JP6541844B1 - 回転電機の制御装置 - Google Patents

回転電機の制御装置 Download PDF

Info

Publication number
JP6541844B1
JP6541844B1 JP2018104241A JP2018104241A JP6541844B1 JP 6541844 B1 JP6541844 B1 JP 6541844B1 JP 2018104241 A JP2018104241 A JP 2018104241A JP 2018104241 A JP2018104241 A JP 2018104241A JP 6541844 B1 JP6541844 B1 JP 6541844B1
Authority
JP
Japan
Prior art keywords
degrees
angle
switching
phase difference
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018104241A
Other languages
English (en)
Other versions
JP2019213246A (ja
Inventor
健一 秋田
健一 秋田
藤田 暢彦
暢彦 藤田
松本 紀生
紀生 松本
吉澤 敏行
敏行 吉澤
充規 田畑
充規 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018104241A priority Critical patent/JP6541844B1/ja
Priority to US16/385,201 priority patent/US10840844B2/en
Application granted granted Critical
Publication of JP6541844B1 publication Critical patent/JP6541844B1/ja
Publication of JP2019213246A publication Critical patent/JP2019213246A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P23/0027Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using different modes of control depending on a parameter, e.g. the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】矩形波制御において、スイッチング素子のオン角度間隔を電気角120度よりも小さく設定しても、回転電機にトルクを出力させることができない角度区間が生じることを抑制できる回転電機の制御装置を提供する。【解決手段】2組の3相巻線を有する回転電機に対し、矩形波制御を、組間で位相差を設けて実行し、切換条件に応じて、正極側及び負極側のスイッチング素子をオンするオン角度間隔を電気角120度から180度の範囲内の角度に設定する第1制御モードと、オン角度間隔を電気角90度から120度の範囲内の角度に設定する第2制御モードと、を切り替える回転電機の制御装置。【選択図】図1

Description

本願は、矩形波制御を行う回転電機の制御装置に関するものである。
近年、燃費の向上、環境基準への適合を目的とし、回転電機を搭載し、車両の停止時にエンジンを停止させ、車両の発進時に回転電機を駆動してエンジンの再始動、トルクアシストを行なう、いわゆるアイドルストップを行う車両が開発されている。このような車両に用いられる回転電機は、小型、低コスト、高トルクが求められるため、スイッチング素子をオンオフ制御する方式として、制御装置を簡素化でき、回転電機を高出力にできる180度矩形波制御が用いられることが多い。なお、180度矩形波制御では、スイッチング素子のオン角度間隔が電気角180度に設定される。また、燃費向上のために回転電機の高出力化が求められており、そのために車載電源装置(車載電池)の高容量化、高電圧化が行われている。
しかし一方で、矩形波制御は駆動時の電機子巻線への通電電流をフィードバック制御しないことから回転速度及び電源電圧といった動作条件によっては、スイッチング素子の耐量を超えた電流及び通電時の発熱により故障する懸念があった。そこで、矩形波制御時の通電電流を抑制する手段として、通電電流が過大となる条件においては180度矩形波制御よりも通電電流が減少する120度矩形波制御を行う方法が提案されている(例えば、特許文献1参照)。なお、120度矩形波制御では、スイッチング素子のオン角度間隔が電気角120度に設定される。
特開2004−320861号公報
しかしながら、上述したように、近年は車載電池の高容量化、高電圧化が進んでおり、矩形波制御を行う場合には、特に矩形波制御時の1パルスの通電時間が長くなる低回転速度領域において、スイッチング素子のオン角度間隔を120度に低減する従来の技術だけでは、依然として電力変換部への通電電流が大きくなり、通電時の発熱等により故障を招く懸念がある。
スイッチング素子の発熱を低減するために、スイッチング素子のオン角度間隔を電気角120度よりも小さくすることが考えられる。しかし、特許文献1のように回転電機に1組の3相巻線しか設けられていない場合は、オン角度間隔を120度よりも小さくすると、正極側のスイッチング素子及び負極側のスイッチング素子の一方しかオンされない区間が生じる。この区間では、巻線に電流が流れないため、回転電機にトルクを出力させることができない。例えば、回転電機が、このトルク出力不可区間で停止すると、回転電機にトルクを出力させることができなくなり、内燃機関を再始動することができなくなったり、車両を発進させることができなくなったりする問題が生じる。また、回転電機が回転している状態でも、トルク変動が大きくなり、ユーザに不快感を与えるおそれがある。
そこで、矩形波制御において、スイッチング素子のオン角度間隔を電気角120度よりも小さく設定しても、回転電機にトルクを出力させることができない角度区間が生じることを抑制できる回転電機の制御装置が望まれる。
本願に係る回転電機の制御装置は、2組の3相巻線を有する回転電機を制御する回転電機の制御装置であって、
各組について、直流電源の正極側に接続される正極側のスイッチング素子と前記直流電源の負極側に接続される負極側のスイッチング素子とが直列接続され、直列接続の接続点が対応する相の巻線に接続される直列回路を、3相各相に対応して3セット設けたインバータと、
各組について、相間で電気角120度の位相差を設けて、各相の前記正極側のスイッチング素子及び前記負極側のスイッチング素子を、相互に電気角180度の位相差を設けて電気角360度あたり1回だけオンする矩形波制御を、組間で位相差を設けて実行するスイッチング制御部と、を備え、
前記スイッチング制御部は、予め設定された切換条件に応じて、前記正極側のスイッチング素子及び前記負極側のスイッチング素子をオンする角度間隔であるオン角度間隔を電気角120度から180度の範囲内の角度に設定する第1制御モードと、前記オン角度間隔を電気角90度から120度の範囲内の角度に設定する第2制御モードと、を切り替え
前記矩形波制御の組間の位相差を、電気角0度から60度の範囲内の角度に設定している場合は、前記第2制御モードにおいて、前記組間の位相差から30度を減算した値の絶対値を、90度に加算して得られる下限オン角度間隔から120度の範囲内の角度に、前記オン角度間隔を設定し、
前記組間の位相差を、電気角60度から120度の範囲内の角度に設定している場合は、前記第2制御モードにおいて、前記組間の位相差から90度を減算した値の絶対値を、90度に加算して得られる下限オン角度間隔から120度の範囲内の角度に、前記オン角度間隔を設定するものである。
本願に係る回転電機の制御装置によれば、矩形波制御を、1組の3相巻線が設けられている場合に実行可能な電気角120度から180度の第1制御モードで動作させるだけでなく、2組の3相巻線が設けられていることを利用し、切換条件に応じて、オン角度間隔が電気角90度から120度の範囲内の角度に設定される第2制御モードで動作させることができる。第2制御モードで動作させても、第1組の矩形波制御と第2組の矩形波制御とに位相差を設けることにより、一方の組のトルク出力可能区間により、他方の組のトルク出力不可区間を補って、回転電機にトルクが出力させることができない角度区間が生じることを抑制できる。よって、第2制御モードに切り替えて、スイッチング素子の発熱を抑制しつつ、回転電機にトルクを出力させることができる。
実施の形態1に係る回転電機及び回転電機の制御装置の概略構成図である。 実施の形態1に係る制御器の概略ブロック図である。 実施の形態1に係る制御器のハードウェア構成図である。 実施の形態1に係るオン角度間隔が180度に設定されている時の矩形波制御の挙動を示す図である。 実施の形態1に係るオン角度間隔が120度に設定されている時の矩形波制御の挙動を示す図である。 実施の形態1に係るオン角度間隔が90度に設定されている時の矩形波制御の挙動を示す図である。 実施の形態1に係るオン角度間隔が90度に設定されている時の矩形波制御の挙動を示す図である。 実施の形態1に係る角度設定マップを説明するための図である。 実施の形態1に係る角度設定マップを説明するための図である。 実施の形態2に係る回転電機及び回転電機の制御装置の概略構成図である。 実施の形態2に係る制御器の概略ブロック図である。
1.実施の形態1
実施の形態1に係る回転電機の制御装置1(以下、単に制御装置1と称す)について図面を参照して説明する。図1は、本実施の形態に係る回転電機10及び制御装置1の概略構成図である。
1−1.回転電機
回転電機10は、2組の3相巻線11、12を有する1つの回転電機とされている。第1組の3相巻線11は、U、V、W相の巻線Cu、Cv、Cwであり、第2組の3相巻線12は、X、Y、Z相の巻線Cx、Cy、Czである。第1組の3相巻線11及び第2組の3相巻線12は、電気角で巻線位相差ΔθCLを設けて、ステータ13に巻装されている。具体的には、第1組のU相巻線Cuの巻装角度と、第2組のX相巻線Cxの巻装角度とは、電気角で巻線位相差ΔθCLだけ異なっており、第1組のV相巻線Cvの巻装角度と、第2組のY相巻線Cyの巻装角度とは、電気角で巻線位相差ΔθCLだけ異なっており、第1組のW相巻線Cwの巻装角度と、第2組のZ相巻線Czの巻装角度とは、電気角で巻線位相差ΔθCLだけ異なっている。
ロータ14に、電磁石が設けられている。よって、1つのステータ13に2組の3相巻線11、12が設けられており、ステータ13の径方向内側に配置された1つのロータ14に、電磁石が設けられている。なお、電気角は、ロータ14の機械角に、電磁石の極対数を乗算した角度になる。回転電機10は、ロータ14の回転角度(磁極位置)を検出するためのレゾルバ、ロータリーエンコーダ等の回転角度センサ15を備えている。回転角度センサ15の出力信号は、制御器30に入力される。
1−2.インバータ
制御装置1は、直流電源16の直流電力と第1組の3相巻線11に供給する交流電力とを変換する第1組のインバータ21と、直流電源16の直流電力と第2組の3相巻線12に供給する交流電力とを変換する第2組のインバータ22と、を備えている。
第1組及び第2組のインバータ21、22は、それぞれ、直流電源16の正極側に接続される正極側のスイッチング素子23と、直流電源16の負極側に接続される負極側のスイッチング素子24と、が直列接続された直列回路を、3相各相の巻線に対応して3セット設けている。各直列回路における2つのスイッチング素子の接続点が、対応する相の巻線に接続される。インバータは、電磁石の界磁巻線への通電をオンオフするスイッチング素子を備えている(不図示)。
スイッチング素子には、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、ダイオードが逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)等が用いられる。各スイッチング素子のゲート端子は、ゲート駆動回路等を介して、制御器30に接続されている。よって、各スイッチング素子は、制御器30から出力されるゲート信号によりオン又はオフされる。
直流電源16には、鉛蓄電池又はリチウムイオン電池等の蓄電装置が用いられる。なお、直流電源16には、直流電圧を昇圧したり降圧したりする直流電力変換器であるDC−DCコンバータが設けられてもよい。直流電源16の電源電圧を検出するための電圧センサ17が備えられている。電圧センサ17の出力信号は、制御器30に入力される。
本実施の形態では、回転電機10のロータ14の回転軸は、ベルト及びプーリ機構等の連結機構を介して内燃機関18のクランク軸に連結されている。回転電機10は、内燃機関18を始動又は補助する電動機としての機能を有すると共に、内燃機関18の駆動力を用いて発電する発電機としての機能を有する。
1−3.制御器
制御装置1は、制御器30を備えている。制御器30は、第1組及び第2組のインバータ21、22のスイッチング素子を介して、回転電機10を制御する。制御器30は、図2に示すように、回転情報検出部31、電源電圧検出部32、及びスイッチング制御部33等の制御部を備えている。制御器30の各機能は、制御器30が備えた処理回路により実現される。具体的には、制御器30は、図3に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、及び演算処理装置90から外部に信号を出力する出力回路93等を備えている。
演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、及び演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入力回路92は、回転角度センサ15、電圧センサ17等の各種のセンサ及びスイッチが接続され、これらセンサ及びスイッチの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93は、第1組及び第2組のインバータ21、22のスイッチング素子をオンオフ駆動するゲート駆動回路等の電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。
そして、制御器30が備える各制御部31〜33等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93等の制御器30の他のハードウェアと協働することにより実現される。なお、各制御部31〜33等が用いる角度設定マップ等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御器30の各機能について詳細に説明する。
1−3−1.回転情報検出部31
回転情報検出部31は、ロータ14の電気角での回転角度θ(磁極位置θ)、及び回転速度を検出する。本実施の形態では、回転情報検出部31は、回転角度センサ15の出力信号に基づいて、回転角度θ(磁極位置θ)及び回転速度を検出する。
1−3−2.電源電圧検出部32
電源電圧検出部32は、直流電源16の電源電圧を検出する。本実施の形態では、電源電圧検出部32は、電圧センサ17の出力信号に基づいて、電源電圧を検出する。
1−3−3.スイッチング制御部33
スイッチング制御部33は、各組について、スイッチング素子をオンオフ制御するPWM(Pulse Width Modulation)制御を実行する。本実施の形態では、図4に示すように、スイッチング制御部33は、各組について、各相の正極側のスイッチング素子23及び負極側のスイッチング素子24を、相互に電気角180度の位相差を設けて、電気角360度あたり1回だけオンする矩形波制御を実行する。例えば、U相について、正極側のスイッチング素子23のオン期間と、負極側のスイッチング素子24のオン期間との間には、電気角180度の位相差が設けられている。また、V相の正極側のスイッチング素子23のオン期間は、U相の正極側のスイッチング素子23のオン期間に対して、電気角120度の位相差だけ遅れている。W相の正極側のスイッチング素子23のオン期間は、V相の正極側のスイッチング素子23のオン期間に対して、電気角120度の位相差だけ遅れている。
スイッチング制御部33は、後述するように、正極側のスイッチング素子23及び負極側のスイッチング素子24をオンする角度間隔であるオン角度間隔Δθonを変化させる。なお、図4の例では、オン角度間隔Δθonは、電気角180度に設定されている。
スイッチング制御部33は、出力トルクを変化させるために、各組について、各スイッチング素子のオン期間の位相を、全体的に進角側又は遅角側にシフトする。全オン期間の位相を進角側又は遅角側にシフトすることにより、回転電機10の出力トルクの大きさを変化させることができる共に、回転電機10に正の力行トルクだけでなく、負の回生トルクを出力させることができる。なお、全オン期間の位相は、シフトされず、固定位相であってもよい。また、スイッチング制御部33は、出力トルクを変化させるために、電磁石の界磁巻線への通電をオンオフするスイッチング素子のオンデューティ比を変化させる。
スイッチング制御部33は、矩形波制御を、組間で位相差Δθp(以下、組間位相差Δθpと称す)を設けて実行する。例えば、図4に示すように、第1組のU相の正極側のスイッチング素子23のオン期間と、第2組のX相の正極側のスイッチング素子23のオン期間とには、組間位相差Δθp(本例では、電気角30度)が設けられている。
本実施の形態では、第1組の矩形波制御は、第1組の3相巻線Cu、Cv、Cw(例えば、U相巻線Cu)を基準にした回転角度θに基づいて実行され、第2組の矩形波制御は、第1組の3相巻線Cx、Cy、Cz(例えば、X相巻線Cx)を基準にした回転角度θに基づいて実行されている。そのため、本実施の形態では、組間位相差Δθpは、巻線位相差ΔθCL(本例では、電気角30度)と同じになっている(Δθp=ΔθCL=30度)。或いは、組間位相差Δθpは、巻線位相差ΔθCLから変化してもよい。
<オン角度間隔Δθonの低減の課題>
オン角度間隔Δθonの最大設定値は、電気角180度である。オン角度間隔Δθonを180度よりも大きくすると、各相の正極側及び負極側のスイッチング素子23、24が同時にオンになり、直流電源16の正極側と負極側が短絡する期間が生じるためである。
オン角度間隔Δθonが大きいと、各スイッチング素子のオン期間が長くなり、連続通電により、スイッチング素子の発熱が大きくなる。特に、回転速度が低い程、同じオン角度間隔Δθonでも、スイッチング素子のオン期間が長くなり、スイッチング素子の発熱が大きくなる。また、電源電圧が大きいほど、電流値が大きくなり、同じオン角度間隔Δθon及び同じ回転速度でも、スイッチング素子の発熱が大きくなる。スイッチング素子の発熱を低減するため、オン角度間隔Δθonを電気角180度よりも低減することが考えられる。
図5に、オン角度間隔Δθonが電気角120度に設定されている場合を示すように、1つの組において、電気角360度の全てのタイミングで、正極側のスイッチング素子及び負極側のスイッチング素子の双方がオンされているため、巻線に電流を流すことができ、回転電機10にトルクを出力させることできる。
しかし、オン角度間隔Δθonを電気角120度よりも小さくすると、図6に、オン角度間隔Δθonが電気角90度に設定されている場合を示すように、1つの組において、正極側のスイッチング素子及び負極側のスイッチング素子の一方しかオンされていない区間(図6中のハッチング部分)が生じる。この区間では、巻線に電流が流れないため、1つの組の巻線により、回転電機10にトルクを出力させることができない。例えば、回転電機10が、このトルク出力不可区間で停止すると、回転電機10にトルクを出力させることができなくなり、例えば、内燃機関18を再始動することができなくなったり、車両を発進させることができなくなったりする問題が生じる。
そのため、1組の3相巻線しか有していない回転電機では、従来技術のように、オン角度間隔Δθonを電気角120度よりも小さく設定できなく、スイッチング素子の発熱を低減するには限界があった。
<2組の3相巻線の利用>
図6に示したように、オン角度間隔Δθonが電気角90度である場合に、正極側及び負極側のスイッチング素子の一方しかオンされていないトルク出力不可区間(ハッチング部分)が、電気角30度の間隔になり、正極側及び負極側のスイッチング素子の双方がオンされているトルク出力可能区間(非ハッチング部分)が、電気角30度の間隔になり、両者が同じ間隔になる。そのため、図6に示すように、第1組の矩形波制御と第2組の矩形波制御とに位相差を設けることにより、一方の組のトルク出力不可区間を、他方の組のトルク出力可能区間により補うことができる。オン角度間隔Δθonを電気角90度よりも小さくすると、トルク出力不可区間がトルク出力可能区間よりも長くなり、一方の組のトルク出力可能区間により、他方の組のトルク出力不可区間を補いきれなくなる。従って、2組の3相巻線を設ける場合の、オン角度間隔Δθonの最小値は、電気角90度になる。
そこで、次式に示すように、スイッチング制御部33は、予め設定された切換条件に応じて、オン角度間隔Δθonを電気角120度から180度の範囲内の角度に設定する第1制御モードと、オン角度間隔Δθonを電気角90度から120度の範囲内の角度に設定する第2制御モードと、を切り替えるように構成されている。
1)第1制御モードの場合、
120≦Δθon≦180
2)第2制御モードの場合、 (1)
90≦Δθon<120
この構成によれば、矩形波制御を、1組の3相巻線が設けられている場合に実行可能な電気角120度から180度の第1制御モードで動作させるだけでなく、2組の3相巻線が設けられていることを利用し、切換条件に応じて、オン角度間隔Δθonが電気角90度から120度の範囲内の角度に設定される第2制御モードで動作させることができる。第2制御モードで動作させても、第1組の矩形波制御と第2組の矩形波制御とに位相差を設けることにより、一方の組のトルク出力可能区間により、他方の組のトルク出力不可区間を補って、回転電機にトルクが出力させることができない角度区間が生じることを抑制できる。よって、回転電機がいずれの回転角度で停止しても、回転電機にトルクを出力させることができ、内燃機関、車両等の機関を動作させることができる。よって、第2制御モードに切り替えて、スイッチング素子の発熱を抑制しつつ、回転電機にトルクを出力させることができる。
本実施の形態では、組間位相差Δθpが、電気角30度であるため、丁度、一方の組のトルク出力不可区間と、他方の組のトルク出力可能区間とを一致させて、完全に補うことができる。また、図7に示すように、組間位相差Δθpが、電気角90度である場合も、電気角30度と同様に、一致させることができる。なお、次の一致する組間位相差Δθpは、電気角150度であるが、120度以上になり相が入れ替わるため、電気角30度と同じになる。
<任意の組間位相差Δθpへの対応>
一方、組間位相差Δθpが、電気角30度、電気角90度からずれると、一方の組のトルク出力不可区間と、他方の組のトルク出力可能区間とが丁度一致しなくなり、一致していない隙間が生じる。この隙間を補うため、オン角度間隔Δθonを、ずれ幅だけ、電気角90度から増加させる必要がある。組間位相差Δθpが、電気角30度、電気角90度からずれた場合に、一方の組のトルク出力不可区間と、他方の組のトルク出力可能区間とが一致していない隙間が生じないような、最小のオン角度間隔Δθonmin(以下、下限オン角度間隔Δθonminと称す)は、次式で表される。
1)0<Δθp<60の場合、
Δθonmin=90+|Δθp−30|
2)60<Δθp<120の場合、 (2)
Δθonmin=90+|Δθp−90|
そこで、任意の組間位相差Δθpに対応するために、スイッチング制御部33は、式(2)及び次式に示すように、組間位相差Δθpを、電気角0度から60度の範囲内の角度に設定している場合は、第2制御モードにおいて、組間位相差Δθpから30度を減算した値の絶対値を、90度に加算して得られる下限オン角度間隔Δθonminから120度の範囲内の角度に、オン角度間隔Δθonを設定する。一方、スイッチング制御部33は、組間位相差Δθpを、電気角60度から120度の範囲内の角度に設定している場合は、第2制御モードにおいて、組間位相差Δθpから90度を減算した値の絶対値を、90度に加算して得られる下限オン角度間隔Δθonminから120度の範囲内の角度に、オン角度間隔Δθonを設定する。
1)第1制御モードの場合、
120≦Δθon≦180
2)第2制御モードの場合、 (3)
Δθonmin≦Δθon<120
この構成によれば、第2制御モードにおいて、任意の組間位相差Δθpに対して、一方の組のトルク出力可能区間と、他方の組のトルク出力不可区間とが一致していない隙間が生じることを抑止できる。よって、回転電機のトルクが出力されなくなる角度区間が生じることを抑制しつつ、スイッチング素子の発熱を抑制することができる。
或いは、次式に示すように、スイッチング制御部33は、第2制御モードにおいて、式(2)により算出された下限オン角度間隔Δθonminをオン角度間隔Δθonに設定するように構成されてもよい。
1)第1制御モードの場合、
120≦Δθon≦180
2)第2制御モードの場合、 (4)
Δθon=Δθonmin
この構成によれば、第2制御モードにおいて、回転電機のトルクが出力されなくなる角度区間が生じることを抑制しつつ、スイッチング素子の発熱を最大限に抑制することができる。
<切換条件>
本実施の形態では、スイッチング制御部33は、切換条件として、回転電機の回転速度及び直流電源の電源電圧に応じて、第1制御モードと第2制御モードとを切り替えるように構成されている。
例えば、スイッチング制御部33は、図8に示すような、回転速度及び電源電圧とオン角度間隔Δθonとの関係が予め設定された角度設定マップを参照し、現在の回転速度及び電源電圧とに対応するオン角度間隔Δθonを算出する。図8に示す例では、回転速度が、境界値よりも低い領域で、Δθon=90度に設定されており、第2制御モードに切り替わり、境界値よりも高い領域で、Δθon=180度に設定されており、第1制御モードに切り替わる。また、電源電圧が高くなるほど、境界値が高回転速度側にシフトし、Δθon=90度に設定される回転速度領域が、高回転速度側に広がっている。
