JP6570914B2 - インプリント方法 - Google Patents

インプリント方法 Download PDF

Info

Publication number
JP6570914B2
JP6570914B2 JP2015153512A JP2015153512A JP6570914B2 JP 6570914 B2 JP6570914 B2 JP 6570914B2 JP 2015153512 A JP2015153512 A JP 2015153512A JP 2015153512 A JP2015153512 A JP 2015153512A JP 6570914 B2 JP6570914 B2 JP 6570914B2
Authority
JP
Japan
Prior art keywords
template
light
pattern
mark
diffracted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015153512A
Other languages
English (en)
Other versions
JP2017034126A (ja
Inventor
真歩 高桑
真歩 高桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Toshiba Memory Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Memory Corp filed Critical Toshiba Memory Corp
Priority to JP2015153512A priority Critical patent/JP6570914B2/ja
Priority to US14/927,833 priority patent/US20170040196A1/en
Publication of JP2017034126A publication Critical patent/JP2017034126A/ja
Priority to US16/265,561 priority patent/US11152218B2/en
Application granted granted Critical
Publication of JP6570914B2 publication Critical patent/JP6570914B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7038Alignment for proximity or contact printer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明の実施形態は、インプリント方法に関する。
インプリント装置では、基板ステージ上に設けられた真空チャックで加工対象のウェハを保持し、このウェハにレジストを介してパターンが形成されたテンプレートを押し付け、レジストを硬化させた後、テンプレートを離型する。
テンプレートは、通常、マスタテンプレートのパターンをテンプレート基板に転写することによって作成される。しかし、テンプレート基板の裏面の平坦の度合いに応じて、マスタテンプレートから転写されたパターンの倍率が異なってしまう。このパターンの倍率の違いは、パターンが微細化するほど顕著になる。テンプレートとウェハとの位置ずれを計測する技術については提案されているが、テンプレートの表面の平坦度を計測する技術については提案されていない。
特開2011−243664号公報
本発明の一つの実施形態は、テンプレートをインプリント装置に取り付けた状態でテンプレートの表面の平坦度を計測することができるインプリント方法を提供することを目的とする。
実施形態によれば、まず、被加工基板の第1マークと、テンプレートの第2マークと、を重ね合わせる。ついで、アライメントスコープの第1光路上に第1光源を配置し、第2光路上に第1受光センサを配置する。前記第1光路は、重ね合わせた前記第1および第2マークに垂直方向から所定の波長の電磁波を照射したときの1次回折角の方向から、前記第1および第2マークに前記電磁波を導く光路である。前記第2光路は、重ね合わせた前記第1および第2マークで垂直方向に回折される第1回折光を導く光路である。その後、前記第1光源から前記電磁波を照射して得られる、前記第1および第2マークからの前記第1回折光を、前記第1受光センサで受光する。ついで、前記第1回折光を用いて前記テンプレートと前記被加工基板との間の位置ずれを補正する。その後、前記第1マークと、前記テンプレートの第3マークと、を重ね合わせる。ついで、前記アライメントスコープの前記第2光路上に第2光源を配置し、前記第1光路上に第2受光センサを配置する。その後、前記第2光源から前記電磁波を照射して得られる、前記第1および第3マークからの第2回折光を、前記第2受光センサで受光する。さらに、前記第2回折光の受光強度から前記第3マークの位置でのテンプレート高さを算出する。前記第3マークは、前記第3マークで回折された±1次回折光のうち一方の1次回折光を他方の1次回折光に比して優勢にする第1パターンと、前記他方の1次回折光を前記一方の1次回折光に比して優勢にする第2パターンと、を有する。前記第2回折光の受光では、前記第1マークおよび前記第1パターンに前記電磁波を照射したときの前記第2回折光を受光する第1処理と、前記第1マークおよび前記第2パターンに前記電磁波を照射したときの前記第2回折光を受光する第2処理と、を前記テンプレートと前記被加工基板との間の距離を変化させながら行う。前記テンプレート高さの算出は、前記距離に対する、前記第1処理で得られる前記第2回折光の第1信号強度および前記第2処理で得られる前記第2回折光の第2信号強度を求め、前記第1信号強度と前記第2信号強度とが等しくなる前記距離を求め、前記第1信号強度と前記第2信号強度とが等しくなる距離に対応する前記テンプレート高さを求める
図1は、第1の実施形態によるインプリント装置の構成の一例を模式的に示す断面図である。 図2は、第1の実施形態によるアライメントスコープの構成の他の例を模式的に示す断面図である。 図3は、実施形態によるアライメントスコープの下面側のレンズ付近を拡大した模式図である。 図4は、光源/受光センサ切替ユニットの構成の一例を模式的に示す斜視図である。 図5は、テンプレートの構造の一例を模式的に示す図である。 図6は、テンプレートに設けられる位置ずれ検出用アライメントマークの一例を示す図である。 図7は、被転写基板に設けられるアライメントマークの一例を示す平面図である。 図8は、テンプレートと被加工レイヤとの間の位置ずれの検出方法の概略を示す図である。 図9は、テンプレートに設けられる高さ計測用アライメントマークの一例を示す図である。 図10は、テンプレートと被加工レイヤとの間の距離計測方法の概略を示す図である。 図11は、回折光の信号強度と基板ステージのZ方向の駆動量との関係を模式的に示す図である。 図12は、テンプレートにおける高さ計測用アライメントマークの配置の一例を模式的に示す図である。 図13は、第1の実施形態によるテンプレートの高さ計測方法の手順の一例を示すフローチャートである。 図14は、第2の実施形態による高さ測定方法の手順の一例を示すフローチャートである。 図15は、テンプレート高さ−信号強度情報の一例を示す図である。
以下に添付図面を参照して、実施形態にかかるテンプレート、インプリント装置およびインプリント方法並びにインプリント装置の管理方法を詳細に説明する。なお、これらの実施形態により本発明が限定されるものではない。
(第1の実施形態)
図1は、第1の実施形態によるインプリント装置の構成の一例を模式的に示す断面図である。インプリント装置10は、基板ステージ11を備える。基板ステージ11にはチャック12が設けられる。チャック12は、パターンの形成対象である被転写基板100を保持する。チャック12は、被転写基板100をたとえば真空吸着によって保持する。
被転写基板100は、半導体基板等の基板と、この基板上に形成された下地パターンと、この下地パターン上に形成された被加工レイヤとを含む。パターン転写時には、さらに、被加工レイヤ上に形成されたレジスト(インプリント剤)を含む。被加工レイヤとしては、絶縁膜、金属膜(導電膜)または半導体膜などを挙げることができる。
