JPS61266155A - Method and apparatus for continuous casting of clad ingot - Google Patents

Method and apparatus for continuous casting of clad ingot

Info

Publication number
JPS61266155A
JPS61266155A JP11109285A JP11109285A JPS61266155A JP S61266155 A JPS61266155 A JP S61266155A JP 11109285 A JP11109285 A JP 11109285A JP 11109285 A JP11109285 A JP 11109285A JP S61266155 A JPS61266155 A JP S61266155A
Authority
JP
Japan
Prior art keywords
molten steel
outer shell
mold
core
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11109285A
Other languages
Japanese (ja)
Inventor
Akitoshi Teraguchi
寺口 彰俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11109285A priority Critical patent/JPS61266155A/en
Publication of JPS61266155A publication Critical patent/JPS61266155A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/007Continuous casting of metals, i.e. casting in indefinite lengths of composite ingots, i.e. two or more molten metals of different compositions being used to integrally cast the ingots

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To cast efficiently and continuously a clad ingot having a specified cladding ratio and high joint power by bringing a different molten steel in a core mold into contact with a shell formed by cooling and solidifying the molten steel poured between an enclosing mold and core mold thereby solidifying the molten steel. CONSTITUTION:The molten steel A poured into the peripheral space 3 between the enclosing mold 1 and the core mold 1 is cooled 8, 9 to the solidified shell A2 which is delivered. The different molten steel B of the core mold 1 is then poured into such shell A2 and is solidified in contact therewith to form the solid clad ingot. The alloy layer C having the specified cladding ratio and the high joint power to the contact part is thus formed, by which the good clad ingot is efficiently and continuously cast.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) 本発明は、外殻用溶鋼によって中空状の外殻鋳片を先に
形成させると共に該外殻鋳片の中空部内に前記外殻用溶
鋼とは材質の異なる芯材用溶鋼を注入し、外殻部と芯材
部とが一体的に接合されてなるクラッド鋳片の連続鋳造
方法及びその装置に関するものである。
Detailed Description of the Invention "Object of the Invention" (Industrial Field of Application) The present invention involves first forming a hollow outer shell slab using molten steel for the outer shell, and then filling the hollow part of the outer shell slab with the molten steel for the outer shell. The present invention relates to a continuous casting method and an apparatus for continuously casting a clad slab in which the outer shell portion and the core portion are integrally joined by injecting the molten steel for the core material, which is of a different material from the molten steel for the outer shell.

(従来の連続鋳造方法及びその装置) 第3図はクラッド鋳片を製造する従来の連続鋳造装置を
概略して示す正面断面図である。
(Conventional Continuous Casting Method and Apparatus) FIG. 3 is a front sectional view schematically showing a conventional continuous casting apparatus for manufacturing clad slabs.

連続鋳造装置は、タンディツシュ20、浸漬ノズル21
.22、モールド23等から構成されている。タンディ
ツシュ20はその内部に区分層24が設りられており、
外殻用溶鋼Aと芯材用溶鋼Bとの二種類の溶鋼が互いに
混合し合わないようになされている。また該タンディツ
シュ20の下面には、前記外殻用溶鋼Aをモールド23
内へ注入する浸漬ノズル21と、芯材用溶&DH3をモ
ールド23内へ注入する浸漬ノズル22とが並んで垂設
されている。該芯材用溶鋼Bの浸漬ノズル22は、前記
外殻用溶鋼Aの浸漬ノズル21よりも下方側へ延設され
ており、その出湯端22ailりに倒立した皿状の堰体
25が周設されている。そして、該堰体25の外周壁と
モールド23の内周壁23aとの間には、前記外殻用熔
smAが流下する狭幅な同流路26が形成されている。
The continuous casting device includes a tandish 20 and an immersion nozzle 21.
.. 22, a mold 23, etc. The tandish 20 has a partitioned layer 24 inside it,
Two types of molten steel, molten steel A for the outer shell and molten steel B for the core material, are prevented from mixing with each other. Further, on the lower surface of the tundish 20, the molten steel A for the outer shell is placed in a mold 23.
An immersion nozzle 21 for injecting the core material molten &DH3 into the mold 23 and an immersion nozzle 22 for injecting the core material molten &DH3 into the mold 23 are vertically arranged side by side. The immersion nozzle 22 for the core molten steel B extends further downward than the immersion nozzle 21 for the outer shell molten steel A, and an inverted dish-shaped weir body 25 is provided around the outlet end 22ail. has been done. A narrow channel 26 is formed between the outer circumferential wall of the weir body 25 and the inner circumferential wall 23a of the mold 23, through which the outer shell melt smA flows.

