JP6576388B2 - 超極細繊維状炭素集合体、炭素系導電助剤、非水電解質二次電池用電極材料、非水電解質二次電池用電極及び非水電解質二次電池 - Google Patents
超極細繊維状炭素集合体、炭素系導電助剤、非水電解質二次電池用電極材料、非水電解質二次電池用電極及び非水電解質二次電池 Download PDFInfo
- Publication number
- JP6576388B2 JP6576388B2 JP2017102990A JP2017102990A JP6576388B2 JP 6576388 B2 JP6576388 B2 JP 6576388B2 JP 2017102990 A JP2017102990 A JP 2017102990A JP 2017102990 A JP2017102990 A JP 2017102990A JP 6576388 B2 JP6576388 B2 JP 6576388B2
- Authority
- JP
- Japan
- Prior art keywords
- fibrous carbon
- carbon
- electrode
- ultrafine fibrous
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
- D01D5/36—Matrix structure; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/06—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/145—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Organic Chemistry (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Conductive Materials (AREA)
- Carbon And Carbon Compounds (AREA)
- Inorganic Chemistry (AREA)
Description
非水電解質二次電池の一種であるリチウムイオン二次電池は、電解質中のリチウムイオンが電気伝導を担う二次電池であり、正極にリチウム金属酸化物を用い、負極にグラファイトなどの炭素材を用いるものが主流の二次電池である。リチウムイオン二次電池は、二次電池の中でもエネルギー密度が高い特徴を持つことから、携帯電話などの小型機器から、電気自動車などの大型機器まで、応用範囲が広がってきている。
第1及び第2の本発明の背景技術の記載のように、リチウムイオン二次電池の課題の一つとして、充放電の繰り返しによる電池容量の低下(劣化)を防止する点が挙げられる(サイクル特性の向上)。
本発明の目的は、機械的強度に優れた電極活物質層、その電極活物質層を含む非水電解質二次電池、及びその電極活物質層に含まれる炭素系導電助剤を提供することにある。また、本発明の目的は、電極活物質層の機械的強度を向上させることで、サイクル特性に優れた非水電解質二次電池、特には、リチウムイオン二次電池を提供することにある。
本発明は、高導電性と優れた機械的強度とを有する複合体、その複合体を含む炭素系導電助剤、その導電助剤を含む非水電解質二次電池用電極材料、及びその電極材料を含む非水電解質二次電池用電極を提供することを目的とする。また、本発明は、複合体、その複合体を含む炭素系導電助剤、複合体を含む電極活物質層、及びその電極活物質層を含む非水電解質二次電池用電極の導電性と機械的強度とを向上させることで、優れたレート特性を有する非水電解質二次電池、特には、リチウムイオン二次電池を提供することを目的とする。
特許文献1に記載の発明は、繊維状の炭素材料を電極内に加えることにより、サイクル特性の向上を図っているが、繊維状の炭素材料として気相法炭素繊維を使用しており、気相法炭素繊維は分岐構造を有しているため、電極内の分散性を高めることが難しく、繊維状の炭素材料が凝集してしまうことがあり、それによってサイクル特性の向上が不充分なものとなる問題点があった。また、特許文献3に記載の発明は、気相法炭素繊維を0.5〜22.5質量部の添加し、電極中に平均粒径12〜48μmの気相法炭素繊維からなる二次粒子を含んでいることを特徴としてサイクル特性の向上を図っているが、気相法炭素繊維が局在していると、電流がその二次粒子に集中してしまい、その部分のみが集中的に劣化することが予想されて、サイクル特性の向上が不充分なものとなる問題点があった。
本発明者らは、第3の本発明の課題に記載した上記問題点に鑑みて鋭意検討した結果、非水電解質二次電池用の超極細繊維状炭素集合体の水分散性と機械的強度とを改良することで、非水電解質二次電池、特にはリチウムイオン二次電池用のサイクル特性の向上、さらには高容量化を達成することができることを見出した。
上記目的を解決するために、本発明者らは、上記従来技術に鑑み鋭意検討を重ねた結果、本発明を完成するに至った。すなわち、本発明は、電極活物質と、炭素系導電助剤と、バインダーとを少なくとも含む電極活物質層であって、その炭素系導電助剤が、直線構造であって、かつ平均繊維径200nm超900nm以下の超極細繊維状炭素を含み、かつ面方向の最大引張強度σM、及び上記最大引張強度σMに対して面内垂直方向の引張強度σTが、下記の関係式(a)を満たす、電極活物質層である。
σM/σT≦1.6 (a)
上記目的を解決するために、本発明者らは、上記従来技術に鑑み鋭意検討を重ねた結果、本発明を完成するに至った。すなわち、本発明は、超極細繊維状炭素と球状炭素とを含む複合体であって、超極細繊維状炭素が直線構造を有し、超極細繊維状炭素と球状炭素とが一体的に互いに付着されて、上記超極細繊維状炭素と上記球状炭素が均一に混合されてなる、複合体である。
上記課題を解決するために、本発明は、直線構造を有する超極細繊維状炭素であって、上記超極細繊維状炭素の表面の少なくとも一部が界面活性剤によって修飾される、及び/又は上記超極細繊維状炭素の表面の少なくとも一部が酸化処理される、超極細繊維状炭素を提供し、また、その超極細繊維状炭素が集合して成る超極細繊維状炭素集合体を提供する。
上記課題を解決するために、本発明は、直線構造を有する超極細繊維状炭素が集合して成る超極細繊維状炭素集合体であって、超極細繊維状炭素集合体の少なくとも一部の上記超極細繊維状炭素の表面の少なくとも一部が界面活性剤によって修飾された、及び/又は超極細繊維状炭素集合体の少なくとも一部の超極細繊維状炭素の表面の少なくとも一部が酸化処理されて、体積換算粒度分布測定により得られた超極細繊維状炭素集合体の繊維長分布において、繊維長15μm以下の第一ピークと繊維長15μm超の第二ピークとを有し、第一ピークの体積換算粒度分布(%)の第二ピークの体積換算粒度分布(%)に対する比が3/1以上である、超極細繊維状炭素集合体を提供する。
したがって、本発明の態様としては、以下を挙げることができる:
《態様1》
電極活物質と、炭素系導電助剤と、バインダーとを少なくとも含む電極活物質層であって、
前記炭素系導電助剤が、直線構造であって、かつ平均繊維径200nm超900nm以下の超極細繊維状炭素を含み、かつ
面方向の最大引張強度σM、及び前記最大引張強度σMに対して面内垂直方向の引張強度σTが、下記の関係式(a)を満たす、電極活物質層:
σM/σT≦1.6 (a)
《態様2》
前記電極活物質層の総質量に対して、10質量%以下の前記炭素系導電助剤を含む、態様1に記載の電極活物質層。
《態様3》
前記電極活物質層の総質量に対して、1質量%以上、25質量%以下のバインダーを含む、態様1又は2に記載の電極活物質層。
《態様4》
前記超極細繊維状炭素の平均繊維長が1μm〜15μmである、態様1〜3のいずれか1項に記載の電極活物質層。
《態様5》
前記超極細繊維状炭素が、平均繊維長が1μm〜15μmである超極細繊維状炭素と、平均繊維長が15μm超〜50μmである超極細繊維状炭素とを含む、態様1〜4のいずれか1項に記載の電極活物質層。
《態様6》
態様1〜5のいずれか一項に記載の電極活物質層を含む、非水電解質二次電池。
《態様7》
直線構造であって、かつ平均繊維径200nm超900nm以下の超極細繊維状炭素を含み、
前記超極細繊維状炭素の平均繊維長が1μm〜15μmである、
炭素系導電助剤。
《態様8》
直線構造であって、かつ平均繊維径200nm超900nm以下の超極細繊維状炭素を含み、
前記超極細繊維状炭素が、平均繊維長が1μm〜15μmである超極細繊維状炭素と、平均繊維長が15μm超〜50μmである超極細繊維状炭素とを含む、
炭素系導電助剤。
《態様9》
前記超極細繊維状炭素と球状炭素とが一体的に互いに付着されて、前記超極細繊維状炭素と前記球状炭素が均一に混合されてなる複合体を含む、態様1〜5に記載の電極活物質層。
《態様10》
超極細繊維状炭素と球状炭素とを含む複合体であって、
前記超極細繊維状炭素が直線構造を有し、
前記超極細繊維状炭素と前記球状炭素とが一体的に互いに付着されて、前記超極細繊維状炭素と前記球状炭素が均一に混合されてなる、
複合体。
《態様10−2》
超極細繊維状炭素と球状炭素とを含む複合体であって、
前記超極細繊維状炭素が直線構造を有し、
前記超極細繊維状炭素と前記球状炭素とを乾式で複合化をすることによって得られており、
前記超極細繊維状炭素と前記球状炭素とが一体的に互いに付着されて、前記超極細繊維状炭素と前記球状炭素が均一に混合されてなる、
複合体。
《態様11》
前記超極細繊維状炭素と前記球状炭素とを乾式複合をすることによって得られる、態様10に記載の複合体。
《態様11−2》
前記複合化が乾式ジェットミルで行われている、態様10に記載の複合体。
《態様12》
前記複合体の密度と前記超極細繊維状炭素の密度とが略同一であるときに、前記複合体が、前記超極細繊維状炭素に対して略同等から50倍の体積抵抗率を有する、態様10又は11に記載の複合体。
《態様13》
前記複合体の密度と前記球状炭素の密度とが略同一であるときに、前記複合体が、前記球状炭素に対して略同等〜1/100倍以下の体積抵抗率を有する、態様10〜12のいずれか1項に記載の複合体。
《態様14》
前記超極細繊維状炭素と前記球状炭素との質量比が、1:9〜5:5である、態様10〜13のいずれか1項に記載の複合体。
《態様15》
前記超極細繊維状炭素の平均繊維長が10μm超〜50μmである、態様10〜14のいずれか1項に記載の複合体。
《態様16》
前記超極細繊維状炭素の平均繊維長が1μm〜10μmである、態様10〜14のいずれか1項に記載の複合体。
《態様17》
前記球状炭素がカーボンブラックである、態様10〜16のいずれか1項に記載の複合体。
《態様18》
態様10〜17のいずれか1項に記載の複合体を含む、炭素系導電助剤。
《態様19》
態様9に記載の電極活物質層を含む、非水電解質二次電池。
《態様20》
直線構造を有する超極細繊維状炭素であって、
前記超極細繊維状炭素の表面の少なくとも一部が界面活性剤によって修飾される、
及び/又は前記超極細繊維状炭素の表面の少なくとも一部が酸化処理される、
超極細繊維状炭素。
《態様20−2》
超極細繊維状炭素であって、
直線構造を有し、
解砕されており、
前記超極細繊維状炭素の表面の少なくとも一部が界面活性剤によって修飾されており、及び/又は前記超極細繊維状炭素の表面の少なくとも一部が酸化処理されている、
超極細繊維状炭素。
《態様21》
解砕されてなる、態様20に記載の超極細繊維状炭素。
《態様21−2》
粉砕されている、態様20に記載の超極細繊維状炭素。
《態様22》
乾式粉砕装置及び/又は湿式粉砕装置により解砕されてなる、態様21に記載の超極細繊維状炭素。
《態様22−2》
乾式粉砕装置及び/又は湿式粉砕装置により解砕されてなる、態様20又は21に記載の超極細繊維状炭素。
《態様23》
アスペクト比が1〜1000である、態様20〜22のいずれか1項に記載の超極細繊維状炭素。
《態様24》
態様20〜23のいずれか1項に記載の超極細繊維状炭素が集合して成る、超極細繊維状炭素集合体。
《態様25》
態様20〜23のいずれか1項に記載の超極細繊維状炭素、及び/又は態様24に記載の超極細繊維状炭素集合体を含む、炭素系導電助剤。
《態様26》
態様25に記載の炭素系導電助剤と、電極活物質と、バインダーとを少なくとも含む非水電解質二次電池用電極材料。
《態様27》
