnetic stirring device 8. do not have. If the horizontal stirring flow rate of the molten metal 4a is 0.1 m/sec or more, a sufficient effect in preventing Deitzkel generation can be obtained. When the stirring flow rate was less than 0.1 m/sec, Deitzkel generation was observed, and no effect was observed in making the thickness of the solidified shell of the surface layer uniform.

なお、溶融金属4aの水平方向の撹拌流速に特
に上限はないが、撹拌流速1.0m/sec超の場合に
は、撹拌部位で流動に伴つて発生する負偏析帯が
生じやすくなるが、負偏析帯が生じても材質的に
問題のない場合には、1.0m/sec超の撹拌流速で
あつてもよい。
Note that there is no particular upper limit to the horizontal stirring flow rate of the molten metal 4a, but if the stirring flow rate exceeds 1.0 m/sec, negative segregation bands that occur with the flow at the stirring site are likely to occur; If there is no problem with the material even if bands are formed, the stirring flow rate may be more than 1.0 m/sec.

第2図a〜cは、メニスカスと静磁場帯の間に
ある溶融金属4aを電磁撹拌装置8によつて水平
方向に撹拌した本発明の製造方法によつて得られ
た鋳片の横断面における表層−内層境界線の状況
を、水平方向に撹拌しない従来の製造方法によつ
て得られた鋳片のそれと比較して示した図であ
る。なお、本例においては、浸漬ノズル2から
154Kg/分の流量でオーステナイト系ステンレス
鋼組成の溶湯を注湯し、浸漬ノズル3から1346
Kg/分の流量で普通鋼組成の溶湯を注湯し、鋳片
の長辺9の長さ800mm、短辺10の長さ150mm、表
層部5の厚みが10mmの複合材料を製造した。そし
て、静磁場として、3000ガウスの磁束密度を溶湯
プール4に印加した。
Figures 2a to 2c show cross sections of slabs obtained by the manufacturing method of the present invention, in which molten metal 4a between the meniscus and the static magnetic field is horizontally stirred by an electromagnetic stirring device 8. FIG. 3 is a diagram showing the state of the surface layer-inner layer boundary line in comparison with that of a slab obtained by a conventional manufacturing method that does not stir horizontally. In addition, in this example, from the immersion nozzle 2
Molten metal of austenitic stainless steel composition was poured at a flow rate of 154 kg/min, and 1346 kg was poured from immersion nozzle 3.
A molten metal having a composition of ordinary steel was poured at a flow rate of Kg/min to produce a composite material in which the length of the long side 9 of the slab was 800 mm, the length of the short side 10 was 150 mm, and the thickness of the surface layer 5 was 10 mm. Then, a magnetic flux density of 3000 Gauss was applied to the molten metal pool 4 as a static magnetic field.

第2図cから明らかなように、メニスカスと静
磁場帯の間の溶湯を電磁撹拌によつて水平方向に
0.5m/secで撹拌した場合、静磁場帯までに凝固
し形成される表層部のシエルの厚みは均一化され
るとともに、メニスカス部でのデイツケルの発生
がなく、表層部5の厚みは鋳辺周方向のいずれに
おいても10mm±1mmで均一であつた。
As is clear from Figure 2c, the molten metal between the meniscus and the static magnetic field is moved horizontally by electromagnetic stirring.
When stirring at 0.5 m/sec, the thickness of the shell in the surface layer that is solidified and formed by the static magnetic field zone is uniform, no Deitzker occurs in the meniscus, and the thickness of the surface layer 5 is equal to that of the cast edge. It was uniform at 10mm±1mm in any circumferential direction.

また、メニスカスと静磁場帯の間の溶湯を電磁
撹拌によつて水平方向に0.1m/sec、1.0m/sec
で撹拌した場合にも、0.5m/secで撹拌した場合
と同様に、メニスカス部でのデイツケルの発生が
なく、表層部5の厚みは鋳片周方向のいずれにお
いても10mm±1mmで均一であつた。
In addition, the molten metal between the meniscus and the static magnetic field is stirred horizontally at 0.1 m/sec and 1.0 m/sec by electromagnetic stirring.
Similarly to the case of stirring at 0.5 m/sec, when stirring at a speed of 0.5 m/sec, no Deitzkel occurs at the meniscus, and the thickness of the surface layer 5 is uniform at 10 mm ± 1 mm in any circumferential direction of the slab. Ta.