上記の如き連続鋳造装置によってクラッド鋳片を製造す
る状況を簡単に説明する。
The situation in which clad slabs are manufactured using the above-mentioned continuous casting apparatus will be briefly explained.

外殻用溶鋼Aは、タンディツシュ20から浸漬ノズル2
1を経てモールド23内へ注がれる。該外殻用溶鋼Aは
、モールド23内において、芯材用溶鋼Bの浸漬ノズル
22における堰体25上に一旦滞留するようになり、該
堰体25の周囲に形成された同流路26からモールド2
3の内周壁23aを伝って順次流下する。そして該内周
壁23aに添う部分から冷却されて徐々に外殻凝固シェ
ルA、が形成される。一方、芯材用溶鋼Bは、タンディ
ツシュ20から浸漬ノズル22を経てモールド23内へ
注がれる。従って、該芯材用溶鋼Bは、前記同流路26
内において形成された外殻凝固シェルAxの内面に接触
して徐々に凝固する。このようにして形成された鋳片は
、スプレー帯を介するようにモールド23の下方へ引き
抜かれ、クラッド鋳片となる。該クラッド鋳片は、後に
、圧延や抽伸加工等を経てクラッド鋼材製品となる。
The molten steel A for the outer shell is passed from the tundish 20 to the immersion nozzle 2.
1 and then poured into the mold 23. In the mold 23, the molten steel A for the outer shell temporarily stays on the weir body 25 in the immersion nozzle 22 of the molten steel B for the core material, and flows from the same flow path 26 formed around the weir body 25. mold 2
It sequentially flows down along the inner circumferential wall 23a of No. 3. Then, the portion along the inner circumferential wall 23a is cooled, and an outer solidified shell A is gradually formed. On the other hand, the molten steel B for the core material is poured into the mold 23 from the tundish 20 through the immersion nozzle 22. Therefore, the core material molten steel B flows through the same flow path 26.
The solidified outer shell Ax comes into contact with the inner surface of the solidified shell Ax and gradually solidifies. The thus formed slab is pulled out below the mold 23 through the spray zone to become a clad slab. The clad slab is later subjected to rolling, drawing, etc. to become a clad steel product.

(発明が解決しようとする問題点) 上記従来の連続鋳造装置は、タンディツシュ20内の区
分層24や各別の浸漬ノズル21.22及び堰体25を
設けることによって外殻用法&1ilAと芯材用熔5l
11Bとが混合しないようになってはいるものの、終局
的には、モールド23内において外殻用溶鋼Aの全部が
凝固しないうちに、当該外殻用溶81Aと芯材用溶鋼B
とが接触するようになっていたため、芯材用溶鋼B内に
外殻用溶鋼Aの未凝固骨が混合されていた。つまり、こ
れによって製造されたクラッド鋳片は、その外殻部を形
成する僅か数鰭厚さ部分のみが所定の外殻用’18 m
 Aによって形成される他は、殆どが外殻用溶鋼Aと芯
材用溶鋼Bとが混合した新たな組成の合金材となってお
り、またその混合比は極めて不安定であった。そのうえ
、このようなりラッド鋳片をその後に圧延や抽伸加工等
すると、外殻部を構成する金属層が微厚すぎて加工度が
極端にその部分に偏在し、場合によってはこれが外殻層
を剥離させる原因ともなっていた。また、浸漬ノズル2
1及び22がモールド23内に並んで臨設されているも
のであるから、いずれか一方又は両方の浸漬ノズルがモ
ールド23内の中央部からずれた状態となっており、殊
に外殻用溶鋼Aを、浸漬ノズル22における堰体25の
周りへ均一に注入することができないものであった。更
に、浸漬ノズル22の堰体25は、常に溶鋼の中に浸漬
されているものであるから、装置としての寿命にも大き
な問題が残っていた。
(Problems to be Solved by the Invention) The above-mentioned conventional continuous casting apparatus can be used for outer shell, 1ilA, and core material by providing a divided layer 24 in the tundish 20, separate immersion nozzles 21, 22, and a weir body 25. Melt 5l
Although the molten steel A for the outer shell 81A is prevented from mixing with the molten steel B for the core material, eventually, before the entire molten steel A for the outer shell is solidified in the mold 23, the molten steel B for the outer shell 81A and the molten steel B for the core material are mixed.
As a result, the unsolidified bone of the molten steel A for the outer shell was mixed into the molten steel B for the core material. In other words, in the clad slab manufactured by this method, only a few fins thick part forming the outer shell is 18 m thick for the specified outer shell.
Besides A, most of the alloy material had a new composition, which was a mixture of molten steel A for the outer shell and molten steel B for the core material, and the mixing ratio was extremely unstable. Moreover, when such a rad slab is subsequently rolled or drawn, the metal layer constituting the outer shell is too thin and the degree of processing is extremely unevenly distributed in that part, and in some cases, this may cause the outer shell layer to become unevenly distributed. It was also a cause of peeling. In addition, immersion nozzle 2
1 and 22 are installed side by side in the mold 23, one or both of the immersion nozzles are offset from the center of the mold 23, especially when the molten steel A for the outer shell is used. could not be uniformly injected around the weir body 25 in the immersion nozzle 22. Furthermore, since the weir body 25 of the immersion nozzle 22 is always immersed in molten steel, there remains a major problem regarding the lifespan of the device.

