JP2024014030A - 検出装置、リソグラフィー装置および物品製造方法 - Google Patents

検出装置、リソグラフィー装置および物品製造方法 Download PDF

Info

Publication number
JP2024014030A
JP2024014030A JP2022116574A JP2022116574A JP2024014030A JP 2024014030 A JP2024014030 A JP 2024014030A JP 2022116574 A JP2022116574 A JP 2022116574A JP 2022116574 A JP2022116574 A JP 2022116574A JP 2024014030 A JP2024014030 A JP 2024014030A
Authority
JP
Japan
Prior art keywords
mark
light
substrate
detection device
detection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022116574A
Other languages
English (en)
Inventor
俊樹 岩井
Toshiki Iwai
雄一 藤田
Yuichi Fujita
竣 戸田
Shun Toda
靖行 吽野
Yasuyuki Unno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2022116574A priority Critical patent/JP2024014030A/ja
Priority to TW112125384A priority patent/TW202411769A/zh
Priority to US18/350,067 priority patent/US20240027921A1/en
Priority to KR1020230093554A priority patent/KR20240013060A/ko
Publication of JP2024014030A publication Critical patent/JP2024014030A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/42Alignment or registration features, e.g. alignment marks on the mask substrates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7042Alignment for lithographic apparatus using patterning methods other than those involving the exposure to radiation, e.g. by stamping or imprinting

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】第1物体と第2物体の相対位置を高い検出精度で検出する技術を提供する。【解決手段】検出装置は、重ねて配置された第1物体と第2物体とにそれぞれ設け第1マークと第2マークとの相対位置を検出する。検出装置は、第1、第2マークを無偏光の照明光で照明する照明系と、撮像素子を含み、照明系によって照明された第1、第2マークからの回折光を撮像素子の撮像面に結像させる検出系と、を備え、第1、第2マークは、第1方向または第1方向に直交する第2方向における相対位置を示す光学情報を撮像面に形成可能に構成され、検出系の瞳面には、検出系の光軸を第3方向(x方向)に平行な方向に横切る第1遮光部BP1と、検出系の光軸を第4方向(y方向)に平行な方向に横切る第2遮光部BP2とを含む遮光体BPが設けられ、第3方向は、第1方向に共役な方向であり、第4方向は、第2方向に共役な方向である。【選択図】図1