溶媒として水を更に含む、態様26に記載の非水電解質二次電池用電極材料。
《態様28》
集電体及び前記集電体上に活物質層を有する非水電解質二次電池用電極であって、前記活物質層が態様26又は27に記載の非水電解質二次電池用電極材料から成る、非水電解質二次電池用電極。
《態様29》
態様28に記載の非水電解質二次電池用電極を含む、非水電解質二次電池。
《態様30》
直線構造を有する超極細繊維状炭素が集合して成る超極細繊維状炭素集合体であって、
前記超極細繊維状炭素集合体の少なくとも一部の前記超極細繊維状炭素の表面の少なくとも一部が界面活性剤によって修飾された、及び/又は前記超極細繊維状炭素集合体の少なくとも一部の超極細繊維状炭素の表面の少なくとも一部が酸化処理されて、
体積換算粒度分布測定により得られた前記超極細繊維状炭素集合体の繊維長分布において、繊維長15μm以下の第一ピークと繊維長15μm超の第二ピークとを有し、前記第一ピークの体積換算粒度分布(%)の前記第二ピークの体積換算粒度分布(%)に対する比が、3/1以上である、
超極細繊維状炭素集合体。
《態様31》
前記超極細繊維状炭素集合体の前記超極細繊維状炭素の平均繊維長が25μm以下である、態様30に記載の超極細繊維状炭素集合体。
《態様32》
超遠心粉砕機により処理されて形成される、態様30又は31に記載の超極細繊維状炭素集合体。
《態様33》
前記超極細繊維状炭素集合体の前記超極細繊維状炭素のアスペクト比が1〜1000である、態様30〜32のいずれか1項に記載の超極細繊維状炭素集合体。
《態様34》
態様30〜33のいずれか1項に記載の超極細繊維状炭素集合体を含む、炭素系導電助剤。
《態様35》
態様34に記載の炭素系導電助剤と、電極活物質と、バインダーとを少なくとも含む非水電解質二次電池用電極材料。
《態様36》
溶媒として水を更に含む、態様35に記載の非水電解質二次電池用電極材料。
《態様37》
集電体及び前記集電体上に活物質層を有する非水電解質二次電池用電極であって、前記活物質層が態様35又は36に記載の非水電解質二次電池用電極材料から成る、非水電解質二次電池用電極。
《態様38》
態様37に記載の非水電解質二次電池用電極を含む、非水電解質二次電池。
本発明によれば、機械的強度に優れた電極活物質層、その電極活物質層を含む非水電解質二次電池、及びその電極活物質層に含まれる炭素系導電助剤を提供される。また、本発明によれば、サイクル特性に優れた非水電解質二次電池、特には、リチウムイオン二次電池が提供される。
本発明によれば、高導電性と優れた機械的強度とを有する複合体、その複合体を含む炭素系導電助剤、その複合体を含む電極活物質層、及びその電極活物質層を含む非水電解質二次電池用電極が提供される。また、本発明は、複合体、その複合体を含む炭素系導電助剤、その複合体を含む電極活物質層、及びその電極活物質層を含む非水電解質二次電池用電極の導電性と機械的強度とを向上させることで、優れたサイクル特性であって、かつ高容量である非水電解質二次電池、特には、リチウムイオン二次電池が提供される。
本発明によれば、優れた水分散性を有する超極細繊維状炭素及び超極細繊維状炭素集合体が提供される。また、本発明によれば、超極細繊維状炭素及び/又は超極細繊維状炭素集合体の水分散性を改良することで、高導電性を有する炭素系導電助剤、非水電解質二次電池用電極材料、及び非水電解質二次電池用電極が提供される。さらに、本発明によれば、超極細繊維状炭素及び/又は超極細繊維状炭素集合体の水分散性を改良することで、優れたサイクル特性であって、かつ高容量である非水電解質二次電池、特には、リチウムイオン二次電池が提供される。
本発明によれば、優れた水分散性と優れた機械的強度とを有する超極細繊維状炭素集合体が提供される。また、本発明によれば、超極細繊維状炭素集合体の水分散性及び機械的強度を改良することで、高導電性と優れた機械強度とを有する炭素系導電助剤、非水電解質二次電池用電極材料、及び非水電解質二次電池用電極が提供される。さらに、本発明によれば、超極細繊維状炭素集合体の水分散性及び機械的強度を改良することで、優れたサイクル特性であって、かつ高容量である非水電解質二次電池、特には、リチウムイオン二次電池が提供される。
本発明による電極活物質層は、電極活物質と、炭素系導電助剤と、バインダーとを少なくとも含み、炭素系導電助剤が、直線構造であって、かつ平均繊維径200nm超900nm以下の超極細繊維状炭素を含み、かつ面方向の最大引張強度σM、及び上記最大引張強度σMに対して面内垂直方向の引張強度σTが、下記の関係式(a)を満たす(態様1)。
σM/σT≦1.6 (a)
・易黒鉛化性炭素
本発明による非水電解質二次電池用電極材料に含まれる超極細繊維状炭素は易黒鉛化性炭素であることが好ましい。易黒鉛化性炭素とは、2,500℃以上の高温での加熱処理によって三次元的な積層規則性を持つ黒鉛構造が生成しやすい炭素原料である。軟質炭素、ソフトカーボンなどとも呼ばれる。易黒鉛化性炭素としては、石油コークス、石炭ピッチコークス、ポリ塩化ビニル、3,5−ジメチルフェノールホルムアルデヒド樹脂などが挙げられる。
本発明における超極細繊維状炭素の平均繊維径は、200nm超900nm以下の範囲にある。この平均繊維径は、電界放射型走査電子顕微鏡によって倍率2,000倍にて撮影した写真図より測定された値である。上記超極細繊維状炭素の平均繊維径は、230nm超600nm以下の範囲にあることが好ましく、250nm超500nm以下の範囲にあることがより好ましく、250nm超400nm以下の範囲にあることが更に好ましい。
本発明における超極細繊維状炭素の平均繊維長は、1〜100μmの範囲にあることが好ましく、1〜50μmの範囲にあることがより好ましい。超極細繊維状炭素の平均繊維長が長いほど、非水電解質二次電池用電極内の導電性、電極の強度、電解液保液性が増し好ましいが、長すぎると、電極内の繊維分散性が損なわれるという問題が生じる。そのため、本発明における超極細繊維状炭素の平均繊維長は上記範囲内にあることが好ましい。
本発明の非水電解質二次電池用電極材料に含まれる正極活物質としては、非水電解質二次電池において、正極活物質として知られている従来公知の材料の中から、任意のものを一種又は二種以上適宜選択して用いることができる。例えばリチウムイオン二次電池であれば、リチウムイオンを吸蔵・放出可能なリチウム含有金属酸化物が好適である。このリチウム含有金属酸化物としては、リチウムと、Co、Mg、Mn、Ni、Fe、Al、Mo、V、W及びTiなどからなる群より選ばれる少なくとも一種の元素を含む複合酸化物を挙げることができる。
本発明の非水電解質二次電池用電極材料に含まれる負極活物質としては、非水電解質二次電池において、負極活物質として知られている従来公知の材料の中から、一種又は二種以上選択して用いることができる。例えばリチウムイオン二次電池であれば、リチウムイオンを吸蔵・放出可能な炭素材料、Si及びSnのいずれか、又はこれらの少なくとも一種を含む合金や酸化物などを用いることができる。これらの中でも炭素材料が好ましい。
本発明の非水電解質二次電池に含まれるバインダーとしては、電極成形が可能であり、十分な電気化学的安定性を有していれば好適に用いることが可能である。かかるバインダーとしては、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、合成ブタジエンゴム(SBR)、フルオロオレフィン共重合体架橋ポリマー、ポリイミド、石油ピッチ、石炭ピッチ、フェノール樹脂等よりなる群から選ばれる1種以上を用いることが好ましく、特にポリフッ化ビニリデン(PVDF)が好ましい。
非水電解質二次電池の電極作製方法としては、以下の二つの手法が一般的である。一つの方法は、電極活物質、導電助剤及びバインダーを混合・混練して、押し出し成形によりフィルム化して、これを圧延、延伸した後、集電体と張り合わせる方法である。もう一つの方法は、電極活物質、導電助剤、バインダー及びバインダーを溶解する溶媒を混合してスラリーを調製し、このスラリーを基盤上へ塗布し溶媒を除去後にプレスを行う方法である。
本発明による非水電解質二次電池は、例えば、リチウムイオン二次電池、リチウム電池、リチウムイオンポリマー電池等が挙げられるが、リチウムイオン二次電池であることが好ましい。本発明の非水電解質二次電池では、正極活物質層が集電体の表面に形成されてなる正極、電解質を含む電解質層、及び本発明の非水電解質二次電池用負極が、正極材料層と本発明による負極の負極活物質層とが向き合い、かつ正極活物質層と本発明による負極活物質層との間に電解質層が挿入されるようにして積層されていてよい。
本発明による炭素系導電助剤は、直線構造であって、かつ平均繊維径200nm超900nm以下の超極細繊維状炭素を含み、上記超極細繊維状炭素の平均繊維長が1μm〜15μmである、超極細繊維状炭素に関する詳細な説明は上記のとおりである。
本発明について、以下に説明をする。
本発明の複合体は、超極細繊維状炭素と球状炭素とを含む複合体であって、超極細繊維状炭素が直線構造を有し、超極細繊維状炭素と球状炭素とが一体的に互いに付着されて、超極細繊維状炭素と球状炭素が均一に混合されてなる、複合体である(態様1)。
本発明の複合体は、超極細繊維状炭素と球状炭素とを含む複合体であって、超極細繊維状炭素が直線構造を有し、超極細繊維状炭素と上記球状炭素とが一体的に互いに付着されて、上記超極細繊維状炭素と上記球状炭素が均一に混合されてなる、複合体である。本発明の複合体は、超極細繊維状炭素と球状炭素とが一体的に互いに付着されて、上記超極細繊維状炭素と上記球状炭素が均一に混合されることで、高導電性と優れた機械的強度とを有する。
本発明における超極細繊維状炭素の平均繊維径は、200nm超900nm以下の範囲にある。この平均繊維径は、電界放射型走査電子顕微鏡によって倍率2,000倍にて撮影した写真図より測定された値である。上記超極細繊維状炭素の平均繊維径は、230nm超600nm以下の範囲にあることが好ましく、250nm超500nm以下の範囲にあることがより好ましく、250nm超400nm以下の範囲にあることが更に好ましい。
本発明における超極細繊維状炭素の平均繊維長は、1〜100μmの範囲でよい。本発明の複合体において、導電性、機械的強度及び分散性の観点から、超極細繊維状炭素の平均繊維長が10μm超〜50μmであること又は1μm〜10μmであることが好ましい。本発明における超極細繊維状炭素の平均繊維長は、100μm超の長さである場合、超極細繊維状炭素の分散性が損なわれる場合があるからである。ここで、本明細書において、超極細繊維状炭素をCNFと称する場合があり、平均繊維長が短い超極細繊維状炭素、例えば、平均繊維長が1μm〜15μmである超極細繊維状炭素をS−CNFと称する場合がある。
本発明における超極細繊維状炭素は、X線回折法により測定した(002)面の平均面間隔d(002)が0.335〜0.340nmであることがより好ましい。
本発明の炭素系導電助剤は、本発明の複合体を含む炭素系導電助剤である。本発明の炭素系導電助剤は、本発明の複合体を含むが、電極活物質層の導電性を向上させることができる限り、更に本発明の複合体以外の材料、例えば炭素系材料等を含んでよい。
本発明の電極活物質層は、後述する非水電解質二次電池用電極材料からなる。
本発明の電極活物質層の形成に用いられる非水電解質二次電池用電極材料は、本発明の炭素系導電助剤と、電極活物質と、バインダーとを少なくとも含む非水電解質二次電池用電極材料である。
本発明の非水電解質二次電池用電極材料に含まれる正極活物質としては、非水電解質二次電池において、正極活物質として知られている従来公知の材料の中から、任意のものを一種又は二種以上適宜選択して用いることができる。例えばリチウムイオン二次電池であれば、リチウムイオンを吸蔵・放出可能なリチウム含有金属酸化物が好適である。 このリチウム含有金属酸化物としては、リチウムと、Co、Mg、Mn、Ni、Fe、Al、Mo、V、W及びTiなどからなる群より選ばれる少なくとも一種の元素を含む複合酸化物を挙げることができる。
本発明の非水電解質二次電池用電極材料に含まれる負極活物質としては、非水電解質二次電池において、負極活物質として知られている従来公知の材料の中から、一種又は二種以上選択して用いることができる。例えばリチウムイオン二次電池であれば、リチウムイオンを吸蔵・放出可能な炭素材料、Si及びSnのいずれか、又はこれらの少なくとも一種を含む合金や酸化物などを用いることができる。これらの中でも炭素材料が好ましい。
