TW202411769A - 檢測裝置、微影蝕刻設備及物品製造方法 - Google Patents

檢測裝置、微影蝕刻設備及物品製造方法 Download PDF

Info

Publication number
TW202411769A
TW202411769A TW112125384A TW112125384A TW202411769A TW 202411769 A TW202411769 A TW 202411769A TW 112125384 A TW112125384 A TW 112125384A TW 112125384 A TW112125384 A TW 112125384A TW 202411769 A TW202411769 A TW 202411769A
Authority
TW
Taiwan
Prior art keywords
light
mark
detection system
substrate
illumination
Prior art date
Application number
TW112125384A
Other languages
English (en)
Inventor
岩井俊樹
藤田雄一
戸田竣
吽野靖行
Original Assignee
日商佳能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商佳能股份有限公司 filed Critical 日商佳能股份有限公司
Publication of TW202411769A publication Critical patent/TW202411769A/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/42Alignment or registration features, e.g. alignment marks on the mask substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7042Alignment for lithographic apparatus using patterning methods other than those involving the exposure to radiation, e.g. by stamping or imprinting

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

檢測裝置檢測在重疊的第一和第二標記之間的相對位置。該裝置包括:照明系統,配置成用非偏振照明光照明第一和第二標記;檢測系統,具有影像感測器並配置成以來自第一和第二標記的繞射光在影像感測器的成像面上形成影像。第一和第二標記被配置為在成像面上形成表示第一方向或第二方向上的相對位置的光學資訊。配置在檢測系統的光瞳面上的遮光體包括:第一遮光部,在與第一方向共軛的方向上與檢測系統的光軸交叉;及第二遮光部,在與第二方向共軛的第四方向上與檢測系統的光軸交叉。