基板ステージ11は、ステージ定盤13の上に移動可能に設けられる。基板ステージ11は、ステージ定盤13の上面13aに沿った2軸に沿ってそれぞれ移動可能に設けられる。ここで、ステージ定盤13の上面13aに沿った2軸を、X軸およびY軸とする。基板ステージ11は、X軸およびY軸と直交する高さ方向のZ軸にも移動可能に設けられる。基板ステージ11には、X軸、Y軸およびZ軸のそれぞれを中心として回転可能に設けられていることが望ましい。
基板ステージ11には、基準マーク台14が設けられる。基準マーク台14の上には、インプリント装置10の基準位置となる図示しない基準マークが設置される。基準マークは、たとえば市松模様状の回折格子で構成される。基準マークは、アライメントスコープ30の校正およびテンプレート110の位置決め(姿勢制御・調整)に利用される。基準マークは、基板ステージ11上の原点である。基板ステージ11の上に載置される被転写基板100のX,Y座標は、基準マーク台14を原点とした座標になる。
インプリント装置10は、テンプレートステージ21を備える。テンプレートステージ21は、テンプレート(原版、モールド)110を固定する。テンプレートステージ21は、テンプレート110の周縁部分をたとえば真空吸着によって保持する。テンプレートステージ21は、テンプレート110を装置基準に位置決めするように動作する。テンプレートステージ21は、ベース部22に取り付けられる。
ベース部22には、補正機構23および加圧部24が取り付けられる。補正機構23は、たとえば制御演算部51から指示を受けてテンプレート110の位置(姿勢)を微調整する調整機構を有する。これによって、テンプレート110と被転写基板100との相対的な位置が補正される。
加圧部24は、テンプレート110の側面に応力を与えてテンプレート110の歪みを矯正する。加圧部24は、テンプレート110の4つの側面から中心に向けてテンプレート110を加圧する。これにより、転写するパターンの大きさを補正(倍率補正)する。加圧部24は、たとえば制御演算部51から指示を受けてテンプレート110を所定の応力で加圧する。
ベース部22は、アライメントステージ25に取り付けられる。アライメントステージ25は、テンプレート110と被転写基板100との位置合わせを行うため、ベース部22をX軸方向およびY軸方向に移動させる。アライメントステージ25は、ベース部22をXY平面に沿って回転させる機能も備える。XY平面に沿った回転の方向をθ方向とする。
アライメントスコープ30は、テンプレート110に設けられたアライメントマークと、被転写基板100に設けられたアライメントマークとを検出する。被転写基板100のアライメントマークおよびテンプレート110のアライメントマークは、テンプレート110と被転写基板100との相対的な位置ずれを計測するために使用される。テンプレート110のアライメントマークおよび被転写基板100のアライメントマークについては、後述する。なお、図1では、アライメントスコープ30は左右の2つのみ図示されているが、4つ以上あることが好ましい。
図2は、第1の実施形態によるアライメントスコープの構成の他の例を模式的に示す断面図であり、(a)は位置ずれ補正時の構成の一例を示し、(b)は高さ計測時の構成の一例を示している。
アライメントスコープ30は、投影光学系31を備える。投影光学系31は、上部と、テンプレート110側に配置される下部と、上下方向と垂直な方向の側面部と、にレンズ315−1,315−2,317を有する。また、投影光学系31は、これらのレンズ315−1,315−2,317の間に、ハーフミラー316を備える。
アライメントスコープ30は、光源321と、受光センサ322と、をさらに備える。位置ずれ補正時には、図2(a)のように、投影光学系31の側面部側に光源321が配置され、上面部側に受光センサ322が配置される。この場合には、ハーフミラー316は、光源321からの光を下部側のレンズ317へと反射させ、下部側のレンズ317から入射した回折光を上面部側へと透過させる。
また、高さ計測時には、図2(b)のように、投影光学系31の上部側に光源321が配置され、側面部側に受光センサ322が配置される。この場合には、ハーフミラー316は、光源321からの光を下部側のレンズ317へと透過させ、下部側のレンズ317から入射した回折光を側面部側のレンズ315−2へと反射させる。
なお、図示していないが、上部側のレンズ315−1とハーフミラー316との間と、下部側のレンズ317とハーフミラー316との間と、にレンズまたはミラーが配置されてもよい。たとえば、側面部側のレンズ315−2からの入射光が1次回折角でテンプレート110に対して入射するように、また、重ね合わせたアライメントマークでの±1次回折光が側面部側のレンズ315−2に導かれるように、下部側のレンズ317とハーフミラー316との間にレンズまたはミラーが配置される。
図3は、実施形態によるアライメントスコープの下面側のレンズ付近を拡大した模式図であり、(a)は位置ずれ補正時の構成の一例を示し、(b)は高さ計測時の構成の一例を示している。
アライメントスコープ30は、投影光学系31を備える筐体311を有する。筐体311の下面が、テンプレート110に対向するように、アライメントスコープ30は配置される。図示していないが、投影光学系31は、入射光と回折光を導くレンズまたはミラーを備える。筐体311の下部側には、レンズとしての第1〜第3光入出力部312−1〜312−3が設けられる。図2のレンズ317を拡大したものが、第1〜第3光入出力部312−1〜312−3となる。第1光入出力部312−1と第2光入出力部312−2は、非計測方向に所定の距離を置いて配置される。第3光入出力部312−3は、第1光入出力部312−1と第2光入出力部312−2との中点に設けられる。ここで、非計測方向とは、テンプレート110のアライメントマークを構成するラインパターンの延在方向のことをいう。
なお、第3光入出力部312−3が中点となるように、計測方向にも図示しない第4および第5光入出力部を設けてもよい。ここで、計測方向とは、非計測方向に垂直な方向のことをいう。第4および第5光入出力部との間の距離は、第1光入出力部312−1と第2光入出力部312−2との間の距離と同じである。このような構成とすることで、計測方向がX方向の場合と、計測方向がY方向の場合と、の2つの場合に、アライメントスコープ30を回転させることなく、位置ずれ補正または高さ計測を行うことが可能になる。
アライメントスコープ30で、第1〜第3光入出力部312−1〜312−3が形成するそれぞれの光路上に、第1〜第3光源/受光センサ切替ユニット314−1〜314−3が設けられる。図4は、光源/受光センサ切替ユニットの構成の一例を模式的に示す斜視図である。光源/受光センサ切替ユニット314は、光源321と、受光センサ322と、切替部323と、を備える。光源321は、所定の波長の光を出射する。光源321として、レーザダイオードまたはLED(Light Emitting Diode)などを用いることができる。
受光センサ322は、アライメントマークからの回折光の強度を計測する。受光センサ322として、たとえばダイオードなどを用いることができる。切替部323は、制御演算部51からの指示によって、投影光学系31のレンズに近接して配置する対象を、光源321と受光センサ322との間で切り替える。図4の例では、切替部323は、円盤状の保持部材3231と、保持部材3231の中心付近を回転可能に支持する支持部材3232と、によって構成される。保持部材3231は、光源321と受光センサ322とを保持する。切り替えの指示を受けると、レンズに近接して光源321または受光センサ322が配置されるように、保持部材3231が回転する。なお、光源321と受光センサ322の切り替えは、基板ステージ11を静止した状態で行われることが望ましい。