本発明の非水電解質二次電池に含まれるバインダーとしては、電極成形が可能であり、十分な電気化学的安定性を有していれば好適に用いることが可能である。かかるバインダーとしては、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、合成ブタジエンゴム(SBR)、フルオロオレフィン共重合体架橋ポリマー、ポリイミド、石油ピッチ、石炭ピッチ、フェノール樹脂等よりなる群から選ばれる1種以上を用いることが好ましく、特にポリフッ化ビニリデン(PVDF)が好ましい。
本発明の非水電解質二次電池用電極は、集電体及び集電体上に活物質層を有する非水電解質二次電池用電極であって、活物質層が本発明の非水電解質二次電池用電極材料から成る、非水電解質二次電池用電極である。
本発明の非水電解質二次電池は、本発明の非水電解質二次電池用電極を含む、非水電解質二次電池である。
本発明について、以下に説明をする。
本発明の超極細繊維状炭素は、直線構造を有する超極細繊維状炭素であって、超極細繊維状炭素の表面の少なくとも一部が界面活性剤によって修飾された、及び/又は超極細繊維状炭素の表面の少なくとも一部が酸化処理された、超極細繊維状炭素である。ここで、直線構造とは分岐度が0.01個/μm以下であることをいう。分岐とは、超極細繊維状炭素が末端部以外の場所で他の超極細繊維状炭素と結合した粒状部をいい、超極細繊維状炭素の主軸が中途で枝分かれしていること、及び超極細繊維状炭素の主軸が枝状の副軸を有することをいう。
また、超極細繊維状炭素繊維の分散性が良好な有機溶剤としては、界面活性剤の修飾後に溶剤を加熱により除去する場合には、界面活性剤を溶解させる溶剤よりも揮発しにくいものである方が、溶剤を加熱濃縮していく際に、超極細繊維状炭素繊維の分散性が良好な有機溶剤の濃度を高く保て、超極細繊維状炭素繊維の分散性を保てることから、より好ましい。
本発明の超極細繊維状炭素の平均繊維径は、200nm超900nm以下の範囲にあることが好ましい。この平均繊維径は、電界放射型走査電子顕微鏡によって倍率2,000倍にて撮影した写真図より測定された値である。上記超極細繊維状炭素の平均繊維径は、230nm超600nm以下の範囲にあることがより好ましく、250nm超500nm以下の範囲にあることが更に好ましく、250nm超400nm以下の範囲にあることが更により好ましい。
本発明の超極細繊維状炭素の平均繊維長は、1〜100μmの範囲であることが好ましい。本発明の超極細繊維状炭素において、水分散性及び導電性の観点から、超極細繊維状炭素の平均繊維長が10μm超〜50μmであること又は1μm〜10μmであることが好ましい。また、本発明の超極細繊維状炭素集合体において、平均繊維長が1μm〜10μmである超極細繊維状炭素と、平均繊維長が10μm超〜50μmである超極細繊維状炭素とを任意の割合で含んでもよい。本発明の超極細繊維状炭素の平均繊維長は、100μm超の長さである場合、超極細繊維状炭素又は超極細繊維状炭素集合体の水分散性が損なわれる場合があるからである。ここで、本明細書において、超極細繊維状炭素をCNFと称する場合があり、平均繊維長が短い超極細繊維状炭素、例えば、平均繊維長が1μm〜10μmである超極細繊維状炭素をS−CNFと称する場合がある。
本発明における超極細繊維状炭素の平均面間距離は、本発明の目的を達成し、さらには本発明の効果を奏すれば、特に限定されることはないが、X線回折法により測定した(002)面の平均面間隔d(002)が0.335〜0.340nmであることが好ましい。
本発明の超極細繊維状炭素集合体は、本発明の超極細繊維状炭素が集合して成る超極細繊維状炭素集合体である。本発明の超極細繊維状炭素集合体は、本発明の超極細繊維状炭素が集合して構成されるので、優れた水分散性を有する。
本発明の炭素系導電助剤は、本発明の超極細繊維状炭素、及び/又は超極細繊維状炭素集合体を含む炭素系導電助剤である。本発明の炭素系導電助剤は、本発明の超極細繊維状炭素及び/又は超極細繊維状炭素集合体を含むことによって、優れた導電性、すなわち高導電性を有する。本発明の炭素系導電助剤は、本発明の超極細繊維状炭素及び/又は超極細繊維状炭素集合体を含むが、導電性を更に向上させることができる限り、本発明の超極細繊維状炭素及び超極細繊維状炭素集合体以外の材料、例えば炭素系材料等を含んでよい。
本発明の非水電解質二次電池用電極材料は、本発明の炭素系導電助剤と、電極活物質と、バインダーとを少なくとも含む非水電解質二次電池用電極材料である。本発明の非水電解質二次電池用電極材料は、本発明の炭素系導電助剤を含むことによって、優れた導電性、すなわち高導電性を有する。
本発明の非水電解質二次電池用電極材料に含まれる正極活物質としては、非水電解質二次電池において、正極活物質として知られている従来公知の材料の中から、任意のものを一種又は二種以上適宜選択して用いることができる。例えばリチウムイオン二次電池であれば、リチウムイオンを吸蔵・放出可能なリチウム含有金属酸化物が好適である。 このリチウム含有金属酸化物としては、リチウムと、Co、Mg、Mn、Ni、Fe、Al、Mo、V、W及びTiなどからなる群より選ばれる少なくとも一種の元素を含む複合酸化物を挙げることができる。
本発明の非水電解質二次電池用電極材料に含まれる負極活物質としては、非水電解質二次電池において、負極活物質として知られている従来公知の材料の中から、一種又は二種以上選択して用いることができる。例えばリチウムイオン二次電池であれば、リチウムイオンを吸蔵・放出可能な炭素材料、Si及びSnのいずれか、又はこれらの少なくとも一種を含む合金や酸化物などを用いることができる。これらの中でも炭素材料が好ましい。
本発明の非水電解質二次電池に含まれるバインダーとしては、電極成形が可能であり、十分な電気化学的安定性を有していれば好適に用いることが可能である。かかるバインダーとしては、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、合成ブタジエンゴム(SBR)、フルオロオレフィン共重合体架橋ポリマー、ポリイミド、石油ピッチ、石炭ピッチ、フェノール樹脂等よりなる群から選ばれる1種以上を用いることが好ましく、特にポリフッ化ビニリデン(PVDF)が好ましい。
本発明の非水電解質二次電池用電極は、集電体及び集電体上に活物質層を有する非水電解質二次電池用電極であって、活物質層が本発明の非水電解質二次電池用電極材料から成る、非水電解質二次電池用電極である。本発明の非水電解質二次電池用電極は、集電体上に正極活物質層を有する場合は正極であり、集電体上に負極活物質層を有する場合は負極である。本発明の非水電解質二次電池用電極は、本発明の非水電解質二次電池用電極材料を活物質層として有するので、優れた導電性、すなわち高導電性を有し、さらに優れた機械的強度を有する。そして、本発明の超極細繊維状炭素及び超極細繊維状炭素集合体は優れた水分散性を有することから、本発明の非水電解質二次電池用電極材料はスラリー化したときに、ペースト状にし易く、本発明の非水電解質二次電池用電極は容易に製造され得る。
本発明の非水電解質二次電池は、本発明の非水電解質二次電池用電極を含む非水電解質二次電池である。本発明の非水電解質二次電池は、本発明の非水電解質二次電池用電極を含むことによって、優れたサイクル特性と、高容量とを有する。
なお、電解質層としては、固体電解質を用いることもでき、この場合には、別個のスペーサーを省略することができる。
本発明について、以下に説明をする。
本発明の超極細繊維状炭素集合体は、直線構造を有する超極細繊維状炭素が集合して成る超極細繊維状炭素集合体であって、超極細繊維状炭素集合体の少なくとも一部の超極細繊維状炭素の表面の少なくとも一部が界面活性剤によって修飾された、及び/又は超極細繊維状炭素集合体の少なくとも一部の超極細繊維状炭素の表面の少なくとも一部が酸化処理され、体積換算粒度分布測定により得られた超極細繊維状炭素集合体の繊維長分布において、繊維長15μm以下の第一ピークと繊維長15μm超の第二ピークとを有し、第一ピークの体積換算粒度分布(%)の第二ピークの体積換算粒度分布(%)に対する比が3/1以上である、超極細繊維状炭素集合体である。
本発明の超極細繊維状炭素集合体を構成する超極細繊維状炭素の平均繊維径は、200nm超900nm以下の範囲であることが好ましい。この平均繊維径は、電界放射型走査電子顕微鏡によって倍率2,000倍にて撮影した写真図より測定された値である。上記超極細繊維状炭素の平均繊維径は、230nm超600nm以下の範囲であることがより好ましく、250nm超500nm以下の範囲であることが更に好ましく、250nm超400nm以下の範囲であることが更により好ましい。
本発明の超極細繊維状炭素集合体を構成する超極細繊維状炭素の平均面間距離は、本発明の目的を達成し、さらには本発明の効果を奏すれば、特に限定されることはないが、X線回折法により測定した(002)面の平均面間隔d(002)が0.335〜0.340nmであることが好ましい。
本発明の炭素系導電助剤は、本発明の超極細繊維状炭素集合体を含む炭素系導電助剤である。本発明の炭素系導電助剤は、本発明の超極細繊維状炭素集合体を含むことによって、優れた導電性、すなわち高導電性を有し、さらに優れた機械的強度を有する。本発明の炭素系導電助剤は、本発明の超極細繊維状炭素集合体を含んで成り、導電性を更に向上させることができる限り、本発明の超極細繊維状炭素集合体以外の材料、例えば炭素系材料等を含んでもよい。
本発明の非水電解質二次電池用電極材料は、本発明の炭素系導電助剤と、電極活物質と、バインダーとを少なくとも含む非水電解質二次電池用電極材料である。本発明の非水電解質二次電池用電極材料は、本発明の炭素系導電助剤を含むことによって、優れた導電性、すなわち高導電性を有し、さらに優れた機械的強度を有する。
本発明の非水電解質二次電池用電極材料に含まれる正極活物質としては、非水電解質二次電池において、正極活物質として知られている従来公知の材料の中から、任意のものを一種又は二種以上適宜選択して用いることができる。例えばリチウムイオン二次電池であれば、リチウムイオンを吸蔵・放出可能なリチウム含有金属酸化物が好適である。このリチウム含有金属酸化物としては、リチウムと、Co、Mg、Mn、Ni、Fe、Al、Mo、V、W及びTiなどからなる群より選ばれる少なくとも一種の元素を含む複合酸化物を挙げることができる。
本発明の非水電解質二次電池用電極材料に含まれる負極活物質としては、非水電解質二次電池において、負極活物質として知られている従来公知の材料の中から、一種又は二種以上選択して用いることができる。例えばリチウムイオン二次電池であれば、リチウムイオンを吸蔵・放出可能な炭素材料、Si及びSnのいずれか、又はこれらの少なくとも一種を含む合金や酸化物などを用いることができる。これらの中でも炭素材料が好ましい。
本発明の非水電解質二次電池に含まれるバインダーとしては、電極成形が可能であり、十分な電気化学的安定性を有していれば好適に用いることが可能である。かかるバインダーとしては、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、合成ブタジエンゴム(SBR)、フルオロオレフィン共重合体架橋ポリマー、ポリイミド、石油ピッチ、石炭ピッチ、フェノール樹脂等よりなる群から選ばれる1種以上を用いることが好ましく、特にポリフッ化ビニリデン(PVDF)が好ましい。
本発明の非水電解質二次電池用電極は、集電体及び集電体上に活物質層を有する非水電解質二次電池用電極であって、活物質層が本発明の非水電解質二次電池用電極材料から成る、非水電解質二次電池用電極である。本発明の非水電解質二次電池用電極は、集電体上に正極活物質層を有する場合は正極であり、集電体上に負極活物質層を有する場合は負極である。本発明の非水電解質二次電池用電極は、本発明の非水電解質二次電池用電極材料を活物質層として有するので、優れた導電性、すなわち高導電性を有し、さらに優れた機械的強度を有する。そして、本発明の超極細繊維状炭素集合体は優れた水分散性を有することから、本発明の非水電解質二次電池用電極材料はスラリー化したときに、ペースト状にし易く、本発明の非水電解質二次電池用電極は容易に製造され得る。