Description

檢測裝置、微影蝕刻設備及物品製造方法
本發明關於一種檢測裝置、一種微影蝕刻設備以及一種物品製造方法。
壓印設備使模具與配置在基板上的壓印材料接觸,且固化壓印材料,從而形成由壓印材料的固化產物製成的圖案。在該壓印設備中,正確地對準基板和模具是很重要的。日本專利公開No.2008-522412描述一種使用由設置在基板上的繞射光柵形成的標記和由設置在模具上的繞射光柵形成的標記來對準基板和模具的技術。
如果對標記進行照明,則由作為標記與標記外部的區域之間的邊界的邊緣反射的光作為雜訊光進入影像感測器,且這可能會降低標記的檢測精度。特別地,如果標記的面積減小,則雜訊光對由用於檢測來自標記的位置資訊的光形成的影像的影響變大,因此檢測精度的降低可能會很明顯。
本發明提供一種有利於以高檢測精度檢測分別設置在第一物體和第二物體上的第一標記和第二標記之間的相對位置的技術。
本發明的一個態樣提供一種檢測裝置,用於檢測分別設置在彼此重疊配置的第一物體和第二物體中的第一標記和第二標記之間的相對位置,包括:照明系統,被配置為以非偏振光的照明光照明該第一標記和該第二標記;及檢測系統,包括影像感測器且被配置為以來自由該照明系統照明的該第一標記和該第二標記的繞射光在該影像感測器的成像面上形成影像;其中,該第一標記和該第二標記被配置為在該成像面上形成表示第一方向或在與該第一方向正交的第二方向上的該相對位置的光學資訊;遮光體,設置於該檢測系統的光瞳面上的,其包括在平行於第三方向的方向上與該檢測系統的光軸交叉的第一遮光部以及在平行於第四方向的方向上與該檢測系統的該光軸交叉的第二遮光部;以及該第三方向是與該第一方向共軛的方向,且該第四方向是與該第二方向共軛的方向。
下面,將參照附圖詳細描述實施方式。請注意,以下實施方式並非旨在限制要求保護的發明的範圍。在實施方式中描述多個特徵,但並不是限於需要所有這些特徵的發明,而是可以適當地組合多個這樣的特徵。另外,在附圖中,對相同或類似的結構賦予相同的附圖標記,並省略其重複的說明。
圖2示出作為將原件的圖案轉移至基板的微影蝕刻設備的示例的壓印設備1的配置。壓印裝置1用於製造諸如半導體裝置的裝置,且通過使用模具7將未固化的壓印材料9模製在作為處理目標物體的基板8上,在基板8上形成由壓印材料9的固化產物製成的圖案。通過壓印設備1在基板8上形成圖案的圖案形成工藝可以包括接觸步驟、填充和對準步驟、固化步驟和分離步驟。在接觸步驟中,使基板8的壓射區域上的壓印材料9和模具7的圖案區域7a彼此接觸。在填充和對準步驟中,用壓印材料9填充由基板8和圖案區域7a定義的空間,且基板8的壓射區域和模具7的圖案區域7a對準。壓射區域是通過一次圖案形成工藝形成圖案的區域。換句話說,壓射區域是通過一次圖案形成工藝轉移模具7的圖案區域7a的區域。
作為壓印材料,使用通過接受固化能量而固化的固化性組合物(也稱為未固化狀態的樹脂)。作為固化能量,可以使用電磁波或熱。電磁波可以是例如選自10nm(含)至1mm(含)的波長範圍的光,例如紅外光、可見光束或紫外光。固化性組合物可以是通過光照射或加熱而固化的組合物。在組合物中,通過光照射而固化的光固化性組合物至少含有聚合性化合物和光聚合引發劑,且根據需要還可以含有非聚合性化合物或溶劑。非聚合性化合物是選自由敏化劑、氫供體、內脫模劑、表面活性劑、抗氧化劑和聚合物成分組成的組中的至少一種材料。壓印材料可以以液滴的形式或者以通過連接多個液滴形成的島或膜的形式配置在基板上。壓印材料可以通過旋塗機或狹縫塗佈機以膜的形式供應到基板上。壓印材料的黏度(25℃的黏度)可以為例如1mPa・s(含)至100mPa・s(含)。作為基板的材料,例如可以使用玻璃、陶瓷、金屬、半導體(Si、GaN、SiC等)、樹脂等。根據需要,可以在基板的表面上設置由與基板不同的材料製成的構件。基板例如為矽晶圓、化合物半導體晶圓、石英玻璃等。下面將描述採用光固化性組合物作為壓印材料的示例,但這並不旨在限制壓印材料的類型。
在本說明書和附圖中,方向將在XYZ坐標系上指示,其中平行於基板8的表面的方向被定義為X-Y平面。與XYZ坐標系的X軸、Y軸、Z軸平行的方向分別為X方向、Y方向、Z方向。繞X軸的旋轉、繞Y軸的旋轉、繞Z軸的旋轉分別為θX、θY、θZ。關於X軸、Y軸和Z軸的控制或驅動是指分別關於平行於X軸的方向、平行於Y軸的方向和平行於Z軸的方向的控制或驅動。另外,關於θX軸、θY軸、θZ軸的控制或驅動分別是指關於繞與X軸平行的軸的旋轉、繞與Y軸平行的軸的旋轉、以及繞與Z軸平行的軸的旋轉的控制或驅動。另外,位置是可以基於X軸、Y軸和Z軸上的坐標指定的資訊,且取向是可以通過θX軸、θY軸和θZ軸上的值指定的資訊。定位意味著控制位置及/或取向。對準(定位)可包括控制基板8和模具7中的至少一者的位置及/或取向,使得基板8的壓射區域與模具7的圖案區域之間的對準誤差(重疊誤差)減小。另外,對準可包括控制以校正或改變基板8的壓射區域和模具7的圖案區域中的至少一者的形狀。接觸步驟和分離步驟可以通過由模具驅動機構4驅動模具7來執行,但是也可以通過由基板驅動機構5驅動基板8來執行。或者,接觸步驟和分離步驟可以通過由模具驅動機構4驅動模具7並由基板驅動機構5驅動基板8來執行。
壓印設備1可以包括固化單元2、檢測裝置3、模具驅動機構4、基板驅動機構5和控制單元C。壓印設備1還可以包括施加單元6。在使模具7與基板8上的壓印材料9接觸的接觸步驟之後,固化單元2用諸如紫外光的光作為固化能量來照射壓印材料9,從而固化壓印材料9。固化單元2包括例如光源和多個光學元件,用於用從光源發射的光以預定形狀均勻地照射作為照射表面的模具7的圖案區域7a。特別地,期望由固化單元2用光照射的區域(照射範圍)具有幾乎等於圖案區域7a的表面積或稍大於圖案區域7a的面積的表面積。這是為通過使照射區域具有最小必要面積來防止模具7或基板8由於照射產生的熱量而膨脹從而引起轉移到壓印材料9的圖案的位置偏移或變形的情況。另外,這是為防止由基板8等反射的光到達施加單元6而使留在施加單元6的排出部分中的壓印材料9固化,從而在施加單元6的操作中出現異常的情況。作為光源,可以採用例如高壓汞燈、各種準分子燈、準分子雷射或發光二極體。可以根據作為光接收物體的壓印材料9的特性適當地選擇光源。
圖3示出檢測裝置3的配置示例。檢測裝置3被配置為光學地檢測或測量配置在模具(第一物體)7上的模具標記(第一標記)10和配置在基板(第二物體)8上的基板標記(第二標記)11之間的相對位置。模具標記10和基板標記11被配置為在影像感測器25(稍後描述)的成像面上形成表示X方向(第一方向)或Y方向(第二方向)上的相對位置的光學資訊。檢測裝置3可以包括照明系統22和檢測系統21。照明系統22和檢測系統21可以共用一些部件。照明系統22具備光源23,利用來自光源23的光來產生照明光,並用該照明光對測量目標物體(第一標記以及第二標記)進行照明。該照明光可以是非偏振光。使用非偏振光作為照明光,與使用偏振光相比,能夠在成像面上形成亮度更高的光學影像。檢測系統21通過檢測來自用照明光照射的測量目標物體的光來檢測作為測量目標物體的模具標記(第一標記)10和基板標記(第二標記)11之間的相對位置。
在檢測裝置3的光軸中,基板8和模具7的位置處的光軸垂直於基板8的上表面和模具7的下表面(圖案區域7a),即平行於Z軸。檢測裝置3可以被配置為根據模具標記10和基板標記11的位置由驅動機構(未示出)在X方向和Y方向上驅動。檢測裝置3可以被配置為在Z方向上被驅動,以將檢測系統21的焦點與模具標記10或基板標記11的位置對準。檢測裝置3可以包括用於焦點對準的光學元件或光學系統。基於使用檢測裝置3檢測或測量的模具標記10和基板標記11之間的相對位置,可以控制基板驅動機構5對基板8的定位以及校正機構(未示出)對圖案區域7a的形狀和放大率的校正。校正機構安裝在模具驅動機構4上,且可以通過使模具7變形來調整模具7的圖案區域7a的形狀和放大率。稍後將詳細描述模具標記10和基板標記11。
模具驅動機構4可以包括通過真空吸引力或靜電力保持模具7的模具卡盤(未示出)、以及通過驅動模具卡盤來驅動模具7的模具驅動單元(未示出)。模具驅動機構4可以包括上述校正機構。例如,模具驅動單元可以被配置為相對於Z軸驅動模具卡盤或模具7。模具驅動單元可以被配置成進一步相對於θX軸、θY軸、θZ軸、X軸和Y軸中的至少之一驅動模具卡盤或模具7。
基板驅動機構5可以包括:基板卡盤,其通過真空吸引力或靜電力來保持基板8;以及基板驅動單元(未示出),其通過驅動基板卡盤來驅動基板8。例如,基板驅動單元可以被配置為相對於X軸、Y軸和θZ軸驅動基板卡盤或基板8。基板驅動單元可以被配置為進一步相對於θX軸、θY軸和Z軸中的至少之一驅動基板卡盤或基板8。
