JP6622517B2 - シート搬送装置および画像読取装置 - Google Patents

シート搬送装置および画像読取装置 Download PDF

Info

Publication number
JP6622517B2
JP6622517B2 JP2015168139A JP2015168139A JP6622517B2 JP 6622517 B2 JP6622517 B2 JP 6622517B2 JP 2015168139 A JP2015168139 A JP 2015168139A JP 2015168139 A JP2015168139 A JP 2015168139A JP 6622517 B2 JP6622517 B2 JP 6622517B2
Authority
JP
Japan
Prior art keywords
sheet
unit
ultrasonic
transmitting
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015168139A
Other languages
English (en)
Other versions
JP2017043470A5 (ja
JP2017043470A (ja
Inventor
真 有馬
真 有馬
太士 富井
太士 富井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015168139A priority Critical patent/JP6622517B2/ja
Priority to US15/228,110 priority patent/US9981819B2/en
Publication of JP2017043470A publication Critical patent/JP2017043470A/ja
Publication of JP2017043470A5 publication Critical patent/JP2017043470A5/ja
Application granted granted Critical
Publication of JP6622517B2 publication Critical patent/JP6622517B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H7/00Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
    • B65H7/02Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
    • B65H7/06Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to presence of faulty articles or incorrect separation or feed
    • B65H7/12Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to presence of faulty articles or incorrect separation or feed responsive to double feed or separation
    • B65H7/125Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to presence of faulty articles or incorrect separation or feed responsive to double feed or separation sensing the double feed or separation without contacting the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/02Separating articles from piles using friction forces between articles and separator
    • B65H3/06Rollers or like rotary separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/06Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers
    • B65H5/062Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers between rollers or balls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/30Sensing or detecting means using acoustic or ultrasonic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/60Details of processes or procedures
    • B65H2557/61Details of processes or procedures for calibrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/60Details of processes or procedures
    • B65H2557/63Optimisation, self-adjustment, self-learning processes or procedures, e.g. during start-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/03Image reproduction devices
    • B65H2801/06Office-type machines, e.g. photocopiers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/39Scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/015Attenuation, scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0237Thin materials, e.g. paper, membranes, thin films
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Controlling Sheets Or Webs (AREA)
  • Facsimiles In General (AREA)