本発明は、上記の如き事情に鑑みてなされたものであっ
て、外殻部と芯材部とが所定のクラツド比を有して配分
され、しかも、これら外殻部と芯材部との接合界面は外
殻用溶鋼と芯材用溶鋼との合金層となり、且つ該合金層
の外殻部寄り面は次第に外殻部を構成する金属組成に近
づく組成となり、反対に芯材部寄り面は次第に芯材部を
構成する金属組成に近づく組成となる優れたクラッド鋳
片を製造することができる新規な連続鋳造方法(以下、
本発明方・法という)及び連続鋳造装置(以下、本発明
装置という)を提供することを目的とする。
The present invention has been made in view of the above circumstances, and the outer shell portion and the core portion are distributed with a predetermined cladding ratio, and the outer shell portion and the core portion are The joint interface becomes an alloy layer of the molten steel for the outer shell and the molten steel for the core material, and the surface of the alloy layer closer to the outer shell has a composition that gradually approaches the metal composition constituting the outer shell, and conversely, the surface closer to the core material has a composition that approaches the metal composition constituting the outer shell. is a new continuous casting method (hereinafter referred to as
The object of the present invention is to provide a continuous casting apparatus (hereinafter referred to as the apparatus of the present invention) and a continuous casting apparatus (hereinafter referred to as the apparatus of the present invention).

「発明の構成」 (問題点を解決するための手段) 本発明方法の要旨とするところは、中子鋳型の外周壁と
該中子鋳型を囲んで設置された囲繞鋳型の内周壁との周
間隙へ外殻用溶鋼を注入し、該外殻用溶鋼を凝固させつ
つ中空状の外殻鋳片としてこれを引き抜き、該外殻鋳片
の中空部へ前記中子鋳型の中央部に貫設された保温流路
を経て前記外殻用溶鋼とは材質の異なる芯材用溶鋼を注
入し凝固させることである。
"Structure of the Invention" (Means for Solving the Problems) The gist of the method of the present invention is that the outer peripheral wall of the core mold and the inner peripheral wall of the surrounding mold installed surrounding the core mold Injecting molten steel for the outer shell into the gap, solidifying the molten steel for the outer shell and drawing it out as a hollow shell slab, and piercing the hollow part of the outer shell at the center of the core mold. The molten steel for the core material, which is of a different material from the molten steel for the outer shell, is injected through the heat-retaining flow path and solidified.

また、本発明装置の要旨とするところは、中央部に芯材
用溶鋼の保温流路を貫設した中子鋳型と、該゛中子鋳型
との間に外殻用溶鋼を注入する周間隙を形成して囲設さ
れた囲繞鋳型とを備えたことである。
In addition, the gist of the device of the present invention is that there is a core mold in which a heat-retaining flow path for molten steel for the core material is passed through in the center, and a peripheral gap between the core mold and the molten steel for the outer shell is injected. and a surrounding mold formed and enclosed.