たとえば、位置ずれ補正を行う場合には、図3(a)に示されるように、第1および第2光入出力部312−1,312−2が形成する光路上に光源321を配置し、第3光入出力部312−3が形成する光路上に受光センサ322を配置する。また、高さ計測を行う場合には、図3(b)に示されるように、第1および第2光入出力部312−1,312−2が形成する光路上に受光センサ322を配置し、第3光入出力部312−3が形成する光路上に光源321を配置する。
図3(a)の構成で、重ね合わせたアライメントマークでの1次回折光が第3光入出力部312−3に入射するように、また、図3(b)の構成で、重ね合わせたアライメントマークでの1次回折光が第1および第2光入出力部312−1,312−2に入射するように、第1〜第3光入出力部312−1〜312−3は配置される。これは、第3〜第5光入出力部の配置関係についても同様である。このように、アライメントスコープ30は、位置ずれの補正を行う場合と、高さ計測を行う場合とで、入射光と回折光の進行方向が反対になるように、図示しない反射ミラーおよび光学系を組んでいる。図3(a)、(b)の場合では、投影光学系31が、位置ずれ補正を行う場合と、高さ計測を行う場合とで、共有された構造となっている。
以上のように、アライメントスコープ30は、基準マーク台14上の基準マークに対するテンプレート110の位置ずれ、およびテンプレート110に対する被転写基板100の位置ずれを検出する。アライメントスコープ30で検出したアライメントマークの位置(たとえば、X,Y座標)は、制御演算部51に送られる。
また、本実施形態によるアライメントスコープ30は、テンプレートステージ21にチャックされた状態のテンプレート110のパターン形成面側の平坦度を検出する。テンプレート110の平坦度は、たとえばテンプレートステージ21側の主面から測ったZ方向(高さ方向)のパターン形成面の位置(以下、テンプレート高さともいう)を、テンプレート110のパターン形成面内の複数個所で取得した情報である。アライメントスコープ30で検出したテンプレート110のアライメントマークにおけるテンプレート高さ(たとえば、Z座標)は、制御演算部51に送られる。
インプリント装置10は、光源41と、塗布部42と、を備える。光源41は、たとえば紫外線域の電磁波を放射する。光源41は、たとえばテンプレート110の直上に設置される。別の場合には、光源41は、テンプレート110の直上には配置されない。この場合には、光源41から放出した光をテンプレート110の直上からテンプレート110に向けて照射するように、ミラー等の光学部材を用いて光路を設定する。
塗布部42は、被転写基板100上にレジストを塗布する部材である。たとえば、塗布部42はノズルを有し、被転写基板100の上にノズルからレジストを滴下する。
インプリント装置10は、制御演算部51を備える。制御演算部51は、インプリント装置10全体を制御する。たとえば、制御演算部51は、基板ステージ11の制御処理、光源41の制御処理、位置ずれ補正処理、テンプレート高さ演算処理、および倍率補正処理などを、それぞれの処理内容が記述されたプログラムにしたがって実行する。
基板ステージ11の制御処理は、基板ステージ11をX軸方向、Y軸方向、Z軸方向およびθ方向に制御する信号を生成する処理である。これによって、テンプレート110と基板ステージ11との相対的な位置が制御される。光源41の制御処理は、レジストを硬化させる際に、光源41による光の照射タイミングまたは照射量を制御する処理である。
位置ずれ補正処理は、テンプレート110のアライメントマークと、基準マーク台14の基準マークまたは被転写基板100のアライメントマークと、を用いて、基準マークに対するテンプレート110の位置ずれと、テンプレート110に対する被転写基板100の位置ずれと、を求める。そして、これらの位置ずれに基づいて、テンプレートステージ21と基板ステージ11とのアライメントを行うための演算を行って、位置ずれを補正する。
テンプレート高さ演算処理は、テンプレート110のアライメントマークと、被転写基板100のアライメントマークまたは基準マーク台14の基準マークと、を用いて、テンプレート110のアライメントマークの形成位置におけるテンプレート高さを演算する。
倍率補正処理は、テンプレート高さに基づいて所定の演算を行い、テンプレート110の倍率補正を行うための応力を算出する。そして、この応力を発生させるための信号を加圧部24に与える。
つぎに、アライメントスコープ30を用いた位置ずれ補正方法と高さ計測方法について説明する。最初に、アライメントスコープ30を用いた位置ずれ補正方法について説明する。
図5は、テンプレートの構造の一例を模式的に示す図であり、(a)はテンプレートの断面図であり、(b)はテンプレートのパターン形成面側の平面図である。また、図6は、テンプレートに設けられる位置ずれ検出用アライメントマークの一例を示す図であり、(a)は平面図であり、(b)は(a)のA−A断面図であり、(c)は(a)のB−B断面図である。図7は、被転写基板に設けられるアライメントマークの一例を示す平面図である。
テンプレート110は、テンプレート基板111に凹凸からなる転写パターンを形成したものである。テンプレート基板111は、石英または蛍石など紫外線を透過する材料で形成される。テンプレート基板111は、処理対象である被転写基板100に押印される中央領域の面が、周縁領域に対して突出したメサ構造を有する。テンプレート基板111内の突出した領域をメサ面1111といい、メサ面1111以外の面をオフメサ面1112という。メサ面1111は、オフメサ面1112に対してたとえば数十μm突出している。テンプレート110は、メサ面1111が被転写基板100に対向するように設けられる。
メサ面1111には、デバイスを形成するための主パターン121が配置される主パターン配置領域RMと、アライメントマーク122などの補助パターンが配置される補助パターン配置領域RSと、が設けられる。平面視上で、主パターン配置領域RMは、たとえば矩形状の領域であり、補助パターン配置領域RSは、主パターン配置領域RMの外周部に設けられる矩形環状の領域である。なお、主パターン配置領域RMと補助パターン配置領域RSとでショット領域(またはインプリント領域)が構成される。
主パターン121は、たとえば半導体装置を形成するためのパターンである。半導体装置を形成するためのパターンとして、NAND型フラッシュメモリを形成するためのメモリ形成用パターン、およびNAND型フラッシュメモリを駆動する周辺回路を形成するための周辺回路形成用パターンなどが例示される。メモリ形成用パターンとして、たとえばワード線を形成するための幅が数十nm以下のライン状の凹パターンが、凹パターンの延在方向に垂直な方向に所定の間隔で複数配置されたラインアンドスペース状のパターンを例示することができる。主パターン121の凹部の深さは、たとえば数十nmである。
アライメントマーク122は、被転写基板100の被加工レイヤに形成されている被転写基板100のアライメントマークに対応して設けられ、テンプレート110の位置合わせなどを行う際に使用されるマークである。この例では、アライメントマーク122として、位置合わせ用アライメントマーク123と、高さ計測用アライメントマーク124と、が設けられる場合を示している。
図6に示されるように、位置ずれの補正を行う場合には、アライメントマーク123として、ラインアンドスペース状の回折格子が用いられる。ここでは、ピッチAを有するアライメントマーク123Aと、ピッチAとは異なる値のピッチBを有するアライメントマーク123Bと、の2種類のアライメントマーク123が隣接して配置される場合が示されている。
ピッチAのアライメントマーク123Aは、ライン状の凸パターン1231Aが延在方向に垂直な方向にピッチAで複数配列されたパターンである。ここでは、凸パターン1231Aは、X方向に延在している場合が示されている。また、凸パターン1231Aの表面および側面には、金属膜131が形成されている。テンプレート110が石英で形成される場合には、レジストの光学系数と一致するため、レジストがテンプレート110の凹パターン1232A(隣接する凸パターン1231A間に形成されるパターン)に充填されている間、アライメントができなくなってしまう。そのため、凸パターン1231Aに金属膜131を付けることで入射光に対する光学系数を変化させている。これによって、In-situアライメントが可能になる。