施加單元(分配器)6將未固化的壓印材料9施加或配置在基板8上。施加單元6可以配置在壓印設備1的殼體外部。在這種情況下,施加單元6可以被理解為部件,其不是壓印設備1的部件。
模具7在圖案區域7a中包括要轉移到基板8 (其上的壓印材料9)的諸如電路圖案的圖案。模具7可以由透射作為固化能量的光的材料製成,例如石英。基板8例如可以是單晶矽基板等半導體基板、或者在半導體基板上具有至少一層的基板。
控制單元C可以被配置為控制固化單元2、檢測裝置3、模具驅動機構4、基板驅動機構5和施加單元6。控制單元C可以由例如現場可程式化閘陣列(FPGA)、嵌入程式的電腦或全部或部分部件的組合。FPGA可以包括可程式化邏輯裝置(PLD)或特殊應用積體電路(ASIC)。控制單元C包括記憶體和處理器,且可以通過基於記憶體中儲存(保存)的算術公式、參數和電腦程式進行操作來定義壓印設備1的操作和功能。檢測裝置3的至少一部分功能,例如處理由影像感測器25擷取的影像的功能可以由併入控制單元C中的模組來提供。在這種情況下,控制單元C的模組可以被理解為檢測裝置3的一部分。
現在將描述由壓印設備1執行的壓印製程或圖案形成製程。首先,基板8通過基板傳送機構(未示出)傳送至基板驅動機構5的基板卡盤,且固定至基板卡盤。隨後,基板8由基板驅動機構5驅動,使得基板8的壓射區域移動至施加單元6的施加位置。此後,施加單元6施加、配置或供應壓印材料9到基板的壓射區域(壓印區域)上(施加步驟)。
接下來,基板8由基板驅動機構5驅動,使得已配置有壓印材料9的壓射區域配置在模具7的圖案區域7a正下方的位置處。然後,例如,模具驅動機構4使模具7下降,以使基板8上的壓印材料9與模具7的圖案區域7a彼此接觸(接觸步驟)。這用壓印材料9填充基板8與模具7的圖案區域7a之間的空間(包括圖案區域7a的凹部)(填充步驟)。此外,對於均由模具標記10和基板標記11形成的多個標記對,檢測裝置3用於檢測或測量模具標記10和基板標記11之間的相對位置。基於該結果,將圖案區域7a和基板8的壓射區域對準(對準步驟)。此時,可以使用校正機構來校正模具7的圖案區域7a的形狀。此外,可以使用加熱機構(未示出)來校正基板8的壓射區域的形狀。
當填充和對準步驟完成時,固化單元2經由模具7用光照射壓印材料9,從而固化壓印材料9(固化步驟)。此時,可以驅動檢測裝置3後退,以免遮擋固化單元2的光路。隨後,模具驅動機構4升高模具7,使模具7與基板8上的固化的壓印材料9分離(分離步驟)。
壓印設備1可以被理解為微影蝕刻設備的示例,其包括檢測裝置3,基於來自檢測裝置3的輸出來對準原件(或圖案區域)和基板(或壓射區域),且將原件的圖案轉移到基板上。壓印設備1基於來自檢測裝置3的輸出將設置有模具標記10(第一標記)的模具7(第一物體或原件)與設置有基板標記11(第二標記)的基板8(第二物體)對準。
下面結合圖3對檢測裝置3進行詳細描述。如上所述,檢測裝置3包括照明系統22和檢測系統21,照明系統22和檢測系統21可以共用一些部件。照明系統22將來自光源23的光產生的照明光經由稜鏡24引導到公共光軸,從而照明模具標記10和基板標記11。光源23可以包括例如鹵素燈、LED、半導體雷射(LD)、高壓汞燈、金屬鹵化物燈、超連續譜光源和雷射驅動光源(LDLS)中的至少一種。選擇光源23產生的照明光的波長以不固化壓印材料9。
稜鏡24由照明系統22和檢測系統21共用,且可以配置在照明系統22的光瞳面Pill上或附近,或者配置在檢測系統21的光瞳面Pdet上或附近。模具標記10和基板標記11的每一者可以包括由繞射光柵形成的標記。檢測系統21可以在影像感測器25的成像面上形成由被照明系統22照射的模具標記10和基板標記11繞射的光之間的干涉產生的干涉光(干涉條紋或莫爾條紋)的光學影像。影像感測器25可以由例如CCD感測器或CMOS感測器形成。
稜鏡24可以包括通過接合兩個構件而獲得的表面(接合表面)作為反射表面RS,且包括在接合表面上的反射膜24a。稜鏡24可以由其表面上具有反射膜24a的板狀光學元件代替。稜鏡24的配置位置不需要在照明系統22的光瞳面Pill上或附近,或者在檢測系統21的光瞳面Pdet上或附近。照明孔徑光闌27可以配置在照明系統22的光瞳面Pill上。檢測孔徑光闌26可以配置在檢測系統21的光瞳面Pdet上。照明孔徑光闌27定義照明系統22的光瞳面Pill的光強分佈。注意,照明孔徑光闌27可以是任意部件,且可以通過定義反射膜24a的區域來形成平行於光軸的照明光。
圖4通過根據比較示例將檢測裝置3的照明系統22的光瞳面Pill的光強度分佈和定義檢測系統21的數值孔徑NA O的檢測孔徑光闌進行彼此疊加來示出它們。x軸和y軸分別是與X軸和Y軸共軛的軸。在光瞳面和模具/基板之間不存在使光軸彎曲的反射鏡的情況下,x軸和X軸彼此平行。在存在使光瞳面和模具/基板之間的光軸彎曲的反射鏡的情況下,由反射鏡映射在光瞳面上的X軸和Y軸分別與x軸和y軸一致。照明系統22的光瞳面Pill的光強度分佈包括第一極點IL1、第二極點IL2、第三極點IL3和第四極點IL4。包括極點IL1至IL4的光強度分佈的照明可以被理解為斜入射照明。來自照明的標記10和11的光經由定義檢測系統21的數值孔徑NA O的孔徑光闌的開口進入影像感測器25的成像面。
圖5A至5D是各自示出產生莫爾條紋的標記(繞射光柵)的示例的圖。下面將參照圖5A至5D描述通過來自模具標記10和基板標記11的繞射光產生莫爾條紋以及使用莫爾條紋檢測模具標記10和基板標記11之間的相對位置的原理。設置為模具7中的模具標記10的繞射光柵(第一繞射光柵)41和設置為基板8中的基板標記11的繞射光柵(第二繞射光柵)42在測量方向上的週期彼此間略有不同。如果將兩個具有不同週期的繞射光柵彼此疊加,具有反應繞射光柵之間的週期差的週期的圖案,即,所謂的莫爾條紋(莫爾條紋)會由於兩個繞射光柵的繞射光之間的干涉而出現。此時,由於莫爾條紋的相位根據繞射光柵之間的相對位置而變化,因此可以獲得模具標記10和基板標記11之間的相對位置,即,通過檢測莫爾條紋來檢測模具7和基板8之間的相對位置。
更具體地,如果具有稍微不同的週期的繞射光柵41和42彼此疊加,則來自繞射光柵41和42的繞射光彼此重疊,從而產生具有反應週期差的週期的莫爾條紋,如圖5C所示。在莫爾條紋中,亮部和暗部的位置(條紋的相位)根據繞射光柵41和42之間的相對位置而變化。例如,如果繞射光柵41和42之一在X方向上偏移,則圖5C所示的莫爾條紋變為圖5D所示的莫爾條紋。由於通過增大繞射光柵41和42之間的實際位置偏移量而將莫爾條紋生成為具有大週期的條紋,所以即使檢測系統21的解析度低,也可以用高精度檢測兩個繞射光柵41和42之間的相對位置。
在比較示例中,在明視場(bright field)中檢測繞射光柵41和42以檢測莫爾條紋的情況下,檢測系統21不必要地檢測到來自繞射光柵41和42的零階光(zero-order light)。在明視場中檢測繞射光柵41和42的情況可以包括從垂直方向照射繞射光柵41和42且檢測由繞射光柵41和42在垂直方向上繞射的光的情況。由於零階光使莫爾條紋的對比度降低,因此在比較例中,檢測系統21具有不檢測零階光的配置(暗場的配置),即,採用傾斜入射來照射繞射光柵41和42的配置。
圖6A至圖6D是示出產生莫爾條紋的標記(繞射光柵)的其他示例的圖。在圖6A至圖6D所示的示例中,繞射光柵41和42之一是圖6A所示的棋盤形繞射光柵,另一個繞射光柵是圖6B所示的繞射光柵。圖6B所示的繞射光柵包括在測量方向(第一方向)上週期性排列的圖案和在與測量方向正交的方向(第二方向)上週期性排列的圖案。
在圖4(比較例)和圖6A和圖6B所示的配置中,來自第一極點IL1和第二極點IL2的光照射繞射光柵,並被棋盤形繞射光柵在Y方向和X方向繞射。另外,由週期稍有不同的繞射光柵在X方向繞射的光具有X方向相對位置資訊,通過檢測系統21的光瞳面Pdet上的檢測區域(NA O),以進入影像感測器25的成像面,並被影像感測器25檢測。這可以用來獲得兩個繞射光柵41和42之間的相對位置。
將圖4(比較例)的配置與圖6A和圖6B所示的繞射光柵組合起來,來自第三極點IL3和第四極點IL4的光不用於檢測繞射光柵之間的相對位置。另一方面,在圖6C和圖6D所示的繞射光柵之間的相對位置被檢測的情況下,來自第三極點IL3和第四極點IL4的光用於檢測繞射光柵之間的相對位置,而來自第一極點IL1和第二極點IL2的光不用於檢測繞射光柵之間的相對位置。另外,在圖6A和圖6B所示的一對繞射光柵與圖6C和圖6D所示的一對繞射光柵配置在檢測系統21的同一視場中的情況下,以同時檢測兩個方向上的相對位置,如圖4所示的光瞳強度分佈是有用的。