Description

本発明は、検出装置、リソグラフィー装置および物品製造方法に関する。
インプリント装置では、基板の上に配置されたインプリント材にモールドを接触させインプリント材を硬化させることによってインプリント材の硬化物からなるパターンが形成される。このようなインプリント装置では、基板とモールドを正確に位置合わせすることが重要である。特許文献1には、基板に設けられた回折格子からなるマークとモールドに設けられた回折格子からなるマークとを使って基板とモールドとを位置合わせする技術が記載されている。
特表2008-522412号公報
マークを照明すると、マークとその外側の領域との境界であるエッジで反射された光がノイズ光として撮像素子に入射し、これがマークの検出精度を低下させうる。特に、マークの面積が縮小されると、マークからの位置情報を検出するための光によって形成される像に与えるノイズ光の影響が大きくなり、検出精度の低下が顕著になりうる。
本発明は、第1物体と第2物体とにそれぞれ設けられた第1マークと第2マークとの相対位置を高い検出精度で検出するために有利な技術を提供することを目的とする。
本発明の1つの側面は、重ねて配置された第1物体と第2物体とにそれぞれ設けられた第1マークと第2マークとの相対位置を検出する検出装置に係り、前記検出装置は、前記第1マークおよび前記第2マークを無偏光の照明光で照明する照明系と、撮像素子を含み、前記照明系によって照明された前記第1マークおよび前記第2マークからの回折光を前記撮像素子の撮像面に結像させる検出系と、を備え、前記第1マークおよび前記第2マークは、第1方向または前記第1方向に直交する第2方向における前記相対位置を示す光学情報を前記撮像面に形成可能に構成され、前記検出系の瞳面には、前記検出系の光軸を第3方向に平行な方向に横切る第1遮光部と、前記検出系の前記光軸を第4方向に平行な方向に横切る第2遮光部とを含む遮光体が設けられ、前記第3方向は、前記第1方向に共役な方向であり、前記第4方向は、前記第2方向に共役な方向である。
本発明によれば、第1物体と第2物体とにそれぞれ設けられた第1マークと第2マークとの相対位置を高い検出精度で検出するために有利な技術が提供される。
第1実施形態における検出系の瞳面に入射する光の光強度分布および照明系の瞳面の出口における光強度分布(a)、および、検出系の瞳面に配置された遮光体(b)を示す図。 リソグラフィー装置の一例としてのインプリント装置の装置を例示する図。 第1実施形態の検出装置の構成を例示する図。 比較例を示す図。 モアレ縞を発生する回折格子を例示する図。 モアレ縞を発生する回折格子を例示する図。 視野内のマーク配置を例示する図。 パターンエッジによる散乱光を例示する図。 第2実施形態における検出系の瞳面に入射する光の光強度分布および照明系の瞳面の出口における光強度分布(a)、および、検出系の瞳面に配置された遮光体(b)を示す図。 第2実施形態の検出装置の構成を例示する図。 第2実施形態の変形例の出装置の構成を例示する図。 第3実施形態の検出装置の構成を例示する図。 物品製造方法を例示する図。
以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
図2には、原版のパターンを基板に転写するリソグラフィー装置の一例としてのインプリント装置1の構成が示されている。インプリント装置1は、半導体デバイスなどのデバイスの製造に使用され、被処理体である基板8上の未硬化のインプリント材9をモールド(型)7を使って成形することによって、インプリント材9の硬化物からなるパターンを基板8の上に形成する。インプリント装置1によって基板8の上にパターンを形成するパターン形成処理は、接触工程、充填・アライメント工程、硬化工程および分離工程を含みうる。接触工程では、基板8のショット領域の上のインプリント材9とモールド7のパターン領域7aとが接触させられる。充填・アライメント工程では、基板8とパターン領域7aとで規定される空間にインプリント材9が充填されるとともに、基板8のショット領域とモールド7のパターン領域7aとのアライメントがなされる。ショット領域は、1回のパターン形成処理によってパターンが形成される領域、換言すると、1回のパターン形成処理によってモールド7のパターン領域7aが転写される領域である。
インプリント材としては、硬化用のエネルギーが与えられることにより硬化する硬化性組成物(未硬化状態の樹脂と呼ぶこともある)が用いられる。硬化用のエネルギーとしては、電磁波、熱等が用いられうる。電磁波は、例えば、その波長が10nm以上1mm以下の範囲から選択される光、例えば、赤外線、可視光線、紫外線などでありうる。硬化性組成物は、光の照射により、あるいは、加熱により硬化する組成物でありうる。これらのうち、光の照射により硬化する光硬化性組成物は、少なくとも重合性化合物と光重合開始剤とを含有し、必要に応じて非重合性化合物または溶剤を更に含有してもよい。非重合性化合物は、増感剤、水素供与体、内添型離型剤、界面活性剤、酸化防止剤、ポリマー成分などの群から選択される少なくとも一種である。インプリント材は、液滴状、或いは複数の液滴が繋がってできた島状又は膜状となって基板上に配置されうる。また、インプリント材は、スピンコーターやスリットコーターによって基板上に膜状に供給されてもよい。インプリント材の粘度(25℃における粘度)は、例えば、1mPa・s以上100mPa・s以下でありうる。基板の材料としては、例えば、ガラス、セラミックス、金属、半導体(Si、GaN、SiC等)、樹脂等が用いられうる。必要に応じて、基板の表面に、基板とは別の材料からなる部材が設けられてもよい。基板は、例えば、シリコンウエハ、化合物半導体ウエハ、石英ガラスである。以下では、インプリント材として光硬化性組成物を採用した例を説明するが、これはインプリント材の種類を制限することを意図したものではない。
本明細書および添付図面では、基板8の表面に平行な方向をXY平面とするXYZ座標系において方向を示す。XYZ座標系におけるX軸、Y軸、Z軸にそれぞれ平行な方向をX方向、Y方向、Z方向とし、X軸周りの回転、Y軸周りの回転、Z軸周りの回転をそれぞれθX、θY、θZとする。X軸、Y軸、Z軸に関する制御または駆動は、それぞれX軸に平行な方向、Y軸に平行な方向、Z軸に平行な方向に関する制御または駆動を意味する。また、θX軸、θY軸、θZ軸に関する制御または駆動は、それぞれX軸に平行な軸の周りの回転、Y軸に平行な軸の周りの回転、Z軸に平行な軸の周りの回転に関する制御または駆動を意味する。また、位置は、X軸、Y軸、Z軸の座標に基づいて特定されうる情報であり、姿勢は、θX軸、θY軸、θZ軸の値で特定されうる情報である。位置決めは、位置および/または姿勢を制御することを意味する。アライメント(位置合わせ)は、基板8のショット領域とモールド7のパターン領域とのアライメント誤差(重ね合わせ誤差)が低減されるように基板8およびモールド7の少なくとも一方の位置および/または姿勢を制御することを含みうる。また、アライメントは、基板8のショット領域およびモールド7のパターン領域の少なくとも一方の形状を補正あるいは変更するための制御を含みうる。接触工程および分離工程は、モールド駆動機構4によってモールド7を駆動することによって実行されうるが、基板駆動機構5によって基板8を駆動することによって実行されてもよい。あるいは、接触工程および分離工程は、モールド駆動機構4によってモールド7を駆動し、かつ基板駆動機構5によって基板8を駆動することによって実行されてもよい。
インプリント装置1は、硬化部2と、検出装置3と、モールド駆動機構4と、基板駆動機構5と、制御部Cとを備えうる。インプリント装置1は、塗布部6を更に備えてもよい。硬化部2は、基板8の上のインプリント材9とモールド7を接触させる接触工程の後に、インプリント材9に対して硬化エネルギーとしての紫外光等の光を照射し、インプリント材9を硬化させる。硬化部2は、例えば、光源と、該光源から射出される光を被照射面となるモールド7のパターン領域7aに対して所定の形状で均一に照射するための複数の光学素子とを含みうる。特に、硬化部2による光の照射領域(照射範囲)は、パターン領域7aの表面積と同程度、またはパターン領域7aの面積よりもわずかに大きいことが望ましい。これは、照射領域を必要最小限とすることで、照射に伴う熱に起因してモールド7または基板8が膨張し、インプリント材9に転写されるパターンに位置ずれや歪みが発生することを抑えるためである。加えて、基板8などで反射した光が塗布部6に到達し、塗布部6の吐出部に残留したインプリント材9を硬化させてしまうことで、塗布部6の動作に異常が生じることを防止するためでもある。ここで、光源としては、例えば、高圧水銀ランプ、各種エキシマランプ、エキシマレーザーまたは発光ダイオードなどが採用されうる。光源は、被受光体であるインプリント材9の特性に応じて適宜選択されうる。
図3には、検出装置3の構成例が示されている。検出装置3は、モールド(第1物体)7に配置されたモールドマーク(第1マーク)10と基板(第2物体)8に配置された基板マーク(第2マーク)11との相対位置を光学的に検出あるいは計測するように構成される。モールドマーク10および基板マーク11は、X方向(第1方向)またはY方向(第2方向)における前記相対位置を示す光学情報を後述の撮像素子25の撮像面に形成可能に構成される。検出装置3は、照明系22と、検出系21とを含みうる。照明系22の一部と検出系21の一部とは共有されうる。照明系22は、光源23を含み、光源23からの光を使って照明光を生成し、この照明光により計測対象物(第1マーク、第2マーク)を照明する。この照明光は、無偏光の光でありうる。無偏光の照明光を使用することにより、偏光光を使用するよりも高い輝度を有する光学像を撮像面に形成することができる。検出系21は、照明光で照明された計測対象物からの光を検出することによって計測対象物としてのモールドマーク(第1マーク)10と基板マーク(第2マーク)11との相対位置を検出する。
検出装置3の光軸のうち基板8およびモールド7の位置における光軸は、基板8の上面およびモールド7の下面(パターン領域7a)に対して垂直、即ち、Z軸に平行である。検出装置3は、モールドマーク10および基板マーク11の位置に合わせて、不図示の駆動機構によってX方向およびY方向に駆動可能に構成されうる。検出装置3は、モールドマーク10または基板マーク11の位置に検出系21の焦点を合わせるためにZ方向に駆動可能に構成されてもよい。検出装置3は、焦点合わせ用の光学素子あるいは光学系を含んでよい。検出装置3を使って検出あるいは計測されたモールドマーク10と基板マーク11との相対位置に基づいて、基板駆動機構5による基板8の位置決め、および、不図示の補正機構によるパターン領域7aの形状および倍率の補正が制御されうる。補正機構は、モールド駆動機構4に搭載され、モールド7を変形させることによってモールド7のパターン領域7aの形状および倍率を調整しうる。モールドマーク10および基板マーク11については後で詳述する。