(作用) 外殻用溶鋼は、まず、中子鋳型の外周壁と囲繞鋳型の内
周壁との間の周間隙に、これら両川壁と接触するように
して注がれ、中空状の外殻鋳片として引き抜かれる。ま
た引き抜かれつつある外殻鋳片の中空部には、中子鋳型
の保温流路から芯材用溶鋼が注入される。つまり、芯材
用溶鋼が中子鋳型から出湯する時点において、外殻用溶
鋼は、その全部が既に凝固された状態にあり、これら再
溶鋼が必要以上に混合しあうようなことは決して起こり
得ない。しかも、前記芯材用溶鋼が中子鋳型から出湯す
る時点では、外殻鋳片は未だその材質の融点に近い温度
を有していると共に、その中空部内面は未酸化の状態に
ある。しかも、芯材用′1g鋼は保温流路によって注入
されるものであるから、該芯材用溶鋼は冷却されること
なくその材質の融点よりもかなり高い温度を有している
ことになる。つまり該芯材用溶鋼が外殻鋳片の中空部へ
注入される際には、仮に芯材用溶鋼の融点よりも外殻用
溶鋼の融点の方が高い場合であっても、芯材用溶鋼の温
度によって外殻鋳片の中空部内面が再熔融化され、これ
らの接合界面に極めて良好な合金層が形成される。そし
てその合金層は、外殻鋳片に対しても、また芯材部に対
しても良好な親和性を備えており、従って外殻鋳片と芯
材部との接合は極めて良好である。
(Function) Molten steel for the outer shell is first poured into the gap between the outer peripheral wall of the core mold and the inner peripheral wall of the surrounding mold so as to be in contact with these walls, and is poured into the hollow outer shell mold. It is pulled out as a piece. Further, molten steel for the core material is injected into the hollow part of the outer shell slab that is being drawn out from the heat-retaining channel of the core mold. In other words, when the molten steel for the core material is tapped from the core mold, all of the molten steel for the outer shell is already solidified, and it is never possible for these re-molten steels to mix with each other more than necessary. do not have. Moreover, at the time when the molten steel for the core material is tapped from the core mold, the outer shell slab still has a temperature close to the melting point of the material, and the inner surface of the hollow part is in an unoxidized state. Furthermore, since the '1g steel for the core material is injected through the heat-retaining channel, the molten steel for the core material is not cooled and has a temperature considerably higher than the melting point of the material. In other words, when the molten steel for the core material is injected into the hollow part of the outer shell slab, even if the melting point of the molten steel for the outer shell is higher than that of the molten steel for the core material, the melting point of the molten steel for the core material is higher than that of the molten steel for the core material. The inner surface of the hollow part of the outer shell slab is remelted by the temperature of the molten steel, and an extremely good alloy layer is formed at the joint interface between them. The alloy layer has good affinity with both the outer shell slab and the core material, and therefore the bond between the outer shell slab and the core material is extremely good.

(実施例) 第1図は、本発明装置の実施例装置を概略して示す正面
断面図である。まず、同図に基づいて本発明装置を説明
する。本発明装置の最も主要な部分は、中子鋳型1及び
囲繞鋳型5にある。
(Embodiment) FIG. 1 is a front sectional view schematically showing an embodiment of the apparatus of the present invention. First, the apparatus of the present invention will be explained based on the same figure. The most important parts of the apparatus of the present invention are the core mold 1 and the surrounding mold 5.

中子鋳型1ば、芯材用溶鋼Bを貯留する芯材用タンディ
ツシュ4に連続して垂設されており、その中央内部には
サイアロン系(窒化珪素系)又はBN(窒化ホウ素)等
の耐火物10が設けられている。そして該耐火物10に
は、前記芯材用タンディツシュ4内と中子鋳型1の下方
域とを連通ずる如き保温流路2が貫設されている。なお
、芯材用タンディツシュ4へは、図示しない取鍋によっ
て芯材用溶mBが補給される。
The core mold 1 is continuously installed vertically in the core tundish 4 that stores the molten steel B for the core, and inside the center is a fireproof material such as Sialon (silicon nitride) or BN (boron nitride). Object 10 is provided. A heat-retaining channel 2 is provided through the refractory 10 so as to communicate the interior of the core material tundish 4 with the lower region of the core mold 1. The core material tundish 4 is replenished with the core material molten mB by a ladle (not shown).

