JP6566618B2 - 金型の製造方法、光学部材の製造方法、および光学機器の製造方法 - Google Patents

金型の製造方法、光学部材の製造方法、および光学機器の製造方法 Download PDF

Info

Publication number
JP6566618B2
JP6566618B2 JP2014186855A JP2014186855A JP6566618B2 JP 6566618 B2 JP6566618 B2 JP 6566618B2 JP 2014186855 A JP2014186855 A JP 2014186855A JP 2014186855 A JP2014186855 A JP 2014186855A JP 6566618 B2 JP6566618 B2 JP 6566618B2
Authority
JP
Japan
Prior art keywords
angle
manufacturing
tool
inclination
inclined surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014186855A
Other languages
English (en)
Other versions
JP2016059968A (ja
Inventor
田中 真人
真人 田中
小嶋 誠
誠 小嶋
友直 中保
友直 中保
幸伸 大倉
幸伸 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014186855A priority Critical patent/JP6566618B2/ja
Priority to US14/850,849 priority patent/US10203437B2/en
Publication of JP2016059968A publication Critical patent/JP2016059968A/ja
Priority to US16/238,732 priority patent/US10942303B2/en
Application granted granted Critical
Publication of JP6566618B2 publication Critical patent/JP6566618B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1852Manufacturing methods using mechanical means, e.g. ruling with diamond tool, moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00269Fresnel lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00932Combined cutting and grinding thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Turning (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、カメラやビデオ等の光学機器に使用される回折光学素子または回折光学素子成形用金型を含む、同心円状の面を有する部材の製造方法、回折格子を有する光学部材、および光学素子に関するものである。
回折格子を有する光学部材、例えば回折光学素子は屈折光学素子と逆の分散特性を有すること、光学系がコンパクトになること等、レンズやプリズムの様な屈折光学素子には無い特徴を有することから、光学機器等の多くの光学系に用いられている。
回折格子を有する光学部材の製造方法として特許文献1が開示されている。詳しくは、切削すべき回折面と切削工具とを相対的に回転させると共に並進移動させながら回折面形状を製造する時、回折機能を有する斜面の長さよりも短い長さの横切れ刃を用いて回折機能を有する斜面を切削する。また、切削工具を、横切れ刃の長さ方向が斜面に対して30度以下になるように取り付け、斜面の低所から高所に向けて30度以下の方向に相対的に移動させて切削加工することが記載されている。
特許第3249081号公報
特許文献1の実施形態では、凹レンズと同様の特性を有する回折格子による光学部材、詳しくは回折面が内側を向き、回折面の傾きが外側の格子ほど大きい回折格子を有する光学部材について記載されている。特許文献1の方法を、凸レンズと同様の特性を有する回折格子(以降、凸格子と称する)による光学部材、例えばプラスチックレンズに適用する場合、次のような課題が有ることがわかった。ここで、凸格子による光学部材とは、回折面が外側を向き、回折面の傾きが外側の格子ほど大きい回折格子を有する光学部材のことである。
凸格子の回折面を低所から高所に向かって加工するためには、切削工具の先端はプラスチックレンズの外周端部から中心方向に向かいながら、外周端部から最も近い格子(以降、最外格子)における回折面の最下点まで切削工具を到達させる必要が有る。外周端部から最外格子までの面粗さを効率良く仕上げるためには、切削工具の横切れ刃と、回転軸と垂直な断面と、が成す隙間角を小さくし、かつ、送り速度を可能な限り速く設定しなければならない。しかし、隙間角が最外格子の回折面の傾きよりも小さいと、切削工具(横切れ刃の工具先端とは逆側)が、最外格子の回折面と干渉してしまう。これを避けるために、隙間角を大きくし、切削工具の送り速度を低く設定することも考えられる。しかし、加工能率が低下してしまうとともに隙間角を大きくすることで横切れ刃による切削面の押しつぶし効果(以降、バニシ効果)が薄れるため、面粗さが悪化してしまう場合も有った。