本発明の非水電解質二次電池は、本発明の非水電解質二次電池用電極を含む非水電解質二次電池である。本発明の非水電解質二次電池は、本発明の非水電解質二次電池用電極を含むことによって、優れたサイクル特性と、高容量とを有する。
なお、電解質層としては、固体電解質を用いることもでき、この場合には、別個のスペーサーを省略することができる。
実施例中の各種測定や分析は、それぞれ以下の方法に従って行った。
電助剤の形状確認
走査型電子顕微鏡(株式会社日立製作所製S−2400)を用いて観察及び写真撮影を行った。超極細繊維状炭素等の平均繊維径は、得られた電子顕微鏡写真から無作為に20箇所を選択して繊維径を測定し、それらのすべての測定結果(n=20)の平均値を平均繊維径とした。平均繊維長についても同様に算出した。
X線回折測定はリガク社製RINT−2100を用いてJIS R7651法に準拠し、格子面間隔(d002)及び結晶子大きさ(Lc002)を測定した。
電極を1cmの幅に切り出し、万能引張試験機(インストロン社製、INSTRON5500R)で引張試験を行うことで機械的強度を評価した。試験条件は把握長5cm,引張速度1mm/分とし、0.2%(0.1mm)伸長時にかかる応力を比較することで評価を行った。各電極の引張試験を行うにあたり、電極作製時のスラリーを塗布する塗布方向(MD)及び塗布方向に対する面内垂直方向(TD)のそれぞれについて試験を行い(n=5)、すべての結果の平均値をとることでMD方向の引張強度σM、TD方向の引張強度σTとした。
熱可塑樹脂として高密度ポリエチレン(HI−ZEX(登録商標)5000SR、(株)プライムポリマ−製;350℃、600s−1の溶融粘度14Pa・s)90質量部及び熱可塑性炭素前駆体として合成メソフェ−ズピッチAR・MPH(三菱ガス化学(株)製)10質量部を同方向二軸押出機(東芝機械(株)製「TEM−26SS」、バレル温度310℃、窒素気流下)で溶融混練して樹脂組成物を調製した。
〈電極活物質層の作製〉
上記のとおりに製造した超極細繊維状炭素(炭素系導電助剤)(CNF)を4質量部と、負極活物質(人造黒鉛;大阪ガス製、MCMB)を81質量部、バインダーとしてポリフッ化ビニリデン(クレハ化学社製)を15質量部、溶液としてN−メチルピロリドンを用いることによりスラリーを作製した。作製したスラリーをガラス板に塗布、乾燥後、ガラス基板から電極活物質層を剥離し、ロールプレス(50kg/cm2、5cm/分)を行うことにより、電極活物質層を作製した。
上記のとおりに作製した電極活物質層の引張強度を評価したところ、MD方向で2.6MPa、TD方向で1.5MPa、σM/σT=1.7となり、異方性のある補強効果を示した。引張試験の結果得られた応力―ひずみ曲線図を図2に示す。
〈電極活物質層の作製〉
参考例A1で用いられた超極細繊維状炭素を粉砕(株式会社スギノマシン社製、スターバースト)し、平均繊維長5μmの超極細繊維状炭素として用いたこと以外は、参考例A1と同様に操作を行い、電極活物質層を作製した。ここで、平均繊維長5μmの超極細繊維状炭素(S−CNF)の走査型電子顕微鏡写真((a)2,000倍と(b)8,000倍)を図11に示す。
引張試験により機械的強度の評価を行った。MD方向で1.9MPa、TD方向で1.7MPa、σM/σT=1.1となり、異方性がない補強効果を示した。引張試験の結果得られた応力―ひずみ曲線図を図3に示す。
〈電極活物質層の作製〉
炭素系導電助剤として、参考例A1で用いられた超極細繊維状炭素を2質量部及び実施例A2で用いられた超極細繊維状炭素を2質量部で用いたこと以外は、参考例A1と同様に操作を行い、電極活物質層を作製した。ここで、作製された電極活物質層の走査型電子顕微鏡写真((a)5,000倍と(b)8,000倍)を図13に示す。図13から明らかなように、参考例A1で用いられた超極細繊維状炭素(CNF)と実施例A2で用いられた超極細繊維状炭素(S−CNF)との両方が存在していることが確認された。
引張試験により機械的強度の評価を行った。MD方向で2.6MPa、TD方向で1.8MPa、σM/σT=1.5となり、異方性が少ない補強効果を示した。引張試験の結果得られた応力―ひずみ曲線図を図4に示す。
〈電極活物質層の作製〉
炭素系導電助剤として、参考例A1で用いられた超極細繊維状炭素を2質量部及びアセチレンブラック(AB)(電気化学工業株式会社製、デンカブラック)を2質量部で用いたこと以外は、参考例A1と同様に操作を行い、電極活物質層を作製した。ここで、用いられたアセチレンブラック(AB)の走査型電子顕微鏡写真(8,000倍)を図12に示す。また、作製された電極活物質層の走査型電子顕微鏡写真((a)5,000倍と(b)8,000倍)を図14に示す。図14から明らかなように、参考例A1で用いられた超極細繊維状炭素(CNF)とアセチレンブラック(AB)との両方が存在していることが確認された。
引張試験により機械的強度の評価を行った。MD方向で2.0MPa、TD方向で1.4MPa、σM/σT=1.4となり、異方性が少ない補強効果を示した。引張試験の結果得られた応力―ひずみ曲線図を図5に示す。
参考例A1で用いられた超極細繊維状炭素を用いているため、スラリー塗布時に超極細繊維状炭素がMD方向に並ぶ傾向があり、MD方向に大きな補強効果を示した。
〈電極活物質層の作製〉
参考例A1で用いられた超極細繊維状炭素の替わりに、気相法炭素繊維(分岐構造を有する炭素繊維)(VGCF)を用いたこと以外は、参考例A1と同様に操作を行い、電極活物質層を作製した。
引張試験により機械的強度の評価を行った。MD方向で0.96MPa、TD方向で0.90MPaとなり、MD方向又はTD方向に関係なく補強効果が劣る結果であった。引張試験の結果得られた応力―ひずみ曲線図を図6に示す。
〈電極活物質層の作製〉
参考例A1で用いられた超極細繊維状炭素の替わりに、アセチレンブラック(AB)(電気化学工業株式会社製、デンカブラック)を用いたこと以外は、参考例A1と同様に操作を行い、電極活物質層を作製した。
引張試験により機械的強度の評価を行った。MD方向で1.1MPa、TD方向で1.1MPaとなり、方向に関係なく補強効果が劣る結果であった。引張試験の結果得られた応力―ひずみ曲線図を図7に示す。
〈負極の製造〉
実施例A2で製造した平均繊維長5μmの超極細繊維状炭素(S−CNF)を2質量部と、負極活物質(鱗状黒鉛;日立化成社製、商品名MAGD)91質量部、バインダーとしてポリフッ化ビニリデン(クレハ化学社製)7質量部、溶液としてN−メチルピロリドンを用いることによりスラリーを作製した。作製したスラリーを塗布、乾燥、ロールプレスを行うことにより、負極を作製した。電極の厚みは、75μm、電極密度は1.5g/cm3であった。
正極活物質としてコバルト酸リチウム(LiCoO2、日本化学工業社製)89質量部、バインダーとしてポリフッ化ビニリデン6質量部、導電材としてアセチレンブラック(電気化学工業社製、商品名デンカブラック)、溶液としてN−メチルピロリドンを用いることによりスラリーを作製した。作製したスラリーを塗布、乾燥、ロールプレスを行うことにより、正極を作製した。電極の厚みは、82μm、電極密度は3.0g/cm3であった。
上記のように作成した正極、負極、およびセパレータにはポリエチレン多孔膜を用い、1mol/L濃度のLiPF6を含むエチレンカーボネートとエチルメチルカーボネート混合溶液(3/7質量比、キシダ化学社製)からなる電解液をセルに注入して、単層ラミネートセルを作製した。
上記の手順により作製したリチウムイオン二次電池の電池性能の評価を以下のように行った。
上記のように作製したセルを用いて、充放電装置にて充放電試験を行った。充電条件は4.2Vまで0.2C定電流充電後、定電圧充電(0.02Cカットオフ)することとし、10分間の休止時間をおいてから放電に切り替えた。放電条件としては、2.75Vまで0.2C定電流放電することとした。
実施例A5のS−CNFの替わりに、上記で作製した超極細繊維状炭素(CNF)とS−CNFの混合物(質量比1:1)を用いたこと以外は、実施例A5と同様に電極およびリチウムイオン二次電池を製造した。
実施例A5のS−CNFの替わりに、上記で作製した超極細繊維状炭素(CNF)とアセチレンブラック(AB)(電気化学工業株式会社製、デンカブラック)の混合物(質量比1:1)を用いたこと以外は、実施例A5と同様に電極およびリチウムイオン二次電池を製造した。
実施例A5のS−CNFの替わりに、気相法炭素繊維(分岐構造を有する炭素繊維)を用いたこと以外は、実施例A5と同様に電極およびリチウムイオン二次電池を製造した。
実施例A5のS−CNFの替わりに、アセチレンブラック(AB)(電気化学工業株式会社製、デンカブラック)を用いたこと以外は、実施例A5と同様に電極およびリチウムイオン二次電池を製造した。
以下、実施例により、第2の本発明を更に具体的に説明するが、本発明はこれにより何ら限定を受けるものではない。
(実施例B1−1)
〈超極細繊維状炭素の製造〉
熱可塑樹脂として高密度ポリエチレン(HI−ZEX(登録商標) 5000SR、(株)プライムポリマ−製;350℃、600s−1の溶融粘度14Pa・s)90質量部および熱可塑性炭素前駆体として合成メソフェ−ズピッチAR・MPH(三菱ガス化学(株)製)10質量部を同方向二軸押出機(東芝機械(株)製「TEM−26SS」、バレル温度310℃、窒素気流下)で溶融混練して樹脂組成物を調製した。
上記で得られた1質量部の超極細繊維状炭素と、1質量部のアセチレンブラック(電気化学工業株式会社製、デンカブラック75%プレス品)を、エタノール溶液を用いて湿式粉砕装置(あわとり練太郎ARV−310、シンキー社製)により粉砕し、複合体1−1を得た(20g)。
〈超極細繊維状炭素の製造〉
実施例B1−1に記載の超極細繊維状炭素の製造方法と全く同様な製造方法で超極細繊維状炭素を得た。
上記のとおりに製造した1質量部の超極細繊維状炭素と、1質量部のアセチレンブラック(電気化学工業株式会社製、デンカブラック75%プレス品)とを乾式ジェットミル(A−Oジェットミル、セイシン製)により粉砕し、複合体1−2を得た(20g)。
〈超極細繊維状炭素の製造〉
実施例B1−1に記載の超極細繊維状炭素の製造方法と全く同様な製造方法で超極細繊維状炭素を得た。
上記のとおりに製造した1質量部の超極細繊維状炭素と、1質量部のアセチレンブラック(電気化学工業株式会社製、デンカブラック75%プレス品)とを遊星ボールミル装置(装置:フリッチュ製P−7、使用ボール:ジルコニア製ボール直径10mm)により粉砕し、複合体1−3を得た(20g)。
実施例B1−1に記載の超極細繊維状炭素の製造方法と全く同様な製造方法で超極細繊維状炭素を得た(20g)。
20gのアセチレンブラック(電気化学工業株式会社製、デンカブラック75%プレス品)を用意した。
(実施例B2−1)
走査型電子顕微鏡(株式会社日立製作所製S−2400)を用いて、実施例B1−1で得られた複合体1−1を観察して、写真撮影を行った。撮影した写真結果を図17(撮影倍率×500倍)及び図18(撮影倍率×1000倍)に示す。図17及び図18から明らかなように、凝集したアセチレンブラックが所々観察されるが、超極細繊維状炭素の形状は変わらずに、超極細繊維状炭素とアセチレンブラックとは共に分散して、一体的に互いに付着されて存在していた。
実施例B2−1と同様に、走査型電子顕微鏡(株式会社日立製作所製S−2400)を用いて、実施例B1−2で得られた複合体1−2を観察して、写真撮影を行った。撮影した写真結果を図19(撮影倍率×500倍)及び図20(撮影倍率×1000倍)に示す。図19及び図20から明らかなように、超極細繊維状炭素の形状は変わらずに、超極細繊維状炭素の周囲にアセチレンブラックがハイブリットされたように均一に混合されていた。超極細繊維状炭素とアセチレンブラックとが一体的に互いに付着されて、超極細繊維状炭素とアセチレンブラックが均一に混合されていることが確認された。
(実施例B3−1)
実施例B1−1で得られた複合体1−1を用いて、密度と体積抵抗率との関係を調べた。密度と体積抵抗率との関係を調べるために、四探針法(三菱化学アナリテック株式会社、ロレスターGP)を用いて密度と体積抵抗率とを測定した。ロレスターGPに、複合体1−1の紛体サンプル投入し、常温下で上から押しつぶして圧力をかけ、密度の値を小さくしながら体積抵抗率を測定した。測定結果を図21に示す。例えば、密度0.58g/ccのときに複合体1−1の体積抵抗率は0.7Ω・cmであった。