Description

本発明は、シート搬送装置等で複数のシートの重なりを検知する技術に関する。
画像形成装置や画像読取装置ではシートを搬送するシート搬送装置が使用される。シートは一枚ずつ搬送されること(「単送」と呼ぶ)が前提とされており、複数枚のシートが重なって搬送されると(「重送」と呼ぶ)、シートの搬送が停止される。特許文献1によれば重送を検知するための超音波センサが提案されている。とりわけ、特許文献1では超音波センサの感度バラツキに応じて受信信号の増幅度を変更することが提案されている。
特開2012−188177号公報
ところで、超音波センサが出力する信号は増幅回路で増幅されるが、外来ノイズや半導体ノイズ等のノイズ成分によって検知精度が低下しうる。ノイズの影響を軽減するためには複数回にわたって超音波をバースト発信させ、検知結果を平均化することが有効である。しかし、バースト発信を行うと一定時間にわたり残響が残るため、残響が消えるまで次のバースト発信を行うことができない。なお、先行するバースト発信と後続のバースト発信との時間間隔をバースト間隔と呼ぶことにする。バースト間隔を長く設定すると、後続のバースト発信へ及ぶ残響の影響は小さくなる。しかし、先行するシートと後続するシートとの重なり量が小さい重送(連れ重送)を検知できなくなってしまうことがある。これは、バースト間隔が長くなるにつれて、一枚のシートを搬送中に重送検知を実行できる回数が減少するからである。重送を検知するために使用される閾値はシートが無い状態でバースト発信を行うことで決定される。シートが無い状態では残響が長時間にわたって発生するため、バースト間隔を長くせざるを得ない。一方で、シートが有る状態では残響がより短い時間にわたって発生する。したがって、シートが有る状態でのバースト間隔をシートが無い状態でのバースト間隔よりも短く設定できれば、一枚のシートに対するバースト発信の回数を増加せることが可能となり、重送検知の精度が向上しよう。たとえば、連れ重送であっても検知可能となろう。そこで、本発明は従来よりも精度よく重送を検知できるようにすることを目的とする。
本発明は、たとえば、
搬送路においてシートを搬送する搬送手段と、
超音波を発信する発信手段と、
前記発信手段に対向して取り付けられ、前記発信手段から発信された超音波を受信する受信手段と、
前記受信手段から出力される出力信号の振幅レベルを閾値と比較することで前記搬送路において複数のシートが重送しているかどうかを検知する重送検知手段と、
前記閾値を決定する際には前記発信手段と前記受信手段との間にシートがない状態において第一バースト間隔で前記発信手段に超音波を発信させ、前記シートの重送を検知する際には前記発信手段と前記受信手段との間にシートがある状態において前記第一バースト間隔よりも短い第二バースト間隔で前記発信手段に超音波を発信させる制御手段と、
前記発信手段と前記受信手段との間にシートが無い状態で前記発信手段が前記第一バースト間隔で発信した超音波を前記受信手段が受信することで出力した出力信号の振幅レベルに基づき重送と単送とを区別可能な前記閾値を決定する決定手段と
を有し、
前記制御手段は、前記シートの搬送を指示されたタイミングから前記シートが前記発信手段と前記受信手段との間に到達するまでの前記発信手段と前記受信手段との間にシートが無い状態で前記発信手段に超音波を発信させて、前記決定手段に前記閾値を決定させ、
前記重送検知手段は、前記シートが前記発信手段と前記受信手段との間に到達すると、前記決定手段により決定された前記閾値を用いて複数のシートが重送しているかどうかを検知することを特徴とするシート搬送装置を提供する。
本発明によれば従来よりも精度よく重送を検知できるようになる。
シート搬送装置の構成を示す図 コントローラを示すブロック図 超音波センサ近傍の詳細を示す図 重送検知の原理を示す図 増幅器およびAD変換器の詳細を示す図 原稿の有無に応じた出力信号の振幅値の一例を示す図 超音波の減衰量、振幅値および比率の関係を示す図 サンプリングポイントを説明する図 残響の影響を説明する図 振幅の決定方法を説明する図 重送検知を示すフローチャート バースト間隔の違いを説明する図 残響の発生原理を説明する図
画像読取装置の実施形態について図面を参照しながら説明する。なお、画像読取装置はスタンドアローンのイメージスキャナ、ネットワークに接続されたイメージスキャナ、ファクシミリ装置、複写機または複合機であってもよい。また、シート搬送装置は画像形成装置に実装されてもよい。
<画像読取装置>
図1において、画像読取装置115はシート搬送装置100を有している。原稿トレイ101は一枚以上のシート(原稿102)が載置される原稿台である。原稿102の搬送方向において原稿トレイ101よりも下流には、給紙ローラ103が設けられている。給紙ローラ103は分離ローラ104と同一の駆動源に接続され、その回転に連れて回転し、原稿102を給紙する。従動ローラ105は、分離ローラ104に対向して配置されており、分離ローラ104に対して押圧されている。従動ローラ105は、たとえば、分離ローラ104より僅かに摩擦が少ないゴム材等から形成されていてもよい。従動ローラ105は分離ローラ104と協働して、給紙ローラ103によって給紙される原稿102を一枚ずつ分離して搬送する。
シートセンサS2は従動ローラ105及び分離ローラ104を原稿102が通過したタイミングを検知するためのセンサである。超音波発信部T1と超音波受信部T2は搬送路を挟んで対向するように配置されている。超音波発信部T1が発信した超音波を超音波受信部T2が受信をすることで原稿102の重なりの有無が検知される。
レジストローラ対106は原稿102の斜行を補正する搬送ローラである。リードローラ対108は原稿102を流し読みガラス116に向けて搬送する搬送ローラである。流し読みガラス116に対向してプラテンガイド110が配置されている。流し読みガラス116上を通過する原稿102の表面の画像情報が画像センサ126により読み取られる。画像センサ126が原稿102の読み取りが終了すると、リード排出ローラ対111は原稿102を排紙ローラ対113に向けて搬送する搬送ローラである。排紙ローラ対113は原稿102を排紙トレイ114に排出する搬送ローラである。なお、これらの搬送ローラは搬送路においてシートを搬送する搬送手段として機能する。
画像読取装置115の本体は、原稿台ガラス118、第一ミラー台123、第二ミラー台124、レンズ125および画像センサ126などを有している。第一ミラー台123には、原稿102の読み取り対象面に対して光を照射する光源119、原稿102からの反射光を画像センサ126に導くためのミラー120を有している。第二ミラー台124は、原稿102からの反射光を画像センサ126に導くためのミラー121、122を有する。第一ミラー台123、第二ミラー台124は原稿台ガラス118と平行に移動することで、原稿台ガラス118に載置された原稿102を読み取る。画像センサ126は、レンズ125を通じて結像した反射光を受光素子で光電変換し、入射光量に応じた電気信号を出力する。
<コントローラ>
図2を用いて画像読取装置115を制御するコントローラについて説明する。CPU201はメモリ206のROMに記憶されている制御プログラムにしたがって画像読取装置115を制御する。メモリ206はRAMも有している。CPU201はモーター202を制御することで、シート搬送装置100内の様々な搬送ローラを駆動する。また、CPU201はシートセンサS2を用いて原稿102の到着タイミングを検知し、超音波発信部T1や超音波受信部T2、AD変換器205などの動作タイミングを制御する。