モールド駆動機構4は、真空吸引力または静電吸引等によりモールド7を保持するモールドチャック(不図示)と、モールドチャックを駆動することによってモールド7を駆動するモールド駆動部(不図示)とを含みうる。また、モールド駆動機構4は、前述の補正機構を含みうる。モールド駆動部は、例えば、モールドチャックあるいはモールド7をZ軸に関して駆動するように構成されうる。モールド駆動部は、更に、モールドチャックあるいはモールド7をθX軸、θY軸、θZ軸、X軸およびY軸の少なくとも1つの軸に関して駆動するように構成されてもよい。
基板駆動機構5は、真空吸着力または静電力等により基板8を保持する基板チャックと、基板チャックを駆動することによって基板8を駆動する基板駆動部(不図示)とを含みうる。基板駆動部は、例えば、基板チャックあるいは基板8をX軸、Y軸およびθZ軸に関して駆動するように構成されうる。基板駆動部は、更に、基板ドチャックあるいは基板8をθX軸、θY軸、Z軸の少なくとも1つの軸に関して駆動するように構成されてもよい。
塗布部(ディスペンサ)6は、基板8の上に未硬化のインプリント材9を塗布あるいは配置する。塗布部6は、インプリント装置1の筐体の外部に配置されてもよく、この場合には、塗布部6は、インプリント装置1の構成要素ではないものと理解されてもよい。
モールド7は、そのパターン領域7aに基板8(の上のインプリント材9)に転写すべき回路パターン等のパターンを有する。モールド7は、硬化エネルギーとしての光を透過させる材料、例えば石英で構成されうる。基板8は、例えば、単結晶シリコン基板等の半導体基板、あるいは、半導体基板の上に少なくとも1つの層を有する基板でありうる。
制御部Cは、硬化部2、検出装置3、モールド駆動機構4、基板駆動機構5および塗布部6を制御するように構成されうる。制御部Cは、例えば、FPGA(Field Programmable Gate Array)又は、プログラムが組み込まれたコンピュータ、又は、これらの全部または一部の組み合わせによって構成されうる。FPGAには、PLD(Programmable Logic Device)、又は、ASIC(Application Specific Integrated Circuit)が含まれうる。制御部Cは、メモリおよびプロセッサを含み、メモリに記憶(保存)された演算式、パラメータおよびコンピュータプログラムに基づいて動作し、インプリント装置1の動作及び機能を定義しうる。検出装置3の機能、例えば、撮像素子25によって撮像された画像を処理する機能の少なくとも一部は、制御部Cに組み込まれたモジュールによって提供されてもよく、その場合、制御部Cの当該モジュールは、検出装置3の一部として理解されうる。
ここで、インプリント装置1によって実行されるインプリント処理あるいはパターン形成処理について説明する。まず、基板搬送機構(不図示)により基板8が基板駆動機構5の基板チャックに搬送され、基板チャックに固定される。続いて、基板8のショット領域が塗布部6による塗布位置に移動するように基板駆動機構5によって基板8が駆動される。その後、塗布部6により基板のショット領域(インプリント領域)にインプリント材9が塗布、配置あるいは供給される(塗布工程)。
次に、インプリント材9が配置されたショット領域がモールド7のパターン領域7aの直下位置に配置されるように基板駆動機構5によって基板8が駆動される。次いで、例えば、モールド駆動機構4によってモールド7を降下させることによって基板8の上のインプリント材9とモールド7のパターン領域7aとが接触させられる(接触工程)。これにより、基板8とモールド7のパターン領域7aとの間の空間(パターン領域7aの凹部を含む)にインプリント材9が充填される(充填工程)。また、それぞれモールドマーク10と基板マーク11とで構成される複数のマーク対について、モールドマーク10と基板マーク11との相対位置が検出装置3を使って検出あるいは計測される。そして、その結果に基づいてパターン領域7aと基板8のショット領域とのアライメントがなされる(アライメント工程)。この際に、補正機構によってモールド7のパターン領域7aの形状が補正されてもよい。また、不図示の加熱機構によって基板8のショット領域の形状が補正されてもよい。
充填およびアライメント工程が完了した段階で、硬化部2によってモールド7を通してインプリント材9に光が照射され、インプリント材9が硬化される(硬化工程)。この際、検出装置3は、硬化部2の光路を遮らないように退避駆動されうる。続いて、モールド駆動機構4によってモールド7を上昇させることによってモールド7が基板8の上の硬化したインプリント材9から分離される(分離工程)。
インプリント装置1は、検出装置3を備え、検出装置3の出力に基づいて原版(あるいはパターン領域)と基板(あるいはショット領域)とのアライメントを行い、原版のパターンを基板に転写するリソグラフィー装置の一例として理解されうる。インプリント装置1は、モールドマーク10(第1マーク)が設けられたモールド7(第1物体あるいは原版)と基板マーク11(第2マーク)が設けられた基板8(第2物体)とのアライメントを検出装置3の出力に基づいて行う。
以下、図3を参照しながら検出装置3の詳細を説明する。前述のように、検出装置3は、照明系22および検出系21を含み、照明系22の一部と検出系21の一部とは共有されうる。照明系22は、プリズム24等を介して光源23からの光で生成される照明光を共通光軸へ導き、モールドマーク10および基板マーク11を照明する。光源23は、例えば、ハロゲンランプ、LED、半導体レーザー(LD)、高圧水銀ランプ、メタルハライドランプ、スーパーコンティニウム光源、LDLS(Laser-Driven Light Source)光源の少なくも1つを含みうる。光源23が発生する照明光の波長は、インプリント材9を硬化させないように選択される。
プリズム24は、照明系22および検出系21によって共有され、照明系22の瞳面Pillもしくはその近傍、または、検出系21の瞳面Pdetもしくはその近傍に配置されうる。モールドマーク10および基板マーク11は、回折格子で構成されるマークを含みうる。検出系21は、照明系22によって照明されたモールドマーク10および基板マーク11で回折された回折光同士の干渉により発生する干渉光(干渉縞あるいはモアレ縞)の光学像を撮像素子25の撮像面に形成しうる。撮像素子25は、例えば、CCDセンサまたはCMOSセンサなどで構成されうる。
プリズム24は、反射面RSとして、2つの部材が貼り合わせられた面(貼り合わせ面)を有し、その貼り合わせ面に反射膜24aを有しうる。プリズム24は、表面に反射膜24aを有する板状の光学素子で置き換えられてもよい。プリズム24が配置されている位置は、照明系22、検出系21の瞳面Pill、Pdetおよびそれらのいずれかの近傍でなくてもよい。照明系22の瞳面Pillには、照明開口絞り27が配置されうる。検出系21の瞳面Pdetには、検出開口絞り26が配置されうる。照明開口絞り27は、照明系22の瞳面Pillの光強度分布を規定するものである。なお、照明絞り27は、任意的な構成要素であってよく、反射膜24aの領域を規定することによって光軸に平行な照明光が形成されてもよい。
図4には、比較例における検出装置3の照明系22の瞳面Pillにおける光強度分布、および、検出系21の開口数NAを規定する検出開口絞りが重ねて示されている。x軸、y軸は、それぞれX軸、Y軸に共役な軸である。瞳面とモールド/基板との間に光軸を折り曲げるミラーが存在しない場合には、x軸とX軸とは平行である。瞳面とモールド/基板との間に光軸を折り曲げるミラーが存在する場合には、該ミラーによって瞳面に写像されたX軸、Y軸がそれぞれx軸、y軸と一致する。照明系22の瞳面Pillにおける光強度分布は、第1極IL1、第2極IL2、第3極IL3、および、第4極IL4を含む。このような極IL1~IL4を有する光強度分布による照明は、斜入射照明として理解することができる。照明されたマーク10、11からの光は、検出系21の開口数NAを規定する開口絞りの開口を通して撮像素子25の撮像面に入射する。
図5は、モアレ縞を発生するマーク(回折格子)の一例を示す図である。以下、図5(a)乃至図5(d)を参照して、モールドマーク10及び基板マーク11からの回折光によるモアレ縞の発生の原理、及び、モアレ縞を用いたモールドマーク10と基板マーク11との相対位置の検出について説明する。モールドマーク10としてモールド7に設けられた回折格子(第1回折格子)41と、基板マーク11として基板8に設けられた回折格子(第2回折格子)42とは、計測方向の周期が僅かに異なっている。周期が互いに異なる2つの回折格子を重ねると、2つの回折格子からの回折光同士の干渉によって、回折格子間の周期差を反映した周期を有するパターン、所謂、モアレ縞(モアレ)が現れる。この際、回折格子同士の相対位置によってモアレ縞の位相が変化するため、モアレ縞を検出することでモールドマーク10と基板マーク11との相対位置、即ち、モールド7と基板8との相対位置を求めることができる。
具体的には、周期が僅かに異なる回折格子41と回折格子42とを重ねると、回折格子41及び42からの回折光が重なり合うことで、図5(c)に示すように、周期の差を反映した周期を有するモアレ縞が発生する。モアレ縞は、回折格子41と回折格子42との相対位置によって明暗の位置(縞の位相)が変化する。例えば、回折格子41及び42のうち一方の回折格子をX方向にずらすと、図5(c)に示すモアレは示す、図5(d)に示すモアレ縞に変化する。モアレ縞は、回折格子41と回折格子42との間の実際の位置ずれ量を拡大し、大きな周期の縞として発生するため、検出系21の解像力が低くても、回折格子41と回折格子42との相対位置を高精度に検出することができる。
比較例において、モアレ縞を検出するために回折格子41及び42を明視野で検出する場合、検出系21は、回折格子41及び42からの0次光も検出してしまう。回折格子41及び42を明視野で検出する場合とは、回折格子41及び42を垂直方向から照明し、回折格子41及び42で垂直方向に回折される回折光を検出する場合を含みうる。0次光は、モアレ縞のコントラストを低下させる要因となるため、比較例では、検出系21は、0次光を検出しない構成(暗視野の構成)、即ち、回折格子41及び42を斜入射で照明する構成を有する。
図6は、モアレ縞を発生するマーク(回折格子)の他の例を示す図である。図6の例では、回折格子41及び42のうち、一方の回折格子を図6(a)に示すようなチェッカーボード状の回折格子とし、他方の回折格子を図6(b)に示すような回折格子としている。図6(b)に示す回折格子は、計測方向(第1方向)に周期的に配列されたパターンと、計測方向に直交する方向(第2方向)に周期的に配列されたパターンとを含む。
図4(比較例)、図6(a)及び図6(b)の構成では、第1極IL1及び第2極IL2からの光は、回折格子に照射され、チェッカーボード状の回折格子によってY方向に回折するとともに、X方向にも回折する。さらに、周期が僅かに異なる回折格子によってX方向に回折した光は、X方向の相対位置情報を有して検出系21の瞳面Pdet上の検出領域(NAo)に通過して撮像素子25の撮像面に入射し、撮像素子25によって検出される。これを用いて、2つの回折格子41、42の相対位置を求めることができる。