現在將詳細描述在一個視場中觀察到的標記。圖7是示意性地示出當將模具7和基板8彼此重疊時由影像感測器25檢測到的影像的圖。外框的範圍73表示檢測裝置3能夠一次性觀測到的範圍。上述模具標記10包括粗檢測標記71a-1和作為精細檢測標記的繞射光柵71a-2和71a-2',且上述基板標記11包括粗檢測標記72a-1以及作為精細檢測標記的繞射光柵72a-2和72a-2'。可以根據粗檢測標記71a-1和72a-1的幾何中心位置從檢測裝置3的檢測結果獲得模具7和基板8之間的相對位置偏移。粗檢測標記71a-1和72a-1的測量值D1與設計值之間的差是相對位置偏移。這些標記允許粗略對齊。
接下來,將描述當繞射光柵71a-2和72a-2彼此重疊時形成的莫爾條紋。繞射光柵71a-2和72a-2各由圖6C或6D所示的週期圖案形成,且在測量方向上具有稍微不同的週期。因此,如果這些繞射光柵彼此重疊,則形成光強度在Y方向上變化的莫爾條紋。由於繞射光柵71a-2和72a-2之間的週期不同,當相對位置改變時莫爾條紋的移動方向不同。例如,在繞射光柵71a-2的週期比繞射光柵72a-2的週期稍大的情況下,如果基板8向+Y方向相對移動,則莫爾條紋也向+Y方向移動。另一方面,在繞射光柵71a-2的週期比繞射光柵72a-2的週期稍小的情況下,如果基板8向+Y方向相對移動,則莫爾條紋向-Y方向移動。
繞射光柵71a-2'和72a-2'形成另一個莫爾條紋。繞射光柵71a-2和72a-2的週期之間的大小關係相對於繞射光柵71a-2'和72a-2'的週期之間的大小關係相反。因此,如果相對位置發生變化,則所測得的兩個莫爾條紋的位置會沿相反方向變化。如果產生莫爾條紋的模具側和基板側的週期標記偏移1個週期,則在莫爾條紋檢測原理中不可能檢測到1個週期的偏移。因此,通過使用粗檢測標記71a-1和72a-1,可以確認模具7和基板8之間在一個週期不存在相對位置偏移。粗檢測標記71a-1和72a-1可以是產生莫爾信號的標記,只要模具7的繞射光柵和基板8的繞射光柵具有在一個週期不產生位置誤差的節距即可。
由於模具7的粗檢測標記71a-1和基板8的粗檢測標記72a-1的構成材料可以彼此不同,所以由影像感測器25檢測到的光強度可以根據不同的波長而變化。因此,照明系統22較佳地被配置為能夠改變照明光的波長。這可以通過形成光源23以產生具有相應波長範圍的光並提供選擇性地透射該波長範圍內的任意波長的光的濾光器來實現。或者,可以設置產生不同波長的光的多個光源,且可以使從它們中選擇的光源發光。通過能夠改變照明光的波長,能夠調整粗檢測標記71a-1的影像的光強度與粗檢測標記72a-1的影像的光強度之間的比率。當照明光的波長可變時,這對於調節由繞射光柵71a-2、71a-2'、72a-2和72a-2'形成的莫爾條紋的光強度是有效的。
當用照明光照射模具標記10和基板標記11時,照明光可以被每個繞射光柵71a-2、71a-2'、72a-2及72a-2'的邊緣(下文中稱為圖案邊緣)散射。例如,對於繞射光柵71a-2,圖案邊緣是整個繞射光柵71a-2與繞射光柵71a-2外部的部分之間的邊界。如果由於繞射光柵71a-2、71a-2'、72a-2和72a-2'的階數及/或構成材料等因素,莫爾條紋的信號強度弱,則由於散射光的影響檢測結果可能會產生誤差。因此,期望減少圖案邊緣處的散射光的影響(即,散射光進入影像感測器25)。
圖8通過根據比較例將進入檢測系統21的光瞳面Pdet的光的光強度分佈和照明系統22的光瞳面Pill的出射處的光強度分佈彼此重疊來示出。請注意,圖5A至圖5D示出極點IL1至IL4,但是圖8為簡單起見僅示出極點IL1和IL3。由圖案邊緣散射的光也由極點IL2和IL4產生。將描述通過用來自圖8中的極點IL1的照明光的照射而產生的散射光。模具標記10和基板標記11被來自極點IL1的照明光照射。由於由此產生的鏡面反射光被發射到檢測系統21的檢測孔徑光闌26的開口PD外部,因此它們被檢測孔徑光闌26阻擋。這樣的鏡面反射光不被影像感測器25檢測到。平行於X方向發射到圖案邊緣的照明光被圖案邊緣沿Y方向散射,以來自極點IL1的照明光的鏡面反射光N1(0)為參考產生一階反射光N1(1)和二階反射光N1(2)。如果這些散射光穿過檢測孔徑光闌26的開口PD進入影像感測器25,則它們被影像感測器25檢測到。這會將雜訊分量疊加在莫爾條紋的影像上。同樣對於極點IL3,由模具標記10和基板標記11產生的鏡面反射光被檢測孔徑光闌26阻擋。然而,平行於Y方向發射到圖案邊緣的照明光被圖案邊緣在X方向上散射,參考來自極點IL3的照明光的鏡面反射光N3(0)以產生一階反射光N3(1)和二階反射光N3(2)。因此,來自圖案邊緣的四個側部的散射光在影像感測器25的成像面上形成影像,且該影像疊加在由影像感測器25擷取的影像上。
對莫爾條紋檢測的影響的實際例子如下。如果來自與Y方向平行的邊緣的光疊加在測量方向為X方向的莫爾條紋的影像上,則該光增加靠近莫爾條紋的影像的邊緣的部分的光量,莫爾條紋的數量可以橫向不對稱地變化。因此,當檢測莫爾條紋的影像的位置時會產生誤差。或者,如果來自與X方向平行的邊緣的光疊加在測量方向為X方向的莫爾條紋上,則光對莫爾條紋的影像施加偏置。因此,當檢測莫爾條紋時對比度降低,從而降低檢測再現性。因此,通過檢測系統21的光瞳面Pdet阻擋來自圖案邊緣的光來提高檢測性能。
圖1A通過根據第一實施方式將進入檢測系統21的光瞳面Pdet的光的光強度分佈和照明系統22的光瞳面Pill的出射處的光強度分佈彼此重疊來示出。照明系統22的光瞳面Pill的出射處的光強度分佈包括極點IL1和IL3。極點IL1配置在y軸上,且極點IL3配置在x軸上。當用來自極點IL1的照明光照射模具標記10和基板標記11時,產生繞射光D1(+1)和D1(-1)。繞射光D1(+1)和D1(-1)穿過檢測系統21的光瞳面Pdet的開口PD,以進入影像感測器25的成像面。繞射光D1(+1)和D1(-1)在影像感測器25的成像面上形成莫爾條紋的光學影像。在該示例中,模具標記10和基板標記11的組合可以是分別如圖6A和6B所示的棋盤形繞射光柵圖案和一階繞射光柵圖案的組合。照明標記10和11的照明光的繞射光在X方向和Y方向上繞射。例如,P1和P3分別表示圖6A所示的繞射光柵圖案的X方向和Y方向的節距,且P2表示圖6B中的X方向的節距。為描述方便,設定P1>P2。然而,本領域技術人員可以理解,即使大小關係顛倒,也可以獲得繞射光。在該示例中,一階繞射光柵圖案用於模具標記10,且棋盤形繞射光柵圖案用於基板標記11,反之亦然。一階繞射光的繞射角θ(相對於與光軸平行的方向的角度)一般可以如下表示。
其中λ表示照明光的波長。來自繞射光柵的繞射光在正方向和負方向上產生。因此,由模具標記10和基板標記11繞射的光形成莫爾條紋在X方向上以四個繞射角(θ×1+θ×2、θ×1-θ×2、-θ×1+θ×2、及-θ×1-θ×2)進行繞射。如果使用繞射角為θ×1+θ×2和-θ×1-θ×2的繞射光,則需要增大檢測系統21的NA,且干涉條紋的週期變小。因此,即使進行檢測,也無法提高檢測精度。由此,檢測出具θ×1-θ×2和-θ×1+θ×2的小繞射角的繞射光。在圖1A所示的繞射光D1(+1)的情況下,X方向相對於繞射光的光軸的角度可以用-θ×1+θ×2表示,且在圖1A所示的繞射光D2(-1)的情況下,可以表示θ×1-θ×2。在圖1A所示的檢測系統21的檢測孔徑光闌26的位置處,X方向的坐標可以對於繞射光D1(+1)表示為f×tan(-θ×1+θ×2)和對於繞射光D1(-1)表示為f×tan(θ×1-θ×2),其中f表示配置在繞射光柵(對準標記)和檢測系統21的檢測孔徑光闌26之間的透鏡組的焦距。
接下來,將描述相對於光軸在Y方向上繞射的光。由於圖6A所示的棋盤形繞射光柵在Y方向上也具有週期,因此來自圖6A所示的繞射光柵的繞射光在X方向和Y方向上繞射。由於Y方向的節距為P3,因此繞射光的繞射角可由下式給出:
參照圖1A,來自極點IL1的照明光的鏡面反射光在Y方向上以X軸作為對稱軸與照明光對稱的位置處被反射。即,如果將來自極點IL1的照明光相對於X-Y平面的入射角由θILy表示,則檢測孔徑光闌26(光瞳面Pdet)上的照明光的位置由f×tan(θILy)表示。照明光的鏡面反射光的位置由f×tan(-θILy)表示。來自棋盤形繞射光柵的一階繞射光相對於鏡面反射光以角度θy繞射。即,在圖1A中,通過將f×tan(θy)作為與繞射光的角度θy相對應的偏移量與來自極點IL1的照明光的鏡面反射光相加(f×tan(-θILy)),來獲得繞射光在光瞳面Pdet上的Y方向的位置。通過調節Y方向上的節距P3,可以在圖1A所示的繞射光D1(+1)和D1(-1)的位置處繞射光。通過繞射光D1(+1)和D1(-1),在影像感測器25的成像面上形成其強度在X方向上變化的干涉條紋(莫爾條紋),且由影像感測器25檢測到。