超音波の発信系は駆動回路203と超音波発信部T1を有している。駆動回路203は超音波発信部T1および超音波受信部T2の共振周波数に近い周波数(本実施例では300KHz)のバースト信号をCPU201から受信し、超音波発信部T1の駆動に必要な電圧バースト信号に変換する。超音波発信部T1は駆動回路203からのバースト信号にしたがって超音波を発信する。
超音波の受信系は超音波受信部T2、増幅器204およびAD変換器205を有している。超音波受信部T2は、超音波発信部T1から発信された超音波を受信し、受信した超音波の振幅に応じた電気信号を発生して、増幅器204に出力する。増幅器204は超音波受信部T2から出力された信号を増幅してAD変換器205へ出力する。AD変換器205は増幅器204によって増幅された信号をCPU201から出力されるタイミング信号に応じてAD変換し、その結果をCPU201へ出力する。
CPU201はAD変換器205の出力から受信された超音波の振幅レベルを算出し、振幅レベルに基づき原稿102の重送を検知する。たとえば、CPU201は、制御プログラムを実行することで、超音波制御部211、重送検知部212および閾値決定部213として機能する。超音波制御部211は閾値を決定する際には第一バースト間隔で超音波発信部T1に超音波を発信させる。また、超音波制御部211はシートの重送を検知する際には第一バースト間隔よりも短い第二バースト間隔で超音波発信部T1に超音波を発信させる。重送検知部212は超音波の受信系から出力される出力信号の振幅レベルを閾値と比較することで搬送路において複数のシートが重送しているかどうかを検知する。閾値決定部213は搬送路にシートが無い状態で超音波発信部T1が第一バースト間隔で発信した超音波を受信系が受信することで出力した出力信号の振幅レベルに基づき重送と単送とを区別可能な閾値を決定する。なお、これらの機能はASICやFPGAなどのハードウエアによって実装されてもよい。メモリ206は、制御に必要なデータ(重送判定のための閾値や閾値を演算するための係数など)を記憶している。
<超音波センサの設置角>
図3は超音波発信部T1および超音波受信部T2を含む超音波センサ付近の拡大図である。本実施例では超音波発信部T1および超音波受信部T2は原稿102が搬送される搬送パス301に対して傾斜して固定されている。図3が示すように、超音波発信部T1と超音波受信部T2を結ぶ直線(超音波の出射軸)と搬送パス301とのなす角度が設置角θになっている。つまり、超音波発信部T1は搬送路に対して斜めに取り付けられ、超音波を発信する発信手段の一例である。また、超音波受信部T2は搬送路に対して斜めに取り付けられ、かつ、超音波発信部T1に対向して取り付けられ、超音波発信部T1から発信された超音波を受信する受信手段(超音波の振幅に応じた出力信号を出力する出力手段)の一例である。搬送パス301に対して出射軸(入射軸)が直交する配置と比較して、この傾斜配置では残響の影響が小さくなるため、重送検知の精度が向上する。なお、直交配置では超音波受信部T2と原稿102との間で超音波が繰り返し反射するため残響が継続しやすい。設置角θについては、最も検知精度が高くなるように実験やシミュレーションによって決定される。
超音波発信部T1から発信された超音波が原稿102を透過して超音波受信部T2に伝搬する。超音波受信部T2は受信した超音波の強弱を電圧振幅に変換して増幅器204に出力する。増幅器204は超音波受信部T2からの出力信号を増幅し、AD変換器205でAD変換されて取得されたデジタル値をCPU201が受信する。CPU201は振幅レベルを示すデジタル値と所定の閾値とを比較することで原稿102の重送の有無を検知する。
<重送の検知方法>
図4(A)ないし図4(C)は超音波センサを用いて原稿の「単送」と「重送」を区別する仕組みを説明する図である。図4(A)は超音波発信部T1と超音波受信部T2との間に原稿が無い状態における駆動信号IN_T1と出力信号OUT_T2を示している。駆動信号IN_T1は駆動回路203から超音波発信部T1に入力される信号である。また、駆動信号IN_T1は連続した矩形波を含むバースト信号である。出力信号OUT_T2は超音波受信部T2が増幅器204へ出力する信号である。図4(B)は超音波発信部T1と超音波受信部T2との間に一枚の原稿が有る状態における駆動信号IN_T1と出力信号OUT_T2を示している。図4(C)は超音波発信部T1と超音波受信部T2との間に二枚の原稿が有る状態における駆動信号IN_T1と出力信号OUT_T2を示している。
駆動信号IN_T1のバースト信号の開始タイミングから出力信号OUT_T2の開始タイミングまでには遅延時間Tdが発生する。遅延時間Tdは超音波発信部T1から超音波受信部T2まで超音波が伝搬するのに要する伝搬時間である。
図4(A)と図4(B)を比較するとわかるように、一枚の原稿102が超音波発信部T1と超音波受信部T2との間に存在する場合、超音波が減衰するため、出力信号OUT_T2の振幅は減少する。図4(B)と図4(C)を比較するとわかるように、二枚の原稿102が超音波発信部T1と超音波受信部T2との間に存在する場合、超音波が原稿を透過する毎に超音波が減衰するため、出力信号OUT_T2の振幅もさらに減少する。したがって、出力信号OUT_T2の振幅を所定の閾値と比較すれば、CPU201は「単送」と「重送」とを識別できる。
なお、原稿102の厚みや種類によっても超音波の減衰量は異なる。しかし、原稿102の厚みや種類による減衰量の変動に比べ、原稿102の枚数(一枚or複数枚)の違いによる減衰量の差のほうが顕著に大きい。したがって、原稿102の厚みや種類によらず、CPU201は重送を検知可能である。
<増幅器とAD変換器>
図5は増幅器204とAD変換器205の詳細を示す図である。増幅器204は超音波受信部T2からの微小な出力信号OUT_T2を大きく増幅するために、複数段の増幅回路を備えている。図5によれば一例として反転増幅回路501、502といった二段の増幅回路で増幅器204が構成されている。なお、反転増幅回路501、502の内部がそれぞれ多段の増幅回路で構成されていてもよい。反転増幅回路501の出力はAD変換回路503に入力され、反転増幅回路502の出力はAD変換回路504に入力される。超音波センサの感度バラつき、超音波センサの周囲温度、超音波発信部T1と超音波受信部T2との取り付け誤差に起因して超音波の減衰量や伝搬時間が変化する。したがって、CPU201は、超音波発信部T1と超音波受信部T2との間に原稿が無い状態での超音波の振幅レベルを検知し、振幅レベルに応じて閾値を調整する。また、CPU201は、このときの超音波の受信タイミングに応じて超音波のサンプリングタイミングを調整してもよい。
ただし、図4(A)ないし図4(C)が示したように原稿が無い状態と原稿が有る状態では先に述べたように超音波の減衰量が大きく異なる。そのため同じ増幅度で出力信号OUT_T2を増幅してしまうと原稿が無い状態での出力信号が飽和してしまうことがある。つまり、出力信号の振幅が大き過ぎて、増幅器204の出力電圧範囲を超えてしまうか、またはAD変換器205の入力電圧範囲を超えてしまう。この場合は、閾値を正しく決定できなくなってしまう。あるいは、原稿が有る状態での出力信号OUT_T2の振幅が小さすぎて、暗ノイズに埋もれてしまう。この場合は、原稿の単送と重送とを区別できなくなってしまう。