実施例B1−2で得られた複合体1−1を用いた以外は、実施例B3−1に記載した方法と全く同様な方法で、密度と体積抵抗率との関係を調べた。測定結果を図21に示す。例えば、密度0.58g/ccのときに複合体1−2の体積抵抗率は0.05Ω・cmであった。
比較例B1−1で得られた超極細繊維状炭素を用いた以外は、実施例B3−1に記載した方法と全く同様な方法で、密度と体積抵抗率との関係を調べた。測定結果を図21に示す。例えば、密度0.58g/ccのときに超極細繊維状炭素(CNF)の体積抵抗率は0.05Ω・cmであった。
比較例B1−2で用意したアセチレンブラックを用いた以外は、実施例B3−1に記載した方法と全く同様な方法で、密度と体積抵抗率との関係を調べた。測定結果を図21に示す。測定結果を図21に示す。例えば、密度0.58g/ccのときにアセチレンブラックの体積抵抗率は0.12Ω・cmであった。
図21を参照すると、実施例B1−1で得られた複合体1−1の体積抵抗率は、比較例B1−2で用意したアセチレンブラックの体積抵抗率よりも高い抵抗率を示したが、実用上問題ないレベルだった。実施例B1−2で得られた複合体1−2の体積抵抗率は、比較例B1−1で得られた超極細繊維状炭素の体積抵抗率と略同等〜良好であり、比較例B1−2で用意したアセチレンブラックの体積抵抗率よりも低い抵抗率を示した。以上より、複合体1−1及び複合体1−2は、超極細繊維状炭素に起因する優れた機械的強度(補強効果)を維持しながら、優れた導電性を有することが理解できる。
実施例B1−2で得られた複合体1−2を用いて、放電レート特性の評価を行った。
〈正極の製造〉
導電助剤として上記作製した複合体1−2を2質量部、正極活物質としてカーボン被覆LiFePO4(宝泉株式会社製、SLFP−ES01)91質量部、バインダーとしてポリフッ化ビニリデンを7質量部、溶液としてN−メチルピロリドンを用いることによりスラリーを作製した。作製したスラリーをアルミ箔上に塗布、乾燥、ロールプレスを行うことにより、正極を作製した。電極の厚みは、35μm、電極密度は2.5g/cm3であった。
上記のように作製した正極を、ポリエチレン多孔質セパレータを介して金属リチウムと対向させ、1mol/L濃度のLiPF6を含むエチレンカーボネートとエチルメチルカーボネート混合溶液(3/7質量比、キシダ化学社製)からなる電解液を2032型コインセルに注入して、電池評価用のハーフセルを作製した。
上記のように作製したセルを用いて、充放電装置にて充放電試験を行った。充電条件は、4.0Vまで0.2C定電流充電後、定電圧充電(0.01Cカットオフ)することとし、10分間の休止時間をおいてから放電に切り替えた。放電条件としては、下限電圧を2.5Vに設定し各放電レートにて定電流放電とした。放電レートは0.2C→0.5C→1.0C→2.0C→3.0C→5.0Cのように段階的に上げることとした。
導電助剤として実施例B1−3で得られた複合体1−3を用いた以外は、実施例3−2と同様にレート特性の評価を行った。
導電助剤として比較例B1−1で得られた超極細繊維状炭素(CNF)を用いた以外は、実施例3−2と同様にレート特性の評価を行った。
導電助剤として比較例B1−2で用いたアセチレンブラックを用いた以外は、実施例3−2と同様にレート特性の評価を行った。
以下、実施例により、本発明を更に具体的に説明するが、本発明はこれにより何ら限定を受けるものではない。
〈超極細繊維状炭素(炭素系導電助剤)の製造〉
熱可塑樹脂として高密度ポリエチレン(HI−ZEX(登録商標)5000SR、(株)プライムポリマ−製;350℃、600s−1の溶融粘度14Pa・s)90質量部および熱可塑性炭素前駆体として合成メソフェ−ズピッチAR・MPH(三菱ガス化学(株)製)10質量部を同方向二軸押出機(東芝機械(株)製「TEM−26SS」、バレル温度310℃、窒素気流下)で溶融混練して樹脂組成物を調製した。
上記のとおりに製造した、5質量部の超極細繊維状炭素(炭素系導電助剤)と、バインダーである、5質量部のスチレンブタジエンゴム(SBR、日本ゼオン製)と、界面活性剤である、6質量部のエーテル化度0.8、重量平均分子量30万のカルボキシメチルセルロースナトリウム(CMC−Na)と、500質量部の溶媒である、イオン交換水とを用いて超音波振動にて混合してスラリーを作製した。
上記により作製したスラリーを用いて水分散性の評価を目視で行った。水分散性の評価方法は、スラリーを目視で確認して、スラリーが滑らかで、スラリー中に超極細繊維状炭素集合体の凝集体が存在しなければ、超極細繊維状炭素集合体の水分散性は良好と判断した。一方、スラリー中に目視で確認できる超極細繊維状炭素集合体の凝集体が存在すれば、超極細繊維状炭素集合体の水分散性は不良と判断した。
上記のとおりに製造した、2質量部の超極細繊維状炭素(炭素系導電助剤)と、バインダーである、1.5質量部のスチレンブタジエンゴム(SBR、日本ゼオン製)と、界面活性剤である、1.5質量部のエーテル化度0.8、重量平均分子量30万のカルボキシメチルセルロースナトリウム(CMC−Na)と、95質量部の負極活物質である黒鉛(NICABEADS,Type:P25B−XB,Nippon Carbon Co.)と、100質量部のイオン交換水とを混合させ、電極作製スラリーを調製した。調製した電極作製スラリーをドクターブレードにより銅箔上に塗布させ、塗布した電極作製スラリーを105℃の熱風乾燥器中で乾燥させることにより、電極シートを作製した。
上記により作製した電極シートの表面を走査型電子顕微鏡により観察し、超極細繊維状炭素の凝集の有無を確認し、凝集体が存在すれば、電極中の分散性は不良と判断した。
〈超極細繊維状炭素(炭素系導電助剤)の製造〉
乾式ジェットミル装置により解砕しないで、湿式粉砕装置(株式会社スギノマシン社製、スターバースト)により解砕した以外は、実施例C1と全く同様な方法で超極細繊維状炭素(炭素系導電助剤)を製造して、平均繊維長が5μmである超極細繊維状炭素を得た。
上記のとおりに製造した超極細繊維状炭素を用いて、実施例C1に記載のスラリーの作製の方法と全く同様な方法で作製してスラリーを得た。
上記により作製したスラリーを用いて水分散性の評価を実施例C1と同様に行った。
〈超極細繊維状炭素(炭素系導電助剤)の製造〉
乾式ジェットミル装置により解砕しなかった以外は、実施例C1と全く同様な方法で超極細繊維状炭素(炭素系導電助剤)を製造して、平均繊維長が16μmである超極細繊維状炭素を得た。
上記のとおりに製造した超極細繊維状炭素を用いて、実施例C1に記載のスラリーの作製の方法と全く同様な方法で作製してスラリーを得た。
上記により作製したスラリーを用いて水分散性の評価を実施例C1と同様に行った。
〈超極細繊維状炭素(炭素系導電助剤)の製造〉
実施例C1と全く同様な方法で超極細繊維状炭素(炭素系導電助剤)を製造した。
上記のとおりに製造した超極細繊維状炭素を用いて、界面活性剤である、6質量部のエーテル化度0.8、重量平均分子量30万のカルボキシメチルセルロースナトリウム(CMC−Na)を用いなかった以外は、実施例C1に記載のスラリーの作製の方法と全く同様な方法で作製してスラリーを得た。
上記により作製したスラリーを用いて水分散性の評価を実施例C1と同様に行った。
〈超極細繊維状炭素(炭素系導電助剤)の製造〉
実施例C1と全く同様な方法で超極細繊維状炭素(炭素系導電助剤)を製造した。
2質量部の上記超極細繊維状炭素(炭素系導電助剤)を撹拌中の500質量部のN−メチルピロリドン(特級、和光純薬製)中に添加し分散させた。この分散液に、1.5質量部のエーテル化度0.8、重量平均分子量30万のカルボキシメチルセルロースナトリウム(CMC−Na)と、500質量部のイオン交換水中との溶液を加え、混合溶液を調製した。この混合溶液を加熱濃縮することにより超極細繊維状炭素繊維の界面活性剤修飾体を調製した。
上記のとおりに製造した超極細繊維状炭素繊維の界面活性剤修飾体を用いて、実施例C1に記載のスラリーの組成と同様になるようにスラリーを作製した。
上記により作製したスラリーを用いて水分散性の評価を実施例C1と同様に行った。
上記のとおりに製造した超極細繊維状炭素繊維の界面活性剤修飾体を用いて、実施例C1に記載の電極組成と同様になるようにスラリーを調製し、実施例C1と同様に電極を作製した。
上記により作製した電極シートの表面を走査型電子顕微鏡により観察し、超極細繊維状炭素の凝集の有無を確認し、凝集体が存在すれば、電極中の分散性は不良と判断した。
〈超極細繊維状炭素(炭素系導電助剤)の製造〉
実施例C1と全く同様な方法で超極細繊維状炭素(炭素系導電助剤)を製造した。
5gの上記超極細繊維状炭素(炭素系導電助剤)を撹拌中の50mlの濃硝酸(60〜61%、試薬特級、和光純薬製)と150mlの濃硫酸(95.0+%、試薬特級、和光純薬製)の混合液(混酸)中に添加した。室温にて3時間混合した後に、ろ過により固形物を回収し、その固形物を洗浄液が中性になるまでイオン交換水により洗浄し、固形物を乾燥させることで、酸化処理超極細繊維状炭素を調製した。
上記のとおりに製造した酸化処理超極細繊維状炭素の黒鉛構造を、粉末X線回折による黒鉛構造の(002)面の面間隔d(002)、および結晶子の大きさLc(002)を、酸化処理を行っていない超極細繊維状炭素のd(002)の0.3372nm、およびLc(002)の47.9nmに対して比較により、評価した。
上記のとおりに製造した酸化処理超極細繊維状炭素を、窒素雰囲気下にて25℃から500℃まで10℃/分により昇温させ、25℃時点での質量に対する25℃時点での質量の減少率を測定することにより、酸化処理超極細繊維状炭素に含まれる薬剤等の残存量を測定した。質量減少率が大きいと、非水電解質二次電池に用いた場合に、副反応による電池容量の低下が発生するため好ましくない。
上記のとおりに製造した酸化処理超極細繊維状炭素を用いて、実施例C1に記載のスラリーの作製の方法と全く同様な方法で作製してスラリーを得た。
上記により作製したスラリーを用いて水分散性の評価を実施例C1と同様に行った。
上記のとおりに製造した酸化処理超極細繊維状炭素を用いて、実施例C1に記載の電極組成と同様になるようにスラリーを調製し、実施例C1と同様に電極を作製した。
上記により作製した電極シートの表面を走査型電子顕微鏡により観察し、超極細繊維状炭素の凝集の有無を確認し、凝集体が存在すれば、電極中の分散性は不良と判断した。
〈超極細繊維状炭素(炭素系導電助剤)の製造〉
実施例C1と全く同様な方法で超極細繊維状炭素(炭素系導電助剤)を製造した。
5gの上記超極細繊維状炭素(炭素系導電助剤)を撹拌中の200mlの過酸化水素水(30.0〜35.5%、試薬特級、和光純薬製)中に添加した。室温にて3時間混合した後に、ろ過により固形物を回収し、その固形物をイオン交換水により洗浄し、固形物を乾燥させることで、酸化処理超極細繊維状炭素を調製した。
上記のとおりに製造した酸化処理超極細繊維状炭素の黒鉛構造を、粉末X線回折による黒鉛構造の(002)面の面間隔d(002)、および結晶子の大きさLc(002)を、酸化処理を行っていない超極細繊維状炭素のd(002)の0.3372nm、およびLc(002)の47.9nmに対して比較により、評価した。
上記のとおりに製造した酸化処理超極細繊維状炭素を、窒素雰囲気下にて25℃から500℃まで10℃/分により昇温させ、25℃時点での質量に対する25℃時点での質量の減少率を測定することにより、酸化処理超極細繊維状炭素に含まれる薬剤等の残存量を測定した。質量減少率が大きいと、非水電解質二次電池に用いた場合に、副反応による電池容量の低下が発生するため好ましくない。
上記のとおりに製造した酸化処理超極細繊維状炭素を用いて、実施例C1に記載のスラリーの作製の方法と全く同様な方法で作製してスラリーを得た。
上記により作製したスラリーを用いて水分散性の評価を実施例C1と同様に行った。
上記のとおりに製造した酸化処理超極細繊維状炭素を用いて、実施例C1に記載の電極組成と同様になるようにスラリーを調製し、実施例C1と同様に電極を作製した。
上記により作製した電極シートの表面を走査型電子顕微鏡により観察し、超極細繊維状炭素の凝集の有無を確認し、凝集体が存在すれば、電極中の分散性は不良と判断した。