図4(比較例)の構成と図6(a)及び図6(b)に示す回折格子との組み合わせにおいては、第3極IL3及び第4極IL4からの光は、回折格子の相対位置の検出には使用されない。一方、図6(c)及び図6(d)に示された回折格子の相対位置を検出する場合には、第3極IL3及び第4極IL4からの光は回折格子の相対位置の検出に使用され、第1極IL1及び第2極IL2からの光は回折格子の相対位置の検出に使用されない。また、図6(a)及び図6(b)に示す回折格子の組と、図6(c)及び図6(d)に示す回折格子の組とを、検出系21の同一視野内に配置して同時に2つの方向の相対位置を検出する場合には、図4に示す瞳強度分布は有用である。
ここで、1つの視野内で観察されるマークについて詳述する。図7は、モールド7と基板8を重ね合わせたときに撮像素子25で検出される像を模式的に表した図である。外枠の範囲73は検出装置3で一度に観察することが可能な範囲を示している。前述のモールドマーク10は、粗検マーク71a-1、および、精検マークとしての回折格子71a-2、71a-2’を含み、前述の基板マーク11は、粗検マーク72a-1、精検マークとしての回折格子72a-2、72a-2’を含む。粗検マーク71a-1と粗検マーク72a-1の幾何的な中心位置を基準として、検出装置3による検出結果からモールド7と基板8との相対的な位置ずれを求めることができる。計測値D1に対する粗検マーク71a-1と粗検マーク72a-1の設計値の差分が相対的な位置ずれとなる。このマークによって粗い位置合わせが可能となる。
次に、回折格子71a-2と回折格子72a-2とが重なることにより形成させるモアレ縞について説明する。回折格子71a-2と回折格子72a-2は、図6(c)または(d)に示す周期的なパターンで構成されており、計測方向の周期が僅かに異なるため、これらを重ね合わせるとY方向に光強度が変化するモアレ縞が形成される。回折格子71a-2と回折格子72a-2との周期の違いによって、相対位置が変化したときのモアレ縞のシフト方向が異なる。例えば、回折格子71a-2の周期が回折格子72a-2の周期よりも僅かに大きい場合、基板8が相対的に+Y方向へシフトすると、モアレ縞も+Y方向へシフトする。一方、回折格子71a-2の周期が回折格子72a-2の周期よりも僅かに小さい場合、基板8が相対的に+Y方向へシフトすると、モアレ縞は-Y方向へシフトする。
回折格子71a-2’および回折格子72a-2’によって別のモアレ縞が形成される。回折格子71a-2と回折格子72a-2との間の周期の大小関係と、回折格子71a-2’と回折格子72a-2’との間の周期の大小関係とは逆である。そのため、相対位置が変化すると、計測される2つのモアレ縞の位置が互いに反対方向に変化する。モアレ縞を発生させるモールド側と基板側の周期的なマークが1周期分ずれていると、モアレ縞検出の原理上、1周期分のずれを検出できない。そのため粗検マーク71a-1、72a-1を用いて、モールド7と基板8との間に1周期分の相対的な位置ずれがないことが確認されうる。粗検マーク71a-1、72a-1は、モールド7の回折格子と基板8の回折格子とが1周期分の位置誤差を生じないピッチであれば、モアレ信号を発生するマークとしてもよい。
モールド7の粗検マーク71a-1と基板8の粗検マーク72a-1とは、構成する物質が互いに異なりうるため、撮像素子25によって検出される光強度が波長によって異なりうる。そこで、照明系22は、照明光の波長を変更可能に構成されることが好ましい。これは、例えば、相応の波長範囲を有する光を発生するように光源23を構成し、該波長範囲のうち任意の波長の光を選択的に透過させるフィルタを設けることによって実現されうる。あるいは、互いに異なる波長の光を発生する複数の光源を設けて、それらから選択される光源を発光させてもよい。照明光の波長を変更可能にすることによって、粗検マーク71a-1の像の光強度と粗検マーク72a-1の像の光強度との比を調整することができる。また、照明光の波長を変更可能にすることは、回折格子71a-2、71a-2’、72a-2、72a-2’が形成するモアレ縞の光強度を調整するためにも有効である。
モールドマーク10および基板マーク11に照明光を照射したときに、回折格子71a-2、71a-2’、72a-2、72a-2’のそれぞれのエッジ(以下、パターンエッジ)で照明光が散乱されうる。パターンエッジは、例えば、回折格子71a-2について言えば、回折格子71a-2の全体とその外側との境界である。回折格子71a-2、71a-2’、72a-2、72a-2の段差量および/または構成物質などの要因によって、モアレ縞の信号強度が微弱であると、散乱光によって検出結果に誤差が発生しうる。そのため、パターンエッジでの散乱光の影響(つまり、散乱光が撮像素子25に入射すること)を減少させることが望まれる。
図8には、比較例における検出系21の瞳面Pdetに入射する光の光強度分布と照明系22の瞳面Pillの出口における光強度分布とが重ねて示されている。なお、図5ではIL1~IL4が記載しているが、図8では簡略化のため、IL1およびIL3のみが示されている。IL2およびIL4によってもパターンエッジによる散乱光が発生する。図8のIL1からの照明光による照明によって発生しうる散乱光について説明する。IL1からの照明光がモールドマーク10および基板マーク11に照射される。これによって発生する正反射光は、検出系21の検出開口絞り26の開口PDの外に照射されるため、検出開口絞り26で遮断される。よって、そのような正反射光は、撮像素子25によって検出されない。X方向に平行なパターンエッジに照射された照明光はパターンエッジでY方向に散乱されて、IL1からの照明光の正反射光N1(0)を基準として、1次反射光N1(1)、2次反射光N1(2)を発生する。それらの散乱光が検出開口絞り26の開口PDを通って撮像素子25に入射すると、撮像素子25で検出される。これにより、モアレ縞の像にノイズ成分が重畳される。IL3についても同様に、モールドマーク10および基板マーク11での正反射光は検出開口絞り26で遮断される。しかし、Y方向に平行なパターンエッジに照射された照明光はパターエッジでX方向に散乱されて、IL3からの照明光の正反射光N3(0)を基準として、1次反射光N3(1)、2次反射光N3(2)を発生する。これによりパターンエッジの四辺部分からの散乱光が撮像素子25の撮像面に結像し、撮像素子25によって撮像される像に重畳される。
モアレ縞の検出に与える具体的な影響としては、次のようなものがある。計測方向がX方向のモアレ縞の像に対してY方向に平行なエッジからの光が重畳されると、その光によってモアレ縞の像のエッジに近い個所の光量が上がり、モアレ縞の光量が左右非対称に変化しうる。このため、モアレ縞の像の位置を検出するときに誤差が発生しうる。また、計測方向がX方向のモアレ縞に対してX方向に平行なエッジからの光が重畳されると、その光によってモアレ縞の像にバイアスが加わる。そのため、モアレ縞を検出するときのコントラストが低下し、検出再現性の悪化につながる。そのため、パターンエッジからの光を検出系21の瞳面Pdetにおいて遮断することが検出性能の向上につながる。
図1(a)には、第1実施形態における検出系21の瞳面Pdetに入射する光の光強度分布と照明系22の瞳面Pillの出口における光強度分布とが重ねて示されている。照明系22の瞳面Pillの出口における光強度分布は、極IL1、IL3を含む。極IL1は、y軸上に配置され、極IL3は、x軸上に配置されている。極IL1からの照明光でモールドマーク10と基板マーク11が照明されることによって回折光D1(+1)およびD1(-1)が発生する。回折光D1(+1)およびD1(-1)は、検出系21の瞳面Pdetの開口PDを通過して撮像素子25の撮像面に入射する。回折光D1(+1)およびD1(-1)は、撮像素子25の撮像面にモアレ縞の光学像を形成する。ここで、モールドマーク10と基板マーク11との組み合わせは、図6(a)、(b)に示すようなチェッカーボード状の回折格子パターンと1次元の回折格子パターンとの組み合わせでありうる。マーク10、11を照明した照明光の回折光は、X方向およびY方向に回折する。例えば、図6(a)の回折格子パターンのX方向のピッチをP1、Y方向のピッチをP3、図6(b)のX方向のピッチをP2とする。ここでは、説明の便宜のためにP1>P2とするが、大きさが逆であっても回折光が得られることは同業者には理解できよう。また、ここでは、モールドマーク10を1次元の回折格子パターン、基板マーク11をチェッカーボード状の回折格子パターンとするが、逆であってもよい。1次回折光の回折角度θ(光軸に平行な方向に対する角度)を、一般的に以下のように表すことができる。
θx1=arcsin(λ/P1)、θx2=arcsin(λ/P2)
ここで、λは照明光の波長である。回折格子からの回折光はプラスとマイナスの両方向に発生する。したがって、モアレ縞を形成するモールドマーク10と基板マーク11の両方で回折した光は、X方向に4通り(θx1+θx2、θx1-θx2、-θx1+θx2、-θx1-θx2)の回折角度をもって回折する。ここで、θx1+θx2と-θx1-θx2の回折角を持つ回折光を用いると、検出系21のNAを拡大する必要があるのと、その干渉縞の周期が細かくなるため検出しても検出精度を上げることができない。そのため、回折角度が小さい回折角θx1-θx2、-θx1+θx2の回折光を検出する。回折光の光軸に対するX方向の角度は、図1(a)に示すD1(+1)の場合は-θx1+θx2、D2(-1)の場合はθx1-θx2と表すことができる。図1(a)の検出系21の検出開口絞り26の位置では、x方向の座標をD1(+1)はf×tan(-θx1+θx2)、D1(-1)はf×tan(θx1-θx2)と表すことができる。ここで、fは、検出系21の検出開口絞り26と回折格子(アライメントマーク)との間に配置されたレンズ群の焦点距離である。
次に光軸に対してY方向に回折する回折光について説明する。図6(a)に示すチェッカーボード状の回折格子はY方向にも周期を持つため、図6(a)の回折格子からの回折光はX方向およびY方向に回折する。Y方向のピッチがP3であるため、その回折光の回折角度は下記の式で表すことができる。
θy=arcsin(λ/P3)
図1(a)において、極IL1からの照明光の正反射光はY方向において、X軸を対称軸として、照明光と対称な位置に反射する。つまり、極IL1からの照明光のXY平面への入射角度をθILyとすると、検出開口絞り26(瞳面Pdet)上でのその照明光の位置は、f×tan(θILy)で表される。その正反射光はf×tan(-θILy)の位置となる。チェッカーボード状の回折格子からの1次回折光は正反射光に対してθyの角度で回折する。つまり、図1(a)において、極IL1からの照明光の正反射光(f×tan(-θILy))に回折光の角度θy分のシフト量であるf×tan(θy)を加えたものが、瞳面Pdetにおける回折光のY方向の位置となる。Y方向のピッチP3を調整することによって、図1(a)に示すD1(+1)とD1(-1)の位置に回折させることができる。D1(+1)とD1(-1)によって撮像素子25の撮像面にX方向に強度が変化する干渉縞(モアレ縞)が形成され、これが撮像素子25によって検出される。
極IL3は、極IL1を時計回りに90度回転したものであり、図6(c)、(d)の回折格子を照明することによって回折光が発生し、Y方向に強度が変化するモアレ縞を形成することができる。X方向とY方向のモアレ縞については、同じピッチにしてもよいし、マークを配置するパターンの領域を考慮して、互いに異なるピッチにしてもよい。図1(a)の例において、照明系22の瞳面Pillの出口に形成される光強度分布は、極IL1、IL3で構成されるものであり、光軸に関して非対称な光強度分布である。