ところで、閾値を決定するための原稿が無い状態での超音波の検知は、原稿を検知する直前に実行されてもよい。これは、原稿を検知するときと閾値を決定するときとで、周囲温度や超音波センサの位置関係を同様にする点で有利であろう。これらを考慮すると、図5に示した増幅器204とAD変換器205の構成が有利となる。
図6は増幅器204からAD変換器205に出力される出力信号の一例を示す図である。入力信号IN_AD1は、超音波発信部T1と超音波受信部T2の間に原稿が無い状態において、反転増幅回路501から出力されAD変換回路503へ入力される信号である。入力信号IN_AD2は、超音波発信部T1と超音波受信部T2の間に原稿が無い状態において、反転増幅回路502から出力されAD変換回路504へ入力される信号である。入力信号IN_AD1は一段の反転増幅回路で増幅されているため、飽和していない。一方で、入力信号IN_AD2は二段の反転増幅回路で増幅されているため、飽和してしまう。したがって、閾値を決定する際には、入力信号IN_AD1が採用される。つまり、CPU201はAD変換回路503の出力を使用して閾値を決定する。
入力信号IN_AD3は、超音波発信部T1と超音波受信部T2の間に一枚の原稿が有る状態において、反転増幅回路501から出力されAD変換回路503へ入力される信号である。入力信号IN_AD4は、超音波発信部T1と超音波受信部T2の間に一枚の原稿が有る状態において、反転増幅回路502から出力されAD変換回路504へ入力される信号である。入力信号IN_AD3は一段の反転増幅回路で増幅されているため、十分な振幅レベルまでは増幅されていない。一方で、入力信号IN_AD4は二段の反転増幅回路で増幅されているため、十分な振幅レベルまで増幅されている。したがって、重送を検知する際には、入力信号IN_AD4が採用される。つまり、CPU201はAD変換回路504の出力を使用して重送を検知する。なお、反転増幅回路501、502によって信号の極性が反転してしまう。しかし、重送検知では信号の振幅が使用されるため、極性の反転は問題とならない。
図7(A)および図7(B)を用いて超音波の特性と重送検知の方法を説明する。上述したように、超音波の減衰量は、超音波センサの感度バラつき(個体差)、周囲温度、取り付け誤差などに依存して変動する。したがって、減衰量の変動に応じて重送検知のための閾値を補正する必要がある。CPU201は、超音波発信部T1と超音波受信部T2との間に原稿が無い状態における超音波の振幅レベル(AD変換回路503の出力)を用いて閾値を補正するための補正係数を決定する。
図7(A)は超音波発信部T1から超音波受信部T2へ送信された超音波の減衰量とAD変換器205へ入力される信号の振幅値との関係を表している。C1は、超音波発信部T1と超音波受信部T2との間に原稿が無い状態においてAD変換回路503へ入力される信号の振幅特性を示している。C2は、超音波発信部T1と超音波受信部T2との間に一枚の原稿が有る状態においてAD変換回路504へ入力される信号の振幅特性を示している。いずれの場合でも超音波の減衰量が大きくなるにつれて振幅値は小さくなり、超音波の減衰量が小さくなるにつれて振幅値は大きくなることがわかる。
図7(B)はC1とC2との比率Rを示す図である。図7(B)が示すように超音波の減衰量が変動しても、原稿が無い状態での振幅値と原稿が有る状態での振幅値との比率はほぼ一定となる。つまり、CPU201は、原稿が無い状態での振幅値を決定することで、原稿が有る状態での振幅値を高い精度で算出できる。よって、CPU201は、原稿が無い状態での振幅値を取得することで「単送」と「重送」を区別するための閾値を精度よく決定することができる。閾値は、「単送」についての振幅値と「重送」についての振幅値との間になるように決定または補正される。
図8は振幅算出の詳細を説明する図である。増幅器204によって増幅されて信号IN_ADはAD変換器205に入力されてサンプリングされる。CPU201は駆動回路203に駆動信号の出力を開始するよう指示したタイミングから所定時間経過したタイミングにAD変換器205に動作開始信号を出力する。AD変換器205は動作開始信号を受信すると、所定のサンプリング間隔で信号IN_ADをサンプリングし、デジタル値に変換してCPU201へ出力する。図8が示すように、超音波(駆動信号)の一周期にわたってサンプリングが実行される。たとえば、300[KHz]の駆動信号であれば、一周期は3.3[μs]である。図8が示すように、AD変換の開始タイミングは信号IN_ADの振幅が最大となるタイミングである。なお、サンプリングが実行される期間は検知ウインドウや振幅検知期間と呼ばれてもよい。
振幅を正しく検知するためにサンプリング間隔は超音波の駆動周期(駆動信号の周期)に対して十分に小さい必要がある。本実施例では300[KHz]の駆動信号で超音波が生成されるため、その周期は3.3[μs]である。この周期に対して8回のサンプリングを行う場合、サンプリング間隔は0.41[μs]に設定される。このように超音波の駆動周期に対して十分に小さいサンプリング間隔でサンプリングを行い、サンプリングされ値の中で最小値と最大値を決定し、その差分を取得することで、受信した超音波の任意の1波分の振幅が求められる。
振幅 = MAX(A, B, C, D, E, F, G, H)- MIN(A, B, C, D, E, F, G, H) ・・・(1)
図8では、A〜Hの8個のサンプル値が得られている。MAX()は最大値を決定する関数であり、MIN()は最小値を決定する関数である。図8では信号IN_ADの電圧値が最小となるのはサンプリングポイントAであり、電圧値が最大なとなるのはサンプリングポイントEである。よって、振幅はサンプリングポイントEの電圧値からサンプリングポイントAの電圧値を減算することで決定される。
前述したように、超音波受信部T2の出力信号のレベルは微小であるため、増幅器204の増幅度は大きな増幅度に設定される。そのため、外来ノイズによる影響が大きい。一周期分のサンプリング結果だけでは、精度の良い振幅が得られないことがある。そこで、CPU201は、超音波のバースト発信をN回行うことで、各サンプリングポイントごとにN個のサンプリング結果を取得し、各サンプリングポイントごとに統計処理(例:平均値の算出)を実行する。たとえば、Nは8に設定されてもよい。CPU201は、各サンプリングポイントごとの平均値の中で最大値と最小値を決定し、その差分を振幅として決定する。
バースト間隔が短いほどサンプリングに要する時間も短くなり、一回の重送検知に必要となる検知時間も短くなるであろう。しかし、バースト間隔を短くし過ぎると問題が生じる。図9が示すように、先行する超音波の出力によって発生した残響が残っている状態で後続の超音波が出力されるため、後続の超音波に残響が重畳してしまう。これは、超音波の検知結果(振幅)の精度を低下させてしまう。よって、バースト間隔は直前にバースト駆動された超音波の残響が十分に小さくなる時間に設定される必要がある。なお、バースト間隔は実験やシミュレーションによって画像読取装置の工場出荷時に設定されうる。
図10は超音波の受信波が一つの検知ウインドウ内でK個のサンプリングポイント(例:8か所)でサンプリングされる例を示している。なお、各サンプリングポイントではN回(例:8回)にわたり電圧値がサンプリングされる。つまり、N回のバースト発信が実行される。