これに対して、メニスカスと静磁場帯の間の溶
湯を水平方向に撹拌しない場合、表層用の溶湯を
供給する浸漬ノズル2からの吐出流がメニスカス
部に作用しないため、注湯を開始してある時間経
過後に、メニスカス部の溶湯温度が不均一とな
り、溶湯の一部で部分的に凝固した片(デイツケ
ル)が生じ、これが初期凝固シエルに補足されて
鋳片内部に持ち込まれ、結果として第2図aのよ
うなプロフイルを呈した。
On the other hand, if the molten metal between the meniscus and the static magnetic field zone is not stirred horizontally, the discharge flow from the submerged nozzle 2 that supplies the molten metal for the surface layer will not act on the meniscus, so pouring will not start. After a certain period of time, the temperature of the molten metal in the meniscus area becomes uneven, and a partially solidified piece (Deitskell) is generated in a part of the molten metal, which is captured by the initial solidification shell and brought into the inside of the slab, resulting in the formation of a It exhibited a profile as shown in Figure 2a.

また、メニスカスと静磁場帯の間の溶湯を電磁
撹拌によつて水平方向に0.05m/secで撹拌した
場合、メニスカス部でのデイツケル発生はごく僅
かであつたが、メニスカス近傍に生じた溶湯温度
が不均一なために、表層に相当する凝固シエルの
発達が鋳片の周方向で不均一となり、結果として
第2図bのようなプロプイルを呈した。
Furthermore, when the molten metal between the meniscus and the static magnetic field was stirred horizontally at 0.05 m/sec by electromagnetic stirring, Deitzkel generation at the meniscus was very small, but the temperature of the molten metal generated near the meniscus As a result, the solidification shell corresponding to the surface layer developed unevenly in the circumferential direction of the slab, resulting in a profile as shown in Figure 2b.

なお、本実施例においては、鋳片の表層金属と
してオーステナイト系ステンレス鋼組成の溶湯、
内層金属として普通鋼組成の溶湯について説明し
たが、本発明の方法はこれに限定されることな
く、例えば、表層金属としてアルミニウム、銅、
高合金鋼を、また内層金属として低炭素鋼、中炭
素鋼等の金属を、複合金属材料の使用目的に応じ
て適宜組み合わせて、デイツケルの発生を防止
し、かつ表層および内層の境界が平坦な、すなわ
ち表層厚みが鋳片方向で均一な鋳片を製造するこ
とができる。
In this example, as the surface metal of the slab, molten metal having an austenitic stainless steel composition,
Although a molten metal having a composition of ordinary steel has been described as the inner layer metal, the method of the present invention is not limited to this, and for example, aluminum, copper, copper, etc. can be used as the surface layer metal.
By appropriately combining high alloy steel and metals such as low carbon steel and medium carbon steel as inner layer metals, depending on the purpose of use of the composite metal material, we can prevent the occurrence of Deitzkel and ensure that the boundary between the surface layer and inner layer is flat. That is, it is possible to produce a slab whose surface layer thickness is uniform in the slab direction.

(発明の効果) 以上に説明したように、本発明においては、側
壁に開孔部をもつ浸漬ノズルを使用し、メニスカ
スと静磁場帯の間の溶湯を電磁撹拌によつて水平
方向に撹拌することによつて、デイツケルの発生
を防止し、かつ表層および内層の境界が平坦な、
すなわち表層厚みが鋳片方向で均一な鋳片を製造
することができる。
(Effects of the Invention) As explained above, in the present invention, a submerged nozzle with an opening in the side wall is used to horizontally stir the molten metal between the meniscus and the static magnetic field by electromagnetic stirring. This prevents the occurrence of deitskells and creates a flat boundary between the surface layer and the inner layer.
That is, it is possible to produce a slab whose surface layer thickness is uniform in the slab direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における鋳型内の状況
を説明する図であり、第2図は本発明の効果を具
体的に表した図である。第3図は、本発明者等が
別途開発した複合金属材料の連続鋳造法を示す。 1……鋳型、2,3……浸漬ノズル、2a……
開孔部、2b……底壁、4……溶湯プール、4a
……上部の溶融金属、4b……下部の溶融金属、
5……表層部、6……内層凝固部、7……磁石、
8……電磁撹拌装置、9……鋳片の長辺、10…
…鋳片の短辺。
FIG. 1 is a diagram illustrating the situation inside a mold in an embodiment of the present invention, and FIG. 2 is a diagram specifically expressing the effects of the present invention. FIG. 3 shows a continuous casting method for composite metal materials that was separately developed by the present inventors. 1... Mold, 2, 3... Immersion nozzle, 2a...
Opening part, 2b... bottom wall, 4... molten metal pool, 4a
...Top molten metal, 4b...Bottom molten metal,
5... Surface layer part, 6... Inner layer solidified part, 7... Magnet,
8...Electromagnetic stirring device, 9...Long side of slab, 10...
...Short side of slab.