図1(b)には、検出系21の瞳面Pdetに配置される検出開口絞り26の例が示されている。白部が開口、黒部が遮光体である。図8を用いて前述したように、パターンエッジからの散乱光は、検出開口絞り26(瞳面Pdet)におけるx軸上およびy軸上に分布する。その不要な散乱光を遮断するため、検出開口絞り26のx軸上およびy軸上に光を遮断する遮光部を有する遮光体BPが配置される。これによりパターンエッジからの散乱光を遮断することができる。遮光体BPは、検出系21の光軸をx方向(第3方向)に平行な方向に横切る第1遮光部BP1と、検出系21の光軸をy方向(第4方向)に平行な方向に横切る第2遮光部BP2とを含みうる。第1遮光部BP1は、検出系21の瞳面Pdetのx方向における直径の全体にわたって延びるように配置されうる。第2遮光部BP2は、検出系21の瞳面Pdetのy方向における直径の全体にわたって延びるように配置されうる。
ここで、x軸に平行なx方向(第3方向)は、X軸に平行なX方向(第1方向)に共役な方向であり、y軸に平行なy方向(第4方向)は、Y軸に平行なY方向(第2方向)に共役な方向である。検出系21において、x方向とX方向とが共役とは、モールド7/基板8と検出系21の瞳面Pdetとの間に検出系21の光軸を折り曲げる反射面が存在しない場合には、x方向とX方向が同一方向であることを意味する。検出系21において、x方向とX方向とが共役とは、モールド7/基板8と検出系21の瞳面Pdetとの間に光軸を折り曲げる反射面が存在する場合には、該反射面によって瞳面Pdetに写像されたX方向がx方向と一致することを意味する。該反射面が存在する場合において、x方向とX方向とが一致する場合もあるし、一致しない場合もある。y方向とY方向との共役についても同様である。
上記の説明は、照明系22の瞳面Pillにおけるx方向、y方向についても準用される。つまり、瞳面Pillにおけるx軸に平行なx方向(第5方向)は、X軸に平行なX方向(第1方向)に共役な方向であり、瞳面Pillにおけるy軸に平行なy方向(第6方向)は、Y軸に平行なY方向(第2方向)に共役な方向である。照明系22において、x方向とX方向とが共役とは、モールド7/基板8と照明系22の瞳面Pillとの間に照明系22の光軸を折り曲げる反射面が存在しない場合には、x方向とX方向が同一方向であることを意味する。照明系22において、x方向とX方向とが共役とは、モールド7/基板8と照明系22の瞳面Pillとの間に光軸を折り曲げる反射面が存在する場合には、該反射面によって瞳面Pillに写像されたX方向がx方向と一致することを意味する。該反射面が存在する場合において、x方向とX方向とが一致する場合もあるし、一致しない場合もある。y方向とY方向との共役についても同様である。
第1遮光部BP1の幅(y方向の幅)NAbp1は、極IL1の幅(x方向の幅)NA_IL1と等しいか、これよりも大きいことが好ましい。つまり、NAbp1≧NA_IL1であることが望ましい。これにより、極IL1内のいずれの位置からの照明光の散乱光についても第1遮光部BP1によって遮断することができる。つまり、照明光で照明されたモールドマーク10(回折格子)と基板マーク11(回折格子)からの光のうちそれらの相対位置を示す光学情報を含まない不要光は、第1遮光部BP1および第2遮光部BP2の双方で遮断されうる。
検出系21の瞳面Pdetは、遮光体BPが配置されていない領域に光透過領域APを有する。照明光で照明されたモールドマーク10(回折格子)と基板マーク11(回折格子)からの回折光は、光透過領域APを通過して、モールド7と基板8との相対位置を示す光学情報を撮像素子25の撮像面に形成することが好ましい。
具体的には、撮像素子25の撮像面にモアレ縞を形成する回折光D1(+1)とD1(-1)が光透過領域APを通過することが好ましい。そのため、D1(+1)、D1(-1)が遮光体BPに入射しないように、遮光体BPおよびモールドマーク10(回折格子)と基板マーク11(回折格子)が設計されうる。まず、簡単化のために、D1(+1)、D1(-1)が幅を有しない場合について考える。
検出系21の瞳面Pdetにおいて、D1(+1)、D1(-1)の位置は、f×tan(-θx1+θx2)、f×tan(θx1-θx2)で表される。つまり、x方向に関しては、回折光D1(+1)とD1(-1)が光透過領域APを通過するためには、式(1)を満たすように遮光体BPおよびモールドマーク10(回折格子)と基板マーク11(回折格子)が設計されうる。
|f×tan(-θx1+θx2)|≧NAbp1/2
・・・式(1)
また、y方向に関して、式(2)を満たすように、遮光体BPおよびモールドマーク10(回折格子)と基板マーク11(回折格子)が設計されうる。
|f×tan(-θILy)+f×tan(θy)|≧NAbp3/2
・・・式(2)
ここで、|f×tan(-θILy)+f×tan(θy)|について、y方向のマイナス側とプラス側の2か所の解を持つ。検出系21の瞳面Pdetにおいて、極IL1からの照明光の正反射光の付近(y方向のマイナス側)に光透過領域APがあるとノイズとなりうる。また、回折格子のピッチを細かくした方が所定の面積内に収まる回折格子のピッチの数を多くすることができるため、回折光の角度分布の広がりが小さくなる。そのため、|f×tan(-θILy)+f×tan(θy)|は、極IL1からの照明光の正反射光と反対側、つまり、y方向のプラス側である方が望ましい。
照明光の中心光線については、式(1)と式(2)を満たすことによってモアレ縞を形成する回折光が遮光体BPで遮断されずに撮像素子25で検出可能である。しかし、極IL1は、幅NA_IL1を有し、また、回折格子のピッチ数が有限である。これらを考慮すると、式(1)および式(2)は、式(3)および式(4)のように拡張される。
|f×tan(-θx1+θx2)|≧NAbp1/2+回折光の幅/2
・・・式(3)
|f×tan(-θILy)+f×tan(θy)|≧NAbp3/2+回折光の幅/2
・・・式(4)
式(3)および式(4)を満たすことによって、照明光で照明されたモールドマーク10(回折格子)と基板マーク11(回折格子)からの回折光の全てが光透過領域APを通過して撮像素子25の撮像面に入射する。
図9(a)には、第1実施形態の変形例における検出系21の瞳面Pdetに入射する光の光強度分布と照明系22の瞳面Pillの出口における光強度分布とが重ねて示されている。図9(a)に示されるように、変形例では、照明系22の瞳面Pillの出口における光強度分布は、極IL1、IL2、IL3、IL4を有する。極IL1、IL2、IL3、IL4を有する光強度分布は、光軸に関して対称な光強度分布である。極IL1および極IL2は、y軸上の異なる2点に位置し、極IL3および極IL4は、x軸上の異なる2点に位置する。極の個数は、4個に限定されず、他の個数(例えば、8個)であってもよい。
図9(b)には、検出開口絞り26の形状が示されている。白部が開口、黒部が遮光体である。図1(b)に示された遮光体BPと同様に、図9(b)に示された遮光体BPは、検出開口絞り26のx軸上、y軸上に、それぞれ光を遮断する第1遮光部BP1、BP2を有する。遮光体BPによって、パターンエッジからの散乱光が遮断される。
図1(a)の構成例では、極IL1、IL3の配置が光軸に関して中心対称ではない。そのため、光軸方向における像面の位置誤差によって検出誤差が生じうる。一方、図9(a)の構成例のように極IL1、IL2、IL3、IL4を光軸に関して中心対称に配置すると、光軸方向における像面の位置誤差に対して検出誤差を鈍感にすることができる。
図9(a)の極IL1、IL3からの照明光による回折光については、図1(a)の極IL1、IL3からの照明光による回折光と同様である。極IL1、IL2は、x軸について対称な位置にある。極IL2からの照明光をモールドマーク10(回折格子)と基板マーク11(回折格子)に照射し、それぞれのマークで回折した回折光がD2(+1)、D2(-1)として示されている。極IL1、IL2がx軸について対称な位置にあるので、D1(+1)とD1(-1)とD2(+1)、D2(-1)とは検出系21の瞳面Pdetに対して、x軸について対称な位置に入射する。D1(+1)、D1(-1)、2(+1)、D2(-1)は、X方向に強度が変化するモアレ縞を形成する。
極IL3、IL4は、極IL1、IL2を時計回りに90度回転させたものである。極IL3、IL4からの照明光によって照明されたY方向計測用の回折格子は、不図示の回折光D3(+1)、D3(-1)、D4(+1)、D4(-1)を発生する。D3(+1)、D3(-1)、D4(+1)、D4(-1)は、D1(+1)、D1(-1)、D2(+1)、D2(-1)を光軸の周りで90度回転させた位置に回折する。D3(+1)、D3(-1)、D4(+1)、D4(-1)によってy方向に強度が変化するモアレ縞が形成される。
以下、図10を参照しながら第2実施形態の検出装置3について説明する。なお、第2実施形態として言及しない事項は、第1実施形態に従いうる。図10には、第2実施形態の検出装置3の構成が示されている。第2実施形態の位検出装置3は、第1検出系21および第2検出系50を備えている。第1検出系21の一部と第2検出系50の一部とは、共有されうる。更に、第1検出系21の一部、第2検出系50の一部、および、照明系22の一部は、共有されうる。第1検出系21は、第1撮像素子25を含み、第2検出系50は、第2撮像素子51を含む。第1検出系21は、第1実施形態で詳述したように、精検マークである回折格子によって形成されるモアレ縞を検出するように構成される。第2検出系50は、ピッチずれを検出するように、即ち、粗検マークを検出するように構成される。
照明系22および第1検出系21は、第1実施形態と同様に構成されうる。これにより、図6に例示されるような回折格子によって形成されるモアレ縞を高い精度で検出することができる。第2検出系50による粗検マークの検出のためには、照明系22は、例えば、図9(a)に例示されるような四重極照明を行うことが有利である。
高い精度でモアレ縞を検出するためには、モールドマーク10/基板マーク11から撮像素子25までの結像倍率を高倍率にすることが望ましい。一方、粗検マークを検出する第2検出系50では、回折格子のピッチずれを計測できれば十分であるので、モールドマーク10/基板マーク11から撮像素子51までの結像倍率を小さくしても精度上の影響が小さい。モールドマーク10/基板マーク11から撮像素子51までの結像倍率を小さくすることによって、計測視野を広げることができる。そのため、モールド7と基板8の位置に大きなずれがあったとしても、広い範囲を観察できるため模索せずに位置計測が可能になるというメリットがある。以上のように、第2実施形態では、光路を分岐して第1検出系21および第2検出系50を設けることにより、第1検出系21の倍率と第2検出系50の倍率とを異ならせることができる。