実施例C1で作製されたスラリーを用いた水分散性の評価の結果を図28に示す。図28から明白であるが、実施例C1で作製されたスラリーは滑らに形成されており、超極細繊維状炭素集合体の水分散性は良好であった。実施例C2で作製されたスラリーを用いた水分散性の評価の結果を図29に示す。図29から明白であるが、実施例C2で作製されたスラリーは滑らに形成されており、超極細繊維状炭素集合体の水分散性は非常に良好であった。
実施例C5で作製された酸化処理超極細繊維状炭素の黒鉛構造の評価は、面間隔d(002)は0.3377nm、結晶子の大きさLc(002)は21.3nmであった。これは、酸化処理を行っていない超極細繊維状炭素に対して面間隔が増大し、結晶子サイズが小さくなっていることを示しており、実用上問題ないレベルであるが、好ましくないものであった。
酸化処理を行っていない超極細繊維状炭素の質量減少率は、0.6%であったのに対して、実施例C6は1.3%と質量減少率はほとんど変わらなかったのに対して、実施例C5では7.5%と質量減少率が大きく、実施例C5では非水電解質二次電池に用いた場合に、副反応による電池容量の低下が発生するため好ましくないことが確認された。
実施例C1で作製された電極を用いた電極中の分散性評価の結果を図35に示す。図35から明白であるが、実施例C1で作製された電極中には、超極細繊維状炭素集合体の凝集体が確認され、電極中での分散性は不十分であることが確認された。つまり、スラリーでの水分散性評価結果では、分散性が良好であり、巨視的には分散性が良好であったが、微視的には凝集体を形成しており、本目的に対して好ましくないものであった。
以下、実施例により、本発明を更に具体的に説明するが、本発明はこれにより何ら限定を受けるものではない。
〈超極細繊維状炭素の製造〉
上記により製造された超極細繊維状炭素を超遠心粉砕機(レッチェ社製:ZM100)、ローターは24本刃であり、スクリーンの孔径は0.08mmであり、回転速度は18000rpmであった。)により、処理回数5回で連続処理をして、その後、アルゴンガス雰囲気下、室温から3時間で3000℃まで昇温することで黒鉛化して、室温まで自然冷却して、複数個の超極細繊維状炭素を集合させて超極細繊維状炭素集合体を製造した。
粒度分布計(画像解析粒度分布計:ジャスコインタナショナル株式会社製IF−200nano、溶媒:エタノール、炭素繊維濃度:0.05%。)により、上記により製造された超極細繊維状炭素集合体の体積換算粒度分布(%)を測定して、超極細繊維状炭素集合体の繊維長分布を求めた。
上記により製造された、5質量部の超極細繊維状炭素集合体(炭素系導電助剤)と、バインダーである、5質量部のスチレンブタジエンゴム(SBR、日本ゼオン製)と、界面活性剤である、6質量部のエーテル化度0.8、重量平均分子量30万のカルボキシメチルセルロースナトリウム(CMC−Na)と、5質量部の溶媒であるイオン交換水とを用いて超音波振動にて混合してスラリーを作製した。
上記により作製されたスラリーを用いて水分散性の評価を目視で行った。水分散性の評価方法は、スラリーを目視で確認して、スラリーが滑らかで、スラリー中に超極細繊維状炭素集合体の凝集体が存在しなければ、超極細繊維状炭素集合体の水分散性は良好と判断した。一方、スラリー中に目視で確認できる超極細繊維状炭素集合体の凝集体が存在すれば、超極細繊維状炭素集合体の水分散性は不良と判断した。水分散性の評価基準は以下のとおりとした。
◎:水分散性が非常に良好、
○:水分散性が良好、
△:水分散性がやや不良
×:水分散性が不良
××:水分散性が非常に不良
〈超極細繊維状炭素の製造〉
実施例D1に記載の製造方法と全く同様な製造方法で超極細繊維状炭素を製造した。
超遠心粉砕機による処理回数を1回とした以外は、実施例D1に記載の製造方法と全く同様な製造方法で超極細繊維状炭素集合体(炭素系導電助剤)を製造した。
実施例D1に記載の測定方法と全く同様な測定方法で、上記により製造された超極細繊維状炭素集合体の繊維長分布を求めた。
上記により製造された超極細繊維状炭素集合体を用いて、実施例D1に記載のスラリーの作製方法と全く同様な作製方法でスラリーを作製した。
上記により作製されたスラリーを用いて、実施例D1に記載の評価方法と全く同様な評価方法で水分散性の評価を行った。
〈超極細繊維状炭素の製造〉
実施例D1に記載の製造方法と全く同様な製造方法で超極細繊維状炭素を製造した。
実施例D1に記載の測定方法と全く同様な測定方法で、上記により製造された超極細繊維状炭素集合体の繊維長分布を求めた。
上記により製造された超極細繊維状炭素集合体を用いて、実施例D1に記載のスラリーの作製方法と全く同様な作製方法でスラリーを作製した。
上記により作製されたスラリーを用いて実施例D1に記載の評価方法と全く同様な評価方法で水分散性の評価を行った。
〈超極細繊維状炭素混合体の製造〉
実施例D1に記載の方法と全く同様な方法で製造された超極細繊維状炭素を、湿式粉砕装置(株式会社スギノマシン社製、スターバースト)により粉砕して、平均繊維長5μmの超極細繊維状炭素(S−CNF)を製造した。そして、この平均繊維長5μmの超極細繊維状炭素(S−CNF)と、実施例D1に記載の方法と全く同様な方法で製造された超極細繊維状炭素(CNF)とを1:1の質量比で混合をして、超極細繊維状炭素混合体を製造した。
上記により製造された超極細繊維状炭素混合体の複数個を集合させて超極細繊維状炭素集合体を製造した。
実施例D1に記載の測定方法と全く同様な測定方法で、上記により製造された超極細繊維状炭素混合体の繊維長分布を求めた。
上記により製造された超極細繊維状炭素集合体を用いて、実施例D1に記載のスラリーの作製方法と全く同様な作製方法でスラリーを作製した。
上記により作製されたスラリーを用いて実施例D1に記載の評価方法と全く同様な評価方法で水分散性の評価を行った。
実施例D1で作製されたスラリーを用いた水分散性の評価の結果は、表1に示すとおり、非常に良好な◎印評価であった。実施例D1で作製されたスラリーは滑らに形成されており、超極細繊維状炭素集合体の水分散性は非常に良好であった。
Claims (9)
- 平均繊維径200nm超900nm以下の直線構造を有する超極細繊維状炭素が集合して成る超極細繊維状炭素集合体であって、
前記超極細繊維状炭素集合体の表面の少なくとも一部が界面活性剤によって修飾された、及び/又は前記超極細繊維状炭素集合体の表面の少なくとも一部が酸化処理されて、
体積換算粒度分布測定により得られた前記超極細繊維状炭素集合体の繊維長分布において、繊維長15μm以下の第一ピークと繊維長15μm超の第二ピークとを有し、前記第一ピークの体積換算粒度分布(%)の前記第二ピークの体積換算粒度分布(%)に対する比が、3/1以上である、
超極細繊維状炭素集合体。 - 前記超極細繊維状炭素集合体の前記超極細繊維状炭素の平均繊維長が25μm以下である、請求項1に記載の超極細繊維状炭素集合体。
- 超遠心粉砕機により処理されて形成される、請求項1又は2に記載の超極細繊維状炭素集合体。
- 前記超極細繊維状炭素集合体の前記超極細繊維状炭素のアスペクト比が1〜1000である、請求項1〜3のいずれか1項に記載の超極細繊維状炭素集合体。
- 請求項1〜4のいずれか1項に記載の超極細繊維状炭素集合体を含む、炭素系導電助剤。
- 請求項5に記載の炭素系導電助剤と、電極活物質とを少なくとも含む非水電解質二次電池用電極材料。
- 溶媒として水を更に含む、請求項6に記載の非水電解質二次電池用電極材料。
- 集電体及び前記集電体上に活物質層を有する非水電解質二次電池用電極であって、前記活物質層が請求項6又は7に記載の非水電解質二次電池用電極材料から成る、非水電解質二次電池用電極。
- 請求項8に記載の非水電解質二次電池用電極を含む、非水電解質二次電池。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013012667 | 2013-01-25 | ||
JP2013012667 | 2013-01-25 | ||
JP2013074845 | 2013-03-29 | ||
JP2013074845 | 2013-03-29 | ||
JP2013100755 | 2013-05-10 | ||
JP2013100755 | 2013-05-10 | ||
JP2013100757 | 2013-05-10 | ||
JP2013100757 | 2013-05-10 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014558633A Division JP6151281B2 (ja) | 2013-01-25 | 2014-01-24 | 非水電解質二次電池用の超極細繊維状炭素、超極細繊維状炭素集合体、複合体、及び電極活物質層 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018149617A Division JP7023198B2 (ja) | 2013-01-25 | 2018-08-08 | 超極細繊維状炭素、超極細繊維状炭素集合体、炭素系導電助剤、非水電解質二次電池用電極材料、非水電解質二次電池用電極及び非水電解質二次電池、並びに超極細繊維状炭素の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017197898A JP2017197898A (ja) | 2017-11-02 |
JP6576388B2 true JP6576388B2 (ja) | 2019-09-18 |
Family
ID=51227641
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014558633A Active JP6151281B2 (ja) | 2013-01-25 | 2014-01-24 | 非水電解質二次電池用の超極細繊維状炭素、超極細繊維状炭素集合体、複合体、及び電極活物質層 |
JP2017102990A Active JP6576388B2 (ja) | 2013-01-25 | 2017-05-24 | 超極細繊維状炭素集合体、炭素系導電助剤、非水電解質二次電池用電極材料、非水電解質二次電池用電極及び非水電解質二次電池 |
JP2018149617A Active JP7023198B2 (ja) | 2013-01-25 | 2018-08-08 | 超極細繊維状炭素、超極細繊維状炭素集合体、炭素系導電助剤、非水電解質二次電池用電極材料、非水電解質二次電池用電極及び非水電解質二次電池、並びに超極細繊維状炭素の製造方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014558633A Active JP6151281B2 (ja) | 2013-01-25 | 2014-01-24 | 非水電解質二次電池用の超極細繊維状炭素、超極細繊維状炭素集合体、複合体、及び電極活物質層 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018149617A Active JP7023198B2 (ja) | 2013-01-25 | 2018-08-08 | 超極細繊維状炭素、超極細繊維状炭素集合体、炭素系導電助剤、非水電解質二次電池用電極材料、非水電解質二次電池用電極及び非水電解質二次電池、並びに超極細繊維状炭素の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US10541417B2 (ja) |
EP (2) | EP3629406B1 (ja) |
JP (3) | JP6151281B2 (ja) |
KR (1) | KR102217704B1 (ja) |
CN (3) | CN111509227A (ja) |
CA (1) | CA2899312A1 (ja) |
PL (1) | PL2950375T3 (ja) |
WO (1) | WO2014115852A1 (ja) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102217704B1 (ko) | 2013-01-25 | 2021-02-18 | 데이진 가부시키가이샤 | 비수 전해질 2 차 전지용의 초극세 섬유상 탄소, 초극세 섬유상 탄소 집합체, 복합체, 및 전극 활물질층 |