極點IL3是將極點IL1順時針旋轉90˚而得到的。繞射光是通過照射圖6C和6D所示的繞射光柵而產生的,由此使得可以形成強度在Y方向上變化的莫爾條紋。考慮到配置有標記的圖案的區域,X方向和Y方向上的莫爾條紋可以具有相同的節距或者可以具有不同的節距。在圖1A所示的示例中,在照明系統22的光瞳面Pill存在處形成的光強度分佈由極點IL1和IL3形成,且是關於光軸不對稱的光強度分佈。
圖1B示出配置在檢測系統21的光瞳面Pdet上的檢測孔徑光闌26的示例。白色部分是開口,黑色部分是遮光體。如上面參照圖8所述,來自圖案邊緣的散射光分佈在檢測孔徑光闌26(光瞳面Pdet)的x軸和y軸上。為遮擋不需要的散射光,配置有包括遮光部的遮光體BP,該遮光部遮斷檢測孔徑光闌26的x軸及y軸上的光。這可以阻擋來自圖案邊緣的散射光。遮光體BP可以包括在平行於x軸的方向(第三方向)上與檢測系統21的光軸交叉的第一遮光部BP1以及在y軸平行的方向(第四方向)與檢測系統21的光軸交叉的第二遮光部BP2。第一遮光部BP1可以被配置為在檢測系統21的光瞳面Pdet的x方向上的直徑上方延伸。第二遮光部BP2可以被配置為檢測系統21的光瞳面Pdet的y方向上的直徑上延伸。
在該示例中,與x軸平行的x方向(第三方向)是與與X軸平行的X方向(第一方向)共軛的方向,且與y軸平行的y方向(第四方向)是與與Y軸平行的Y方向(第二方向)共軛的方向。在檢測系統21中,如果x方向和X方向彼此共軛,則這意味著在模具7/基板8和檢測系統21的光瞳面Pdet之間不存在使檢測系統21的光軸彎曲的反射面的情況下,x方向和X方向彼此一致。在檢測系統21中,如果x方向和X方向彼此共軛,則這意味著在使模具7/基板8與檢測系統21的光瞳面Pdet之間存在使光軸彎曲的反射面的情況下,由反射面映射在光瞳面Pdet上的X方向與x方向一致。在存在反射面的情況下,x方向可以與X方向一致,也可以不一致。這同樣適用於y方向與Y方向的共軛。
上述描述適用於照明系統22的光瞳面Pill的x方向和y方向。即,與光瞳面Pill的x軸平行的x方向(第五方向)是與平行於X軸的X方向(第一方向)共軛的方向,且平行於光瞳面Pill的y軸的y方向(第六方向)是與平行於Y軸的Y方向(第二方向)共軛的方向。在照明系統22中,如果x方向和X方向彼此共軛,則這意味著在模具7/基板8和照明系統22的光瞳面Pill之間不存在使照明系統22的光軸彎曲的反射面的情況下,x方向和X方向彼此一致。在照明系統22中,如果x方向與X方向共軛,則意味著在模具7/基板8和照明系統22的光瞳面Pill之間存在使光軸彎曲的反射面的情況下,由反射面映射在光瞳面Pill上的X方向與x方向一致。在存在反射面的情況下,x方向可以與X方向一致,也可以不一致。這同樣適用於y方向與Y方向的共軛。
第一遮光部BP1的寬度(y方向上的寬度)NAbp1較佳等於或大於極點IL1的寬度(x方向上的寬度)NA_IL1。即,希望NAbp1≥NA_IL1。由此,能夠通過第一遮光部BP1來遮擋來自極點1內的任意位置的照明光的散射光。即,在來自用照明光照射的模具標記10(繞射光柵)和基板標記11(繞射光柵)的光中,可以通過第一遮光部BP1和第二遮光部BP2阻擋不包括表示標記之間的相對位置的光學資訊的不必要的光。
檢測系統21的光瞳面Pdet在未配置遮光體BP的區域中具有透光區域AP。來自用照明光照射的模具標記10(繞射光柵)和基板標記11(繞射光柵)的繞射光較佳地穿過透光區域AP,從而在影像感測器25的成像面上形成表示模具7和基板8之間的相對位置的光學資訊。
更具體地,在影像感測器25的成像面上形成莫爾條紋的繞射光D1(+1)和D1(-1)較佳穿過透光區域AP。因此,遮光體BP、模具標記10(繞射光柵)和基板標記11 (繞射光柵)可以被設計成使得繞射光D1(+1)和D1(-1)不進入遮光體BP。為簡單起見,考慮繞射光D1(+1)和D1(-1)沒有寬度的情況。
在檢測系統21的光瞳面Pdet上,繞射光D1(+1)和D1(-1)的位置分別由f×tan(-θ×1+θ×2)和f×tan(θ×1-θ×2)表示。即,對於x方向,遮光體BP、模具標記10(繞射光柵)和基板標記11(繞射光柵)可以被設計為使得繞射光D1(+1)和D1(-1)穿過透光區域AP。
對於y方向,遮光體BP、模具標記10(繞射光柵)和基板標記11(繞射光柵)可以設計為滿足:
在此示例中,|f×tan(-θILy)+f×tan(θy)|具有y方向負側和正側兩個位置的解。在檢測系統21的光瞳面Pdet上,如果在來自極點IL1的照明光的鏡面反射光附近(y方向的負側)存在透光區域AP,則可能產生雜訊。另外,繞射光柵的節距越小,落在規定區域內的繞射光柵的節距的數量就越多。因此,繞射光的角度分佈的擴展小。因此,|f×tan( -θILy)+f×tan(θy)|理想的是,位於來自極點IL1的照明光的鏡面反射光的相反側,即,位於y方向的正側。
對於照明光的中心光束,通過滿足表達式(1)和(2)而形成莫爾條紋的繞射光不被遮光體BP遮擋,且能夠被影像感測器25檢測。然而,極點IL1的寬度為NA_IL1,且繞射光柵的節距數量是有限的。通過考慮這些,將表達式(1)和(2)擴展到表達式(3)和(4)。
通過滿足表達式(3)和(4),來自被照明光照射的模具標記10(繞射光柵)和基板標記11(繞射光柵)的所有繞射光穿過透光區域AP進入影像感測器25的成像面。
圖9A通過根據本發明第一實施方式的變形例將進入檢測系統21的光瞳面Pdet的光的光強度分佈和照明系統22的光瞳面Pill的出射處的光強度分佈彼此疊加來示出。根據該變形例,如圖9A所示,照明系統22的光瞳面Pill的出射處的光強度分佈包括極點IL1、IL2、IL3和IL4。包括極點IL1、IL2、IL3和IL4的光強度分佈是關於光軸對稱的光強度分佈。極點IL1和IL2位於y軸上的兩個不同點,且極點IL3和IL4位於x軸上的兩個不同點。極點的數量不限於四,且可以是其他數量(例如,八)。
圖9B示出檢測孔徑光闌26的形狀。白色部分是開口,黑色部分是遮光體。圖9B所示的遮光體BP與圖1B所示的遮光體BP相同,包括第一遮光部BP1、BP2,每一者分別在檢測孔徑光闌26的x軸及y軸上遮光。遮光體BP遮擋來自圖案邊緣的散射光。
在圖1A所示的配置示例中,極點IL1和IL3的位置關於光軸不是中心對稱的。因此,可能由於成像面在光軸方向上的位置誤差而產生檢測誤差。另一方面,如果如圖9A所示的配置示例那樣將極點IL1、IL2、IL3和IL4配置為關於光軸中心對稱,則可以使得檢測誤差關於在光軸方向上的成像面的位置誤差不敏感。
來自圖9A所示的極點IL1和IL3的照明光的繞射光與來自圖1A所示的極點IL1和IL3的照明光的繞射光相同。極點IL1和IL2位於關於x軸對稱的位置。當用來自極點IL2的照明光照射標記時,被模具標記10(繞射光柵)和基板標記11(繞射光柵)繞射的光由D2(+1)和D2(-1)表示。由於極點IL1和IL2位於關於x軸對稱的位置,因此繞射光D1(+1)和D1(-1)以及繞射光D2(+1)和D2(-1)進入關於檢測系統21的光瞳面Pdet的x軸對稱的位置。繞射光D1(+1)、D1(-1)、D2(+1)、D2(-1)形成強度沿X方向變化的莫爾條紋。
極點IL3和IL4是通過將極點IL1和IL2順時針旋轉90˚而獲得的。由來自極點IL3和IL4的照明光照射的Y方向測量用繞射光柵產生繞射光D3(+1)、D3(-1)、D4(+1)和D4(-1)(未示出)。繞射光D3(+1)、D3(-1)、D4(+1)和D4( -1)在透過使繞射光D1(+1)、D1(-1)、D2(+1)及D2(-1)繞光軸旋轉90˚而得到的位置處繞射。繞射光D3(+1)、D3(-1)、D4(+1)和D4(-1)形成莫爾條紋,其強度在y方向上變化。
下面將參照圖10描述根據第二實施方式的檢測裝置3。注意,第二實施方式中未提及的事項可以遵循第一實施方式。圖10示出根據第二實施方式的檢測裝置3的配置。第二實施方式的檢測裝置3包括第一檢測系統21和第二檢測系統50。第一檢測系統21和第二檢測系統50可以共用一些部件。此外,第一檢測系統21、第二檢測系統50和照明系統22可以共享一些部件。第一檢測系統21包括第一影像感測器25,且第二檢測系統50包括第二影像感測器51。如第一實施方式中詳細描述的,第一檢測系統21被配置為檢測由作為精細檢測標記的繞射光柵形成的莫爾條紋。第二檢測系統50被配置為檢測節距偏移,即粗檢測標記。