囲繞鋳型5ば、前記中子鋳型1の外周壁1aを囲むよう
に設置されており、当該囲繞鋳型5の内周壁5aと中子
鋳型1の外周壁1aとの間には、外殻用溶tMAの注入
される周間隙3が形成されている。
The surrounding mold 5 is installed so as to surround the outer peripheral wall 1a of the core mold 1, and between the inner peripheral wall 5a of the surrounding mold 5 and the outer peripheral wall 1a of the core mold 1, an outer shell melt is provided. A circumferential gap 3 is formed into which tMA is injected.

また、前記中子鋳型1の外周壁la寄り内部には外殻用
溶鋼Aを冷却する通水管8が埋設して配管されており、
囲繞鋳型5の内周壁5a寄り内部には通水管9が埋設し
て配管されている。そして囲繞鋳型5は、外殻利用タン
ディツシュ7に連絡されている。該外殻材用タンディツ
シュ7は外殻用溶鋼へを貯留するものであって、囲繞鋳
型5と中子鋳型1との周間隙3においてその全周にわた
って均等量に注流するためのコンデンサー的作用を営む
Further, a water pipe 8 for cooling the molten steel A for the outer shell is buried and installed inside the outer peripheral wall la of the core mold 1,
A water pipe 9 is buried inside the surrounding mold 5 near the inner peripheral wall 5a. The surrounding mold 5 is connected to the outer shell utilization tundish 7. The tundish 7 for the outer shell material stores the molten steel for the outer shell material, and acts like a condenser to pour the molten steel evenly over the entire circumference in the circumferential gap 3 between the surrounding mold 5 and the core mold 1. runs a business.

なお、6は取鍋であって、連続鋳造作業の継続中に外殻
用f66m Aを交替して補給する。
In addition, 6 is a ladle, and the f66mA for the outer shell is alternately replenished while the continuous casting operation continues.

上記中子鋳型lと囲繞鋳型5とからなる本発明装置の下
方部に位置する冷却帯には、鋳片支持ローラー11が架
設されている。該鋳片支持ローラー11は、中子鋳型1
と囲繞鋳型5との周間隙3から引き抜かれる中空状外殻
鋳片A、の外面と接触してこれを支持するものであって
、該外殻鋳片んの中空部内に注入される芯材用溶鋼Bの
静圧による外膨れ(バルジング現象)を防止するように
なされている。
A slab support roller 11 is installed in a cooling zone located at the lower part of the apparatus of the present invention, which comprises the core mold 1 and the surrounding mold 5. The slab support roller 11 supports the core mold 1
and a core material injected into the hollow part of the outer shell slab A, which is in contact with and supports the outer surface of the hollow outer shell slab A that is pulled out from the circumferential gap 3 between the outer shell slab A and the surrounding mold 5. This is to prevent the molten steel B from expanding outward due to static pressure (bulging phenomenon).

第2図は、前記第1図中における芯材用タンディツシュ
4.外殻材用タンディツシュ7及び取鍋6を省略して示
す本発明装置の平面図である。同図に示すように、本実
施例装置は中子鋳型】の外形状が長方形状となっており
、咳中子鋳型1を囲む囲繞鋳型5の内周壁5aも長方形
状に形成されている。従って、これによって製造される
クラッド鋳片は、その断面形状が長方形状のものである
FIG. 2 shows the core material tundish 4 in FIG. 1. FIG. 2 is a plan view of the apparatus of the present invention, with the shell material tundish 7 and ladle 6 omitted. As shown in the figure, the outer shape of the core mold in this embodiment apparatus is rectangular, and the inner circumferential wall 5a of the surrounding mold 5 surrounding the cough core mold 1 is also formed in a rectangular shape. Therefore, the clad slab manufactured by this method has a rectangular cross-sectional shape.

なお、本実施例装置におりる中子鋳型1の保温流路2は
、耐火物10の中央に複数並んで貫設されたものを示し
たが、その穿設本数、開口形状等はこの実施例に限定さ
れるものではなく、鋳込み速度等をはじめとする各種鋳
込み条件との関係によって適宜に変更されるものである
In addition, although the heat insulation channels 2 of the core mold 1 in the apparatus of this embodiment are shown as having a plurality of heat insulating channels 2 lined up in the center of the refractory 10, the number of holes, opening shape, etc. It is not limited to the example, and may be changed as appropriate depending on the relationship with various casting conditions including the casting speed.

次に前記第1図及び第2図に示した実施例装置に基づい
て、本発明方法を説明する。
Next, the method of the present invention will be explained based on the embodiment apparatus shown in FIGS. 1 and 2.

外殻材用タンディツシュ7から周間隙3へ前記外殻用溶
鋼Aを注入する。該外殻用溶SmAは、周間pJ3内に
おいて囲繞鋳型5の内周壁5aに接触した部分及び中子
鋳型1の外周壁に接触した部分から凝固シェルん、んと
なり、囲填鋳型5の下方では中空状の外殻鋳片んが形成
される。また、芯材用タンディツシュ4から中子鋳型1
の保温流路2を経て注入される芯材用溶鋼Bは、前記外
殻鋳片んの中空部内へ注がれる。このとき、外殻鋳片A
The molten steel A for the outer shell material is injected into the circumferential gap 3 from the tundish 7 for the outer shell material. The molten SmA for the outer shell becomes a solidified shell from the part in contact with the inner peripheral wall 5a of the surrounding mold 5 and the part in contact with the outer peripheral wall of the core mold 1 within the circumference pJ3, and becomes a solidified shell below the surrounding mold 5. In this process, a hollow outer shell slab is formed. In addition, from the core material tundish 4 to the core mold 1
The core material molten steel B injected through the heat retaining channel 2 is poured into the hollow part of the outer shell slab. At this time, the outer shell slab A
.

の中空部内面温度は例えば外殻用溶鋼が535Gである
ときおおよそ1400℃程度となっており、また芯材用
溶鋼Bの温度は例えば芯材用溶鋼が5US304である
ときおおよそ1490℃となっている。つまり、535
Gの融点は1470℃であるから、前記芯材用溶鋼Bは
外殻鋳片A、の中空部内面を再溶融化するに充分な温度
を有していることになる。従って、外殻鋳片A、の中空
部内面と芯材用法11Bとの接合界面部には、これらの
金属による合金層Cが形成されることになる。勿論、前
記外殻鋳片んの中空部内面は外気に触れていないため、
前記接合界面に酸化膜が形成されることもない。また万
が−、外殻鋳片A2の中空部内面に酸化膜が形成された
としても、前述した如く、外殻鋳片A、の中空部内面は
芯材用法w!Bによって再溶融化されるものであるから
、これによって浄化される。そして前記芯材用溶鋼Bの
凝固は次第に進み、スプレー帯等(図示省略)を介して
冷却されてクラッド鋳片となる。
For example, when the molten steel for the outer shell is 535G, the inner surface temperature of the hollow part is approximately 1400°C, and the temperature of the molten steel B for the core material is approximately 1490°C, for example when the molten steel for the core material is 5US304. There is. That is, 535
Since the melting point of G is 1470° C., the core molten steel B has a temperature sufficient to remelt the inner surface of the hollow part of the outer shell slab A. Therefore, an alloy layer C of these metals is formed at the joint interface between the inner surface of the hollow part of the outer shell slab A and the core material 11B. Of course, since the inner surface of the hollow part of the outer shell slab is not exposed to the outside air,
No oxide film is formed at the bonding interface. Also, even if an oxide film is formed on the inner surface of the hollow part of the outer shell slab A2, as mentioned above, the inner surface of the hollow part of the outer shell slab A2 is used as a core material! Since it is remelted by B, it is purified by this. Then, the core material molten steel B gradually solidifies and is cooled through a spray zone or the like (not shown) to become a clad slab.

尚、外殻鋳片んの形成後において、該外殻鋳片A2の中
空部内に芯材用溶鋼Bが注がれると、該芯材用溶鋼Bの
静圧が外殻鋳片んを外方へ向かって膨出するように作用
すると共に、前記外殻鋳片A2はその凝固及び冷却に伴
う収縮によって内方へ縮むように作用する。このように
、外殻鋳片A、の変形方向と芯材用溶鋼Bの変形方向と
は相反するものであり、これら各変形作用が外殻鋳片A
2と芯材用法611Bとの接合を更に強固に助勢するよ
うになる。
Furthermore, after the formation of the outer shell slab, when the molten steel B for the core material is poured into the hollow part of the outer shell slab A2, the static pressure of the molten steel B for the core material will cause the outer shell slab to come out. At the same time, the outer shell slab A2 acts to shrink inward due to contraction accompanying solidification and cooling. In this way, the deformation direction of the outer shell slab A and the deformation direction of the core molten steel B are opposite, and these deformation effects cause the outer shell slab A
2 and the core material usage 611B are further strengthened.