CPU201は、N回のバースト発信についてそれぞれ同一のサンプリングポイントでサンプリングを実行して、その結果を平均化する。つまり、N回のバースト発信のそれぞれでCPU201は駆動回路203に駆動信号の出力を生成したタイミングから定期間後にサンプリングを開始する。これにより、N回のそれぞれにおいてサンプリングポイントの位相(位置)が一致するようになる。図10によれば、サンプリングポイントAではA[1]〜A[8]のサンプル値が取得され、それらが平均化されて、A[ave]が求められる。
A[ave]= (A[1]+ A[2]+ A[3]+ A[4]+ A[5]+ A[6]+ A[7]+A[8]) / 8 ・・・(2)
複数回にわたり超音波を発信して検知してもサンプリングポイントの時間方向へのばらつきはほとんど無い。そのため、平均化によって外来ノイズ(振幅方向でのバラつき)が低減される。
<フローチャート>
図11は重送検知を示すフローチャートである。このフローは特に明記が無い場合すべてCPU201が実行する。CPU201は、原稿102の読み取り開始を操作部等から指示されると、以下の処理を実行する。
S101でCPU201は、重送検知用の閾値を決定するために超音波のバースト間隔として第一バースト間隔をメモリ206から読み出して設定し、第一バースト間隔ごとにバースト信号を出力する。第一バースト間隔は、超音波センサの感度のばらつき、超音波発信部T1と超音波受信部T2の相対的な取り付け位置関係、温度、気圧等を加味して、残響が許容限度以下になるように決定される。上述したように、工場出荷時に実験やシミュレーションによって第一バースト間隔が決定される。駆動回路203はCPU201から入力されたバースト信号を変換して駆動信号IN_T1を生成し、超音波発信部T1に出力する。超音波発信部T1は駆動信号IN_T1により駆動され、超音波の発信を開始する。
S102でCPU201は超音波の検知を開始する。CPU201はバースト信号の出力を開始したタイミングから所定時間が経過したタイミングに検知ウインドウを設定し、M個のサンプリングポイントについてAD変換回路503にサンプリングを実行させる。上述したように、この処理はN回繰り返され、CPU201は、各サンプリングポイントで取得されたN個のサンプル値の平均値を求め、さらに最大値と最小値とを決定し、最大値と最小値との差分から振幅を決定する。CPU201は振幅をメモリ206のRAMに格納する。なお、AD変換回路503がサンプリングする信号は反転増幅回路501によって増幅された信号である。これによりAD変換回路503に入力される信号が飽和してしまうことを抑制できる。
S103でCPU201は、決定された振幅に基づき重送検知用の閾値を決定する。図7(B)を用いて説明したように、超音波の減衰量が変動しても、原稿が有る状態での振幅と原稿が無い状態での振幅との比率Rは一定である。よって、CPU201は、メモリ206に記憶された振幅値に所定の補正係数を乗算することで閾値を決定し、メモリ206に格納する。補正係数は、たとえば、0.7である。補正係数を決定するために、市場で入手可能な様々な原稿のうち、最も超音波の減衰量の多い原稿(出力信号の振幅値が最小となるもの)が実験により決定される。この原稿について原稿が有る状態での振幅と原稿が無い状態での振幅が測定され、その比率Rが求められる。比率RにマージンMが乗算され、補正係数Eが決定される。マージンMを用いることで、厚紙が搬送されても重送と誤検知される可能性が小さくなる。
S104でCPU201は各種の搬送ローラを回転させるためのモーター202を駆動して原稿102の給紙および搬送を開始する。S105でCPU201はシートセンサS2の検知信号に基づきシートセンサS2に原稿102の先端が到着したかどうかを判定する。シートセンサS2に原稿102の先端が到着すると、CPU201はS106に進む。S106でCPU201はカウンタまたはタイマーを用いて所定時間Twの経過を待つ。これは、シートセンサS2の検知位置から超音波センサの検知位置まで原稿102が移動するのを待つためである。そのため、CPU201は所定時間Twの経過を待ってからS107に進む。
S107でCPU201は重送検知のための超音波のバースト間隔として第二バースト間隔をメモリ206から読み出して設定し、第二バースト間隔ごとにバースト信号を出力する。第二バースト間隔は、第一バースト間隔よりも短い。上述したように、工場出荷時に実験やシミュレーションによって第二バースト間隔も決定される。第一バースト間隔は原稿が有る状態で実験が実行されて決定されるが、第二バースト間隔は原稿が無い状態で実験が実行されて決定される。第二バースト間隔も超音波センサの感度のばらつき、超音波発信部T1と超音波受信部T2の相対的な取り付け位置関係、温度、気圧等を加味して、残響が許容限度以下になるように決定される。駆動回路203はCPU201から入力されたバースト信号を変換して駆動信号IN_T1を生成し、超音波発信部T1に出力する。超音波発信部T1は駆動信号IN_T1により駆動され、超音波の発信を開始する。
S108でCPU201は超音波の検知を開始する。CPU201はバースト信号の出力を開始したタイミングから所定時間が経過したタイミングに検知ウインドウを設定し、M個のサンプリングポイントについてAD変換回路504にサンプリングを実行させる。AD変換回路504にサンプリングを実行させるのは、原稿102が存在すると出力信号OUT_T1の振幅が小さくなるため、大きな増幅度が必要となるからである。上述したように、この処理はN回繰り返され、CPU201は、M個のサンプリングポイントでそれぞれ取得されたN個のサンプル値から平均値を求め、M個の平均値の中で最大値と最小値を決定し、最大値と最小値との差分から振幅を決定する。
S109でCPU201は振幅値が閾値を超えているかどうかに基づき、重送の有無を判定する。CPU201は振幅値が閾値を上回っていれば単送と判定し、振幅値が閾値を上回っていなければ重送と判定する。単送を検知すると、CPU201はS110をスキップして、重送検知を終了する。つまり、当該シートについて画像が読み取られる。一方で重送を検知すると、CPU201はS110に進む。S110でCPU201は、モーター202を停止させ、原稿102の搬送を停止する。
原稿が無い状態と比較して原稿が有る状態でのバースト間隔を短くすることで、重送検知時間を短縮することが可能となる。また、原稿同士の重なり量が小さい連れ重送が発生してもCPU201はこれを検知できるようになる。
図12(A)は「原稿無し状態」における駆動信号IN_T1と超音波受信部T2からの出力信号OUT_T2との関係を示す図である。図12(B)は「原稿有り状態」における駆動信号IN_T1と超音波受信部T2からの出力信号OUT_T2との関係を示す図である。図12(A)と図12(B)とを比較すると、「原稿無し状態」の第一バースト間隔と比較して「原稿有り状態」の第二バースト間隔は短い。よって、「原稿無し状態」と比較して「原稿有り状態」では超音波の検知をより短時間で完了できる。
第二バースト間隔を採用することで重送検知時間を従来よりも短くできる。重送検知時間を短くすることが可能となると、先行する原稿の後端と後続の原稿の先端とが重なりあうような連れ重送のように、重なり量が小さい重送も検知可能となる。従来は、先行する原稿の後端と後続の原稿の先端とが重なり合っている部分が超音波センサを通過する間に重送検知を完了できず、連れ重送を精度よく検知でないことがあった。これに対して本実施例では連れ重送も精度よく検知可能となる。
<バースト間隔を短くできる理由>