工具との干渉によって最外格子に形状不良が有ると、加工されたプラスチックレンズにおける光学性能が低下してしまう場合が有る。また、最外格子の形状不良、および外周端部から最外格子までの面粗さが悪化すると、光学部材の外観品質がばらついてしまい、外観品位が低下する場合が有る。
本発明は、上記課題に鑑み、所望の凸格子を有する部材の製造方法、光学部材および光学素子を提供することを目的とする。
本発明の金型の製造方法は、被加工物を回転させ、前記被加工物の外周端部から回転中心に向かって切削工具を移動させながら、同心円状の面を加工して金型を製造する金型の製造方法において、前記切削工具の送り方向と前記切削工具の横切れ刃がなす隙間角が一定の角度αとなるように前記切削工具を移動させて、傾斜角θとなる面を加工する第一工程と、前記第一工程の後、前記隙間角が一定の角度αとなるように前記切削工具を移動させて、傾斜角θとなる面を加工する第二工程と、前記第二工程の後、前記隙間角が一定の角度αとなるように前記切削工具を移動させて、最大の傾斜角φを有する面を加工する第三工程と、を有し、前記隙間角α、αおよびαは、0度より大きく、4度以下であって、前記傾斜角θ、θおよびφは、θ<θ<φの関係を有し、前記傾斜角θは、前記隙間角αより小さいことを特徴とする。
また、本発明の光学部材の製造方法は、被加工物を回転させ、前記被加工物の外周端部から回転中心に向かって切削工具を移動させながら、同心円状の面を加工して光学部材を製造する光学部材の製造方法において、前記切削工具の送り方向と前記切削工具の横切れ刃がなす隙間角が一定の角度α となるように前記切削工具を移動させて、傾斜角θ となる面を加工する第一工程と、前記第一工程の後、前記隙間角が一定の角度α となるように前記切削工具を移動させて、傾斜角θとなる面を加工する第二工程と、前記第二工程の後、前記隙間角が一定の角度α となるように前記切削工具を移動させて、最大の傾斜角φを有する面を加工する第三工程と、を有し、前記隙間角α 、α およびα は、0度より大きく、4度以下であって、前記傾斜角θ 、θおよびφは、θ <θ<φの関係を有し、前記傾斜角θは、前記隙間角α より小さいことを特徴とする。
本発明の光学部材の製造方法は、上記の金型の製造方法によって製造された金型によって成形された部材を含むことを特徴とする。
本発明の光学部材の製造方法は、上記の金型の製造方法によって製造された金型によって成形された部材と、前記部材によって成形された部材とを含むことを特徴とする。また、本発明の光学機器の製造方法は、上記の光学部材の製造方法によって製造された光学部材を用いて製造されることを特徴とする。
傾きが最大となる面と切削工具の干渉が回避でき、かつ、傾きが最大となる面よりも外側の面粗さの悪化を抑制できる。
本発明の部材の製造方法の模式図 (a)平面旋削加工の模式図、(b)回折光学素子成形用金型の旋削加工の模式図 本発明の回折格子を有する光学部材の一例 (a)〜(d)本発明の回折格子を有する光学部材の他の例 (a)比較例1における製造方法の模式図、(b)比較例2における製造方法の模式図 実施例2と比較例3における共通の製造方法の模式図 実施例1における面粗さのグラフ 実施例2における面粗さのグラフ
(第一の実施形態)
本発明の部材の製造方法の一例である第一の実施形態について、図面を用いて説明する。
図2(a)は平面旋削加工の模式図である。300は被加工物、1は切削工具、2は工具チップ、3は工具すくい面、fは切削工具の送り方向である。まず、不図示の超精密加工機の回転主軸に円盤状の被加工物300を取り付ける。そして光軸O周りに高速回転する被加工物300に対して切削工具1を被加工物300の外周端部から回転中心に向かって切削工具を移動させながら、被加工物300の表面に凸格子を加工し、光学部材を製造する。なお、紙面垂直方向を切削方向とし、紙面左右方向を送り方向とする。
部材の例としては、ガラスレンズ、プラスチックレンズ、ガラス表面にプラスチック層を持つ複合レンズ、またはSUS系母材の表面にNi系やCu系の金属メッキが施されたレンズ成型用金型が考えられる。
また、工具チップ2の材料の例としては、ダイヤモンドやcBNなどの高硬度材料が有り、特に単結晶ダイヤモンドは極めて鋭利な切れ刃稜線を形成できるので、工具チップ2の材料として好ましい。
図1は、図2(a)で説明した被加工物300の、加工途中の加工面と、その加工面を加工する際の工具の動きを説明する図である。図1(a)は、加工途中の被加工物300の上面図である。図1(b)は、図1(a)における、B領域のA−A断面と工具の動きを示した図である。具体的には、図1(a)は、例えば、後述する図3で示す光学部材の途中まで加工が進んだ状態を示している。つまり加工完了すると、図3で示すような光学部材が製造される。図1(b)は図3で示す光学部材のDの部分の断面に対応する図である。
6は、最も外側の回折格子となる格子であり、5は、最も外側の回折面となる面である。格子6および面5は、同心円状に形成される。φは、面5の傾斜角(面5と、光軸と垂直な面と、のなす角度)であり、面5より後に加工される面5より内側(紙面左側)の回折面となる面と比べて最も大きい傾斜角(最大傾斜角)を有している。以降、この最大傾斜角を有する面5を最大傾斜面と称する。
10は、外周面でありその傾斜角θ(外周面と、光軸と垂直な面と、のなす角度)は0度であることが好ましいが、後述するφ>θ>θの関係を有していれば0度に限るものではない。傾斜角θが0度である場合をここでは平面と呼ぶ。
8は、最大傾斜面5を有する格子6に隣接して形成される凸部7の傾斜面である。傾斜面8の傾斜角θ(傾斜面8と、光軸と垂直な面と、のなす角度)は、縦壁(つなぐ面)9を挟んで隣接する最大傾斜面5の傾斜角φより小さい。従来は、少なくとも、外周面10の最大傾斜面5の外側に隣接する部分は平面となっていたが、本発明は、外周面10と最大傾斜面5との間に、最大傾斜面5の傾斜角φより小さい傾斜面をもつ凸部7を形成することを特徴とするものである。つまり、傾斜角θの外周面10と傾斜角φの最大傾斜面5との間に、φ>θ>θの関係を有する、傾斜角θの斜面を持つ凸部7を形成する。これにより、最大傾斜回折面5への工具の干渉を防ぐことができる。本実施形態では、被加工物の外周端部まで外周面10である場合を示したが、切削工具の干渉が心配される、少なくとも凸部7に隣接する部分が外周面10であれば本発明の効果は発揮される。切削工具の干渉の心配がない外周面10のさらに外周部分には、凸形状部があっても凹形状部があっても傾斜面があっても何ら問題はない。
次に外周面、傾斜面、最大傾斜面の製造方法について説明する。
(第一工程)
まず外周面10を加工する。外周面10の加工をここでは第一工程と称することにする。
2aは外周面10を切削加工する第一工程における工具チップ先端部の傾きを示している。3は工具すくい面、4は切削工具の横切れ刃である。なお、工具チップ2の先端部には工具送り方向に2つ以上の切れ刃が有り、最も工具先端に近い切れ刃が横切れ刃4である。また、横切れ刃4の長さは最大傾斜面5の長さよりも短い。
加工条件を設定するに当たり、面粗さがPV20nmを超えると、光学性能の低下が発生し易くなるため、面粗さはPV20nm以下が求められる。また、面粗さのばらつきが±5nmを超えると外観品位の低下が発生し易くなる。そのため、上記2点を踏まえた上で加工条件を設定する必要が有る。下記計算式は剣先型切削工具を用いた旋削加工における理論面粗さhの計算式であり、Pは被加工物が1回転する時に工具が送り方向に進む距離(以降、工具の送りピッチ)、αは隙間角である。下記計算式を用い、理論面粗さを工具の送りピッチPと隙間角αから設定する。
h=P×tanα
第一工程は外周面10の加工である。まず、高速回転する被加工物300の外周端部から被加工物300に工具チップ先端部2aを進入させる。そして、外周面10の加工における工具送り方向(進行方向)fと横切れ刃4が成す隙間角が一定の角度αとなるように、凸部7の傾斜面8の最下点Sまで切削加工を行う。旋削加工における理論面粗さは、幾何学的に隙間角と工具の送り速度で決まるが、外周面10の面粗さを効率的に仕上げるためには、隙間角αはなるべく小さくした上で、工具の送り速度をできるだけ速く設定するのが良い。
被加工物300がガラスレンズの場合、隙間角αを小さくすることで横切れ刃4における切り取り厚さを延性モード切削が可能なサブミクロンレベルまで効率的に薄く出来る。一方、部材としてプラスチックレンズ、ガラス表面にプラスチック層を持つ複合レンズ、またはSUS系母材の表面にNi系やCu系の金属メッキが施されたレンズ成形用金型を製造することが考えられる。この場合、隙間角αを小さくすることで横切れ刃4でのバニシ効果が得られやすくなる。そのため、隙間角αを小さくすることは、加工能率上の理由に加えて、各種被削材料を安定して切削加工する上でも重要である。具体的には、隙間角αは0度<α≦4度であって、次工程の傾斜面8にぶつからないように、傾斜面8の傾きθよりも大きな角度に設定する。
(第二工程)
外周面10を加工した後、続けて傾斜面8を加工する。傾斜面8の加工をここでは第二工程と称することにする。2bは傾斜面8を切削加工する第二工程における工具チップ先端部の傾きを示している。傾斜面8の傾きθは、外周面10を加工する際の工具の隙間角α未満の傾きであれば任意に設定することができる。隙間角α未満の傾きθを有する傾斜面8の低所から高所に向けて、工具送り方向fと横切れ刃4が成す隙間角が一定の角度αとなるように切削工具を移動させて切削加工を行う。隙間角αは、隙間角αとおなじように、隙間角αを小さくすることで横切れ刃4における切り取り厚さを延性モード切削が可能なサブミクロンレベルまで効率的に薄く出来たり、横切れ刃4でのバニシ効果が得られやすくなる。そのため、隙間角αを小さくすることは、加工能率上の理由に加えて、各種被削材料を安定して切削加工する上でも重要である。具体的には、隙間角αは0度<α≦4度に設定する。つまり、隙間角αは、0度より大きく、4度以下であることが好ましい。また、傾斜面8の傾きθは第一工程における隙間角α未満とするため、横切れ刃4の工具先端とは逆側が、傾斜面8と干渉することは無く、傾斜面8の最下点において、隙間角αは隙間角αよりもθだけ小さくなっている。そのため、各種被削材料を第一工程よりも安定した加工ができる。第二工程の送り速度と第一工程の送り速度が同じ場合はより面粗さが向上する。ただし、外周面10と傾斜面8の理論面粗さが異なるため、そのばらつきが±5nmの範囲内に有ることが求められる。また、外周面10と傾斜面8の面粗さを同じにする必要が有れば、切削工具を紙面垂直な回転軸周りで時計回りにθだけ回転させて隙間角αと隙間角αを等しい角度に設定した後に、同じ送り速度で傾斜面8の加工を行えば良い。また、第二工程の送り速度を速くすることで外周面10と傾斜面8の面粗さを同じにしても良い。
(第三工程)
傾斜面8を加工した後、傾斜面8と最大傾斜面5の最下点Sとをつなぐ縦壁9を加工し、続けて最大傾斜面5を加工する。多数の回折面を形成する面の中で最も外側に位置し、最大の傾斜角を有する最大傾斜面5の加工をここでは第三工程と称することにする。2cは最大傾斜面5を切削加工する第三工程における工具チップ先端部の傾きを示している。
最大傾斜面5の低所から高所に向けて、工具送り方向fと横切れ刃4が成す隙間角が一定の角度αとなるように切削工具を移動させて切削加工を行う。隙間角αは、隙間角α、隙間角αと同じように、隙間角αを小さくすることで横切れ刃4における切り取り厚さを延性モード切削が可能なサブミクロンレベルまで効率的に薄く出来たり、横切れ刃4でのバニシ効果が得られやすくなる。そのため、隙間角αを小さくすることは、加工能率上の理由に加えて、各種被削材料を安定して切削加工する上でも重要である。具体的には、隙間角αは0度<α≦4度に設定する。つまり、隙間角αは、0度より大きく、4度以下とすることが好ましい。この時、隙間角αと工具送り速度は、第一工程と第二工程と同じ、もしくは同程度に設定し、加工を行なうことが好ましい。そうすることで、外周面10、傾斜面8、最大傾斜面5の面粗さが同じ、もしくは同程度となるため、部材の外観品質が部位によってばらつくことが無くなり、外観品位の向上が期待できる。また、最大傾斜面5の最下点において、隙間角αが隙間角αおよび隙間角αと同じ、もしくは同程度となるように、傾斜面8の最高点と最大傾斜面5の最下点をつなぐ縦壁9を加工する前に、切削工具を紙面垂直な回転軸周りで時計回りに回転させると良い。そうすることで、最大傾斜面5の傾きΦの大きさによっては、第二工程の工具チップ先端2bの姿勢のままで縦壁9を加工した時、横切れ刃4の工具先端とは逆側が最大傾斜面5と干渉してしまうのを防ぐことが出来る。
上記実施形態では、平面ベース(多数の回折面の最下点をつなぐ面が平面)の光学部材の製造方法の例を示した。しかし、図2(b)に示すような凹面の曲面ベース(多数の回折面の最下点をつなぐ面が凹面)の光学部材であっても、加工すべき形状の接線方向に工具送り方向を設定することで、本発明が適用可能であることは明らかである。また、凸面等の曲面ベースの光学部材であっても、加工すべき形状の接線方向に工具送り方向を設定することで、本発明が適用可能であることは明らかである。
本実施形態で説明した部材の製造方法によって製造された部材に樹脂を流し込むことで成形された部材も、光学素子として用いることができる。
さらに、第1の実施形態で説明した部材の製造方法によって製造された部材に樹脂を流し込むことで成形された部材と、この部材によってさらに樹脂を流し込むことで成形された部材とを含む部材も、一つの光学素子として用いることができる。
(第二の実施形態)
本発明の光学部材の一例について、図面を用いて説明する。
図3は本発明の光学部材の一例を示した図である。図3(a)は上面図であり、図3(b)は図3(a)のC−C断面図である。図3(c)は、図3(b)のD部の拡大図である。35は最大傾斜回折面、36は最大傾斜回折面35を有する回折格子である。回折格子は同心円状に形成される。図3においては、簡略化のために回折格子の数を少なく記載しているが、多数の回折格子を有していてもよい。37は最大傾斜回折面35を有する回折格子の外側に隣接する、光軸を通る光軸と平行な面で切断してえられる断面形状が三角形である凸部である。38は最大傾斜回折面35よりも傾斜角が小さい傾斜面、310は凸部37よりも外側の外周面、330は光学部材である。本発明の光学部材としては、ガラスレンズ、プラスチックレンズ、ガラス表面にプラスチック層を持つ複合レンズ、またはSUS系母材の表面にNi系やCu系の金属メッキが施されたレンズ成型用金型が考えられる。また、レンズ成型用金型を転写して成形された部材をさらに転写して成形された光学部材も含む。
Φは最大傾斜回折面35の傾き(傾斜角)であり、回折面35と、光軸と垂直な面と、のなす角度である。θは傾斜面38の傾き(傾斜角)(傾斜面38と、光軸と垂直な面と、のなす角度)である。θ(不図示)は外周面の傾き(外周面310と、光軸と垂直な面と、のなす角度)であり、θより小さく、θ(不図示)は0度であってもよい。
本実施形態の特徴は、最大傾斜回折面35の傾斜角Φよりも小さい傾斜角θを有する傾斜面38を有する凸部37を、最大傾斜回折面35を有する回折格子36の外側に、隣接して有していることである。凸部の断面形状(光軸を通る光軸と平行な面で切断してえられる断面形状)が、本実施形態においては三角形である例を示したが、これに限る必要はない。
図4(a)〜(d)は本発明の回折格子を有する光学部材の他の例を示したものである。簡略化のために光学部材の一部の断面形状を示す。図3と同様の部分には同じ符号を付し説明を省略する。
図4(a)において、37aは、凸部の断面形状(光軸を通る光軸と平行な面で切断してえられる断面形状)が、四角形である例を示したものである。38aは外周面310に繋がる凸部37aの傾斜面、θは傾斜面38aの傾きである。
図4(b)において、37bは、凸部の断面形状(光軸を通る光軸と平行な面で切断してえられる断面形状)が、四角形である例を示したものである。38b、38bは凸部37bの傾斜面であり、傾斜角がそれぞれ異なる。38bは、外周面310に繋がる傾斜面であり、θは傾斜面38bの傾斜角である。
図4(c)において、37cは凸部の断面形状(光軸を通る光軸と平行な面で切断してえられる断面形状)が、五角形である例を示したものである。38c、38c、38cは凸部37cの傾斜面であり、傾斜角がそれぞれ異なる。38cは、外周面310に繋がる傾斜面であり、θは傾斜面38cの傾きである。
図4(d)において、37dは凸部の断面形状(光軸を通る光軸と平行な面で切断してえられる断面形状)の一部が、曲線である例を示したものである。38dは外周面310に繋が曲面である。311は曲面38dの最下点における接線、θは接線311の傾きである。
図4(a)〜(c)に示すように、凸部が多角形の場合、外周面310に繋がる傾斜面(38a、38b、38c)の傾き(θ、θ、θ)が最大傾斜回折面35の傾きΦよりも小さければ、本発明の目的を達成できる。さらには、外周部310に繋がる傾斜面(38a、38b、38c)と凸部(37a、37b、37c)の最高点の間に有る傾斜面の傾きも最大傾斜回折面35の傾きΦよりも小さいことがより好ましい。
また、図4(d)に示すように、凸部が外周面310に繋がる凸状の曲面38dを持つ場合、曲面38dの最下点における接線θの傾きが最大傾斜回折面35の傾きΦよりも小さければ、本発明の目的を達成できる。また、曲面38dは凹状の曲面、または凹と凸が混在する曲面であっても良い。
本実施形態の光学部材は、第1の実施形態で説明した部材の製造方法によって製造される。また、本実施形態の光学部材は、第1の実施形態で説明した部材の製造方法によって製造された部材に樹脂を流し込むことで成形された部材に、さらに樹脂を流し込んで成形された部材であってもよい。
次に、本発明の実施例について説明する。
(実施例1)
実施例1においては、第一の実施形態で示した部材の製造方法によって、凹面ベース形状に凸格子を有する回折光学素子成形用金型を製造した例について、比較例を交えて説明する。
図2(b)は回折光学素子成形用金型の旋削加工の模式図である。被加工物300には凹面ベース形状をしたSUS系母材の表面にNiPメッキを施したものを用いた。工具チップ2には単結晶ダイヤモンドを用いた。被加工物300は、不図示の超精密加工機の回転主軸に取り付けた。切削工具1は、すくい面3に対して平行に存在する直行2軸での移動と、すくい面3に対して垂直な回転軸での回転が可能となるように、不図示の超精密加工機に取り付けた。その後、被加工物300を高速回転させると共に、切削工具1を被加工物300の外側から中心方向へ送りながら被加工物300の表面に凸格子を加工し、部材(金型)を製造した。
この時、図2(b)の実線と一点鎖線で示すように、切削工具1を狙いの加工形状に倣った工具の送り方向fに送りながら、前記回転軸を使って適宜回転させた。これにより、切削工具1は加工開始から終了まで工具の送り方向fに対して一定の傾きを保ち続けることができる。実施例1と後述の実施例2に示す全ての加工は、前述の工具姿勢制御を用いた。
表1に加工結果を示す。
Figure 0006566618
表1において、Φは最大傾斜面5の傾き、θは凸部7の傾斜面の傾きである。αは外周面10の加工における隙間角、αは凸部7の傾斜面8の加工における隙間角、αは最大傾斜面5の加工における隙間角である。Pは外周面10において被加工物が1回転する時に工具が送り方向に進む距離(以降、工具の送りピッチ)、Pは凸部の傾斜面8における工具の送りピッチ、Pは最大傾斜面5における工具の送りピッチである。
以下に各加工内容について説明する。
先ず、実施例1について図1を用いて説明する。本実施例は、凹面ベースで実施したが、簡略化のために平面ベース形状である図1を用いて説明する。今回加工対象となった回折光学素子成形用金型において、最大傾斜面5の傾きΦが5度だったことから、最大傾斜格子6の外側に隣接する三角形の凸部7と各種加工条件の詳細を設定した。
加工条件を設定するに当たり、特に回折面を形成するための面(例えば最大傾斜面5)の面粗さがPV20nmを超えると、光学性能の低下が発生し易くなるため、面粗さはPV20nm以下が求められる。また、縦壁9を除く部位の面粗さのばらつきが±5nmを超えると外観品位の低下が発生し易くなる。そのため、上記2点を踏まえた上で加工条件を設定した。下記計算式は剣先型切削工具を用いた旋削加工における理論面粗さhの計算式であり、pは工具の送りピッチ、αは隙間角である。下記計算式を用い、理論面粗さがPV15nm程度となるように工具の送りピッチPと隙間角αを設定した。
h=P×tanα
実施例1では、工具チップ先端2aは隙間角αを一定に保ちながら凸部7の傾斜面8の最下点まで達した後、隙間角2を一定に保ちながら傾斜面8を、隙間角αを一定に保ちながら最大傾斜面5を順に加工した。
この時、光学部材30の回転数を3000min−1とし、外周面10の加工では隙間角αをバニシ効果が期待できる4度、工具の送り速度を0.6mm/min(P=200nm)とした。凸部7の傾斜面8の傾きθを0.5度とし、傾斜面8の加工における隙間角αと最大傾斜面5の加工における隙間角αを3.5度、傾斜面8と最大傾斜面5の加工における工具の送り速度を0.75mm/min(P=P=250nm)とした。また、使用した切削工具の横切れ刃4の刃幅は3μm、工具先端の刃先角度は80度とした。なお、後述する比較例1、比較例2においても、縦壁9以外の理論面粗さ、最大傾斜面5の傾きΦ、光学部材30の回転数、横切れ刃4の刃幅、工具先端の刃先角度は共通である。
次に、比較例1について図5(a)を用いて説明する。比較例1においても実施例1と同様、凹面ベースで実施したが、簡略化のために図5(a)は、平面ベース形状で示している。比較例1では、工具チップ先端2aは隙間角αを一定に保ちながら最大傾斜面5の最下点まで達した後、隙間角αを一定に保ちながら最大傾斜面5を加工した。
この時、外周面10の加工における隙間角αを8.5度、工具の送り速度を工具の送り速度を0.3mm/min(P=100nm)とした。また、最大傾斜面5の加工における隙間角αを3.5度、工具の送り速度を0.75mm/min(P=250nm)とした。
次に、比較例2について図5(b)を用いて説明する。比較例2においても実施例1と同様、凹面ベースで実施したが、簡略化のために図5(b)は、平面ベース形状で示している。比較例2では、工具チップ先端2aは最大傾斜面5の傾きΦよりも小さい傾き隙間角αを一定に保ちながら、最大傾斜面5の最下点に向けて加工を進めた。しかし、そのまま最大傾斜面5の最下点まで到達すると、横切れ刃4の工具先端とは逆側が最大傾斜面5と干渉してしまう。そのため、外周面10の左部エリア12において、切削工具を紙面垂直な回転軸周りに回転させながら最大傾斜面5の最下点まで加工した。その後、隙間角αを一定に保ちながら最大傾斜面5を加工した。
この時、外周面10の加工では隙間角αをバニシ効果が期待できる4度、工具の送り速度を0.6mm/min(P=200nm)とし、外周面10の左部エリア12では、隙間角αを徐々に大きくした。そして最大傾斜面5の最下点に到達する時に8.5度となるようにした。なお、外周面10の左部エリア12における工具の送り速度は、隙間角の増加に合わせて理論面粗さがPV15nm程度となるように徐々に遅くし、最大傾斜面5の最下点に到達する時に0.3mm/min(P=100nm)となるようにした。最大傾斜面5の加工における隙間角αを3.5度、工具の送り速度を0.75mm/min(P=250nm)とした。
表1の加工結果において、外周面10、凸部7の傾斜面8(比較例1、2は無し)、最大傾斜面5の面粗さがPV20nm以下であり、かつ測定部位の面粗さのばらつきが±5nm以下の場合を○とした。少なくとも一方が上記範囲外になった場合を×とした。面粗さは原子間力顕微鏡(AFM)で測定した。
図7は実施例1、比較例1、比較例2の面粗さ測定結果である。実施例1では、3ヶ所の面粗さはいずれもPV20nm以下であり、ばらつき幅も±5nm以下であった。一方、比較例1では、最大傾斜面5の面粗さはPV20nm以下であったが、外周面10の面粗さがPV20nmを超えてしまった。また、比較例2では、最大傾斜面5の面粗さはPV20nm以下であったが、外周面10の左部エリア12で面粗さがPV20nmを超えてしまった。比較例2では、外周面10の左部エリア12以外ではPV15nm程度の面粗さであったが、左部エリア12では隙間角αを徐々に大きくしてバニシ効果が薄れてしまった影響で面粗さが悪化したと考えられる。上記結果から、本発明が効果的であることが確認できた。
(実施例2)
本発明の他の実施例である実施例2について説明する。実施例2においても、第一の実施形態で示した回折格子を有する光学部材の製造方法によって、凹面ベース形状に凸格子を有する回折光学素子成形用金型を製造した。なお、加工に用いた金型、工具チップ材料、加工中の工具姿勢制御、理論面粗さの考え方は実施例1と共通である。
表2に加工結果を示す。
Figure 0006566618
表2において、Φは最大傾斜面5の傾き、θは凸部7の傾斜面の傾きである。αは外周面10の加工における隙間角、αは凸部7の傾斜面8の加工における隙間角、αは最大傾斜面5の加工における隙間角である。Pは外周面10における工具の送りピッチ、Pは凸部の傾斜面8における工具の送りピッチ、Pは最大傾斜面5における工具の送りピッチである。以下に各加工内容について説明する。
実施例2、比較例3について図6を用いて説明する。実施例2、比較例3は、凹面ベースで実施したが、簡略化のために、図6は、平面ベース形状で示している。
いずれの加工においても、工具チップ先端2aは隙間角αを一定に保ちながら凸部7の傾斜面8の最下点まで加工を進めた後、1点鎖線で示す工具チップ2a’から工具チップ2bの姿勢まで、切削工具を紙面垂直な回転軸周りに回転させた。その後、隙間角αを一定に保ちながら傾斜面8を、隙間角αを一定に保ちながら最大傾斜面5を順に加工した。この時、最大傾斜回折面5の傾きΦは5度、光学部材30の回転数を3000min−1、使用した切削工具の横切れ刃4の刃幅は3μm、工具先端の刃先角度は70度とした。また、前述の計算式に基づき、理論面粗さがPV15nm程度となるように工具の送りピッチPと隙間角αを設定した。
実施例2では、外周面10の加工では隙間角αをバニシ効果が期待できる4度、工具の送り速度を0.6mm/min(P=200nm)とした。凸部7の傾斜面8の傾きθを3.9度とし、傾斜面8の加工における隙間角αと最大傾斜面5の加工における隙間角αを4度、傾斜面8と最大傾斜面5の加工における工具の送り速度を0.6mm/min(P=P=200nm)とした。
比較例3では、外周面10の加工では隙間角αを5度、工具の送り速度を0.51mm/min(P=170nm)とした。凸部7の傾斜面8の傾きθを4.9度とし、傾斜面8の加工における隙間角αと最大傾斜面5の加工における隙間角αを5度、傾斜面8と最大傾斜面5の加工における工具の送り速度を0.51mm/min(P=P=170nm)とした。
表2の加工結果において、外周面10、凸部7の傾斜面8、最大傾斜面5の面粗さがPV20nm以下であり、かつ測定部位の面粗さのばらつきが±5nm以下の場合を○とした。一方、少なくとも一方が上記範囲外になった場合を×とした。面粗さは原子間力顕微鏡(AFM)で測定した。
図8は実施例2、比較例3の面粗さ測定結果である。実施例2では、3ヶ所の面粗さはいずれもPV20nm以下であり、ばらつき幅も±5nm以下であった。一方、比較例3では、3ヶ所のいずれもPV20nmを超えてしまった。比較例3では、凸部7の傾斜面8の傾きθが4.9度であり、外周面10の加工において、隙間角αを4.9度を超える値に設定せざるを得なかったために、面粗さがPV20nmを超えてしまったと考えられる。また、隙間角αに倣う様に隙間角αおよび隙間角αも決定されるため、凸部7の傾斜面8と最大傾斜面5の面粗さも同様の結果となってしまったと考えられる。上記結果から、凸部7の傾斜面8の傾きθは0<θ≦4度とすることが良いことが分かった。
1 切削工具
2 工具チップ
3 工具すくい面
4 横切れ刃
5 最大傾斜面
6 最大傾斜格子
10 外周面
30 部材
α 外周面10加工時の隙間角
α 傾斜面8加工時の隙間角
α 最大傾斜面5加工時の隙間角
Φ 最大傾斜面5の傾き
θ 傾斜面8の傾き

Claims (9)

  1. 被加工物を回転させ、前記被加工物の外周端部から回転中心に向かって切削工具を移動させながら、同心円状の面を加工して金型を製造する金型の製造方法において、前記切削工具の送り方向と前記切削工具の横切れ刃がなす隙間角が一定の角度αとなるように前記切削工具を移動させて、傾斜角θとなる面を加工する第一工程と、前記第一工程の後、
    前記隙間角が一定の角度αとなるように前記切削工具を移動させて、傾斜角θとなる面を加工する第二工程と、
    前記第二工程の後、
    前記隙間角が一定の角度αとなるように前記切削工具を移動させて、最大の傾斜角φを有する面を加工する第三工程と、を有し、
    前記隙間角α、αおよびαは、0度より大きく、4度以下であって、前記傾斜角θ、θおよびφは、
    θ<θ<φ
    の関係を有し、
    前記傾斜角θは、前記隙間角αより小さいことを特徴とする金型の製造方法。
  2. 前記傾斜角θは、光軸と垂直な面と、のなす角度が0度であることを特徴とする請求項1記載の金型の製造方法。
  3. 前記隙間角α、前記隙間角αおよび前記隙間角αは、等しい角度となるように設定されることを特徴とする請求項1または2記載の金型の製造方法。
  4. 被加工物を回転させ、前記被加工物の外周端部から回転中心に向かって切削工具を移動させながら、同心円状の面を加工して光学部材を製造する光学部材の製造方法において、前記切削工具の送り方向と前記切削工具の横切れ刃がなす隙間角が一定の角度αとなるように前記切削工具を移動させて、傾斜角θとなる面を加工する第一工程と、前記第一工程の後、
    前記隙間角が一定の角度αとなるように前記切削工具を移動させて、傾斜角θとなる面を加工する第二工程と、
    前記第二工程の後、
    前記隙間角が一定の角度αとなるように前記切削工具を移動させて、最大の傾斜角φを有する面を加工する第三工程と、を有し、
    前記隙間角α、αおよびαは、0度より大きく、4度以下であって、前記傾斜角θ、θおよびφは、
    θ<θ<φ
    の関係を有し、
    前記傾斜角θは、前記隙間角αより小さいことを特徴とする光学部材の製造方法。
  5. 前記傾斜角θは、光軸と垂直な面と、のなす角度が0度であることを特徴とする請求項4記載の光学部材の製造方法。
  6. 前記隙間角α、前記隙間角αおよび前記隙間角αは、等しい角度となるように設定されることを特徴とする請求項4または5記載の光学部材の製造方法。
  7. 請求項1乃至3いずれか一項記載の金型の製造方法によって製造された金型によって成形された部材を含むことを特徴とする光学部材の製造方法。
  8. 請求項1乃至3いずれか一項記載の金型の製造方法によって製造された金型によって成形された部材と、前記部材によって成形された部材とを含むことを特徴とする光学部材の製造方法。
  9. 請求項乃至いずれか一項記載の光学部材の製造方法によって製造された光学部材を用いて製造されることを特徴とする光学機器の製造方法
JP2014186855A 2014-09-12 2014-09-12 金型の製造方法、光学部材の製造方法、および光学機器の製造方法 Active JP6566618B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014186855A JP6566618B2 (ja) 2014-09-12 2014-09-12 金型の製造方法、光学部材の製造方法、および光学機器の製造方法
US14/850,849 US10203437B2 (en) 2014-09-12 2015-09-10 Method of manufacturing a member, optical member and optical element
US16/238,732 US10942303B2 (en) 2014-09-12 2019-01-03 Method of manufacturing a member, optical member and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014186855A JP6566618B2 (ja) 2014-09-12 2014-09-12 金型の製造方法、光学部材の製造方法、および光学機器の製造方法

Publications (2)

Publication Number Publication Date
JP2016059968A JP2016059968A (ja) 2016-04-25
JP6566618B2 true JP6566618B2 (ja) 2019-08-28

Family

ID=55454563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014186855A Active JP6566618B2 (ja) 2014-09-12 2014-09-12 金型の製造方法、光学部材の製造方法、および光学機器の製造方法

Country Status (2)

Country Link
US (2) US10203437B2 (ja)
JP (1) JP6566618B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4046784B1 (fr) * 2021-02-23 2024-08-21 Optinvent Procede de fabrication d'un ensemble de microstructures de guide optique

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2831394A (en) * 1952-08-22 1958-04-22 Elastic Stop Nut Corp Catadioptric lenses
US3020395A (en) * 1957-05-27 1962-02-06 Phoenix Glass Co Lighting device
JP3249081B2 (ja) 1997-12-29 2002-01-21 キヤノン株式会社 回折面形状及び光学素子の製造方法
JP2002071923A (ja) * 2000-08-29 2002-03-12 Canon Inc 回折光学素子の製造方法及び回折光学素子、並びに該回折光学素子を有する光学系、該光学系を有する撮影装置と観察装置
JP2004145906A (ja) * 2001-10-02 2004-05-20 Matsushita Electric Ind Co Ltd 光ヘッド装置及びそれを用いた光情報装置
JP2003240931A (ja) * 2001-12-13 2003-08-27 Canon Inc 回折光学素子及びその製造方法
JPWO2005006322A1 (ja) * 2003-07-11 2006-08-24 コニカミノルタオプト株式会社 光ピックアップ装置、光ピックアップ装置に用いられる光学素子、及び光学素子の製造方法
JPWO2005117001A1 (ja) * 2004-05-27 2008-04-03 コニカミノルタオプト株式会社 対物光学系、光ピックアップ装置、及び光ディスクドライブ装置
JP4887025B2 (ja) * 2005-10-27 2012-02-29 パナソニック株式会社 型の製造方法および光学素子の製造方法
JP2008126391A (ja) * 2006-11-24 2008-06-05 Towa Corp 構造物の加工方法及び装置
US20100002302A1 (en) * 2008-07-01 2010-01-07 Jacques Duparre Method and apparatus for chief ray angle correction using a diffractive lens
JP5731811B2 (ja) * 2010-12-15 2015-06-10 キヤノン株式会社 ブレーズ型回折格子の製造方法及びそのための型の製造方法
JP6032869B2 (ja) * 2011-03-10 2016-11-30 キヤノン株式会社 ブレーズ型回折格子
JP2013033222A (ja) * 2011-07-05 2013-02-14 Panasonic Corp 回折光学素子及びそれを備えた撮像装置
EP2662205B1 (en) * 2012-05-11 2020-06-24 Canon Kabushiki Kaisha Laminated diffraction optical element and production method thereof

Also Published As

Publication number Publication date
US10942303B2 (en) 2021-03-09
US20160077250A1 (en) 2016-03-17
JP2016059968A (ja) 2016-04-25
US20190154890A1 (en) 2019-05-23
US10203437B2 (en) 2019-02-12

Similar Documents

Publication Publication Date Title
WO2016035490A1 (ja) スローアウェイチップ
US10168457B2 (en) Manufacturing method of diffraction grating
SE1250773A1 (sv) Frässkär med primär och sekundär släppningsyta samt periferisk, smal spånyta
JP2014050948A (ja) ミーリング工具及び切削インサート
WO2016152396A1 (ja) 切削工具、スカイビング加工装置および方法
JP2010284793A (ja) 帯鋸刃
JPWO2018003272A1 (ja) 切削工具
JP6006959B2 (ja) 凹部の形成方法、角隅部の仕上げ加工方法および金型の製造方法
JP6566618B2 (ja) 金型の製造方法、光学部材の製造方法、および光学機器の製造方法
CN110090967B (zh) 基于多自由度振动的切削成形方法
JP6635501B2 (ja) 脆性材料の回転切削用工具および回転切削方法
JP4339573B2 (ja) 単結晶ダイヤモンドを用いたエンドミル
WO2011145494A1 (ja) 切削工具
JP2008183657A (ja) 単結晶ダイヤモンド多刃工具及びその製造方法
WO2017213026A1 (ja) 微細加工方法および金型の製造方法および微細加工装置
WO2019151169A1 (ja) エンドミルおよび加工方法
JP2017217720A5 (ja)
JP4670249B2 (ja) 加工装置、加工方法及びダイヤモンド工具
US20110265616A1 (en) Ultra-pure, single-crystal sic cutting tool for ultra-precision machining
JP4587172B2 (ja) 回折光学素子、回折光学素子の製造方法、及び回折光学素子成形用金型の製造方法
JP2008052049A (ja) 部材および光学素子の製造方法
JP2007319968A (ja) 総形フライス
JP2008229764A (ja) 回転工具及び加工方法
JP2019181644A (ja) ラジアスエンドミル及びこれを用いた工作機械、並びにラジアスエンドミルの設計方法及び加工方法
JP2005342805A (ja) ラジアスエンドミル及びそれを用いた切削加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190730

R151 Written notification of patent or utility model registration

Ref document number: 6566618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151