ピッチBのアライメントマーク123Bは、ライン状の凸パターン1231Bが延在方向に垂直な方向にピッチBで複数配列されたパターンである。ここでは、凸パターン1231Bは、アライメントマーク123Aの場合と同様に、X方向に延在している場合が示されている。凸パターン1231Bの幅は、ピッチAのアライメントマーク123Aの凸パターン1231Aの幅とは異なっている。また、凹パターン1232Bの底部には、金属膜131が形成されている。
なお、テンプレート110に形成されるアライメントマーク123が図6に示されるように、ラインアンドスペース状の回折格子で構成される場合には、凸パターン1231A,1231B(または凹パターン1232A,1232B)の配列方向であるY方向が計測方向となり、X方向は非計測方向となる。
一方、被加工レイヤに設けられるアライメントマーク501は、図7に示されるように、市松模様状の回折格子となっている。ここでは、ピッチCを有するアライメントマーク501Aと、ピッチCとは異なる値のピッチDを有するアライメントマーク501Bと、の2種類のアライメントマーク501が隣接して配置される場合が示されている。
ピッチCのアライメントマーク501Aは、矩形状の凸パターン502AがX方向およびY方向にピッチCで配列されたパターンである。凸パターン502Aに囲まれた部分は矩形状の凹パターン503Aとなる。
ピッチDのアライメントマーク501Bは、矩形状の凸パターンがX方向およびY方向にピッチDで配列されたパターンである。凸パターン502Bに囲まれた部分は矩形状の凹パターン503Bとなる。
図8は、テンプレートと被加工レイヤとの間の位置ずれの検出方法の概略を示す図であり、(a)はアライメントスコープによる位置ずれの検出方法の概略を示す図であり、(b)は非計測方向でのテンプレートと被加工レイヤのアライメントマークに入射した光の様子を示す図であり、(c)は計測方向でのテンプレートと被加工レイヤのアライメントマークに入射した光の様子を示す図である。なお、ここでは、テンプレート110のアライメントマーク123を構成するラインパターンがX方向に延在している場合を例に挙げる。
位置ずれの補正を行う場合には、被加工レイヤのアライメントマーク501とテンプレート110のアライメントマーク123とを重ね合わせ、重ね合わせたアライメントマーク123,501を同時に検出可能な位置にアライメントスコープ30を配置する。また、制御演算部51からの指示によって、アライメントスコープ30では、第1および第2光入出力部312−1,312−2が形成する光路上に光源321が配置され、第3光入出力部312−3が形成する光路上に受光センサ322が配置される。
その後、光源321からの所定の波長の入射光Iが照射される。入射光Iは、第1および第2光入出力部312−1,312−2を介して、重ね合わせたアライメントマーク123,501に対して、非計測方向の±1次回折角から照射される。図8(b)に示されるように、入射光Iは、テンプレート110の金属膜131がない部分(この場合には、凹パターン1232A)を透過し、被転写基板100の非計測方向(図ではX方向)の市松模様状のアライメントマーク501によって垂直方向に回折される。図8(c)に示されるように、この回折光Dによって、計測方向(図ではY方向)で、被転写基板100とテンプレート110との間でモワレ干渉縞が発生する。そして、受光センサ322で、このモワレ干渉縞を観察して、被転写基板100とテンプレート110との間の位置ずれを補正する。
なお、ここでは、テンプレート110と被転写基板100との間の位置ずれの補正を説明したが、テンプレート110と基準マーク台14の基準マークとの間の位置ずれの補正も同様の方法で行われる。
以上が、アライメントスコープ30を用いた位置ずれ補正方法である。つぎに、アライメントスコープ30を用いたテンプレート110の高さ計測方法について説明する。
図9は、テンプレートに設けられる高さ計測用アライメントマークの一例を示す図であり、(a)は平面図であり、(b)は(a)のC−C断面図であり、(c)は(a)のD−D断面図である。なお、被転写基板100側に設けられるアライメントマーク501は、図7で説明したものと同様であるので、その説明を省略する。
図9に示されるように、テンプレート高さの計測を行う場合には、図6に示される位置ずれ補正用のアライメントマーク123とは異なり、アライメントマーク124として、ラインアンドスペース状の非対称回折格子が用いられる。ここでは、ピッチが異なるアライメントマーク124A,124Bが隣接して配置される場合が示されている。
ピッチEの非対称回折格子パターンの断面は、図9(b)に示されるように、テンプレート基板111に、ライン状の凸パターン1241AがピッチEで延在方向に垂直な方向に複数配列されている。また、凸パターン1241Aの下面および側面において、一方の端部から凸パターン1241Aの幅未満の領域に、金属膜131が形成されている。以下では、凸パターン1241Aのうち金属膜131で覆われている部分を遮光部1242Aといい、金属膜131で覆われていない部分を透過部1243Aという。
本実施形態では、凸パターン1241A上の透過部1243Aを透過する透過光の位相をφ1とし、凹パターン1244A(透過部)を透過する透過光の位相をφ2とすると、位相φ1と位相φ2との差(以下、位相差という)が180度以外となるように、凸パターン1241Aの高さ(または凹パターン1244Aの深さ)が設定される。このようにすることで、重ね合わせたアライメントマーク124A,501で回折される+1次回折光と−1次回折光との間に回折効率差を発生させることができる。なお、位相差を90度にすると、+1次回折光と−1次回折光との間の回折効率差が大きくなるので、より望ましい。
さらに、非対称回折格子パターンの延在方向に垂直な面において、遮光部1242Aの幅をW1とし、凸パターン1241A上の透過部1243Aの幅をW2とし、凹パターン1244Aの幅をW3とする。W1:W2:W3=2:1:1とした場合に、−1次回折光と+1次回折光とのうちどちらか一方(ここでは−1次回折光)の回折効率を実質的に0にすることができる。つまり、位相差が90度であり、W1:W2:W3=2:1:1とした非対称回折格子パターンとすることで、重ね合わせたアライメントマーク124A,501での−1次回折光の発生を抑えることが可能になる。図9(b)では、Y方向の正方向に向かって、凹パターン1244A、凸パターン1241Aの遮光部1242A、透過部1243Aの順に配列されている。
ピッチFの非対称回折格子パターンの断面は、図9(c)に示されるように、テンプレート基板111に、ライン状の凸パターン1241BがピッチFで延在方向に垂直な方向に複数配列されている。ピッチFは、ピッチEよりも大きい。このピッチFの非対称回折格子パターンでも、W1:W2:W3=2:1:1となるように金属膜131が凸パターン1241Bの下面および側面に設けられ、位相差が180度以外、望ましくは90度となるように、凸パターン1241Bの高さ(または凹パターン1244Bの深さ)が設定される。また、図9(c)では、図9(b)の配列順とは異なり、Y方向の正方向に向かって、凹パターン1244B、凸パターン1241Bの透過部1243B、遮光部1242Bの順に配列されている。
図10は、テンプレートと被加工レイヤとの間の距離計測方法の概略を示す図であり、(a)はアライメントスコープによるテンプレート高さの計測方法の概略を示す図であり、(b)は計測方向でのテンプレートと被加工レイヤのアライメントマークに入射した光の様子を示す図であり、(c)は非計測方向でのテンプレートと被加工レイヤのアライメントマークに入射した光の様子を示す図である。
テンプレート高さの計測を行う場合には、被加工レイヤのアライメントマーク501とテンプレート110のアライメントマーク124とを重ね合わせ、重ね合わせたアライメントマーク124,501を同時に検出可能な位置にアライメントスコープ30を配置する。また、制御演算部51からの指示によって、アライメントスコープ30では、第1および第2光入出力部312−1,312−2が形成する光路上に受光センサ322が配置され、第3光入出力部312−3が形成する光路上に光源321が配置される。