図12(A)、図12(B)、図13(A)および図13(B)を用いて原稿無し状態の第一バースト間隔と比較して原稿有り状態の第二バースト間隔は短くできる理由を説明する。図12(A)、図12(B)によれば、原稿有り状態での残響の継続時間は原稿無し状態での残響の継続時間よりも短いことがわかる。残響は、超音波発信部T1と超音波受信部T2との間で発生する超音波の多重反射に起因する。とりわけ、超音波を受信した超音波受信部T2が超音波を反射するため、二次波源として機能してしまう。
図13(A)は原稿無し状態における超音波の伝搬の様子を示している。図13(B)は原稿有り状態における超音波の伝搬の様子を示している。いずれの場合も、超音波発信部T1と超音波受信部T2は原稿102が搬送される搬送パス301に対して斜めに取り付けられている。
図13(A)が示すように、原稿無し状態では、まず超音波発信部T1が発信する超音波波(一次波)が超音波受信部T2に到達する。超音波受信部T2に超音波が到達すると超音波受信部T2が備える振動板が振動し、この振動が電気エネルギーに変換されて、出力信号OUT_T2が生成される。それと同時に振動した振動板が二次波源となり、超音波発信部T1の方向に超音波が出力される(反射する)。この超音波が超音波発信部T1で反射して超音波受信部T2に戻ってくる。この作用が繰り返され、反射の際のエネルギーロスと空気中での減衰によって超音波が十分に減衰するまで残響が継続する。
一方、図13(B)が示すように原稿有り状態では超音波発信部T1が発信した超音波(一次波)の一部は原稿102で反射し、残りの一部が透過して超音波受信部T2に到達する。超音波受信部T2に超音波が到達すると超音波受信部T2の振動板が振動し、出力信号OUT_T2が生成される。それと同時に振動板が二次波源となり、超音波が出力される(反射する)。反射された超音波は原稿102に到達してその一部が反射し、残りの一部が透過する。ここで反射した超音波は超音波発信部T1の方向とも超音波受信部T2の方向とも異なる別の方向へと伝搬する。これは、超音波発信部T1と超音波受信部T2が搬送パス301に対して斜めに取り付けられているためである。このように残響の原因となりうる超音波発信部T1の方向へと向かう超音波はその一部のみが原稿102を透過するため、超音波発信部T1に到達する超音波の強度はかなり減少する。つまり、原稿有り状態では原稿無し状態と比較して、より短い時間で残響が十分に減少する。その結果、原稿無し状態の第一バースト間隔と比較して原稿有り状態の第二バースト間隔を短く設定可能となる。
<まとめ>
本実施例によれば、CPU201は、制御プログラムを実行することで、超音波制御部211、重送検知部212および閾値決定部213として機能する。超音波制御部211は閾値を決定する際には第一バースト間隔で超音波発信部T1に超音波を発信させる。また、超音波制御部211はシートの重送を検知する際には第一バースト間隔よりも短い第二バースト間隔で超音波発信部T1に超音波を発信させる。重送検知部212は超音波の受信系から出力される出力信号の振幅レベルを閾値と比較することで搬送路において複数のシートが重送しているかどうかを検知する。閾値決定部213は搬送路にシートが無い状態で超音波発信部T1が第一バースト間隔で発信した超音波を受信系が受信することで出力した出力信号の振幅レベルに基づき重送と単送とを区別可能な閾値を決定する。とりわけ、超音波制御部211は閾値を決定する際には第一バースト間隔で超音波発信部T1に超音波を発信させ、超音波制御部211はシートの重送を検知する際には第一バースト間隔よりも短い第二バースト間隔で超音波発信部T1に超音波を発信させる。これにより従来よりも一枚のシートあたりで実行される重送検知の回数を増加させることが可能となり、従来よりも精度よく重送を検知できるようになる。たとえば、先行するシートの後端と後続のシートの先端とが重なりあう現象である連れ重送のように、重なり合っている面積が小さくても重送を検知できるようになる。
超音波制御部211は一つの搬送ジョブにおいて閾値の決定と重送検知とを実行してもよい。つまり、超音波制御部211はシートの搬送を指示されたタイミングからシートが超音波発信部T1と超音波受信部T2との間に到達するまでに(搬送路にシートが無い状態で)超音波発信部T1に超音波を発信させて、閾値決定部213に閾値を決定させる。重送検知部212は、シートが超音波発信部T1と超音波受信部T2との間に到達すると、閾値決定部213により決定された閾値を用いて複数のシートが重送しているかどうかを判定する。これにより、閾値決定時の超音波センサの状態と重送検知時の超音波センサの状態とを近づけることができ、重送検知の精度が向上する。
図12(A)を用いて説明したように、第一バースト間隔は超音波発信部T1から発信された超音波の残響が所定の許容限度以下となるのに必要となる時間である。これにより精度よく閾値を決定できるようになる。図12(B)を用いて説明したように、第二バースト間隔は超音波発信部T1から発信された超音波の残響が所定の許容限度以下となるのに必要となる時間である。これにより精度よく重送を検知できるようになる。
S103に関して説明したように、閾値決定部213は、搬送路にシートが無い状態で取得された振幅レベルに補正係数を乗算することで閾値を決定してもよい。また、閾値決定部213は、搬送路にシートが無い状態で取得された振幅レベルに補正係数およびマージンを乗算することで閾値を決定してもよい。これにより、精度よく、閾値を決定することが可能となる。
図2を用いて説明したうに、超音波の受信系は、超音波受信部T2、増幅器204およびAD変換器205を有している。超音波受信部T2は超音波発信部T1が発信した超音波の振幅に応じた出力信号を出力する。増幅器204は超音波受信部T2から出力された出力信号を増幅する。AD変換器205は増幅器204で増幅された出力信号をアナログデジタル変換する。とりわけ、増幅器204は、閾値を決定する際には第一増幅度で超音波受信部T2からの出力信号を増幅し、複数のシートが重送しているかどうかを検知する際には第一増幅度よりも大きな第二増幅度で超音波受信部T2からの出力信号を増幅する。これにより、閾値を決定する際には出力信号の振幅の飽和を抑制できるようになる。また、重送を検知する際にはシートによって超音波が減衰し、超音波受信部T2からの出力信号の振幅が小さくなっても、重送を検知可能となるほどに増幅することが可能となる。
図5を用いて説明したように、増幅器204は、第一増幅段である反転増幅回路501と、第一増幅段の後段に接続された第二増幅段である反転増幅回路502とを有していてもよい。AD変換器205は、第一増幅段で増幅された出力信号をアナログデジタル変換する第一変換回路としてAD変換回路503を有していてもよい。また、AD変換器205は、第一増幅段で増幅されかつ第二増幅段で増幅された出力信号をアナログデジタル変換する第二変換回路としてAD変換回路504を有していてもよい。この場合、閾値決定部213は、AD変換回路503により出力された出力信号の振幅レベルを用いて閾値を決定する。これにより増幅度の小さいことで飽和していない振幅レベルを用いて閾値が決定されるようになる。重送検知部212は、AD変換回路504により出力された出力信号の振幅レベルを用いて複数のシートが重送しているかどうかを検知する。これによりシートによる減衰のために小さくなった振幅レベルであっても重送を検知できるようになる。
100・・・シート搬送装置、115・・・画像読取装置、T1・・・超音波発信部、T2・・・超音波受信部