また、変形例として、第1検出系21の光路と第2検出系50の光路を分岐した後に検出開口絞りを配置してもよい。これによって、ノイズとなる光を減らすことが可能となる。図11に例示されるように、モールドマーク10/基板マーク11と撮像素子25との間の光路に第1検出開口絞り26aを配置することができる。また、モールドマーク10/基板マーク11と撮像素子51との間の光路に第2検出開口絞り26bを配置することができる。第1検出開口絞り26aと第2検出開口絞り26bとは、互いに異なる形状あるいは特性を有しうる。
この変形例では、第1検出系21でX方向に強度が変化するモアレ縞を検出し、第2検出系50でY方向に強度が変化するモアレ縞を検出してもよい。この場合において、図1(b)の検出開口絞りを改良して採用することが好ましい。図1(b)の検出開口絞りでは、X方向に強度が変化するモアレ縞を検出するための開口はy方向プラス側のみであり、Y方向に強度が変化するモアレ縞を検出するための開口はx方向プラス側のみである。このため、X方向に強度が変化するモアレ縞を検出するための検出開口絞り26aについては、図1(b)のy方向マイナス側をすべて遮光部にしたものとすればよい。また、Y方向に強度が変化するモアレ縞を検出するための出開口絞り26bについては、図1(b)のx方向マイナス側をすべて遮光部にしたものとすればよい。これにより、よりノイズとなる光を減らすことができる。なお、検出開口絞りの形状については、これらのものに限定されない。
以下、図12を参照しながら第3実施形態の検出装置3について説明する。なお、第3実施形態として言及しない事項は、第1又は第2実施形態に従いうる。第3実施形態では、照明系22の瞳面Pillに配置される照明開口絞り27は、ピンホールを有するピンホール板である。これにより、照明光は、照明系22の瞳面Pillにおける照明系22の光軸およびその近傍のみを通過する光束で構成される。反射膜24aは、そのような光束を反射し、モールドマーク10/基板マーク11を照明するように構成されうる。なお、照明絞り27は、任意的な構成要素であってよく、反射膜24aの領域を規定することによって光軸に平行な照明光が形成されてもよい。検出系21の瞳面Pdetに配置される検出開口絞り26は、第1又は第2実施形態に従いうる。
次に、上記の実施形態に代表されるインプリント装置を利用した物品製造方法について説明する。物品は、例えば、半導体デバイス、ディスプレイデバイス、MEMS等でありうる。物品製造方法は、リソグラフィー装置あるいはインプリント装置を使って原版のパターンを基板に転写する転写工程と、転写工程を経た基板から物品が得られるように該基板を加工する加工工程と、を含みうる。転写工程は、例えば、基板8のショット領域の上のインプリント材9とモールド7とを接触させる接触工程を含みうる。また、転写工程は、基板8のショット領域(あるいは基板マーク)とモールド7との相対位置を計測する計測工程を含みうる。また、転写工程は、計測工程の結果に基づいて基板8のショット領域とモールド7とをアライメントするアライメント工程を含みうる。また、転写工程は、基板8の上のインプリント材9を硬化させる硬化工程と、そのインプリント材9とモールド7とを分離する分離工程とを含みうる。これにより、基板8の上にインプリント材9の硬化物からなるパターンが形成あるいは転写される。加工工程は、例えば、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等が含まれうる。
インプリント装置を用いて形成した硬化物のパターンは、各種物品の少なくとも一部に恒久的に、或いは各種物品を製造する際に一時的に、用いられる。物品とは、電気回路素子、光学素子、MEMS、記録素子、センサ、或いは、型等である。電気回路素子としては、DRAM、SRAM、フラッシュメモリ、MRAMのような、揮発性或いは不揮発性の半導体メモリや、LSI、CCD、イメージセンサ、FPGAのような半導体素子等が挙げられる。型としては、インプリント用のモールド等が挙げられる。
硬化物のパターンは、上記物品の少なくとも一部の構成部材として、そのまま用いられるか、或いは、レジストマスクとして一時的に用いられる。基板の加工工程においてエッチング又はイオン注入等が行われた後、レジストマスクは除去される。
次に、インプリント装置によって基板にパターンを形成し、該パターンが形成された基板を処理し、該処理が行われた基板から物品を製造する物品製造方法について説明する。図13(a)に示すように、絶縁体等の被加工材2zが表面に形成されたシリコンウエハ等の基板1zを用意し、続いて、インクジェット法等により、被加工材2zの表面にインプリント材3zを付与する。ここでは、複数の液滴状になったインプリント材3zが基板上に付与された様子を示している。
図13(b)に示すように、インプリント用の型4zを、その凹凸パターンが形成された側を基板上のインプリント材3zに向け、対向させる。図13(c)に示すように、インプリント材3zが付与された基板1zと型4zとを接触させ、圧力を加える。インプリント材3zは型4zと被加工材2zとの隙間に充填される。この状態で硬化用のエネルギーとして光を型4zを介して照射すると、インプリント材3zは硬化する。
図13(d)に示すように、インプリント材3zを硬化させた後、型4zと基板1zを引き離すと、基板1z上にインプリント材3zの硬化物のパターンが形成される。この硬化物のパターンは、型の凹部が硬化物の凸部に、型の凸部が硬化物の凹部に対応した形状になっており、即ち、インプリント材3zに型4zの凹凸パターンが転写されたことになる。
図13(e)に示すように、硬化物のパターンを耐エッチングマスクとしてエッチングを行うと、被加工材2zの表面のうち、硬化物が無いか或いは薄く残存した部分が除去され、溝5zとなる。図13(f)に示すように、硬化物のパターンを除去すると、被加工材2zの表面に溝5zが形成された物品を得ることができる。ここでは硬化物のパターンを除去したが、加工後も除去せずに、例えば、半導体素子等に含まれる層間絶縁用の膜、つまり、物品の構成部材として利用してもよい。
本明細書の開示は、以下の検出装置、リソグラフィー装置および物品製造方法を含む。
(項目1)
重ねて配置された第1物体と第2物体とにそれぞれ設けられた第1マークと第2マークとの相対位置を検出する検出装置であって、
前記第1マークおよび前記第2マークを無偏光の照明光で照明する照明系と、
撮像素子を含み、前記照明系によって照明された前記第1マークおよび前記第2マークからの回折光を前記撮像素子の撮像面に結像させる検出系と、を備え、
前記第1マークおよび前記第2マークは、第1方向または前記第1方向に直交する第2方向における前記相対位置を示す光学情報を前記撮像面に形成可能に構成され、
前記検出系の瞳面には、前記検出系の光軸を第3方向に平行な方向に横切る第1遮光部と、前記検出系の前記光軸を第4方向に平行な方向に横切る第2遮光部とを含む遮光体が設けられ、
前記第3方向は、前記第1方向に共役な方向であり、前記第4方向は、前記第2方向に共役な方向である、
ことを特徴とする検出装置。
(項目2)
前記照明光で照明された前記第1マークおよび前記第2マークからの光のうち前記相対位置を示す情報を含まない不要光は、前記第1遮光部および前記第2遮光部の双方で遮断される、
ことを特徴とする項目1に記載の検出装置。
(項目3)
前記照明系は、前記第1マークおよび前記第2マークを前記照明光で斜入射照明するように構成されている、
ことを特徴とする項目1又は2に記載の検出装置。
(項目4)
前記照明系の瞳面の出口における光強度分布は、前記照明系の光軸に関して非対称である、
ことを特徴とする項目3に記載の検出装置。
(項目5)
前記照明系の瞳面の出口における光強度分布は、前記照明系の光軸に関して対称である、
ことを特徴とする項目3に記載の検出装置。
(項目6)
前記照明系および前記検出系は、プリズムを共有し、
前記照明系の前記瞳面は、光源と、前記プリズムとの間に配置され、前記照明光は、前記プリズムで反射された後に前記第1マークおよび前記第2マークを照明する、
ことを特徴とする項目1乃至5のいずれか1項に記載の検出装置。
(項目7)
前記第1マークおよび前記第2マークからの回折光は、前記プリズムを通過して前記撮像面に入射し、
前記検出系の前記瞳面は、前記プリズムと前記撮像面との間に配置されている、
ことを特徴とする項目6に記載の検出装置。
(項目8)
前記第1遮光部は、前記検出系の瞳面の前記第3方向における直径の全体にわたって延びていて、
前記第2遮光部は、前記検出系の瞳面の前記第4方向における直径の全体にわたって延びている、
ことを特徴とする項目1乃至7のいずれか1項に記載の検出装置。
(項目9)
前記検出系の前記瞳面は、前記遮光体が配置されていない領域に光透過領域を有し、
前記照明光で照明された前記第1マークおよび前記第2マークからの回折光は、前記光透過領域を通過して、前記相対位置を示す前記光学情報を前記撮像面に形成する、
ことを特徴とする項目1乃至8のいずれか1項に記載の検出装置。
(項目10)
前記照明光で照明された前記第1マークおよび前記第2マークからの1次回折光は、前記光透過領域を通過して、前記相対位置を示す前記光学情報を前記撮像面に形成する、
ことを特徴とする項目9に記載の検出装置。
(項目11)
第2撮像面を有する第2撮像素子を含む第2検出系を更に備え、
前記第1物体には第3マークが更に設けられ、前記第2物体には第4マークが更に設けられ、
前記第2検出系は、前記照明系によって照明された前記第3マークおよび前記第4マークからの光を前記第2撮像素子の前記第2撮像面に結像させる、
ことを特徴とする項目1乃至10のいずれか1項に記載の検出装置。
(項目12)
前記検出系の一部と前記第2検出系の一部とが共有される、
ことを特徴とする項目11に記載の検出装置。
(項目13)
前記検出系の倍率と前記第2検出系の倍率とが互いに異なる、
ことを特徴とする項目11又は12に記載の検出装置。
(項目14)
前記検出系の瞳面に第1開口絞りが配置され、前記第2検出系の瞳面に第2開口絞りが配置されている、
ことを特徴とする項目11乃至13のいずれか1項に記載の検出装置。
(項目15)
前記照明系は、前記照明光の波長を変更可能である、
ことを特徴とする項目1乃至14のいずれか1項に記載の検出装置。
(項目16)
原版のパターンを基板に転写するリソグラフィー装置であって、
項目1乃至15のいずれか1項に記載の検出装置を備え、
前記第1マークが設けられた前記第1物体としての前記原版と、前記第2マークが設けられた前記第2物体としての前記基板と、のアライメントを前記検出装置の出力に基づいて行うように構成されたことを特徴とするリソグラフィー装置。
(項目17)
インプリント装置として構成されていることを特徴とする項目16に記載のリソグラフィー装置。
(項目18)
項目17に記載のリソグラフィー装置を使って原版のパターンを基板に転写する転写工程と、
前記転写工程を経た前記基板から物品が得られるように前記基板を加工する加工工程と、
を含むことを特徴とする物品製造方法。
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
1:インプリント装置、2:検出装置、7:モールド(第1物体)、8:基板(第2物体)、10:モールドマーク(第1マーク)、11:基板マーク(第2マーク)、21:検出系、22:照明系、25:撮像素子