その後、光源321から所定の波長の入射光Iが照射される。入射光Iは、第3光入出力部312−3を介して、重ね合わせたアライメントマーク124,501に対して、垂直方向から照射される。図10(b)に示されるように、入射光Iは、テンプレート110のアライメントマーク124の透過部1243、凹パターン1244を透過し、回折される。このとき、計測方向(図では、Y方向)においては、ピッチEの非対称回折格子で、−1次回折光が消えて、0次回折光と+1次回折光の2光束干渉が発生し、0次回折光と+1次回折光の間に定在波Wが出現する。定在波Wは、テンプレート110と被転写基板100との間に、約45度方向に発生し、被転写基板100に入射する。
図10(c)に示されるように、非計測方向(図では、X方向)においては、定在波Wは、被転写基板100の市松模様状の回折格子によって回折される。そして、回折光Dはアライメントスコープ30の第1および第2光入出力部312−1,312−2が形成する光路上に配置された受光センサ322へ入射される。
ここで、テンプレート110をテンプレートステージ21に取り付けた結果、テンプレート110のパターン形成面が平坦ではなくなったもの、すなわちテンプレート厚さが均一ではなくなったもの、とする。これによって、テンプレート110内の位置によって、被転写基板100からテンプレート110までの垂直方向の距離が変化する。これは、被転写基板100とテンプレート110との間の基準となる距離(基準距離)では、フォーカスするのに対して、基準距離からずれている部分では、デフォーカスすることになる。デフォーカスが生じると、図10(b)で説明した定在波Wの長さに変化が生じ、アライメントスコープ30の受光センサ322に入射する回折光の位置が変化する。すなわち、テンプレート高さの変化が、受光センサ322への回折光の入射位置の違いとして計測されることになる。
一方、ピッチFのアライメントマーク124Bでは、遮光部1242Bと、凸パターン1241Bの透過部1243Bと、凹パターン1244Bとの配列順序が、ピッチEのアライメントマーク124Aとは異なっているので、計測方向では、+1次回折光が消失し、0次回折光と−1次回折光の2光束干渉が発生し、0次回折光と−1次回折光の間に定在波が出現する。この定在波は、ピッチEのアライメントマーク124Aの場合とは逆方向となり、その結果、テンプレート110の高さの変化によって生じる回折光の受光センサ322への入射位置の移動方向も、ピッチEのアライメントマーク124Aの場合とは逆方向となる。
第1および第2光入出力部312−1,312−2が形成する光路上に配置された受光センサ322は、所定の大きさを有しているので、受光センサ322から回折光の一部がはみ出すと、受光センサ322で受光する回折光の信号強度は小さくなる。逆に、受光センサ322に多くの回折光が入射すると、受光センサ322で受光する回折光の信号強度は大きくなる。つまり、テンプレート高さの変化によって、受光センサ322へ入射する回折光の信号強度が変化する。
そこで、被転写基板100の高さ、すなわち基板ステージ11のZ方向の駆動量を変化させたときの受光センサ322の信号強度を計測する。この計測は、ピッチEのアライメントマーク124Aと、ピッチFのアライメントマーク124Bと、の2つで行う。図11は、回折光の信号強度と基板ステージのZ方向の駆動量との関係を模式的に示す図である。この図で横軸は、基板ステージ11のZ方向の駆動量を示し、縦軸は、受光センサ322による回折光の信号強度を示している。基板ステージ11のZ方向の駆動量が大きくなると、ピッチEのアライメントマーク124Aの場合には、回折光が受光センサ322からはみ出した状態から受光センサ322内に収まるように移動する。その結果、受光センサ322に入射する回折光の面積が大きくなり、信号強度が増加する。一方、ピッチFのアライメントマーク124Bの場合には、回折光が受光センサ322内に収まった状態から受光センサ322からはみ出すように移動する。その結果、受光センサ322に入射する回折光の面積が小さくなり、信号強度が減少する。
なお、基板ステージ11のZ方向の駆動量は、テンプレート高さに変換することが可能である。制御演算部51は、このような2つのピッチの信号強度曲線を取得し、2つの信号強度曲線の交点におけるテンプレート高さを、高さ計測位置でのテンプレート高さとする。
図12は、テンプレートにおける高さ計測用アライメントマークの配置の一例を模式的に示す図である。図5(b)では、補助パターン配置領域RSに高さ計測用アライメントマーク124を配置しているが、図12に示されるように、主パターン配置領域RM内の主パターンが配置されない領域にも高さ計測用アライメントマーク124を配置してもよい。このように高さ計測用アライメントマーク124を配置することで、テンプレート110のパターン形成面全体での高さを得ることができる。
つぎに、上記したインプリント装置とテンプレートとを用いたテンプレート高さの計測方法について説明する。図13は、第1の実施形態によるテンプレートの高さ計測方法の手順の一例を示すフローチャートである。まず、テンプレート110をテンプレートステージ21に搬入し(ステップS11)、テンプレートステージ21にテンプレート110を固定する。また、被転写基板100を基板ステージ11に搬入し(ステップS12)、チャック12で被転写基板100を基板ステージ11に固定する。
ついで、テンプレート110の位置合わせ用アライメントマーク123と被転写基板100のアライメントマークとを重ね合わせ、2つのアライメントマーク上にアライメントスコープ30を移動する(ステップS13)。
その後、アライメントモードで基板ステージ11の位置計測と位置合わせを実施する(ステップS14)。具体的には、図3(a)に示されるように、アライメントスコープ30の第1および第2光入出力部312−1,312−2が形成する光路上に光源321を配置し、第3光入出力部312−3が形成する光路上に受光センサ322を配置する。そして、図6と図8で説明したように、被転写基板100とテンプレート110との間の位置合わせを行う。
ついで、アライメントスコープ30の照明系と検出系とを入れ替える(ステップS15)。具体的には、アライメントスコープ30の第1および第2光入出力部312−1,312−2が形成する光路上に配置される光源321を受光センサ322に切り替え、第3光入出力部312−3が形成する光路上に配置される受光センサ322を光源321に切り替え、図3(b)に示される配置とする。
その後、テンプレート110の高さ計測用アライメントマーク124と被転写基板100のアライメントマークとを重ね合わせ、2つのアライメントマーク上にアライメントスコープ30を移動する(ステップS16)。
ついで、平坦度計測モードで、基板ステージ11またはテンプレートステージ21をZ方向に駆動し、Z位置に対する回折光のずれ量を取得し、平坦度計測結果を取得する(ステップS17)。ここでは、図9と図10で説明したように、高さ計測用アライメントマーク124の位置でのテンプレート高さを取得する。
その後、他の高さ計測用アライメントマーク124があるかを判定する(ステップS18)。他の高さ計測用アライメントマークが存在する場合(ステップS18でYesの場合)には、ステップS16に処理が戻る。一方、他の高さ計測用アライメントマーク124が存在しない場合(ステップS18でNoの場合)には、処理が終了する。
なお、インプリント処理時に、制御演算部51は、平坦度計測結果に基づいて、テンプレート110のパターン形成面が平坦となる、加圧部24でのテンプレート110の加圧量を演算し、加圧部24に信号を送信する。
上記した処理で得られた情報に基づいて、テンプレート110と被転写基板100との間の位置ずれが補正機構23によって調整され、加圧部24によってテンプレート110のパターン形成面が平坦となるように加圧状態が調整される。そして、インプリント処理が実行される。