JP6666088B2 (ja) * | 2014-08-07 | 2020-03-13 | 帝人株式会社 | 非水電解質二次電池用として好適な複合体 |
JP2016131123A (ja) * | 2015-01-14 | 2016-07-21 | 株式会社日立製作所 | リチウム二次電池、リチウム二次電池を含む蓄電装置、およびリチウム二次電池の製造方法 |
JP7108372B2 (ja) * | 2015-06-18 | 2022-07-28 | 帝人株式会社 | 非水電解質二次電池用電極合剤層、非水電解質二次電池用電極及び非水電解質二次電池 |
JP6974934B2 (ja) * | 2015-06-18 | 2021-12-01 | 帝人株式会社 | 非水電解質二次電池用電極合剤層、非水電解質二次電池用電極、及び非水電解質二次電池 |
EP3312316B1 (en) * | 2015-06-18 | 2020-06-10 | Teijin Limited | Fibrous carbon, method for manufacturing same, electrode mixture layer for non-aqueous-electrolyte secondary cell, electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell |
EP3358072B1 (en) * | 2015-09-30 | 2019-05-01 | Teijin Limited | Pitch-based ultrafine carbon fibers, method for producing same, non-aqueous electrolyte secondary battery negative electrode using said pitch-based ultrafine carbon fibers, and non-aqueous electrolyte secondary battery having said non-aqueous electrolyte secondary battery negative electrode |
JP6506668B2 (ja) * | 2015-09-30 | 2019-04-24 | 帝人株式会社 | ピッチ系極細炭素繊維、非水電解質二次電池用電極合剤層及び非水電解質二次電池用電極並びに非水電解質二次電池 |
CN109844999B (zh) | 2016-09-07 | 2022-02-18 | 株式会社杰士汤浅国际 | 蓄电元件和蓄电元件的制造方法 |
US11165053B2 (en) | 2016-10-28 | 2021-11-02 | Adven Industries Inc. | Conductive-flake strengthened, polymer stabilized electrode composition and method of preparing |
JP7096184B2 (ja) * | 2019-03-12 | 2022-07-05 | トヨタ自動車株式会社 | リチウムイオン二次電池及びその製造方法 |
KR20220028025A (ko) * | 2019-06-28 | 2022-03-08 | 데이진 가부시키가이샤 | 섬유상 탄소를 포함하는 전고체 리튬 이차 전지용의 활물질층, 및 전고체 리튬 이차 전지 |
US11811088B2 (en) | 2019-09-19 | 2023-11-07 | Kabushiki Kaisha Toshiba | Separator, electrode group, secondary battery, battery pack, vehicle, and stationary power supply |
WO2022050211A1 (ja) | 2020-09-01 | 2022-03-10 | 帝人株式会社 | 樹脂結合繊維、並びにこれを用いる活物質層、電極、及び非水電解質二次電池 |
KR20240005924A (ko) | 2021-05-31 | 2024-01-12 | 데이진 가부시키가이샤 | 리튬 이온 이차 전지용 전극 시트 |
JP7194860B1 (ja) | 2022-09-30 | 2022-12-22 | 第一工業製薬株式会社 | カーボンナノチューブ分散液、及びそれを用いた電極用塗料、電極、非水電解質二次電池 |
WO2024135572A1 (ja) * | 2022-12-20 | 2024-06-27 | 株式会社レゾナック | 非水系二次電池電極スラリー、非水系二次電池電極、及び非水系二次電池 |
CN115832310A (zh) * | 2022-12-28 | 2023-03-21 | 深圳市研一新材料有限责任公司 | 一种粘结剂及其制备方法、电极极片和二次电池 |
CN117101506B (zh) * | 2023-08-03 | 2024-07-09 | 广东嘉尚新能源科技有限公司 | 一种软包电池的电极材料混合工艺 |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01266223A (ja) * | 1988-04-19 | 1989-10-24 | Oji Paper Co Ltd | 異方性多孔質炭素成形体の製造方法 |
JPH0729566A (ja) * | 1993-07-08 | 1995-01-31 | Mitsubishi Paper Mills Ltd | 活性炭素繊維を用いた電極材料及びその製造方法 |
JPH08190912A (ja) | 1995-01-12 | 1996-07-23 | Fuji Photo Film Co Ltd | 非水二次電池の負極用合剤の製造方法 |
JP3534888B2 (ja) * | 1995-04-19 | 2004-06-07 | 東芝電池株式会社 | リチウム二次電池 |
JP3493988B2 (ja) * | 1997-12-15 | 2004-02-03 | 株式会社日立製作所 | リチウム二次電池 |
JP3685296B2 (ja) | 1998-06-30 | 2005-08-17 | 昭和電工株式会社 | リチウム二次電池用電極、電気二重層コンデンサ用分極性電極、及びこれらの電極のための結着剤 |
JP2000133267A (ja) | 1998-10-28 | 2000-05-12 | Toyota Central Res & Dev Lab Inc | リチウム二次電池用負極活物質材料およびこれを用いたリチウム二次電池 |
US6589694B1 (en) | 1999-05-14 | 2003-07-08 | Mitsubishi Cable Industries, Ltd. | Positive electrode active material, positive electrode active material composition and lithium ion secondary battery |
JP2001068093A (ja) | 1999-08-25 | 2001-03-16 | Mitsubishi Cable Ind Ltd | 正極活物質組成物およびそれを用いたリチウムイオン二次電池 |
JP2001283878A (ja) | 2000-03-30 | 2001-10-12 | Toray Ind Inc | 導電シートおよび該シートを用いた燃料電池用電極 |
US20020172867A1 (en) * | 2001-04-10 | 2002-11-21 | Anglin David L. | Battery cathode |
WO2003087470A1 (fr) * | 2002-04-17 | 2003-10-23 | Mitsubishi Rayon Co., Ltd. | Papier en fibre de carbone et substrat d'electrode en fibre de carbone poreux, destine aux piles |
CN1333120C (zh) * | 2002-11-11 | 2007-08-22 | 昭和电工株式会社 | 气态生成的碳纤维、其制造方法及用途 |
TWI344714B (en) * | 2003-07-28 | 2011-07-01 | Showa Denko Kk | High density electrode and battery using the electrode |
CN1830103B (zh) * | 2003-07-28 | 2010-05-12 | 昭和电工株式会社 | 高密度电极及使用该电极的电池 |
KR20120094145A (ko) * | 2003-07-28 | 2012-08-23 | 쇼와 덴코 가부시키가이샤 | 고밀도전극 및 그 전극을 사용한 전지 |
WO2005067081A1 (en) | 2004-01-05 | 2005-07-21 | Showa Denko K.K. | Negative electrode material for lithium battery, and lithium battery |
WO2005087991A1 (ja) | 2004-03-11 | 2005-09-22 | Teijin Limited | 炭素繊維 |
TWI459616B (zh) * | 2004-08-16 | 2014-11-01 | Showa Denko Kk | Lithium batteries with positive and the use of its lithium batteries |
JP4031009B2 (ja) | 2004-08-16 | 2008-01-09 | 昭和電工株式会社 | リチウム系電池用正極及びそれを用いたリチウム系電池 |
US20080099732A1 (en) * | 2004-09-14 | 2008-05-01 | Showa Denko K.K. | Electroconductive Resin Composition, Production Method and Use Thereof |
US8003257B2 (en) | 2005-07-04 | 2011-08-23 | Showa Denko K.K. | Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery |
JP3958781B2 (ja) | 2005-07-04 | 2007-08-15 | 昭和電工株式会社 | リチウム二次電池用負極、負極組成物の製造方法、及びリチウム二次電池 |
JP2007311279A (ja) * | 2006-05-22 | 2007-11-29 | Matsushita Electric Ind Co Ltd | 非水電解液二次電池 |
CN101479867B (zh) | 2006-06-27 | 2012-09-05 | 花王株式会社 | 锂离子电池用复合正极材料以及使用了该材料的电池 |
JP5345300B2 (ja) | 2006-06-27 | 2013-11-20 | 花王株式会社 | リチウムイオン電池用複合正極材料およびこれを用いた電池 |
KR101153532B1 (ko) * | 2006-06-27 | 2012-06-11 | 가오 가부시키가이샤 | 리튬 전지 양극용 복합재료의 제조방법 |
JP2008181850A (ja) * | 2006-10-19 | 2008-08-07 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2008198506A (ja) * | 2007-02-14 | 2008-08-28 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
KR101375326B1 (ko) | 2007-02-15 | 2014-03-18 | 삼성에스디아이 주식회사 | 복합체 음극 활물질, 그 제조 방법 및 이를 채용한 음극과리튬 전지 |