本発明者は、本発明方法によってクラッド鋳片を製造し
たので、そのときの製造条件に関する具体的な数値を〈
表〉に示す。
Since the present inventor manufactured a clad slab by the method of the present invention, the specific numerical values regarding the manufacturing conditions at that time were
Table 〉 shows.

く表〉によって明らかなように、「界面剪断強度」にお
ける各データから、本発明方法文は本発明装置によって
製造されたクラッド鋳片は、強固な結合力を備えている
ことが分かる。
As is clear from the table below, it can be seen from the data on "interface shear strength" that the clad slab produced by the method of the present invention and the apparatus of the present invention has strong bonding strength.

(以下余白) 次頁へ続( 1A (別態様の倹約) 中子鋳型又は囲繞鋳型に公知のオソシレーション機能を
備えておけば、外殻鋳片との摩擦が軽減し、安定した鋳
込みを得ることができるが、オツシレーション振動はパ
ウダの流入と密接な関係を有しており、芯材用溶鋼等の
影響による摩擦の程度を予測しにくい本発明方法におい
ては、間欠引き抜き法を採用するのが好ましい。また、
前記実施例装置においては、中子鋳型及び囲IJ1鋳型
が矩形状に形成されたものを示したが、これらが円形状
をしたものを使用することによって、丸棒状のクラッド
鋳片を製造することができることはいうまでもない。こ
のように、本発明方法の細部にわたる構成及び本発明装
置の構成及び形状は、実施の態様に応じて適宜変更可能
なものである。
(Margins below) Continued on next page (1A (Another form of frugality) If the core mold or surrounding mold is equipped with a well-known oscillation function, the friction with the outer shell slab will be reduced and stable casting will be achieved. However, the oscillation vibration is closely related to the inflow of powder, and in the method of the present invention, the degree of friction due to the influence of the molten steel for the core material is difficult to predict, so the intermittent drawing method is adopted. It is preferable that
In the above-mentioned example apparatus, the core mold and the IJ1 enclosure mold were formed into a rectangular shape, but by using those having a circular shape, a round bar-shaped clad slab can be manufactured. Needless to say, it can be done. As described above, the detailed structure of the method of the present invention and the structure and shape of the apparatus of the present invention can be changed as appropriate depending on the embodiment.

「発明の効果」 以上の説明で明らかなように、本発明に係るクラッド鋳
片の連続鋳造方法及びその装置によれば、外殻部と芯材
部とのクラツド比ば所定のものを確保することができる
と共に、これらの接合界面には強固な接合力を有する合
金層が形成され、優れたクラッド鋳片が製造できる。
"Effects of the Invention" As is clear from the above explanation, according to the method and apparatus for continuous casting of clad slabs according to the present invention, a predetermined cladding ratio between the outer shell part and the core part can be maintained. At the same time, an alloy layer having strong bonding force is formed at the bonding interface, and an excellent clad slab can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明装置を概略して示すものであ
って、第1図は正面断面図、第2図ば一部を省略した平
面図、第3図は従来の連続鋳造装置を概略して示す正面
断面図である。
Figures 1 and 2 schematically show the apparatus of the present invention, with Figure 1 being a front sectional view, Figure 2 being a partially omitted plan view, and Figure 3 being a conventional continuous casting apparatus. FIG.

Claims (1)

【特許請求の範囲】 1、中子鋳型の外周壁と該中子鋳型を囲んで設置された
囲繞鋳型の内周壁との周間隙へ外殻用溶鋼を注入し、該
外殻用溶鋼を凝固させつつ中空状の外殻鋳片としてこれ
を引き抜き、該外殻鋳片の中空部へ前記中子鋳型の中央
部に貫設された保温流路を経て前記外殻用溶鋼とは材質
の異なる芯材用溶鋼を注入し凝固させることを特徴とす
るクラッド鋳片の連続鋳造方法。 2、中央部に芯材用溶鋼の保温流路を貫設した中子鋳型
と、該中子鋳型との間に外殻用溶鋼を注入する周間隙を
形成して囲設された囲繞鋳型とを備えたことを特徴とす
るクラッド鋳片の連続鋳造装置。
[Claims] 1. Injecting molten steel for the outer shell into the circumferential gap between the outer circumferential wall of the core mold and the inner circumferential wall of a surrounding mold installed surrounding the core mold, and solidifying the molten steel for the outer shell. The molten steel for the outer shell is made of a material different from that of the molten steel for the outer shell. A continuous casting method for clad slabs characterized by injecting and solidifying molten steel for the core material. 2. A core mold having a heat-retaining flow path for molten steel for the core material penetrated through the center, and an surrounding mold surrounded by forming a circumferential gap for injecting molten steel for the outer shell between the core mold and the core mold. A continuous casting device for clad slabs, characterized by comprising:
JP11109285A 1985-05-22 1985-05-22 Method and apparatus for continuous casting of clad ingot Pending JPS61266155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11109285A JPS61266155A (en) 1985-05-22 1985-05-22 Method and apparatus for continuous casting of clad ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11109285A JPS61266155A (en) 1985-05-22 1985-05-22 Method and apparatus for continuous casting of clad ingot

Publications (1)

Publication Number Publication Date
JPS61266155A true JPS61266155A (en) 1986-11-25

Family

ID=14552174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11109285A Pending JPS61266155A (en) 1985-05-22 1985-05-22 Method and apparatus for continuous casting of clad ingot

Country Status (1)

Country Link
JP (1) JPS61266155A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366447A (en) * 1989-08-04 1991-03-22 Nippon Steel Corp Method for casting layered cast slab
KR100686209B1 (en) 2005-12-09 2007-02-26 박환서 Device and method for continuous clad materials casting
CN100464881C (en) * 2005-03-21 2009-03-04 孙恩波 Continuous casting continuous rolling composite metal board and its production method
CN108465789A (en) * 2018-03-27 2018-08-31 北京科技大学 A kind of bi-metal composite panel continuous casting direct forming equipment and technique
CN108526425A (en) * 2018-03-30 2018-09-14 鞍钢股份有限公司 Composite metal continuous casting device and continuous casting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366447A (en) * 1989-08-04 1991-03-22 Nippon Steel Corp Method for casting layered cast slab
CN100464881C (en) * 2005-03-21 2009-03-04 孙恩波 Continuous casting continuous rolling composite metal board and its production method
KR100686209B1 (en) 2005-12-09 2007-02-26 박환서 Device and method for continuous clad materials casting
CN108465789A (en) * 2018-03-27 2018-08-31 北京科技大学 A kind of bi-metal composite panel continuous casting direct forming equipment and technique
CN108526425A (en) * 2018-03-30 2018-09-14 鞍钢股份有限公司 Composite metal continuous casting device and continuous casting method
CN108526425B (en) * 2018-03-30 2020-09-01 鞍钢股份有限公司 Composite metal continuous casting device and continuous casting method

Similar Documents

Publication Publication Date Title
CA1097880A (en) Horizontal continuous casting method and apparatus
JPS61266155A (en) Method and apparatus for continuous casting of clad ingot
JPH0255642A (en) Method and device for continuously casting strip steel
JP3727354B2 (en) Mold for vertical hot top continuous casting of metal
US3698466A (en) Method for continuous casting of steel
JPS62259641A (en) Production of clad steel plate
JPS5931415B2 (en) Hollow tube manufacturing method and device
JPH04178247A (en) Continuous casting method of steel by casting mold having electromagnetic field
JPS63188451A (en) Vertical type continuous casting apparatus
RU2029656C1 (en) Billet continuous casting machine crystallizer
JP2609676B2 (en) Continuous casting method and apparatus for multilayer slab
JP3546137B2 (en) Steel continuous casting method
JPH06234050A (en) Method for continuously casting half-solidified metal and apparatus therefor
JPH0890172A (en) Production of small lot of cast slab in continuous casting
JPS6333160A (en) Continuous casting method
JPS5870946A (en) Mold device for horizontal casting machine
JPH0199748A (en) Copper or copper alloy-made electromagnetic stirring type continuous casting apparatus
JPH01127158A (en) Production of composite metal material by continuous casting
JPH0255641A (en) Method for continuously casting complex metal material
JPH04138843A (en) Device and method for continuously casting metal
KR100515460B1 (en) Continuous casting ingot mould for the vertical casting of metals
JPS6333157A (en) Continuous casting method
JPS55120453A (en) Horizontal continuous casting method
JPH01215445A (en) Continuous casting method
JPS6024246A (en) Continuous casting method of metal