Claims (1)

【特許請求の範囲】[Claims] 1 連鋳ストランドのメニスカスから一定の距離
の位置に形成した静磁場帯を境界として上下に注
湯された異種の溶融金属を鋳造することによつて
複合金属材料を製造するに当り、前記メニスカス
と静磁場帯の間にある溶融金属を水平方向に撹拌
することを特徴とする連続鋳造による複合金属材
料の製造方法。
1. In manufacturing a composite metal material by casting dissimilar molten metals poured above and below the static magnetic field zone formed at a certain distance from the meniscus of the continuous casting strand, the meniscus and A method for manufacturing composite metal materials by continuous casting, which is characterized by horizontally stirring molten metal between static magnetic field zones.
JP28545887A 1987-11-13 1987-11-13 Production of composite metal material by continuous casting Granted JPH01127158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28545887A JPH01127158A (en) 1987-11-13 1987-11-13 Production of composite metal material by continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28545887A JPH01127158A (en) 1987-11-13 1987-11-13 Production of composite metal material by continuous casting

Publications (2)

Publication Number Publication Date
JPH01127158A JPH01127158A (en) 1989-05-19
JPH0464782B2 true JPH0464782B2 (en) 1992-10-16

Family

ID=17691783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28545887A Granted JPH01127158A (en) 1987-11-13 1987-11-13 Production of composite metal material by continuous casting

Country Status (1)

Country Link
JP (1) JPH01127158A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309437A (en) * 1991-04-09 1992-11-02 Nippon Steel Corp Continuous casting method for double layer steel
JP6801378B2 (en) * 2016-11-04 2020-12-16 日本製鉄株式会社 Molding device for continuous casting of steel and manufacturing method of surface modified slab using it

Also Published As

Publication number Publication date
JPH01127158A (en) 1989-05-19

Similar Documents

Publication Publication Date Title
WO1999029452A1 (en) Method and apparatus for casting molten metal, and cast piece
EP0265235B1 (en) Continuous casting of composite metal material
JPH0464782B2 (en)
JPH0339780B2 (en)
EP0387006A2 (en) Dual plate strip caster
JPS609553A (en) Stopping down type continuous casting machine
JP2609676B2 (en) Continuous casting method and apparatus for multilayer slab
JPS61266155A (en) Method and apparatus for continuous casting of clad ingot
JPS63188451A (en) Vertical type continuous casting apparatus
JPH01271031A (en) Method for continuously casting double-layer cast slab
JPH03243245A (en) Production of combined steel plate with continuous casting
JPH0669601B2 (en) Horizontal continuous casting machine for multi-layer cast
JP4830240B2 (en) Method and apparatus for continuous casting of steel
JPH0464780B2 (en)
JP3139317B2 (en) Continuous casting mold and continuous casting method using electromagnetic force
JPH0464779B2 (en)
JPH0199748A (en) Copper or copper alloy-made electromagnetic stirring type continuous casting apparatus
Kumar et al. Continuous Casting of Steel and Simulation for Cost Reduction
JP2845706B2 (en) Molding equipment for continuous casting equipment
JPH0464768B2 (en)
JPH0724918B2 (en) Electromagnetic casting machine with vertical streak prevention function for slab surface
JPS61245949A (en) Continuous casting method
JPH07204787A (en) Device for continuously casting metal
JPH03174958A (en) Submerged nozzle for continuous casting
JPH06304704A (en) Method for continuously casting double layer cast billet