また、テンプレート110のパターン形成面の高さは、テンプレート110とテンプレートステージ21との間のパーティクルの存在、あるいはテンプレートステージ21の欠けなどによって変化することがある。そのため、テンプレート高さの計測を所定の周期(たとえば1日に1回の頻度で、または1週間に1回の頻度で)行うことで、テンプレートステージ21の清掃時期または寿命時期などのメンテナンス時期を管理することができる。
ここで、インプリント装置10によるインプリント方法について簡単に説明する。まず、上記した方法で、テンプレート110と被転写基板100との間の位置合わせが行われ、また加圧部24によるテンプレート110の加圧状態が調整される。ついで、塗布部42によって、被転写基板100上にレジストを塗布する。その後、テンプレート110と被転写基板100とのZ方向の距離を縮めてテンプレート110の転写パターンをレジストに接触させる。この状態で光源41から光を照射してレジストを硬化させる。レジストの硬化後、テンプレート110をレジストから剥離する。これにより、テンプレート110の転写パターンの凹凸形状がレジストに転写されたレジストパターンが被転写基板100上に形成される。
その後は、レジストパターンをマスクにして、被加工レイヤをエッチングすることにより、被加工レイヤにパターンが転写される。
なお、上記した説明では、位置合わせ用アライメントマーク123と高さ計測用アライメントマーク124とを別個に設ける場合を示した。しかし、位置ずれ補正用アライメントマークと高さ計測用アライメントマークとを共通化してもよい。この場合には、上記した図9に示される高さ計測用アライメントマーク124が、テンプレート高さの計測用のほかに、位置ずれ補正用としても用いられることになる。
第1の実施形態では、テンプレート110に、非対称回折格子からなるピッチの異なる2種類の高さ計測用アライメントマーク124を設けた。また、位置合わせ用に用いたアライメントスコープ30の光源321と受光センサ322の位置とを入れ替え、重ね合わせたテンプレート110の高さ計測用アライメントマーク124と被転写基板100のアライメントマークとに光を照射し、その回折光の信号強度を受光センサ322で測定した。これを被転写基板100またはテンプレート110のZ方向の高さを変えて行った。2種類のピッチの高さ計測用アライメントマーク124を用いて回折光の信号強度を求めることで、高さ計測用アライメントマーク124の配置位置でのテンプレート110の高さを求めることができる。
テンプレートステージ21とテンプレート110との間に、パーティクルが挟まると、テンプレート高さが変わる。継続的にテンプレート高さの計測を行うことで、テンプレートステージ21の清掃時期を予測することができるという効果を有する。また、テンプレートステージ21の一部が欠けてしまい、平坦度が悪化してしまった場合にも、テンプレート高さの変化に現れる。その結果、継続的にテンプレート高さの計測を行うことで、テンプレートステージ21の交換時期を予測することができるという効果も有する。なお、制御演算部51は、このようなテンプレートステージ21の清掃時期および交換時期を含むメンテナンス時期であることが検出されると、メンテナンス時期予想情報を出力し、インプリント装置の使用者に対して注意を促すことができる。
さらに、テンプレート高さの計測を所定の周期で行った結果、経時的にテンプレート110の高さが変化していく箇所が存在したとする。このような場合に、高さが変化している箇所近辺に滴下するレジストのドロップ量を高さに合わせて変化させるようにドロップレシピを更新することができる。その結果、テンプレート110の使用時間の経過とともに、インプリント処理時のレジストの充填特性を劣化させることなく維持することができるという効果を有する。
また、テンプレート110中の平坦度の悪い箇所に対して、インプリント処理時の圧力を変え、平坦となるように最適化するようにした。これによって、RLT(Residual Layer Thickness:レジスト残膜)の均一化を行うことが可能になるという効果も有する。
(第2の実施形態)
第1の実施形態では、2種類のピッチの高さ計測用アライメントマークを用いて、被転写基板またはテンプレートのZ方向の位置を変化させた際の回折光強度を取得することで、テンプレート高さの測定を行っていた。第2の実施形態では、1種類のピッチの高さ計測用アライメントマークを用いて、テンプレート高さの測定を行う場合について説明する。
第2の実施形態によるインプリント装置の構成は、第1の実施形態で説明したものと同様であるので、その説明を省略する。また、テンプレートの構成は、たとえば図9(a)で1つのピッチの高さ計測用アライメントマークのみが配置される点が、第1の実施形態とは異なる。
つぎに、高さ測定について説明する。図14は、第2の実施形態による高さ測定方法の手順の一例を示すフローチャートである。このフローチャートは、図13のステップS17に対応する処理を示している。
まず、テンプレート110の高さ計測用アライメントマーク124と被転写基板100のアライメントマークとを同時に検出可能な位置に、アライメントスコープ30を移動する(ステップS31)。ついで、基板ステージ11およびテンプレートステージ21のZ方向の位置を予め定められた位置に配置する。そして、平坦度計測モードで、光源41から重ね合わされた高さ計測用アライメントマーク124に対して光を照射し、その回折光の信号強度を取得する(ステップS32)。
その後、制御演算部51は、予め保持しているテンプレート高さ−信号強度情報を参照して、取得した信号強度に対応するテンプレート高さを取得する(ステップS33)。以上によって、処理が終了する。
図15は、テンプレート高さ−信号強度情報の一例を示す図である。基本的には、図11に示した基板ステージのZ方向の駆動量と受光センサの信号強度との関係を示す図と同じである。テンプレート高さ−信号強度情報は、テンプレート110と被転写基板100との間の距離が、所定の距離である場合におけるテンプレート高さと受光センサ322での回折光の信号強度との関係を示している。なお、これは一例であり、高さ計測用アライメントマーク124の凸パターンの透過部1243、遮光部1242および凹パターン1244の並び順によっては、右下がりのグラフになる。
受光センサ322での信号強度がI1であった場合には、図15のテンプレート高さ−信号強度情報からテンプレート高さはZ1であると求めることができる。
第2の実施形態によっても、第1の実施形態と同様の効果を得ることができる。
なお、上記した実施形態では、被転写基板100上のアライメントマークを用いてテンプレート110の平坦度を測定する場合を例に挙げた。しかし、被転写基板100上のアライメントマークの代わりに、基準マーク台14に設けられたアライメントマークを用いて行ってもよい。
また、上記した実施形態では、2種類以下のピッチを有するアライメントマークと平坦度計測マークについて説明したが、3種類以上のピッチを有するアライメントマークでもよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10 インプリント装置、11 基板ステージ、12 チャック、13 ステージ定盤、14 基準マーク台、21 テンプレートステージ、22 ベース部、23 補正機構、24 加圧部、25 アライメントステージ、30 アライメントスコープ、31 投影光学系、41,321 光源、42 塗布部、51 制御演算部、100 被転写基板、110 テンプレート、111 テンプレート基板、121 主パターン、122,123A,123B,124A,124B,501,501A,501B アライメントマーク、123 位置合わせ用アライメントマーク、124 高さ計測用アライメントマーク、131 金属膜、311 筐体、312−1〜312−3 第1〜第3光入出力部、315−1,315−2,317 レンズ、314−1〜314−3 第1〜第3光源/受光センサ切替ユニット、316 ハーフミラー、322 受光センサ、323 切替部、502A,502B,1231A,1231B,1241A,1241B 凸パターン、503A,503B,1232A,1232B,1244,1244A,1244B 凹パターン、1111 メサ面、1112 オフメサ面、1242,1242A,1242B 遮光部、1243,1243A,1243B 透過部、3231 保持部材、3232 支持部材。