US8574759B2 (en) | 2007-03-29 | 2013-11-05 | Mitsubishi Materials Corporation | Positive electrode forming material, component thereof, method for producing the same and rechargeable lithium-ion battery |
JP5517324B2 (ja) | 2007-05-11 | 2014-06-11 | 日機装株式会社 | 長鎖状カーボンナノチューブ |
JP2009221031A (ja) * | 2008-03-13 | 2009-10-01 | Kurosaki Harima Corp | ジルコニア−炭素含有耐火物及びその製造方法 |
CN102057086B (zh) | 2008-04-08 | 2013-05-29 | 帝人株式会社 | 碳纤维及其制造方法 |
JP5462445B2 (ja) * | 2008-04-30 | 2014-04-02 | 三菱マテリアル株式会社 | リチウムイオン二次電池 |
JP5390240B2 (ja) | 2008-06-30 | 2014-01-15 | 帝人株式会社 | 炭素繊維の製造方法 |
JP2010013742A (ja) | 2008-07-01 | 2010-01-21 | Teijin Ltd | 超微細炭素繊維の製造方法 |
JP4876288B2 (ja) * | 2008-10-06 | 2012-02-15 | 国立大学法人 大分大学 | 膨張化炭素繊維およびその製造方法並びに太陽電池 |
JP5429596B2 (ja) * | 2008-11-10 | 2014-02-26 | 日本電気株式会社 | 二次電池及びその製造方法 |
JP4835881B2 (ja) | 2009-03-31 | 2011-12-14 | 宇部興産株式会社 | リチウムイオン電池用電極およびその製造方法 |
JP5610161B2 (ja) | 2009-06-30 | 2014-10-22 | 日本ゼオン株式会社 | 非水電解質二次電池電極用活物質及び非水電解質二次電池 |
US9190694B2 (en) * | 2009-11-03 | 2015-11-17 | Envia Systems, Inc. | High capacity anode materials for lithium ion batteries |
JP2012003985A (ja) * | 2010-06-17 | 2012-01-05 | Teijin Ltd | リチウムイオン二次電池用電極およびリチウムイオン二次電池 |
JP5554656B2 (ja) | 2010-08-05 | 2014-07-23 | 帝人株式会社 | 極細炭素繊維綿状体の製造方法 |
KR101103606B1 (ko) * | 2010-12-22 | 2012-01-09 | 한화케미칼 주식회사 | 전극 활물질인 전이금속화합물과 섬유형 탄소물질의 복합체 및 이의 제조방법 |
TWI565128B (zh) * | 2011-02-16 | 2017-01-01 | Showa Denko Kk | Lithium battery electrode and lithium battery |
JP6003015B2 (ja) * | 2011-06-24 | 2016-10-05 | ソニー株式会社 | リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
KR102217704B1 (ko) | 2013-01-25 | 2021-02-18 | 데이진 가부시키가이샤 | 비수 전해질 2 차 전지용의 초극세 섬유상 탄소, 초극세 섬유상 탄소 집합체, 복합체, 및 전극 활물질층 |
US10020491B2 (en) * | 2013-04-16 | 2018-07-10 | Zenlabs Energy, Inc. | Silicon-based active materials for lithium ion batteries and synthesis with solution processing |
-
2014
- 2014-01-24 KR KR1020157020121A patent/KR102217704B1/ko active IP Right Grant
- 2014-01-24 CN CN202010331553.0A patent/CN111509227A/zh active Pending
- 2014-01-24 WO PCT/JP2014/051572 patent/WO2014115852A1/ja active Application Filing
- 2014-01-24 JP JP2014558633A patent/JP6151281B2/ja active Active
- 2014-01-24 US US14/763,373 patent/US10541417B2/en active Active
- 2014-01-24 CA CA2899312A patent/CA2899312A1/en not_active Abandoned
- 2014-01-24 EP EP19205702.4A patent/EP3629406B1/en active Active
- 2014-01-24 EP EP14743741.2A patent/EP2950375B1/en active Active
- 2014-01-24 CN CN201480006035.4A patent/CN104937757B/zh active Active
- 2014-01-24 PL PL14743741T patent/PL2950375T3/pl unknown
- 2014-01-24 CN CN201710053853.5A patent/CN106898776B/zh active Active
-
2017
- 2017-05-24 JP JP2017102990A patent/JP6576388B2/ja active Active
-
2018
- 2018-08-08 JP JP2018149617A patent/JP7023198B2/ja active Active
-
2019
- 2019-11-26 US US16/696,124 patent/US11545669B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US11545669B2 (en) | 2023-01-03 |
US20200099055A1 (en) | 2020-03-26 |
KR20150109377A (ko) | 2015-10-01 |
CA2899312A1 (en) | 2014-07-31 |
WO2014115852A1 (ja) | 2014-07-31 |
EP2950375A4 (en) | 2016-06-29 |
EP2950375B1 (en) | 2020-01-01 |
CN106898776B (zh) | 2019-11-29 |
CN111509227A (zh) | 2020-08-07 |
EP3629406B1 (en) | 2024-09-18 |
JP2017197898A (ja) | 2017-11-02 |
CN104937757A (zh) | 2015-09-23 |
CN106898776A (zh) | 2017-06-27 |
CN104937757B (zh) | 2022-01-04 |
KR102217704B1 (ko) | 2021-02-18 |
EP3629406A1 (en) | 2020-04-01 |
JPWO2014115852A1 (ja) | 2017-01-26 |
US20150372309A1 (en) | 2015-12-24 |
PL2950375T3 (pl) | 2020-07-27 |
JP7023198B2 (ja) | 2022-02-21 |
JP2018181858A (ja) | 2018-11-15 |
EP2950375A1 (en) | 2015-12-02 |
JP6151281B2 (ja) | 2017-06-21 |
US10541417B2 (en) | 2020-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6576388B2 (ja) | 超極細繊維状炭素集合体、炭素系導電助剤、非水電解質二次電池用電極材料、非水電解質二次電池用電極及び非水電解質二次電池 | |
JP6655268B2 (ja) | 繊維状炭素を含む非水電解質二次電池用電極合剤層、それを含む非水電解質二次電池用電極及び非水電解質二次電池 | |
JP2016021393A (ja) | 二次電池用負極活物質及びその製造方法 | |
JP2012501515A (ja) | 複合電極材料と、この材料を含む電池の電極と、この電極を有するリチウム電池 | |
JP5471591B2 (ja) | 電極用導電性組成物 | |
JP4697901B1 (ja) | 炭素繊維製不織布、炭素繊維、及びその製造方法、電極、電池、及びフィルタ | |
JP2009016265A (ja) | リチウム系電池用電極、リチウム系電池用電極の製造方法、リチウム系電池、及びリチウム系電池の製造方法 | |
JP2012003985A (ja) | リチウムイオン二次電池用電極およびリチウムイオン二次電池 | |
WO2022255307A1 (ja) | リチウムイオン二次電池用電極シート | |
JP2017066546A (ja) | ピッチ系極細炭素繊維、非水電解質二次電池用電極合剤層及び非水電解質二次電池用電極並びに非水電解質二次電池 | |
JP7240801B2 (ja) | 非水電解質二次電池用正極合剤層、それを含む非水電解質二次電池用正極及び非水電解質二次電池 | |
JP6666088B2 (ja) | 非水電解質二次電池用として好適な複合体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170524 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180409 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180808 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20180808 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20180816 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20180821 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20180921 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20181002 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20181211 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20190402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190531 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20190625 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20190723 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20190723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190820 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6576388 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |