WO2016152396A1 - 切削工具、スカイビング加工装置および方法 - Google Patents

切削工具、スカイビング加工装置および方法 Download PDF

Info

Publication number
WO2016152396A1
WO2016152396A1 PCT/JP2016/056107 JP2016056107W WO2016152396A1 WO 2016152396 A1 WO2016152396 A1 WO 2016152396A1 JP 2016056107 W JP2016056107 W JP 2016056107W WO 2016152396 A1 WO2016152396 A1 WO 2016152396A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
cutting
cutting tool
cutting edge
skiving
Prior art date
Application number
PCT/JP2016/056107
Other languages
English (en)
French (fr)
Inventor
好朗 小出
将貴 木村
Original Assignee
アイシン機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン機工株式会社 filed Critical アイシン機工株式会社
Priority to US15/558,887 priority Critical patent/US10279395B2/en
Priority to CN201680017842.5A priority patent/CN107427929B/zh
Priority to JP2017508132A priority patent/JP6428919B2/ja
Priority to DE112016001390.6T priority patent/DE112016001390B4/de
Publication of WO2016152396A1 publication Critical patent/WO2016152396A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/005Geometry of the chip-forming or the clearance planes, e.g. tool angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/141Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness
    • B23B27/145Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness characterised by having a special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B5/00Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/08Rake or top surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/12Side or flank surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/24Cross section of the cutting edge
    • B23B2200/247Cross section of the cutting edge sharp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • B23B2226/315Diamond polycrystalline [PCD]

Definitions

  • the invention of the present disclosure relates to a cutting tool, skiving processing apparatus and method used for skiving processing.
  • a cutting blade arranged obliquely with respect to the rotation axis of the workpiece is rotated by a linear feed operation across the rotation axis.
  • a skiving method that is introduced while being brought into contact with an existing workpiece (for example, see Patent Document 1).
  • the inclination angle of the cutting edge with respect to the rotation axis is set in a range larger than 0 ° and smaller than 90 °.
  • the skiving method as described above since high-speed machining is possible and the surface roughness of the workpiece after machining can be reduced as compared with the conventional cutting method, the columnar or cylindrical shape can be reduced. It would be possible to improve productivity when mass-producing parts and the like. However, even if a conventional skiving method is used, it is not easy to raise the surface roughness of the workpiece after machining to a level of mirror finishing by polishing (so-called superfinishing, for example, Rz ⁇ 0.8z).
  • the main object of the present disclosure is to reduce the surface roughness of the outer peripheral surface of the workpiece cut by skiving.
  • the cutting tool of the present disclosure has a cutting edge, a rake face, and a flank face, and skiving that feeds a rotating columnar or cylindrical workpiece while the cutting edge is inclined with respect to the rotation axis of the workpiece.
  • a cutting tool used for cutting the surface of the workpiece by machining wherein a rake angle is “ ⁇ ”, an inclination angle of the cutting edge with respect to the rotation axis is “ ⁇ ”, and the cutting tool and the workpiece are The angle formed by the feed direction of the cutting tool and the direction orthogonal to the rotation axis when viewed in plan is “ ⁇ ”, the radius of the outer peripheral surface of the workpiece before machining is “r”, and the workpiece is machined When the radius of the outer peripheral surface is “r ′”, the following expression (1) is satisfied. According to such a cutting tool, it is possible to further reduce the surface roughness of the outer peripheral surface of the workpiece cut by skiving.
  • FIG. 1 is a schematic configuration diagram illustrating a skiving apparatus 10 according to the present disclosure.
  • the skiving processing apparatus 10 shown in the figure cuts a cylindrical or cylindrical workpiece W by skiving processing (hard skiving processing) using the cutting tool 1 of the present disclosure to form an extremely smooth cylindrical surface W. Is formed.
  • the skiving machine 10 includes a rotation drive mechanism 11 that rotates the workpiece W around the rotation axis A (Z axis), and a feed mechanism 12 that moves the cutting tool 1 forward and backward relative to the workpiece W.
  • the cutting tool 1 is formed of, for example, cBN (Cubic Boron Nitride) or PCD (Poly Crystalline Diamond), and includes a cutting edge portion including a cutting edge 2 extending linearly as shown in FIG. 3.
  • the cutting edge portion 3 includes a rake face 4 continuous with the cutting edge 2 and a flank 5 continuous with the cutting edge 2 on the side opposite to the rake face 4, as shown in FIG. 3. Including.
  • the cutting edge 2 is set to the rotation axis A (Z axis) while the workpiece W is rotated in one direction by the rotation drive mechanism 11.
  • the angle is inclined by an angle ⁇ (where 0 ° ⁇ ⁇ 90 °), and the angle ⁇ (where ⁇ 90 ° + ⁇ ⁇ ⁇ 90 ° with respect to the direction perpendicular to the rotation axis A (Y axis)).
  • 0.
  • the cutting tool 1 is fed into the workpiece W by the feeding mechanism 12 in a state where it is tilted by a certain amount. As a result, as shown in FIG.
  • the surface portion of the workpiece W is cut by the cutting edge 2 (cutting edge) of the cutting tool 1 that is sent tangentially to the outer peripheral surface of the workpiece W. According to such skiving processing, it is possible to perform high-speed processing as compared with the conventional cutting processing, and it is possible to further reduce the surface roughness of the workpiece after processing.
  • the present inventor conducted intensive research to raise the surface roughness of the workpiece after skiving to a so-called superfinishing level (for example, Rz ⁇ 0.8z).
  • the inventor first verified a conventional cutting tool, and measured the radius R of the cutting edge of the cutting tool and the straightness (swell) of the cutting edge (blade edge).
  • the radius R of the cutting edge is defined such that the rake face 104 end of the rake face 104 (boundary line between the rake face 104 and the cutting edge 102) and the flank face 105 end of the rake face 104 (flank). Is a radius of an inscribed circle (see the broken line in FIG.
  • the cutting edge radius R of the cutting tool was approximately 20 ⁇ m.
  • the straightness of the cutting edge was represented by a filtered waviness curve obtained using a surface roughness measuring device SURFCOM 1400D manufactured by Tokyo Seimitsu Co., Ltd.
  • FIG. 6 shows a filtered waviness curve representing the straightness of a conventional cutting tool measured by the inventors. As shown in the figure, the straightness of the cutting edge in the conventional cutting tool represented by the filtered waviness curve was about 2 ⁇ m.
  • the cutting edge 102 has a contact point between the rake face 104 and the inscribed circle (a boundary line between the rake face 104 and the cutting edge 102) and a contact point between the flank face 105 and the inscribed circle (the flank face 105 and the cutting edge).
  • 102 (refer to the alternate long and short dash line in FIG. 5) and a region surrounded by two planes (see the alternate long and two short dashes line in FIG. 5) virtually extending the rake face 104 and the flank 105. It is formed by the arbitrary surface contained in.
  • the inventor cuts the surface of a cylindrical workpiece by skiving using a conventional cutting tool having the above-described specifications, and determines the surface roughness and straightness of the outer peripheral surface of the workpiece after processing. Measured.
  • a super-finished surface roughness cannot be obtained.
  • the straightness of the outer peripheral surface of the workpiece after machining is as large as about 5 ⁇ m, and deterioration in dimensional accuracy is recognized at the machining start and end of the workpiece. In this case, irregular undulation has occurred.
  • the wear of the cutting tool proceeds extremely quickly, and it is difficult to repeatedly perform skiving processing many times.
  • the conventional cutting tool as described above is basically the same as that used in normal cutting processing in which the workpiece is plastically deformed by the rake face and the surface portion of the workpiece is peeled off by the cutting edge.
  • the cutting edge radius R of about 20 ⁇ m. Therefore, the cutting tool for skiving processing is designed in consideration of the difference in processing characteristics between normal cutting processing and skiving processing in which the surface portion of the workpiece is cut with the cutting edge (cutting edge) of the cutting tool. There is a need.
  • the present inventors decided to make the cutting edge 2 of the cutting tool 1 sharper by making the cutting edge radius R as small as possible.
  • the surface of the workpiece is cut with the cutting edge of the cutting tool. Therefore, the shape of the cutting edge (blade edge) is transferred to the outer peripheral surface of the workpiece after skiving. It is thought that it will end. For this reason, this inventor decided to make the straightness of the blade edge of the cutting edge 2 in the cutting tool 1 as small as possible.
  • the present inventor decided to determine the rake angle ⁇ of the rake face 4 of the cutting tool 1 as described below.
  • the extending direction of the rotation axis A of the workpiece W is the Z-axis direction
  • the direction orthogonal to the rotation axis A is the Y-axis direction
  • the direction orthogonal to both the direction and the Y-axis direction is taken as the X-axis direction.
  • FIG. 12 schematically shows a cross section of the cutting tool 1 and the workpiece W taken along line EE in FIG.
  • the cross section of the workpiece W is an ellipse on the EE cross section in FIG.
  • the length of the short radius extending in the X-axis direction in the figure of the ellipse is equal to the radius of the outer peripheral surface of the workpiece W before skiving, and the radius of the outer peripheral surface of the workpiece W before skiving is “r”.
  • the length of the long radius extending in the Y-axis direction in the figure of the ellipse is expressed as r / cos ⁇ .
  • a point (contact point) of the cutting edge 2 of the cutting tool 1 fed to the workpiece W that hits the workpiece W is defined as “P”, and the center of the workpiece W (the center of the ellipse in FIG. 12) and the point P are connected. If the angle between the line segment and the X axis is “ ⁇ ” and the center of the workpiece W (the center of the ellipse) is the origin, the coordinates of the point P are P (r ⁇ cos ⁇ , ⁇ r ⁇ sin ⁇ ) / cos ⁇ ) It is expressed.
  • the cutting tool 1 is designed to satisfy the following equation (10). That's fine.
  • the present inventor uses pulse laser grinding (PLG).
  • PSG pulse laser grinding
  • the cutting edge portion 3 of the cutting tool 1, that is, the cutting edge 2, the rake face 4 and the flank face 5 are formed.
  • a condensing system having a relatively long focal length is used to form a processable range of a substantially cylindrical laser extending in the direction of the optical axis, and the processing surface (finished surface) is parallel to the optical axis of the laser.
  • This is a known processing technique that scans the processing range with respect to the processing surface so as to achieve an extremely smooth processing surface with extremely small surface roughness.
  • the cutting edge radius R of the cutting tool 1 manufactured using such pulse laser grinding is larger than zero and at least 5 ⁇ m or less, more specifically 3 ⁇ m or less. Further, the straightness of the cutting edge 2 represented by the filtered waviness curve (obtained by the surface roughness measuring instrument SURFCOM 1400D) in the cutting tool 1 is larger than zero and 0 as shown in FIG. .5 ⁇ m or less. Furthermore, the surface roughness of the outer peripheral surface of the work W after skiving using the cutting tool 1 is 0 ⁇ Rz ⁇ 0.8z, and the diameter tolerance of the outer peripheral surface of the work W after skiving is less than 10 ⁇ m. Met. Further, as shown in FIG.
  • the straightness of the outer peripheral surface of the work W after skiving using the cutting tool 1 is larger than zero, but is sufficiently small, such as about 0.5 ⁇ m, so that the same workpiece is cut.
  • the cutting tool 1 configured to satisfy the above formula (10), it is possible to further reduce the surface roughness of the outer peripheral surface of the workpiece W cut by skiving. Will be understood. Further, if the straightness of the cutting edge 2 represented by the filtered waviness curve is 0.5 ⁇ m or less, even if the shape of the cutting edge 2 is transferred to the outer peripheral surface of the work W after skiving, it accompanies it. It is possible to satisfactorily suppress the deterioration of the surface roughness and further reduce the surface roughness of the outer peripheral surface of the workpiece W after processing.
  • the cutting edge 2 of the cutting tool 1 is virtually connected to the contact surface between the rake face 4 and the inscribed circle and the plane connecting the flank face 5 and the contact between the inscribed circle, the rake face 4 and the flank face 5.
  • the cutting edge 2 is formed by an arbitrary surface included in the region surrounded by the two extended planes and the cutting edge radius R, which is the radius of the inscribed circle, is 5 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the angle ⁇ in the feed direction of the cutting tool 1 can take a negative value as described above when the clockwise direction in FIG. 9 is positive.
  • the angle ⁇ formed by the feed direction of the cutting tool 1 (see the bold arrow in the figure) with respect to the Y axis is the workpiece W in the extending direction of the rotation axis A at one end 2 a of the cutting edge 2.
  • Cutting of the workpiece W is started by contacting one end (lower end in FIG. 15), and the other end 2b of the cutting edge 2 is connected to the other end (upper end in FIG. 15) of the rotating shaft A in the extending direction. ) May be determined so that the cutting (skiving) of the workpiece W is completed.
  • the entire cutting edge 2 is used. It is possible to cut the workpiece W while doing so. As a result, it is possible to improve the durability of the cutting tool 1 by suppressing uneven wear and the like of the cutting edge 2.
  • the cutting tool of the present disclosure has a cutting edge, a rake face, and a flank face, and tilts the cutting edge with respect to a rotating columnar or cylindrical workpiece with respect to the rotation axis of the workpiece.
  • the surface part of the workpiece is cut by the cutting edge (cutting edge) of the cutting tool.
  • the surface part of the workpiece is cut by the cutting edge while the workpiece is plastically deformed by the rake face of the cutting tool. This is very different from the normal cutting process.
  • the rake face of the cutting tool hits the surface of the workpiece before the cutting edge (blade edge)
  • the surface roughness of the outer peripheral surface of the workpiece subjected to skiving processing deteriorates. Based on this, the cutting tool of this indication is constituted so that the above-mentioned formula (1) may be satisfied.
  • the rake face of a cutting tool contacts the surface of a workpiece
  • the surface roughness of the outer peripheral surface of the workpiece cut by skiving can be further reduced.
  • the straightness of the cutting edge represented by a waved waviness curve may be 0.5 ⁇ m or less.
  • skiving processing involves cutting the surface of the workpiece with the cutting edge of the cutting tool, so that the shape of the cutting edge (blade edge) is transferred to the outer peripheral surface of the workpiece after skiving processing. It is thought that it will end. Therefore, if the straightness of the cutting edge represented by the filtered waviness curve is 0.5 ⁇ m or less, even if the shape of the cutting edge is transferred to the outer peripheral surface of the workpiece after skiving, the resulting surface roughness Can be satisfactorily suppressed, and the surface roughness of the outer peripheral surface of the workpiece after processing can be further reduced.
  • the straightness of the outer peripheral surface after machining of the workpiece represented by a filtered waviness curve may be 0.5 ⁇ m or less.
  • an inscribed circle passing through the flank end of the rake face and the rake face side end of the flank face and inscribed in both the rake face and the flank face The radius may be 5 ⁇ m or less. That is, when the radius of the inscribed circle is large, it becomes unclear which part of the cutting edge (cutting edge) having a certain width (range) is actually used for cutting. And when cutting is performed at the portion (top) close to the flank side of the cutting edge, the portion on the rake face side of the cutting edge functions as the rake face of the negative land, and as described above, However, the same problem as the case where the rake face hits the surface of the workpiece first occurs. On the other hand, if the radius of the inscribed circle is 5 ⁇ m or less, the surface of the workpiece can be smoothly cut by the cutting edge, and the surface roughness of the outer peripheral surface of the workpiece after processing can be further reduced. Become.
  • the skiving machine of the present disclosure is a skiving machine that cuts the surface of a columnar or cylindrical workpiece using a cutting tool having a cutting edge, a rake face, and a flank face, and the workpiece is a rotating shaft.
  • a rotary drive mechanism that rotates around, and the cutting tool is tilted by an angle ⁇ with respect to the rotational axis and the cutting tool is tilted by an angle ⁇ with respect to a direction orthogonal to the rotational axis.
  • a cutting mechanism in which the rake angle is “ ⁇ ”, the radius of the outer peripheral surface of the workpiece before processing is “r”, and the radius of the outer peripheral surface of the workpiece after processing is “r ′”. ", The above formula (10) is satisfied. According to this skiving apparatus, the surface roughness of the outer peripheral surface of the workpiece cut by the cutting tool can be further reduced.
  • the angle ⁇ is such that cutting of the workpiece is started when one end of the cutting edge comes into contact with one end of the workpiece in the extending direction of the rotating shaft, and the other end of the cutting edge is set on the rotating shaft. It may be determined that the cutting of the workpiece is completed by reaching the other end of the workpiece in the extending direction.
  • the projected length of the cutting edge with respect to the rotating shaft is longer than the length of the workpiece cutting region in the extending direction of the rotating shaft, the workpiece can be cut while utilizing the entire cutting edge. It becomes possible. As a result, it is possible to further improve the durability of the cutting tool by suppressing uneven wear of the cutting edge.
  • the skiving method of the present disclosure is a skiving method that cuts the surface of a cylindrical or cylindrical workpiece using a cutting tool having a cutting edge, a rake face, and a flank face. While rotating around, the step of inclining the cutting edge by an angle ⁇ with respect to the rotation axis and feeding the cutting tool to the workpiece while being inclined by an angle ⁇ with respect to a direction perpendicular to the rotation axis.
  • the angle ⁇ is such that one end of the cutting edge comes into contact with one end of the work in the extending direction of the rotary shaft, and the cutting of the work is started, and the other end of the cutting edge is set to the rotary shaft.
  • the cutting of the workpiece is determined to end by reaching the other end of the workpiece in the extending direction, and the cutting tool has a rake angle of “ ⁇ ” before the workpiece is processed.
  • the radius of the circumferential surface and "r”, when the "r '" the radius of the outer peripheral surface after machining of the workpiece, satisfies the above equation (10).
  • the surface roughness of the outer peripheral surface of the workpiece cut by the cutting tool is further reduced, and the projected length of the cutting edge with respect to the rotation axis is the length in the extending direction of the rotation axis of the work area to be cut. Even when the length is longer than this, the workpiece can be cut while utilizing the entire cutting edge.
  • Another cutting tool of the present disclosure has a cutting edge, a rake face, and a flank face, and feeds the cutting edge in an inclined state with respect to a rotating columnar or cylindrical workpiece with respect to the rotation axis of the workpiece.
  • the radius of the inscribed circle inscribed in both the surface and the flank is 5 ⁇ m.
  • the surface of the workpiece can be smoothly cut by the cutting edge, and the surface roughness of the outer peripheral surface of the workpiece after processing can be further reduced.
  • the invention of the present disclosure can be used in various manufacturing industries using skiving processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Turning (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

 切削工具1は、切れ刃2、すくい面4および逃げ面5を有し、回転する円柱状または円筒状のワークWに対して切れ刃2をワークWの回転軸Aに対して傾けた状態で送り込むスカイビング加工により当該ワークWの表面を切削するのに用いられ、すくい角を"φ"とし、回転軸Aに対する切れ刃2の傾斜角度を"α"とし、切削工具1およびワークWを平面視した際に切削工具1の送り方向と回転軸Aと直交する方向とがなす角度を"β"とし、ワークWの加工前における外周面の半径を"r"とし、ワークWの加工後における外周面の半径を"r'"としたときに、 tan-1(cosβ/cos(α-β)×tan-1(cos-1(r'/r))<φ≦90°を満たす。

Description

切削工具、スカイビング加工装置および方法
 本開示の発明は、スカイビング加工に用いられる切削工具、スカイビング加工装置および方法に関する。
 従来、回転しているワーク(加工対象物)の回転対称面を切削加工する方法として、ワークの回転軸線に対して斜めに配置した切れ刃を、当該回転軸線を横断する線形送り動作で回転している工作物に沿って接触させながら導入するスカイビング加工方法が知られている(例えば、特許文献1参照)。この方法によりワークを切削する際には、回転軸線に対する切れ刃の傾斜角度が0°より大きく、かつ90°より小さい範囲に定められる。
特許第3984052号公報
 上述のようなスカイビング加工方法によれば、従来の切削加工方法に比べて、高速加工が可能となると共に加工後のワークの表面粗さを小さくすることができるので、円柱状または円筒状の部品等を大量生産する際の生産性を向上させることができるであろう。しかしながら、従来のスカイビング加工方法を用いても、加工後のワークの表面粗さを研磨による鏡面仕上げ(いわゆる、超仕上げ、例えばRz≦0.8z)のレベルまで引き上げるのは容易ではない。
 そこで、本開示の発明は、スカイビング加工により切削されたワークの外周面の表面粗さをより小さくすることを主目的とする。
 本開示の切削工具は、切れ刃、すくい面および逃げ面を有し、回転する円柱状または円筒状のワークに対して前記切れ刃を前記ワークの回転軸に対して傾けた状態で送り込むスカイビング加工により前記ワークの表面を切削するのに用いられる切削工具であって、すくい角を“φ”とし、前記回転軸に対する前記切れ刃の傾斜角度を“α”とし、前記切削工具および前記ワークを平面視した際に前記切削工具の送り方向と前記回転軸と直交する方向とがなす角度を“β”とし、前記ワークの加工前における外周面の半径を“r”とし、前記ワークの加工後における外周面の半径を“r′”としたときに、次式(1)を満たすものである。かかる切削工具によれば、スカイビング加工により切削されたワークの外周面の表面粗さをより小さくすることが可能となる。
Figure JPOXMLDOC01-appb-M000004
本開示のスカイビング加工装置を示す概略構成図である。 本開示の切削工具を示す平面図である。 本開示の切削工具を示す要部拡大斜視図である。 スカイビング加工の手順を示す模式図である。 切削工具の切れ刃の刃先半径を示す模式図である。 従来の切削工具の切れ刃の真直度を示す図表である。 従来の切削工具を用いたスカイビング加工後のワークの外周面の真直度を示す図表である。 従来の切削工具を用いたスカイビング加工中の様子を示す模式図である。 スカイビング加工に用いられる切削工具のすくい角の適正範囲を定める手順を説明するための模式図である。 スカイビング加工に用いられる切削工具のすくい角の適正範囲を定める手順を説明するための模式図である。 スカイビング加工に用いられる切削工具のすくい角の適正範囲を定める手順を説明するための模式図である。 スカイビング加工に用いられる切削工具のすくい角の適正範囲を定める手順を説明するための模式図である。 本開示の切削工具の切れ刃の真直度を示す図表である。 本開示の切削工具を用いたスカイビング加工後のワークの外周面の真直度を示す図表である。 本開示のスカイビング加工装置によるスカイビング加工の手順を例示する模式図である。
 次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。
 図1は、本開示のスカイビング加工装置10を示す概略構成図である。同図に示すスカイビング加工装置10は、本開示の切削工具1を用いて円柱状または円筒状のワークWをスカイビング加工(ハードスカイビング加工)により切削して極めて平滑な円柱面をワークWに形成するものである。スカイビング加工装置10は、ワークWを回転軸A(Z軸)周りに回転させる回転駆動機構11と、切削工具1をワークWに対して進退移動させる送り機構12とを含む。切削工具1は、例えばcBN(Cubic Boron Nitride)あるいはPCD(Poly Crystalline Diamond:ダイヤモンド焼結体)等により形成されており、図2に示すように、直線状に延びる切れ刃2を含む切れ刃部3を有する。また、切れ刃部3は、図3に示すように、切れ刃2に加えて、切れ刃2に連続するすくい面4と、すくい面4とは反対側で切れ刃2に連続する逃げ面5とを含む。
 スカイビング加工装置10および切削工具1を用いてワークWの外周面を切削するに際しては、回転駆動機構11によりワークWを一方向に回転させながら、切れ刃2を回転軸A(Z軸)に対して角度α(ただし、0°<α<90°である。)だけ傾けると共に回転軸Aと直交する方向(Y軸)に対して角度β(ただし、-90°+α<β<90°であり、図1の例では、β=0である。)だけ傾けた状態で送り機構12により切削工具1をワークWに対して送り込む。これにより、図4に示すように、ワークWの外周面に対して接線方向に送られる切削工具1の切れ刃2(刃先)によりワークWの表面部が切り込まれていく。このようなスカイビング加工によれば、従来の切削加工に比べて、高速加工が可能となると共に、加工後のワークの表面粗さをより小さくすることができる。
 本発明者は、スカイビング加工後のワークの表面粗さを、いわゆる超仕上げレベル(例えばRz≦0.8z)まで引き上げるべく鋭意研究を行った。研究に際し、本発明者は、まず、従来の切削工具の検証を行い、当該切削工具の切れ刃の刃先半径Rや、切れ刃(刃先)の真直度(うねり)を計測した。刃先半径Rは、図5に示すように、すくい面104の逃げ面105側の端部(すくい面104と切れ刃102との境界線)および逃げ面105のすくい面104側の端部(逃げ面105と切れ刃102との境界線)を通り、かつすくい面104および逃げ面105の双方に内接する内接円(図5における破線参照)の半径であり、本発明者が計測した従来の切削工具の刃先半径Rは、およそ20μmであった。また、切れ刃の真直度は、東京精密株式会社製の表面粗さ測定器SURFCOM1400Dを用いて取得されたろ波うねり曲線により表した。本発明者が計測した従来の切削工具の真直度を表すろ波うねり曲線を図6に示す。同図に示すように、ろ波うねり曲線により表される従来の切削工具における切れ刃の真直度は、およそ2μm程度であった。なお、切れ刃102は、すくい面104と上記内接円との接点(すくい面104と切れ刃102との境界線)および逃げ面105と当該内接円との接点(逃げ面105と切れ刃102との境界線)とを結ぶ平面(図5における一点鎖線参照)と、すくい面104および逃げ面105を仮想的に延長した2つの平面(図5における二点点鎖線参照)とで囲まれる領域に含まれる任意の面により形成される。
 更に、本発明者は、上述のような諸元を有する従来の切削工具を用いてスカイビング加工により円筒状のワークの表面を切削し、加工後のワークの外周面の表面粗さや真直度を計測した。しかしながら、従来の切削工具を用いてスカイビング加工を行っても、超仕上げレベルの表面粗さは得られなかった。また、加工後のワークの外周面の真直度も、図7に示すように、およそ5μm程度と大きく、ワークの加工開始端や終端には、寸法精度の悪化が認められ、軸方向における中間部には、不規則なうねりが発生してしまっている。更に、従来の切削工具を用いてスカイビング加工を行った場合、切削工具の摩耗が極めて早く進行し、スカイビング加工を多数回繰り返し実行することが困難であった。
 このように、従来の切削工具を用いても、スカイビング加工後のワークの外周面の表面粗さや真直度を向上させることは困難である。すなわち、上述のような従来の切削工具は、すくい面によりワークを塑性変形させながら切れ刃によりワークの表面部を引き剥がしていく通常の切削加工に用いられるものと基本的に変わらないものであり、例えば20μm程度の比較的大きい刃先半径Rを有する。従って、スカイビング加工用の切削工具は、通常の切削加工と、切削工具の切れ刃(刃先)によりワークの表面部を切り込んでいくスカイビング加工との加工特性の相違を考慮して設計される必要がある。
 このような観点から、本発明者は、従来の切削工具を用いたスカイビング加工中の切れ刃周辺の状態について詳細に検証を行った。その結果、例えば20μm程度の比較的大きい刃先半径Rを有する切削工具を用いた場合、ある程度の幅(範囲)をもった切れ刃(刃先)の何れの部分が実際に切削に供されるのか不明になってしまうことが判明した。そして、図8に示すように、切れ刃102の逃げ面104に近接した部分(逃げ面104との境界付近、図8における二点鎖線の○印付近)で切削が行われる場合には、切れ刃102のすくい面104側の部分(ホーニング、図8における点線部付近)がネガランドのすくい面として機能してしまうことが判明した。この場合、当該切れ刃102のすくい面104側の部分に切屑110が滞留した状態で切削工具が送られることで、加工後のワークの表面粗さが悪化してしまうと考えられる。また、数回のスカイビング加工後に従来の切削工具の刃先周辺を観察したところ、切れ刃(刃先)に極近いすくい面の部分(刃先から0.03mm程度の位置)に多数のクレータ摩耗が認められた。
 これらを踏まえて、本発明者は、刃先半径Rをできるだけ小さくして切削工具1における切れ刃2をよりシャープなものにすることとした。また、スカイビング加工は、切削工具の切れ刃によりワークの表面部を切り込んでいくものであることから、スカイビング加工後のワークの外周面には、切れ刃(刃先)の形状が転写されてしまうと考えられる。このため、本発明者は、切削工具1における切れ刃2の刃先の真直度をできるだけ小さくすることとした。更に、上述のようなスカイビング加工の加工特性に鑑みれば、スカイビング加工に際して切削工具1のすくい面4が切れ刃2よりも先にワークの表面に当たってしまった場合にも、すくい面4の刃先に近接した部分(上述のネガランドのすくい面として機能する部分に相当)に切屑が滞留した状態で切削工具が送られ、それによりスカイビング加工が施されたワークの外周面の表面粗さが悪化してしまうと考えられる。そこで、本発明者は、以下に説明するように、切削工具1のすくい面4のすくい角φを定めることとした。
 図9に示すように、ワークWの回転軸Aの延在方向をZ軸方向とし、切削工具1およびワークWを平面視した際に回転軸Aと直交する方向をY軸方向とし、Z軸方向およびY軸方向の双方に直交する方向をX軸方向とする。図9および図10に示すように、切削工具1をZ軸(回転軸A)に対して角度α(=∠BOB′)だけ傾けた状態でY軸方向(図9におけるD-D断面方向、すなわちβ=0)に移動させたときには、ワークWに対するすくい面4のすくい角を“φ′”とすると、すくい角φ′は、図10における∠A′OB′となり、tanφ=AB/OBおよびtanφ′=A′B′/OB′が成立する。なお、点Oは、切れ刃2(刃先)上の任意の点である。
 図10からわかるように、OB=OB′・cosα,AB=A′B′という関係が成立することから、tanφ′=A′B′/OB′=AB/(OB/cosα)=cosα・tanφとなり、次式(2)の関係が成立する。また、切れ刃2をZ軸に対して角度αだけ傾けると共にY軸に対して角度βだけ傾けた状態で切削工具1を図9におけるE-E断面方向に移動させたときには、図11より∠BOB″=α-βとなることから、ワークWに対するすくい角φ″(図11における∠A″OB″)は、式(2)の場合と同様にして、次式(3)のように表される。
 φ′=tan-1(cosα・tanφ)…(2)
 φ″=tan-1(cos(α-β)・tanφ)…(3)
 ここで、切削工具1の傾斜角度αは、スカイビング加工の特性上、0°<α<90°を満たす。また、切削工具1の送り方向の角度βは、図9における時計方向を正とした場合、負の値をとることも可能であり、β=∠B′OQ=-(90°-α)のときに、切削工具1が切れ刃2(歯先稜線OQ)の延在方向と平行に進行することになるので、角度βのとり得る範囲は、-90°+α<β<90°となる。
 図12に、切削工具1およびワークWの図9におけるE-E線に沿った断面を模式的に示す。同図に示すように、図9におけるE-E断面上においてワークWの断面は楕円となる。当該楕円の図中X軸方向に延びる短半径の長さは、スカイビング加工前のワークWの外周面の半径に等しく、スカイビング加工前のワークWの外周面の半径を“r”とすれば、当該楕円の図中Y軸方向に延びる長半径の長さは、r/cosβと表される。また、E-E断面上におけるワークWの断面は、楕円の方程式より、x2+y2・cos2β=r2と表される。
 更に、ワークWに対して送り込まれた切削工具1の切れ刃2の当該ワークWに当たる点(接点)を“P”とし、ワークWの中心(図12の楕円の中心)と点Pとを結ぶ線分とX軸とがなす角度を“Δθ”とし、ワークWの中心(楕円の中心)を原点とすれば、点Pの座標は、P(r・cosΔθ,-r・sinΔθ)/cosβ)と表される。また、ワークWのE-E断面を示す楕円の式:x2+y2・cos2β=r2の両辺をyについて微分すると、次式(4)および(5)が得られ、点Pにおける楕円の接線tlの傾きを“γ”とすれば、点Pに関し、次式(6)の関係が成立する。
Figure JPOXMLDOC01-appb-M000005
 そして、スカイビング加工後のワークの半径を“r′”とすれば、r′=r・cosΔθ、cosΔθ=r′/r、およびΔθ=cos-1(r′/r)という関係から、次式(7)の関係が成立する。更に、切削工具1のすくい面4を切れ刃2よりも先にワークWの表面に当てることなく、切れ刃2(刃先)上の点PをワークWに接触させるためには、φ″>γを満たすこと、すなわちtanφ″>tanγを満たす必要がある。かかるtanφ′>tanγという関係、上記式(3)および式(7)より、次式(8)が得られ、式(8)を変形することで次式(9)が得られる。従って、スカイビング加工に際して切削工具1のすくい面4が切れ刃2よりも先にワークWの表面に当たらないようにするためには、次式(10)を満たすように切削工具1を設計すればよい。
Figure JPOXMLDOC01-appb-M000006
 上記(10)式を満たすと共に、より小さい刃先半径Rおよび切れ刃2の真直度を有する切削工具1を得るために、本発明者は、パルスレーザーグラインディング(PLG:Pulse Laser Grinding)を利用して切削工具1の切れ刃部3、すなわち切れ刃2、すくい面4および逃げ面5を成形することとした。パルスレーザー加工は、比較的長い焦点距離を有する集光系を用いて光軸方向に延びる略円筒状のレーザーの加工可能範囲を形成すると共に、加工面(仕上げ面)がレーザーの光軸と平行をなすように当該加工面に対して当該加工可能範囲を走査するものであり、表面粗さが極めて小さく、かつ極めて平滑な加工面を実現可能とする周知の加工技術である。
 このようなパルスレーザーグラインディングを利用して製造された切削工具1の刃先半径Rは、ゼロよりも大きく、かつ少なくとも5μm以下、より詳細には3μm以下である。また、当該切削工具1におけるろ波うねり曲線(表面粗さ測定器SURFCOM1400Dにより取得されたもの)により表される切れ刃2の真直度は、図13に示すように、ゼロよりも大きく、かつ0.5μm以下である。更に、当該切削工具1を用いたスカイビング加工後のワークWの外周面の表面粗さは、0<Rz≦0.8zとなり、スカイビング加工後のワークWの外周面の径公差は10μm未満であった。また、切削工具1を用いたスカイビング加工後のワークWの外周面の真直度は、図14に示すように、ゼロよりも大きいが、およそ0.5μm程度と充分に小さく、同一の被切削領域に対して2回のスカイビング加工を行うことで、図14に示すように、ワークWの加工開始端や終端における寸法精度の悪化を良好に抑制することが可能であった。
 これらの結果より、上記式(10)を満たすように構成される切削工具1によれば、スカイビング加工により切削されたワークWの外周面の表面粗さをより小さくすることが可能となることが理解されよう。また、ろ波うねり曲線により表される切れ刃2の真直度が0.5μm以下であれば、スカイビング加工後のワークWの外周面に切れ刃2の形状が転写されたとしても、それに伴う表面粗さの悪化を良好に抑制し、加工後のワークWの外周面の表面粗さをより一層小さくすることが可能となる。更に、切削工具1の切れ刃2をすくい面4と上記内接円との接点および逃げ面5と当該内接円との接点とを結ぶ平面と、すくい面4および逃げ面5を仮想的に延長した2つの平面とで囲まれる領域に含まれる任意の面により形成すると共に、上記内接円の半径である刃先半径Rを5μm以下、より好ましくは3μm以下にすれば、切れ刃2によりワークWの表面をスムースに切り込んで、加工後のワークWの外周面の表面粗さをより一層小さくすることが可能となる。
 なお、上述のスカイビング加工装置10において、切削工具1の送り方向の角度βは、図9における時計方向を正とした場合、上述のように負の値をとることができる。そして、図15に示すように、Y軸に対して切削工具1の送り方向(図中太線矢印参照)がなす角度βは、切れ刃2の一端2aが回転軸Aの延在方向におけるワークWの一端(図15における下端)に接触することで当該ワークWの切削が開始されると共に、切れ刃2の他端2bが回転軸Aの延在方向におけるワークWの他端(図15における上端)に達することで当該ワークWの切削(スカイビング加工)が終了するように定められてもよい。これにより、回転軸Aに対する切れ刃2の投影長さ2LがワークWの被切削領域の回転軸Aの延在方向における長さhよりも長い場合であっても、切れ刃2の全体を利用しながらワークWを切削することが可能となる。この結果、切れ刃2の偏摩耗等を抑制して切削工具1の耐久性をより向上させることができる
 以上説明したように、本開示の切削工具は、切れ刃、すくい面および逃げ面を有し、回転する円柱状または円筒状のワークに対して前記切れ刃を前記ワークの回転軸に対して傾けた状態で送り込むスカイビング加工により前記ワークの表面を切削するのに用いられる切削工具であって、すくい角を“φ”とし、前記回転軸に対する前記切れ刃の傾斜角度を“α”とし、前記切削工具および前記ワークを平面視した際に前記切削工具の送り方向と前記回転軸と直交する方向とがなす角度を“β”とし、前記ワークの加工前における外周面の半径を“r”とし、前記ワークの加工後における外周面の半径を“r′”としたときに、上記式(10)を満たすものである。
 スカイビング加工は、切削工具の切れ刃(刃先)によりワークの表面部を切り込んでいくものであり、この点で、切削工具のすくい面によりワークを塑性変形させながら切れ刃によりワークの表面部を引き剥がしていく通常の切削加工と大きく相違する。そして、スカイビング加工に際して、切削工具のすくい面が切れ刃(刃先)よりも先にワークの表面に当たってしまうと、スカイビング加工が施されたワークの外周面の表面粗さが悪化してしまう。これを踏まえて、本開示の切削工具は、上記式(1)を満たすように構成される。これにより、スカイビング加工に際して、切削工具のすくい面が切れ刃よりも先にワークの表面に当たってしまうのを良好に抑制することができる。この結果、本開示の切削工具によれば、スカイビング加工により切削されたワークの外周面の表面粗さをより小さくすることが可能となる。
 また、ろ波うねり曲線により表される前記切れ刃の真直度は、0.5μm以下であってもよい。すなわち、スカイビング加工は、切削工具の切れ刃によりワークの表面部を切り込んでいくものであることから、スカイビング加工後のワークの外周面には、切れ刃(刃先)の形状が転写されてしまうと考えられる。従って、ろ波うねり曲線により表される切れ刃の真直度を0.5μm以下とすれば、スカイビング加工後のワークの外周面に切れ刃の形状が転写されたとしても、それに伴う表面粗さの悪化を良好に抑制し、加工後のワークの外周面の表面粗さをより一層小さくすることが可能となる。
 更に、ろ波うねり曲線により表される前記ワークの加工後における前記外周面の真直度は、0.5μm以下であってもよい。
 また、前記切削工具において、前記すくい面の前記逃げ面側の端部および前記逃げ面の前記すくい面側の端部を通り、かつ前記すくい面および前記逃げ面の双方に内接する内接円の半径が5μm以下であってもよい。すなわち、当該内接円の半径が大きい場合、ある程度の幅(範囲)をもった切れ刃(刃先)の何れの部分が実際に切削に供されるのか不明になってしまう。そして、切れ刃の逃げ面側に近接した部分(頂部)で切削が行われる場合には、切れ刃のすくい面側の部分がネガランドのすくい面として機能してしまい、上述のように切れ刃よりも先にすくい面がワークの表面に当たってしまう場合と同様の問題が生じてしまう。これに対して、上記内接円の半径を5μm以下にすれば、切れ刃によりワークの表面をスムースに切り込んで、加工後のワークの外周面の表面粗さをより一層小さくすることが可能となる。
 本開示のスカイビング加工装置は、切れ刃、すくい面および逃げ面を有する切削工具を用いて円柱状または円筒状のワークの表面を切削するスカイビング加工装置であって、前記ワークを回転軸の周りに回転させる回転駆動機構と、前記切れ刃を前記回転軸に対して角度αだけ傾けると共に前記回転軸と直交する方向に対して角度βだけ傾けた状態で前記切削工具を前記ワークに対して送り込む送り機構とを備え、前記切削工具が、すくい角を“φ”とし、前記ワークの加工前における外周面の半径を“r”とし、前記ワークの加工後における外周面の半径を“r′”としたときに、上記式(10)を満たすものである。かかるスカイビング加工装置によれば、切削工具により切削されたワークの外周面の表面粗さをより小さくすることが可能となる。
 また、前記角度βは、前記切れ刃の一端が前記回転軸の延在方向における前記ワークの一端に接触することで該ワークの切削が開始されると共に、前記切れ刃の他端が前記回転軸の延在方向における前記ワークの他端に達することで該ワークの切削が終了するように定められてもよい。これにより、回転軸に対する切れ刃の投影長さがワークの被切削領域の回転軸の延在方向における長さよりも長い場合であっても、切れ刃の全体を利用しながらワークを切削することが可能となる。この結果、切れ刃の偏摩耗等を抑制して切削工具の耐久性をより向上させることができる。
 本開示のスカイビング加工方法は、切れ刃、すくい面および逃げ面を有する切削工具を用いて円柱状または円筒状のワークの表面を切削するスカイビング加工方法であって、前記ワークを回転軸の周りに回転させながら、前記切れ刃を前記回転軸に対して角度αだけ傾けると共に前記回転軸と直交する方向に対して角度βだけ傾けた状態で前記切削工具を前記ワークに対して送り込むステップを含み、前記角度βは、前記切れ刃の一端が前記回転軸の延在方向における前記ワークの一端に接触することで該ワークの切削が開始されると共に、前記切れ刃の他端が前記回転軸の延在方向における前記ワークの他端に達することで該ワークの切削が終了するように定められ、前記切削工具が、すくい角を“φ”とし、前記ワークの加工前における外周面の半径を“r”とし、前記ワークの加工後における外周面の半径を“r′”としたときに、上記式(10)を満たすものである。
 この方法によれば、切削工具により切削されたワークの外周面の表面粗さをより小さくすると共に、回転軸に対する切れ刃の投影長さがワークの被切削領域の回転軸の延在方向における長さよりも長い場合であっても、切れ刃の全体を利用しながらワークを切削することが可能となる。
 本開示の他の切削工具は、切れ刃、すくい面および逃げ面を有し、回転する円柱状または円筒状のワークに対して前記切れ刃を前記ワークの回転軸に対して傾けた状態で送り込むスカイビング加工により前記ワークの表面を切削するのに用いられる切削工具であって、前記すくい面の前記逃げ面側の端部および前記逃げ面の前記すくい面側の端部を通り、かつ前記すくい面および前記逃げ面の双方に内接する内接円の半径が5μmであるものである。
 この切削工具によれば、切れ刃によりワークの表面をスムースに切り込んで、加工後のワークの外周面の表面粗さをより小さくすることが可能となる。
 ここまで、本開示の発明について詳細に説明したが、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記実施形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を何ら限定するものではない。
 本開示の発明は、スカイビング加工を利用する各種製造産業において利用可能である。

Claims (8)

  1.  切れ刃、すくい面および逃げ面を有し、回転する円柱状または円筒状のワークに対して前記切れ刃を前記ワークの回転軸に対して傾けた状態で送り込むスカイビング加工により前記ワークの表面を切削するのに用いられる切削工具であって、
     すくい角を“φ”とし、前記回転軸に対する前記切れ刃の傾斜角度を“α”とし、前記切削工具および前記ワークを平面視した際に前記切削工具の送り方向と前記回転軸と直交する方向とがなす角度を“β”とし、前記ワークの加工前における外周面の半径を“r”とし、前記ワークの加工後における外周面の半径を“r′”としたときに、次式を満たす切削工具。
    Figure JPOXMLDOC01-appb-M000001
  2.  請求項1に記載の切削工具において、
     ろ波うねり曲線により表される前記切れ刃の真直度が0.5μm以下である切削工具。
  3.  請求項1に記載の切削工具において、
     ろ波うねり曲線により表される前記ワークの加工後における前記外周面の真直度が0.5μm以下である切削工具。
  4.  請求項1に記載の切削工具において、
     前記すくい面の前記逃げ面側の端部および前記逃げ面の前記すくい面側の端部を通り、かつ前記すくい面および前記逃げ面の双方に内接する内接円の半径が5μm以下である切削工具。
  5.  切れ刃、すくい面および逃げ面を有する切削工具を用いて円柱状または円筒状のワークの表面を切削するスカイビング加工装置であって、
     前記ワークを回転軸の周りに回転させる回転駆動機構と、
     前記切れ刃を前記回転軸に対して角度αだけ傾けると共に前記回転軸と直交する方向に対して角度βだけ傾けた状態で前記切削工具を前記ワークに対して送り込む送り機構とを備え、
     前記切削工具は、すくい角を“φ”とし、前記ワークの加工前における外周面の半径を“r”とし、前記ワークの加工後における外周面の半径を“r′”としたときに、次式を満たすスカイビング加工装置。
    Figure JPOXMLDOC01-appb-M000002
  6.  請求項5に記載のスカイビング加工装置において、
     前記角度βは、前記切れ刃の一端が前記回転軸の延在方向における前記ワークの一端に接触することで該ワークの切削が開始されると共に、前記切れ刃の他端が前記回転軸の延在方向における前記ワークの他端に達することで該ワークの切削が終了するように定められるスカイビング加工装置。
  7.  切れ刃、すくい面および逃げ面を有する切削工具を用いて円柱状または円筒状のワークの表面を切削するスカイビング加工方法であって、
     前記ワークを回転軸の周りに回転させながら、前記切れ刃を前記回転軸に対して角度αだけ傾けると共に前記回転軸と直交する方向に対して角度βだけ傾けた状態で前記切削工具を前記ワークに対して送り込むステップを含み、
     前記角度βは、前記切れ刃の一端が前記回転軸の延在方向における前記ワークの一端に接触することで該ワークの切削が開始されると共に、前記切れ刃の他端が前記回転軸の延在方向における前記ワークの他端に達することで該ワークの切削が終了するように定められ、
     前記切削工具は、すくい角を“φ”とし、前記ワークの加工前における外周面の半径を“r”とし、前記ワークの加工後における外周面の半径を“r′”としたときに、次式を満たす加工方法。
    Figure JPOXMLDOC01-appb-M000003
  8.  切れ刃、すくい面および逃げ面を有し、回転する円柱状または円筒状のワークに対して前記切れ刃を前記ワークの回転軸に対して傾けた状態で送り込むスカイビング加工により前記ワークの表面を切削するのに用いられる切削工具であって、
     前記すくい面の前記逃げ面側の端部および前記逃げ面の前記すくい面側の端部を通り、かつ前記すくい面および前記逃げ面の双方に内接する内接円の半径が5μmである切削工具。
PCT/JP2016/056107 2015-03-25 2016-02-29 切削工具、スカイビング加工装置および方法 WO2016152396A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/558,887 US10279395B2 (en) 2015-03-25 2016-02-29 Cutting tool, skiving apparatus and method
CN201680017842.5A CN107427929B (zh) 2015-03-25 2016-02-29 切削工具、旋刮加工装置及方法
JP2017508132A JP6428919B2 (ja) 2015-03-25 2016-02-29 切削工具、スカイビング加工装置および方法
DE112016001390.6T DE112016001390B4 (de) 2015-03-25 2016-02-29 Schneidwerkzeug, Schälvorrichtung und Verfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-062926 2015-03-25
JP2015062926 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016152396A1 true WO2016152396A1 (ja) 2016-09-29

Family

ID=56978429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056107 WO2016152396A1 (ja) 2015-03-25 2016-02-29 切削工具、スカイビング加工装置および方法

Country Status (5)

Country Link
US (1) US10279395B2 (ja)
JP (2) JP6428919B2 (ja)
CN (1) CN107427929B (ja)
DE (1) DE112016001390B4 (ja)
WO (1) WO2016152396A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098429A (ja) * 2017-11-29 2019-06-24 ジヤトコ株式会社 加工用工具及び加工装置並びに加工方法
JP2019123066A (ja) * 2018-01-19 2019-07-25 トヨタ自動車株式会社 回転軸のスカイビング加工方法
US20190270141A1 (en) * 2015-01-16 2019-09-05 Sumitomo Electric Hardmetal Corp. Method for manufacturing machine component, apparatus for manufacturing machine component, method for machining rotation symmetry plane, recording medium, and program
JPWO2021049257A1 (ja) * 2019-09-13 2021-03-18
CN114472185A (zh) * 2022-01-12 2022-05-13 杭州长川科技股份有限公司 电子元件取放装置及分选机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6828336B2 (ja) * 2016-09-16 2021-02-10 株式会社ジェイテクト 加工方法
CN109365887B (zh) * 2018-11-26 2020-08-14 株洲钻石切削刀具股份有限公司 一种铣削刀片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207701A (ja) * 1984-03-30 1985-10-19 Toshiba Corp 不連続物体の切削加工方法
JP2002263903A (ja) * 2001-03-12 2002-09-17 Nissan Motor Co Ltd 旋削加工方法と旋削加工用工具
JP2005501749A (ja) * 2001-09-11 2005-01-20 べーリンガー ヴェルクツオィクマシーネン ゲーエムベーハー ねじれを生じない回転対称面の鋼切削方法
JP3984052B2 (ja) * 1999-12-17 2007-09-26 住友電工ハードメタル株式会社 回転対称面のねじれの発生しない切削加工方法
DE102007033767A1 (de) * 2007-07-18 2009-01-29 Emag Holding Gmbh Verfahren und Vorrichtung zur Bearbeitung von Werkstückoberflächen
WO2013088884A1 (ja) * 2011-12-13 2013-06-20 村田機械株式会社 工作機械

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2553966A (en) * 1949-03-29 1951-05-22 R K Leblond Machine Tool Co Method of broaching rotating work
US3548474A (en) * 1966-05-10 1970-12-22 Edwin L Meyer Machine tool
JPS63212401A (ja) * 1987-02-26 1988-09-05 Mitsubishi Motors Corp 旋削加工方法
JPH0197501A (ja) 1987-10-09 1989-04-17 Osaka Diamond Ind Co Ltd 超硬質脆性材料からなる切削工具
US5752402A (en) * 1990-11-29 1998-05-19 Barnes; Austen Vibratory or rocking edge treatment tool
JP2686000B2 (ja) * 1991-07-17 1997-12-08 株式会社東芝 振動切削方法及び切削装置
KR970061411A (ko) * 1996-02-21 1997-09-12 모리시타 요이찌 칩-파쇄 선반절삭방법 및 장치
US6209429B1 (en) * 1999-06-28 2001-04-03 Xerox Corporation Machining hollow cylinders
DE19953089A1 (de) * 1999-11-04 2001-05-17 Daimler Chrysler Ag Erzeugung periodischer Strukturen auf rotationssymmetrischen Bauteilen
DE102006009276C5 (de) * 2006-03-01 2009-09-10 Felsomat Gmbh & Co. Kg Verfahren zur Fertigung rotationssymmetrischer Flächen an einem Werkstück und Werkstück mit rotationssymmetrischer Fläche
JP2010221351A (ja) 2009-03-24 2010-10-07 Sumitomo Electric Ind Ltd 刃先交換型バイト用チップ
JP6217856B2 (ja) * 2014-06-27 2017-10-25 村田機械株式会社 工作機械及び加工方法
EP2965847B1 (en) * 2014-07-09 2019-09-11 Sandvik Intellectual Property AB Cutting insert and power skiving tool
EP3034219B1 (de) * 2014-12-16 2019-05-08 Klingelnberg AG Wälzschälverfahren mit Mehrschnittstrategie

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207701A (ja) * 1984-03-30 1985-10-19 Toshiba Corp 不連続物体の切削加工方法
JP3984052B2 (ja) * 1999-12-17 2007-09-26 住友電工ハードメタル株式会社 回転対称面のねじれの発生しない切削加工方法
JP2002263903A (ja) * 2001-03-12 2002-09-17 Nissan Motor Co Ltd 旋削加工方法と旋削加工用工具
JP2005501749A (ja) * 2001-09-11 2005-01-20 べーリンガー ヴェルクツオィクマシーネン ゲーエムベーハー ねじれを生じない回転対称面の鋼切削方法
DE102007033767A1 (de) * 2007-07-18 2009-01-29 Emag Holding Gmbh Verfahren und Vorrichtung zur Bearbeitung von Werkstückoberflächen
WO2013088884A1 (ja) * 2011-12-13 2013-06-20 村田機械株式会社 工作機械

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190270141A1 (en) * 2015-01-16 2019-09-05 Sumitomo Electric Hardmetal Corp. Method for manufacturing machine component, apparatus for manufacturing machine component, method for machining rotation symmetry plane, recording medium, and program
US10960471B2 (en) * 2015-01-16 2021-03-30 Sumitomo Electric Hardmetal Corp. Method for manufacturing machine component, apparatus for manufacturing machine component, method for machining rotation symmetry plane, recording medium, and program
JP2019098429A (ja) * 2017-11-29 2019-06-24 ジヤトコ株式会社 加工用工具及び加工装置並びに加工方法
JP2019123066A (ja) * 2018-01-19 2019-07-25 トヨタ自動車株式会社 回転軸のスカイビング加工方法
JP7047395B2 (ja) 2018-01-19 2022-04-05 トヨタ自動車株式会社 回転軸のスカイビング加工方法
JPWO2021049257A1 (ja) * 2019-09-13 2021-03-18
JP7337358B2 (ja) 2019-09-13 2023-09-04 国立大学法人東海国立大学機構 スカイビング加工装置およびスカイビング加工方法
CN114472185A (zh) * 2022-01-12 2022-05-13 杭州长川科技股份有限公司 电子元件取放装置及分选机
CN114472185B (zh) * 2022-01-12 2024-06-04 杭州长川科技股份有限公司 电子元件取放装置及分选机

Also Published As

Publication number Publication date
JP2019014037A (ja) 2019-01-31
JPWO2016152396A1 (ja) 2018-01-25
DE112016001390B4 (de) 2023-06-07
DE112016001390T5 (de) 2017-12-14
CN107427929A (zh) 2017-12-01
CN107427929B (zh) 2019-04-12
US10279395B2 (en) 2019-05-07
JP6428919B2 (ja) 2018-11-28
US20180071827A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP6428919B2 (ja) 切削工具、スカイビング加工装置および方法
KR101348459B1 (ko) 절삭 공구 및 절삭 인서트
JP6657547B2 (ja) 切削工具及びその製造方法
CN107614165B (zh) 切削刀具
JP5146493B2 (ja) エンドミルおよびその製造方法
WO2016002402A1 (ja) 切削工具の製造方法及び切削工具
JP2012006135A (ja) エンドミルおよびその製造方法
JP2006198743A (ja) 小径回転工具及び高硬度材料ワークの切削方法
JP2014193522A (ja) エンドミル及びその製造方法
JP4702902B2 (ja) 立て削り用工具および立て削り加工方法
JP4734265B2 (ja) ラジアスエンドミル
WO2018003873A1 (ja) 切削インサート
JP2008229764A (ja) 回転工具及び加工方法
JP2006088242A (ja) 穴明け工具
JP7106010B2 (ja) 単結晶ダイヤモンド切削工具
JP6354451B2 (ja) ボールエンドミル及びその製造方法
US11491559B2 (en) End mill
JP6658805B2 (ja) 切削インサート
JP5768971B2 (ja) 刃具及び刃具の刃先形成方法
JP2023114165A (ja) 仕上げ加工用工具
JP2002337017A (ja) 総形フライス工具及び総形フライス工具の加工方法
JP2004122324A (ja) 突切りバイトとその製法
JP2006116673A (ja) 同心溝加工方法及びこの方法により製造する同心溝加工品、同心溝成形品
JP2002036028A (ja) コーティング丸鋸
JP2010137350A (ja) 小径ダイヤモンドエンドミル及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768299

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15558887

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017508132

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016001390

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768299

Country of ref document: EP

Kind code of ref document: A1