Claims (2)

  1. 被加工基板の第1マークと、テンプレートの第2マークと、を重ね合わせ、
    重ね合わせた前記第1および第2マークに垂直方向から所定の波長の電磁波を照射したときの1次回折角の方向から、前記第1および第2マークに前記電磁波を導く第1光路と、重ね合わせた前記第1および第2マークで垂直方向に回折される第1回折光を導く第2光路と、を形成するアライメントスコープの前記第1光路上に第1光源を配置し、前記第2光路上に第1受光センサを配置し、
    前記第1光源から前記電磁波を照射して得られる、前記第1および第2マークからの前記第1回折光を、前記第1受光センサで受光し、
    前記第1回折光を用いて前記テンプレートと前記被加工基板との間の位置ずれを補正し、
    前記第1マークと、前記テンプレートの第3マークと、を重ね合わせ、
    前記アライメントスコープの前記第2光路上に第2光源を配置し、前記第1光路上に第2受光センサを配置し、
    前記第2光源から前記電磁波を照射して得られる、前記第1および第3マークからの第2回折光を、前記第2受光センサで受光し、
    前記第2回折光の受光強度から前記第3マークの位置でのテンプレート高さを算出し、
    前記第3マークは、前記第3マークで回折された±1次回折光のうち一方の1次回折光を他方の1次回折光に比して優勢にする第1パターンと、前記他方の1次回折光を前記一方の1次回折光に比して優勢にする第2パターンと、を有し、
    前記第2回折光の受光では、前記第1マークおよび前記第1パターンに前記電磁波を照射したときの前記第2回折光を受光する第1処理と、前記第1マークおよび前記第2パターンに前記電磁波を照射したときの前記第2回折光を受光する第2処理と、を前記テンプレートと前記被加工基板との間の距離を変化させながら行い、
    前記テンプレート高さの算出は、
    前記距離に対する、前記第1処理で得られる前記第2回折光の第1信号強度および前記第2処理で得られる前記第2回折光の第2信号強度を求め、前記第1信号強度と前記第2信号強度とが等しくなる前記距離を求め、前記第1信号強度と前記第2信号強度とが等しくなる距離に対応する前記テンプレート高さを求めるインプリント方法。
  2. 前記第3マークは、ライン状の第1凹パターンおよび第1凸パターンが幅方向に交互に配置され、
    前記第1凸パターンは、
    前記幅方向の一方の側面を含む領域に金属膜が被覆された第1遮光部と、
    前記幅方向の他方の側面を含む前記金属膜が被覆されていない第1透光部と、
    を有し、
    前記第1遮光部と、前記第1透光部と、前記第1凹パターンと、の前記幅方向の比率は、2:1:1であり、
    前記第1透光部を透過する前記電磁波と前記第1凹パターンを透過する前記電磁波との位相差が90度となるように、前記第1凹パターンと前記第1凸パターンとの高さの差が設定される請求項1に記載のインプリント方法。
JP2015153512A 2015-08-03 2015-08-03 インプリント方法 Active JP6570914B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015153512A JP6570914B2 (ja) 2015-08-03 2015-08-03 インプリント方法
US14/927,833 US20170040196A1 (en) 2015-08-03 2015-10-30 Template, imprint apparatus, imprint method and imprint apparatus management method
US16/265,561 US11152218B2 (en) 2015-08-03 2019-02-01 Template, imprint apparatus, imprint method and imprint apparatus management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015153512A JP6570914B2 (ja) 2015-08-03 2015-08-03 インプリント方法