Claims (9)

  1. 搬送路においてシートを搬送する搬送手段と、
    超音波を発信する発信手段と、
    前記発信手段に対向して取り付けられ、前記発信手段から発信された超音波を受信する受信手段と、
    前記受信手段から出力される出力信号の振幅レベルを閾値と比較することで前記搬送路において複数のシートが重送しているかどうかを検知する重送検知手段と、
    前記閾値を決定する際には前記発信手段と前記受信手段との間にシートがない状態において第一バースト間隔で前記発信手段に超音波を発信させ、前記シートの重送を検知する際には前記発信手段と前記受信手段との間にシートがある状態において前記第一バースト間隔よりも短い第二バースト間隔で前記発信手段に超音波を発信させる制御手段と、
    前記発信手段と前記受信手段との間にシートが無い状態で前記発信手段が前記第一バースト間隔で発信した超音波を前記受信手段が受信することで出力した出力信号の振幅レベルに基づき重送と単送とを区別可能な前記閾値を決定する決定手段と
    を有し、
    前記制御手段は、前記シートの搬送を指示されたタイミングから前記シートが前記発信手段と前記受信手段との間に到達するまでの前記発信手段と前記受信手段との間にシートが無い状態で前記発信手段に超音波を発信させて、前記決定手段に前記閾値を決定させ、
    前記重送検知手段は、前記シートが前記発信手段と前記受信手段との間に到達すると、前記決定手段により決定された前記閾値を用いて複数のシートが重送しているかどうかを検知することを特徴とするシート搬送装置。
  2. 前記第一バースト間隔は前記発信手段から発信された超音波の残響が所定の許容限度以下となるのに必要となる時間であることを特徴とする請求項に記載のシート搬送装置。
  3. 前記第二バースト間隔は前記発信手段から発信された超音波の残響が所定の許容限度以下となるのに必要となる時間であることを特徴とする請求項に記載のシート搬送装置。
  4. 前記決定手段は、前記発信手段と前記受信手段との間にシートが無い状態で取得された振幅レベルに補正係数を乗算することで前記閾値を決定することを特徴とする請求項1ないしのいずれか一項に記載のシート搬送装置。
  5. 前記決定手段は、前記搬送路にシートが無い状態で取得された振幅レベルに補正係数およびマージンを乗算することで前記閾値を決定することを特徴とする請求項1ないしのいずれか一項に記載のシート搬送装置。
  6. 前記発信手段および前記受信手段は、前記搬送路に対して斜めに取り付けられていることを特徴とする請求項1ないしのいずれか一項に記載のシート搬送装置。
  7. 前記受信手段は、
    前記発信手段に対向して取り付けられ、前記超音波の振幅に応じた出力信号を出力する出力手段と、
    前記出力手段から出力された出力信号を増幅する増幅手段と、
    前記増幅手段で増幅された出力信号をアナログデジタル変換する変換手段と
    を有し、
    前記増幅手段は、前記閾値を決定する際には第一増幅度で前記出力手段からの出力信号を増幅し、複数のシートが重送しているかどうかを検知する際には前記第一増幅度よりも大きな第二増幅度で前記出力手段からの出力信号を増幅することを特徴とする請求項に記載のシート搬送装置。
  8. 前記増幅手段は、第一増幅段と、前記第一増幅段の後段に接続された第二増幅段とを有し、
    前記変換手段は、前記第一増幅段で増幅された出力信号をアナログデジタル変換する第一変換回路と、前記第一増幅段で増幅されかつ前記第二増幅段で増幅された出力信号をアナログデジタル変換する第二変換回路とを有し、
    前記決定手段は、前記第一変換回路により出力された前記出力信号の振幅レベルを用いて前記閾値を決定し、
    前記重送検知手段は、前記第二変換回路により出力された前記出力信号の振幅レベルを用いて複数のシートが重送しているかどうかを検知することを特徴とする請求項に記載のシート搬送装置。
  9. 搬送路においてシートを搬送する搬送手段と、
    超音波を発信する発信手段と、
    前記発信手段に対向して取り付けられ、前記発信手段から発信された超音波を受信する受信手段と、
    前記受信手段から出力される出力信号の振幅レベルを閾値と比較することで前記搬送路において複数のシートが重送しているかどうかを検知する重送検知手段と、
    前記閾値を決定する際には前記発信手段と前記受信手段との間にシートがない状態において第一バースト間隔で前記発信手段に超音波を発信させ、前記シートの重送を検知する際には前記発信手段と前記受信手段との間にシートがある状態において前記第一バースト間隔よりも短い第二バースト間隔で前記発信手段に超音波を発信させる制御手段と、
    前記発信手段と前記受信手段との間にシートが無い状態で前記発信手段が前記第一バースト間隔で発信した超音波を前記受信手段が受信することで出力した出力信号の振幅レベルに基づき重送と単送とを区別可能な前記閾値を決定する決定手段と、
    前記重送検知手段が重送を検知しなければ前記シートに形成された画像を読み取る読取手段と
    を有し、
    前記制御手段は、前記シートの搬送を指示されたタイミングから前記シートが前記発信手段と前記受信手段との間に到達するまでの前記発信手段と前記受信手段との間にシートが無い状態で前記発信手段に超音波を発信させて、前記決定手段に前記閾値を決定させ、
    前記重送検知手段は、前記シートが前記発信手段と前記受信手段との間に到達すると、前記決定手段により決定された前記閾値を用いて複数のシートが重送しているかどうかを検知することを特徴とする画像読取装置。
JP2015168139A 2015-08-27 2015-08-27 シート搬送装置および画像読取装置 Active JP6622517B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015168139A JP6622517B2 (ja) 2015-08-27 2015-08-27 シート搬送装置および画像読取装置
US15/228,110 US9981819B2 (en) 2015-08-27 2016-08-04 Sheet conveyance apparatus that detects overlapping of plurality of sheets, and image reading apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015168139A JP6622517B2 (ja) 2015-08-27 2015-08-27 シート搬送装置および画像読取装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019210621A Division JP6814270B2 (ja) 2019-11-21 2019-11-21 シート搬送装置および画像読取装置

Publications (3)

Publication Number Publication Date
JP2017043470A JP2017043470A (ja) 2017-03-02
JP2017043470A5 JP2017043470A5 (ja) 2018-10-11
JP6622517B2 true JP6622517B2 (ja) 2019-12-18

Family

ID=58097480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015168139A Active JP6622517B2 (ja) 2015-08-27 2015-08-27 シート搬送装置および画像読取装置

Country Status (2)

Country Link
US (1) US9981819B2 (ja)
JP (1) JP6622517B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6884341B2 (ja) * 2017-03-30 2021-06-09 公立大学法人大阪 土質判定方法
JP7087287B2 (ja) * 2017-06-29 2022-06-21 セイコーエプソン株式会社 画像読取装置
CN110787982B (zh) * 2018-08-01 2021-10-15 精工爱普生株式会社 超声波装置
KR20210001760A (ko) 2019-06-28 2021-01-06 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 중송 검출 및 처리
JP7327015B2 (ja) * 2019-09-05 2023-08-16 コニカミノルタ株式会社 検査装置、制御方法、シート搬送装置、印刷装置及び画像読取装置
US11718492B2 (en) 2021-09-08 2023-08-08 Toshiba Tec Kabushiki Kaisha Image processing apparatus
KR20230037876A (ko) * 2021-09-10 2023-03-17 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 트레이를 승강시키는 구조를 갖는 스캐너의 원고 역이송 및 재이송

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212130B1 (en) * 1999-03-08 2001-04-03 Scan-Optics, Inc. Method and apparatus for plural document detection
JP3640304B2 (ja) * 2001-09-25 2005-04-20 株式会社ニレコ ウェブの端面位置を検出する超音波検出装置
JP3860126B2 (ja) * 2003-01-31 2006-12-20 キヤノン電子株式会社 重送検知装置及び重送検知方法
JP3752228B2 (ja) * 2003-01-31 2006-03-08 キヤノン電子株式会社 重送検知装置及び重送検知方法
JP2004269241A (ja) * 2003-03-12 2004-09-30 Pfu Ltd 給紙装置
US7357306B2 (en) * 2004-07-01 2008-04-15 Diebold Self-Service Systems Division Of Diebold, Incorporated Multiple sheet detector apparatus and method
JP2009292574A (ja) * 2008-06-04 2009-12-17 Canon Inc 重送検知装置、重送検知方法、及びプログラム
MX2011012302A (es) * 2009-06-12 2011-12-08 Diebold Inc Sistema bancario que opera en respuesta a lectura de datos desde registros teniendo datos.
WO2011074061A1 (ja) * 2009-12-14 2011-06-23 キヤノン株式会社 超音波制御装置及び記録材判別装置
JP5451520B2 (ja) * 2010-05-14 2014-03-26 株式会社Pfu 重送処理装置、重送処理方法および重送処理プログラム
JP5709436B2 (ja) 2010-08-25 2015-04-30 キヤノン株式会社 シート給送装置及び画像形成装置
JP5724469B2 (ja) 2011-03-08 2015-05-27 株式会社リコー 重送検知装置、画像形成装置、及び重送検知プログラム
JP2012232844A (ja) * 2011-04-20 2012-11-29 Seiko Epson Corp 画像処理装置およびシート給送構造
JP2013028433A (ja) 2011-07-28 2013-02-07 Canon Inc シート給送装置及び画像形成装置
JP5885427B2 (ja) 2011-08-24 2016-03-15 キヤノン株式会社 シート給送装置及び画像形成装置
JP5939829B2 (ja) 2012-02-17 2016-06-22 キヤノン株式会社 シート給送装置及び画像形成装置
JP6032989B2 (ja) * 2012-07-26 2016-11-30 キヤノン株式会社 シート給送装置および画像形成装置
JP5579302B1 (ja) * 2013-05-02 2014-08-27 株式会社Pfu 原稿搬送装置
JP6337537B2 (ja) * 2014-03-17 2018-06-06 株式会社リコー 用紙搬送装置、画像形成装置及び重送判定方法
JP6344224B2 (ja) * 2014-12-08 2018-06-20 ブラザー工業株式会社 シート搬送装置

Also Published As

Publication number Publication date
US20170057768A1 (en) 2017-03-02
US9981819B2 (en) 2018-05-29
JP2017043470A (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6622517B2 (ja) シート搬送装置および画像読取装置
JP2017043470A5 (ja)
JP2004269241A (ja) 給紙装置
JP3860126B2 (ja) 重送検知装置及び重送検知方法
JP2017210349A (ja) シート搬送装置
US11807490B2 (en) Sheet conveying apparatus and image reading apparatus
JP2017039589A (ja) シート給送装置
JP6579939B2 (ja) 重送検出装置、重送検出方法及び制御プログラム
US10730712B2 (en) Conveyance apparatus, reading apparatus, image forming apparatus and image forming system
JP2007331909A (ja) 重送検知装置及びその制御方法並びにプログラム
JP2019119578A (ja) 検知装置、画像読取装置、検知方法
JP2017149504A (ja) 媒体搬送装置、画像読取装置、重送判定方法及び重送判定プログラム
JP6814270B2 (ja) シート搬送装置および画像読取装置
JP2020132373A (ja) シート搬送装置、画像読取装置、シート搬送方法
JP5570232B2 (ja) 重送検知装置、及び重送検知方法、並びにシート処理装置
US11523005B2 (en) Image reading apparatus and multi-sheet feed detection method with detection based on rise of driving voltage and change amount of received ultrasonic wave
JP2016204065A (ja) 重送検知装置、及び、これを有する搬送装置、画像形成装置
JP2019123603A (ja) シート搬送装置、シート搬送装置の制御方法およびプログラム
JP2006105667A (ja) 超音波重送検知システム
JP2005035757A (ja) シート取扱装置及び画像読取装置
JP6602100B2 (ja) シート搬送装置
JP4260595B2 (ja) 超音波重送検知装置
JP2018131307A (ja) 重送検知装置、画像読取装置、重送検知方法
JP2019059606A (ja) 重送検知装置、画像読取装置、重送検知方法
JP6796262B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191122

R151 Written notification of patent or utility model registration

Ref document number: 6622517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151