可以與第一實施方式類似地形成照明系統22和第一檢測系統21。由此,能夠高精度地檢測由圖6A至6D例示的繞射光柵形成的莫爾條紋。為通過第二檢測系統50檢測粗檢測標記,照明系統22有利地執行例如圖9A中例示的四極點(quadrupole)照明。
為以高精度檢測莫爾條紋,期望設置從模具標記10/基板標記11到影像感測器25的高成像倍率。另一方面,由於檢測粗檢測標記的第二檢測系統50就足以測量繞射光柵之間的節距偏移,即使將從模具標記10/基板標記11到影像感測器51的成像倍率設置得低,對精度的影響也很小。通過設置從模具標記10/基板標記11到影像感測器51的低成像倍率,可以增大測量視場。因此,即使模具7和基板8的位置之間存在大的位置偏移,也可以觀察較寬的範圍,因此可以在不搜尋的情況下測量位置。如上所述,在第二實施方式中,通過將光路分支設置第一檢測系統21和第二檢測系統50,可以使第一檢測系統21和第二檢測系統50的放大率彼此不同。
作為變形例,也可以在使第一檢測系統21和第二檢測系統50的光路分支後,設置檢測孔徑光闌。這可以減少作為雜訊的光。如圖11所例示的,可以將第一檢測孔徑光闌26a配置在模具標記10/基板標記11和影像感測器25之間的光路上。另外,可以將第二檢測孔徑光闌26b配置在模具標記10/基板標記11和影像感測器51之間的光路上。第一檢測孔徑光闌26a和第二檢測孔徑光闌26b可以具有不同的形狀或特徵。
在本變形例中,第一檢測系統21可以檢測強度在X方向變化的莫爾條紋,第二檢測系統50可以檢測強度在Y方向變化的莫爾條紋。在這種情況下,較佳為細化並採用圖1B所示的檢測孔徑光闌。在圖1B所示的檢測孔徑光闌中,具有用於僅在y方向的正側上檢測強度在X方向上變化的莫爾條紋的開口,以及用於僅在x方向的正側上檢測強度在X方向上變化的莫爾條紋的開口。因此,對於用於檢測強度在X方向上變化的莫爾條紋的檢測孔徑光闌26a,圖1B中的y方向負側的部分是遮光部。對於用於檢測強度在Y方向上變化的莫爾條紋的檢測孔徑光闌26b,圖1B中的x方向負側上的部分是遮光部。這可以減少作為雜訊的光。注意,檢測孔徑光闌的形狀不限於此。
下面將參照圖12描述根據第三實施方式的檢測裝置3。注意,第三實施方式中未提及的事項可以遵循第一或第二實施方式。在第三實施方式中,配置在照明系統22的光瞳面Pill上的照明孔徑光闌27是包括針孔的針孔板。因此,照明光在照明系統22的光瞳面Pill上由穿過或靠近照明系統22的光軸的光束形成。反射膜24a可被配置為反射光束以照明模具標記10/基板標記11。注意,照明孔徑光闌27可以是任意部件,且可以通過定義反射膜24a的區域來形成與光軸平行的照明光。配置在檢測系統21的光瞳面Pdet上的檢測孔徑光闌26可以遵循第一或第二實施方式。
接下來將描述使用由上述實施方式代表的壓印設備的物品製造方法。該物品可以是例如半導體裝置、顯示裝置、MEMS等。物品製造方法可以包括:使用微影蝕刻設備或壓印設備將原件的圖案轉移到基板的轉移步驟;以及處理基板的處理步驟,以從經過轉移步驟的基板獲得物品。轉移步驟可以包括使模具7和基板8的壓射區域上的壓印材料9彼此接觸的接觸步驟。轉移步驟還可以包括測量模具7和基板8的壓射區域(或基板標記)之間的相對位置的測量步驟。轉移步驟還可以包括基於測量步驟的結果來對準模具7和基板8的壓射區域的對準步驟。轉移步驟還可以包括固化基板8上的壓印材料9的固化步驟和將壓印材料9與模具7分離的分離步驟。這在基板8上形成或轉移由壓印材料9的固化產物製成的圖案。處理步驟可以包括例如蝕刻、抗蝕劑剝離、切割、黏合和封裝。
由使用壓印設備形成的固化產物製成的圖案永久地用於各種物品中的至少一些,或者在製造各種物品時臨時使用。這些物品是電路元件、光學元件、MEMS、記錄元件、感測器、模具等。電路元件的示例是諸如DRAM、SRAM、快閃記憶體和MRAM之類的揮發性和非揮發性半導體記憶體以及諸如LSI、CCD、影像感測器和FPGA之類的半導體元件。模具的示例是用於壓印的模具。
固化產物的圖案直接用作至少一些上述物品的構成構件或暫時用作抗蝕劑遮罩。在基板處理步驟中進行蝕刻或離子佈植之後,去除抗蝕劑遮罩。
接下來將描述壓印設備在基板上形成圖案、處理其上已經形成有圖案的基板、以及由處理後的基板製造物品的物品製造方法。如圖13A所示,準備在表面形成有例如絕緣體的經處理材料2z的例如矽晶圓的基板1z。接下來,通過噴墨法等將壓印材料3z施加至經處理材料2z的表面。這裡示出壓印材料3z作為多個液滴被施加到基板上的狀態。
如圖13B所示,用於壓印具有凹凸圖案的模具4z的一側朝向基板上的壓印材料3z。如圖13C所示,使塗佈有壓印材料3z的基板1z與模具4z接觸,並施加壓力。模具4z和經處理材料2z之間的間隙填充有壓印材料3z。在這種狀態下,當經由模具4z用作為固化能量的光照射壓印材料3z時,壓印材料3z被固化。
如圖13D所示,壓印材料3z固化後,將模具4z與基板1z分離,在基板1z上形成壓印材料3z的固化產物的圖案。在固化產物的圖案中,模具的凹部對應於固化產物的凸部,且模具的凸部對應於固化產物的凹部。即,模具4z的凹凸圖案被轉移到壓印材料3z上。
如圖13E所示,當使用固化產物的圖案作為抗蝕刻遮罩進行蝕刻時,經處理材料2z的表面中不存在固化產物或保持較薄的部分被去除以形成凹槽5z。如圖13F所示,當除去固化產物的圖案時,可以獲得在經處理材料2z的表面中形成有凹槽5z的物品。此處,除去固化產物的圖案。然而,代替在工藝之後去除固化產物的圖案,其可以用作例如半導體元件等中所包括的層間介電膜,即物品的構成構件。
儘管已經參考示例性實施方式描述本發明,但是應當理解,本發明不限於所公開的示例性實施方式。所附申請專利範圍的範圍應符合最寬泛的解釋,以便涵蓋所有此類修改以及等同的結構和功能。
1:壓印設備 2:固化單元 3:檢測裝置 4:模具驅動機構 5:基板驅動機構 6:施加單元 7:模具 8:基板 9:壓印材料 10:模具標記 11:基板標記 21:檢測系統 22:照明系統 23:光源 24:稜鏡 25:影像感測器 26:檢測孔徑光闌 27:照明孔徑光闌 41:繞射光柵 42:繞射光柵 50:檢測系統 51:影像感測器 73:範圍 1z:基板 24a:反射膜 26a:檢測孔徑光闌 26b:檢測孔徑光闌 2z:經處理材料 3z:壓印材料 4z:模具 5z:凹槽 71a-1:粗檢測標記 71a-2:繞射光柵 71a-2':繞射光柵 72a-1:粗檢測標記 72a-2:繞射光柵 72a-2':繞射光柵 7a:圖案區域 AP:透光區域 BP:遮光體 BP1:第一遮光部 BP2:第二遮光部 C:控制單元 D1:測量值 D1(+1):繞射光 D1(-1):繞射光 D2(+1):繞射光 D2(-1):繞射光 D3(+1):繞射光 D3(-1):繞射光 D4(+1):繞射光 D4(-1):繞射光 IL1:極點 IL2:極點 IL3:極點 IL4:極點 N1(0):鏡面反射光 N1(1):一階反射光 N1(2):二階反射光 N3(0):鏡面反射光 N3(1):一階反射光 N3(2):二階反射光 NA_IL1:寬度 NAbp1:寬度 NA O:數值孔徑 P1:節距 P2:節距 P3:節距 PD:開口 Pdet:光瞳面 Pill:光瞳面 θILy:入射角 λ:波長
[圖1A]是表示根據第1實施方式的進入檢測系統的光瞳面的光的光強度分佈和照明系統的光瞳面的出射處的光強度分佈的圖;
[圖1B]是表示根據第1實施方式的檢測系統的光瞳面上配置的遮光體的圖;
[圖2]是例示作為微影蝕刻設備的示例的壓印設備的配置的圖;
[圖3]是例示根據第一實施方式的檢測裝置的配置的圖;
[圖4]是表示比較例的圖;
[圖5A]至[圖5D]是例示產生莫爾條紋的繞射光柵的圖;
[圖6A]至[圖6D]是例示產生莫爾條紋的繞射光柵的圖;
[圖7]是例示視場內的標記配置的圖;
[圖8]是例示圖案邊緣的散射光的圖;
[圖9A]是表示根據第2實施方式的進入檢測系統的光瞳面的光的光強度分佈和照明系統的光瞳面的出射處的光強度分佈的圖;
[圖9B]是表示根據第二實施方式的檢測系統的光瞳面上配置的遮光體的圖;
[圖10]是例示根據第二實施方式的檢測裝置的配置的圖;
[圖11]是例示根據第二實施方式的變形例所關於的檢測裝置的配置的圖;
[圖12]是例示根據第三實施方式的檢測裝置的配置的圖;及
[圖13A]至[圖13F]是例示物品製造方法的圖。
AP:透光區域
BP:遮光體
BP1:第一遮光部
BP2:第二遮光部
NAbp1:寬度
PD:開口

Claims (18)

  1. 一種檢測裝置,用於檢測分別設置在彼此重疊配置的第一物體和第二物體中的第一標記和第二標記之間的相對位置,包括: 照明系統,被配置為以非偏振光的照明光照射該第一標記和該第二標記;及 檢測系統,包括影像感測器且被配置為以來自由該照明系統照明的該第一標記和該第二標記的繞射光在該影像感測器的成像面上形成影像; 其中,該第一標記和該第二標記被配置為在該成像面上形成表示在第一方向或在與該第一方向正交的第二方向上的該相對位置的光學資訊; 遮光體,設置於該檢測系統的光瞳面上,包括在平行於第三方向的方向上與該檢測系統的光軸交叉的第一遮光部以及在平行於第四方向的方向上與該檢測系統的該光軸交叉的第二遮光部;以及 該第三方向是與該第一方向共軛的方向,且該第四方向是與該第二方向共軛的方向。
  2. 根據請求項1所述的裝置,其中,在來自由該照明光照射的該第一標記和該第二標記的光中,不包括表示該相對位置的資訊的不需要的光被該第一遮光部和該第二遮光部兩者遮擋。
  3. 根據請求項1所述的裝置,其中,該照明系統被配置為以該照明光對該第一標記和該第二標記進行斜入射照明。
  4. 根據請求項3所述的裝置,其中,該照明系統的光瞳面的出射處的光強分佈關於該照明系統的光軸不對稱。
  5. 根據請求項3所述的裝置,其中,該照明系統的光瞳面的出射處的光強分佈關於該照明系統的光軸對稱。
  6. 根據請求項1所述的裝置,其中 該照明系統和該檢測系統共用稜鏡,且 該照明系統的光瞳面設置於光源與該稜鏡之間,且該照明光經該稜鏡反射以照射該第一標記與該第二標記。
  7. 根據請求項6所述的裝置,其中 來自該第一標記和該第二標記的該繞射光穿過該稜鏡以進入該成像面,且 該檢測系統的該光瞳面設置在該稜鏡與該成像面之間。
  8. 根據請求項1所述的裝置,其中 該第一遮光部在該檢測系統的該光瞳面的該第三方向上的直徑上方延伸,且 該第二遮光部在該檢測系統的該光瞳面的該第四方向上的直徑上方延伸。
  9. 根據請求項1所述的裝置,其中 該檢測系統的該光瞳面在未配置該遮光體的區域中具有透光區域, 來自以該照明光照射的該第一標記和該第二標記的該繞射光穿過該透光區域,以形成表示該成像面上的該相對位置的該光學資訊。
  10. 根據請求項9所述的裝置,其中,來自以該照明光照射的該第一標記和該第二標記的一階繞射光穿過該透光區域,以在該成像面上形成表示該相對位置的該光學資訊。
  11. 根據請求項1所述的裝置,進一步包括第二檢測系統,該第二檢測系統包括具有第二成像面的第二影像感測器, 其中,該第一物體中進一步設置有第三標記,且該第二物體中進一步設置有第四標記,且 該第二檢測系統以來自由該照明系統照射的該第三標記和該第四標記的光在該第二影像感測器的該第二成像面上形成影像。
  12. 根據請求項11所述的裝置,其中,該檢測系統和該第二檢測系統共享一些部件。
  13. 根據請求項11所述的裝置,其中,該檢測系統的放大率與該第二檢測系統的放大率不同。
  14. 根據請求項11所述的裝置,其中,第一孔徑光闌設置在該檢測系統的該光瞳面上,且第二孔徑光闌設置在該第二檢測系統的光瞳面上。
  15. 根據請求項1所述的裝置,其中,該照明系統能夠改變該照明光的波長。
  16. 一種用於將原件的圖案轉移至基板的微影蝕刻設備,包括: 根據請求項1至15中任一項所定義的檢測裝置, 其中,該微影蝕刻設備被配置為基於來自該檢測裝置的輸出,將作為設置有第一標記的第一物體的原件與作為設置有第二標記的第二物體的基板對準。
  17. 根據請求項16所述的設備,其中,該微影蝕刻設備被形成為壓印設備。
  18. 一種物品製造方法,包括: 使用請求項17所定義的微影蝕刻設備將原件的圖案轉移到基板上;及 對該基板進行處理,以從經過該轉移的基板獲得物品。
TW112125384A 2022-07-21 2023-07-07 檢測裝置、微影蝕刻設備及物品製造方法 TW202411769A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022116574A JP2024014030A (ja) 2022-07-21 2022-07-21 検出装置、リソグラフィー装置および物品製造方法
JP2022-116574 2022-07-21

Publications (1)

Publication Number Publication Date
TW202411769A true TW202411769A (zh) 2024-03-16

Family

ID=89577325

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112125384A TW202411769A (zh) 2022-07-21 2023-07-07 檢測裝置、微影蝕刻設備及物品製造方法

Country Status (4)

Country Link
US (1) US20240027921A1 (zh)
JP (1) JP2024014030A (zh)
KR (1) KR20240013060A (zh)
TW (1) TW202411769A (zh)

Also Published As

Publication number Publication date
US20240027921A1 (en) 2024-01-25
JP2024014030A (ja) 2024-02-01
KR20240013060A (ko) 2024-01-30

Similar Documents

Publication Publication Date Title
CN107305322B (zh) 测量设备、压印装置和制造产品、光量确定及调整的方法
TWI651762B (zh) 對位裝置,對位方法,光蝕刻裝置,及物品製造方法
KR20130044149A (ko) 검출기, 임프린트 장치 및 물품 제조 방법
KR101573572B1 (ko) 임프린트 장치, 물품 제조 방법 및 패턴 전사 방법
JP7414576B2 (ja) 位置計測装置、重ね合わせ検査装置、位置計測方法、インプリント装置および物品の製造方法
JP7328806B2 (ja) 計測装置、リソグラフィ装置、および物品の製造方法
TW202411769A (zh) 檢測裝置、微影蝕刻設備及物品製造方法
KR102478974B1 (ko) 위치 검출 장치, 위치 검출 방법, 임프린트 장치 및 물품의 제조 방법
JP7510280B2 (ja) 検出器、インプリント装置および物品製造方法
US20240027926A1 (en) Detection device, lithography apparatus, and article manufacturing method
US12023850B2 (en) Position detection apparatus, imprint apparatus, and article manufacturing method
JP7550814B2 (ja) 検出装置、リソグラフィ装置、物品製造方法および検出システム
US20230294351A1 (en) Object alignment method, imprint method, article manufacturing method, detection apparatus, imprint apparatus, mold, and substrate
JP2023091485A (ja) 検出装置、リソグラフィ装置、および物品の製造方法
JP2024030557A (ja) 検出装置、リソグラフィー装置および物品製造方法
JP2024037437A (ja) マークの相対位置の計測方法、計測装置及び物品の製造方法
JP2022128225A (ja) 計測装置、リソグラフィ装置、および物品の製造方法
KR20220107951A (ko) 검출 장치, 리소그래피 장치 및 물품 제조 방법
JP2020038164A (ja) 位置検出装置、位置検出方法、型、インプリント装置および、物品の製造方法