Publications (2)

Publication Number Publication Date
JP2017034126A JP2017034126A (ja) 2017-02-09
JP6570914B2 true JP6570914B2 (ja) 2019-09-04

Family

ID=57988724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015153512A Active JP6570914B2 (ja) 2015-08-03 2015-08-03 インプリント方法

Country Status (2)

Country Link
US (2) US20170040196A1 (ja)
JP (1) JP6570914B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6188382B2 (ja) * 2013-04-03 2017-08-30 キヤノン株式会社 インプリント装置および物品の製造方法
JP6207671B1 (ja) * 2016-06-01 2017-10-04 キヤノン株式会社 パターン形成装置、基板配置方法及び物品の製造方法
JP7025132B2 (ja) * 2017-06-05 2022-02-24 キヤノン株式会社 インプリント装置及び物品の製造方法
US10996560B2 (en) * 2017-07-31 2021-05-04 Canon Kabushiki Kaisha Real-time correction of template deformation in nanoimprint lithography
JP7222702B2 (ja) * 2018-12-26 2023-02-15 三星電子株式会社 ウエハの接合方法、半導体装置の製造方法、及びその装置
JP2022147786A (ja) * 2021-03-23 2022-10-06 キオクシア株式会社 テンプレート、被加工部材、及びアライメント方法
CN116858076B (zh) * 2023-09-01 2023-11-17 湖南中翔建设集团有限公司 一种建筑装修墙面平整度检测设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7962604B1 (en) * 2000-10-17 2011-06-14 Aol Inc Displaying advertisements in a computer network environment
JP2005101313A (ja) 2003-09-25 2005-04-14 Canon Inc 微細パターン形成装置
JP4478424B2 (ja) 2003-09-29 2010-06-09 キヤノン株式会社 微細加工装置およびデバイスの製造方法
JP2005116978A (ja) * 2003-10-10 2005-04-28 Sumitomo Heavy Ind Ltd ナノインプリント装置及び方法
JP2005277353A (ja) * 2004-03-26 2005-10-06 Toshiba Corp 投影光学系の収差測定方法とフォーカス測定方法及びテスト用マスク
JP2006039148A (ja) 2004-07-26 2006-02-09 Toshiba Corp ホトマスク、それを用いたフォーカス測定方法および半導体装置の製造方法
JP2007149722A (ja) * 2005-11-24 2007-06-14 Canon Inc 加圧加工装置、加圧加工方法および加圧加工用モールド
JP5284212B2 (ja) * 2009-07-29 2013-09-11 株式会社東芝 半導体装置の製造方法
JP5539011B2 (ja) * 2010-05-14 2014-07-02 キヤノン株式会社 インプリント装置、検出装置、位置合わせ装置、及び物品の製造方法
FR2960658B1 (fr) * 2010-05-28 2013-05-24 Commissariat Energie Atomique Lithographie par impression nanometrique
JP2012124390A (ja) 2010-12-09 2012-06-28 Canon Inc インプリント装置およびデバイス製造方法
US8842294B2 (en) 2011-06-21 2014-09-23 Canon Kabushiki Kaisha Position detection apparatus, imprint apparatus, and position detection method
JP5831012B2 (ja) * 2011-07-27 2015-12-09 大日本印刷株式会社 インプリント用位置合わせマーク、該マークを備えたテンプレートおよびその製造方法
JP6019685B2 (ja) * 2012-04-10 2016-11-02 大日本印刷株式会社 ナノインプリント方法及びナノインプリント装置

Also Published As

Publication number Publication date
US11152218B2 (en) 2021-10-19
JP2017034126A (ja) 2017-02-09
US20170040196A1 (en) 2017-02-09
US20190164770A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
JP6570914B2 (ja) インプリント方法
TWI651762B (zh) 對位裝置,對位方法,光蝕刻裝置,及物品製造方法
KR101821448B1 (ko) 임프린트 장치, 임프린트 방법 및 물품 제조 방법
US8922786B2 (en) Detector, imprint apparatus, and article manufacturing method
KR101894167B1 (ko) 임프린트 장치 및 물품 제조 방법
KR101788371B1 (ko) 검출 장치, 임프린트 장치 및 물품의 제조 방법
TW201741646A (zh) 測量裝置、壓印設備、製造產品的方法、光量確定方法及光量調整方法
KR20180041736A (ko) 검출 장치, 임프린트 장치, 물품 제조 방법, 조명 광학계 및 검출 방법
KR20130098210A (ko) 검출기, 임프린트 장치 및 물품 제조 방법
KR20190093704A (ko) 이동체의 제어 방법, 노광 방법, 디바이스 제조 방법, 이동체 장치, 및 노광 장치
KR102180702B1 (ko) 리소그래피 장치, 물품의 제조 방법, 및 계측 장치
JP2018152374A (ja) インプリント装置および物品製造方法
KR102137986B1 (ko) 계측 장치, 노광 장치 및 물품의 제조 방법
KR20180118043A (ko) 임프린트 장치, 제어 데이터의 생성 방법, 및 물품의 제조 방법
TWI823120B (zh) 模板、被加工構件及對準方法
JP7057655B2 (ja) 計測装置、リソグラフィ装置、物品の製造方法、および計測方法
JP6952590B2 (ja) 露光装置、露光方法、および物品の製造方法
JP5773735B2 (ja) 露光装置、および、デバイス製造方法
JP2019158516A (ja) 位置検出装置、位置検出方法、インプリント装置及び物品の製造方法
JP7336343B2 (ja) 露光装置、露光方法、および物品の製造方法
JP2023135179A (ja) 物体の位置合わせ方法、インプリント方法、物品製造方法、検出装置、インプリント装置、型及び基板
JP2024014030A (ja) 検出装置、リソグラフィー装置および物品製造方法
JP2024030557A (ja) 検出装置、リソグラフィー装置および物品製造方法
JP2023088697A (ja) 露光装置、露光方法及び物品の製造方法
JP2024037437A (ja) マークの相対位置の計測方法、計測装置及び物品の製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190807

R150 Certificate of patent or registration of utility model

Ref document number: 6570914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350