Claims (18)

  1. 重ねて配置された第1物体と第2物体とにそれぞれ設けられた第1マークと第2マークとの相対位置を検出する検出装置であって、
    前記第1マークおよび前記第2マークを無偏光の照明光で照明する照明系と、
    撮像素子を含み、前記照明系によって照明された前記第1マークおよび前記第2マークからの回折光を前記撮像素子の撮像面に結像させる検出系と、を備え、
    前記第1マークおよび前記第2マークは、第1方向または前記第1方向に直交する第2方向における前記相対位置を示す光学情報を前記撮像面に形成可能に構成され、
    前記検出系の瞳面には、前記検出系の光軸を第3方向に平行な方向に横切る第1遮光部と、前記検出系の前記光軸を第4方向に平行な方向に横切る第2遮光部とを含む遮光体が設けられ、
    前記第3方向は、前記第1方向に共役な方向であり、前記第4方向は、前記第2方向に共役な方向である、
    ことを特徴とする検出装置。
  2. 前記照明光で照明された前記第1マークおよび前記第2マークからの光のうち前記相対位置を示す情報を含まない不要光は、前記第1遮光部および前記第2遮光部の双方で遮断される、
    ことを特徴とする請求項1に記載の検出装置。
  3. 前記照明系は、前記第1マークおよび前記第2マークを前記照明光で斜入射照明するように構成されている、
    ことを特徴とする請求項1に記載の検出装置。
  4. 前記照明系の瞳面の出口における光強度分布は、前記照明系の光軸に関して非対称である、
    ことを特徴とする請求項3に記載の検出装置。
  5. 前記照明系の瞳面の出口における光強度分布は、前記照明系の光軸に関して対称である、
    ことを特徴とする請求項3に記載の検出装置。
  6. 前記照明系および前記検出系は、プリズムを共有し、
    前記照明系の前記瞳面は、光源と、前記プリズムとの間に配置され、前記照明光は、前記プリズムで反射された後に前記第1マークおよび前記第2マークを照明する、
    ことを特徴とする請求項1に記載の検出装置。
  7. 前記第1マークおよび前記第2マークからの回折光は、前記プリズムを通過して前記撮像面に入射し、
    前記検出系の前記瞳面は、前記プリズムと前記撮像面との間に配置されている、
    ことを特徴とする請求項6に記載の検出装置。
  8. 前記第1遮光部は、前記検出系の瞳面の前記第3方向における直径の全体にわたって延びていて、
    前記第2遮光部は、前記検出系の瞳面の前記第4方向における直径の全体にわたって延びている、
    ことを特徴とする請求項1に記載の検出装置。
  9. 前記検出系の前記瞳面は、前記遮光体が配置されていない領域に光透過領域を有し、
    前記照明光で照明された前記第1マークおよび前記第2マークからの回折光は、前記光透過領域を通過して、前記相対位置を示す前記光学情報を前記撮像面に形成する、
    ことを特徴とする請求項1に記載の検出装置。
  10. 前記照明光で照明された前記第1マークおよび前記第2マークからの1次回折光は、前記光透過領域を通過して、前記相対位置を示す前記光学情報を前記撮像面に形成する、
    ことを特徴とする請求項9に記載の検出装置。
  11. 第2撮像面を有する第2撮像素子を含む第2検出系を更に備え、
    前記第1物体には第3マークが更に設けられ、前記第2物体には第4マークが更に設けられ、
    前記第2検出系は、前記照明系によって照明された前記第3マークおよび前記第4マークからの光を前記第2撮像素子の前記第2撮像面に結像させる、
    ことを特徴とする請求項1に記載の検出装置。
  12. 前記検出系の一部と前記第2検出系の一部とが共有される、
    ことを特徴とする請求項11に記載の検出装置。
  13. 前記検出系の倍率と前記第2検出系の倍率とが互いに異なる、
    ことを特徴とする請求項11に記載の検出装置。
  14. 前記検出系の瞳面に第1開口絞りが配置され、前記第2検出系の瞳面に第2開口絞りが配置されている、
    ことを特徴とする請求項11に記載の検出装置。
  15. 前記照明系は、前記照明光の波長を変更可能である、
    ことを特徴とする請求項1に記載の検出装置。
  16. 原版のパターンを基板に転写するリソグラフィー装置であって、
    請求項1乃至15のいずれか1項に記載の検出装置を備え、
    前記第1マークが設けられた前記第1物体としての前記原版と、前記第2マークが設けられた前記第2物体としての前記基板と、のアライメントを前記検出装置の出力に基づいて行うように構成されたことを特徴とするリソグラフィー装置。
  17. インプリント装置として構成されていることを特徴とする請求項16に記載のリソグラフィー装置。
  18. 請求項17に記載のリソグラフィー装置を使って原版のパターンを基板に転写する転写工程と、
    前記転写工程を経た前記基板から物品が得られるように前記基板を加工する加工工程と、
    を含むことを特徴とする物品製造方法。
JP2022116574A 2022-07-21 2022-07-21 検出装置、リソグラフィー装置および物品製造方法 Pending JP2024014030A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022116574A JP2024014030A (ja) 2022-07-21 2022-07-21 検出装置、リソグラフィー装置および物品製造方法
TW112125384A TW202411769A (zh) 2022-07-21 2023-07-07 檢測裝置、微影蝕刻設備及物品製造方法
US18/350,067 US20240027921A1 (en) 2022-07-21 2023-07-11 Detection device, lithography apparatus, and article manufacturing method
KR1020230093554A KR20240013060A (ko) 2022-07-21 2023-07-19 검출 장치, 리소그래피 장치 및 물품 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022116574A JP2024014030A (ja) 2022-07-21 2022-07-21 検出装置、リソグラフィー装置および物品製造方法

Publications (1)

Publication Number Publication Date
JP2024014030A true JP2024014030A (ja) 2024-02-01

Family

ID=89577325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022116574A Pending JP2024014030A (ja) 2022-07-21 2022-07-21 検出装置、リソグラフィー装置および物品製造方法

Country Status (4)

Country Link
US (1) US20240027921A1 (ja)
JP (1) JP2024014030A (ja)
KR (1) KR20240013060A (ja)
TW (1) TW202411769A (ja)

Also Published As

Publication number Publication date
KR20240013060A (ko) 2024-01-30
TW202411769A (zh) 2024-03-16
US20240027921A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
TWI654422B (zh) 測量裝置、壓印設備、製造產品的方法、光量確定方法及光量調整方法
KR102266264B1 (ko) 정렬 장치, 정렬 방법, 리소그래피 장치, 및 물품 제조 방법
US20130100459A1 (en) Detector, imprint apparatus, and article manufacturing method
JP6097704B2 (ja) インプリント装置、インプリント方法及び物品の製造方法
JP7328806B2 (ja) 計測装置、リソグラフィ装置、および物品の製造方法
KR20130098210A (ko) 검출기, 임프린트 장치 및 물품 제조 방법
JP6953109B2 (ja) 基板上構造体の製造方法
JP6993782B2 (ja) インプリント装置および物品製造方法
JP7278135B2 (ja) インプリント装置および物品製造方法
JP2024014030A (ja) 検出装置、リソグラフィー装置および物品製造方法
JP2024014031A (ja) 検出装置、リソグラフィー装置および物品製造方法
JP7057094B2 (ja) 位置検出装置、インプリント装置および、物品製造方法
US20230031701A1 (en) Position detection apparatus, imprint apparatus, and article manufacturing method
TW202419984A (zh) 檢測裝置、微影設備及物品製造方法
JP2024030557A (ja) 検出装置、リソグラフィー装置および物品製造方法
US20210372776A1 (en) Detector, imprint apparatus, and method of manufacturing article
US20230294351A1 (en) Object alignment method, imprint method, article manufacturing method, detection apparatus, imprint apparatus, mold, and substrate
JP7437928B2 (ja) インプリント装置、インプリント方法および物品製造方法
JP2023091485A (ja) 検出装置、リソグラフィ装置、および物品の製造方法
JP2024037437A (ja) マークの相対位置の計測方法、計測装置及び物品の製造方法
JP2023170174A (ja) 検出装置、リソグラフィ装置、物品製造方法および検出システム
JP2022128225A (ja) 計測装置、リソグラフィ装置、および物品の製造方法
JP2022114354A (ja) 検出装置、リソグラフィ装置、および物品製造方法
JP2020038164A (ja) 位置検出装置、位置検出方法、型、インプリント装置および、物品の製造方法