このように、スイッチング素子の発熱が大きくなる、回転速度が低く、電源電圧が高い領域で、Δθon=90度に設定し、第2制御モードに切り替えるので、スイッチング素子の発熱を低減することができる。
或いは、角度設定マップは、図9のように設定されてもよい。この例の場合は、Δθon=90度の設定領域と、Δθon=180度の設定領域の間に、Δθon=120度の設定領域(第1制御モード)が設けられている。このように、スイッチング素子の発熱低減の必要性に応じて、同じ制御モードの中でも、段階的にオン角度間隔Δθonを減少させてもよい。
スイッチング制御部33は、オン角度間隔Δθonを変化させる際に、オン角度間隔Δθonを次第に変化させるように構成されてもよい。例えば、図8の角度設定マップを参照して算出したオン角度間隔Δθonが、90度から180度に変化した場合に、オン角度間隔Δθonの時間変化率を制限して、最終的に設定するオン角度間隔Δθonを90度から180度に次第に変化させる。この構成によれば、切換え時の通電電流及びトルクの急激な変化を抑制することができる。
2.実施の形態2
次に、実施の形態2に係る回転電機の制御装置1について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態では、スイッチング素子の温度を検出するように構成されており、第1制御モードと第2制御モードとを切り替える切換条件が、実施の形態1と異なる。図10は、本実施の形態に係る回転電機10及び制御装置1の概略構成図である。図11は、本実施の形態に係る制御器30のブロック図である。
本実施の形態では、図10に示すように、第1組及び第2組のインバータ21、22は、それぞれ、スイッチング素子の温度を検出するための温度センサ25、26を備えている。各温度センサ25、26は、スイッチング素子に近接して配置されており、スイッチング素子の温度を検出することができる。温度センサ25、26は、3相各相に1つずつ設けられてもよいし、温度センサ25、26は、3相のいずれか1相だけに1つ設けられてもよい。各温度センサ25、26の出力信号は、制御器30に入力される。
制御器30は、図11に示すように、スイッチング素子の温度を検出する素子温度検出部34を更に備えている。素子温度検出部34は、各温度センサ25、26の出力信号に基づいて、スイッチング素子の温度を検出する。
スイッチング制御部33は、切換条件としてスイッチング素子の温度に応じて、第1制御モードと第2制御モードとを切り替える。具体的には、スイッチング制御部33は、スイッチング素子の温度が、予め設定された切換判定値よりも低い場合に、オン角度間隔Δθonを電気角120度から180度の範囲内の角度(例えば、180度)に設定する第1制御モードを実行し、スイッチング素子の温度が、切換判定値以上の場合に、オン角度間隔Δθonを電気角90度から120度の範囲内の角度(例えば、90度)に設定する第2制御モードを実行する。スイッチング制御部33は、各温度センサ25、26により検出した複数のスイッチング素子の温度の最大値又は平均値を用いればよい。
この構成によれば、スイッチング素子の温度が高くなった時に、第2制御モードに切り替えて、スイッチング素子の温度の上昇を抑制し、過熱によるスイッチング素子の故障を抑制できる。
〔その他の実施の形態〕
最後に、本願のその他の実施の形態について説明する。なお、以下に説明する各実施の形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施の形態の構成と組み合わせて適用することも可能である。
(1)上記の各実施の形態においては、ロータ14に、電磁石が設けられている場合を例として説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、ロータ14に、永久磁石が設けられてもよく、或いは、ロータ14に、かご型の電気導電体が設けられてもよい。
(2)上記の各実施の形態においては、第2制御モードにおけるオン角度間隔Δθonが90度に設定されている場合を例として説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、第2制御モードにおけるオン角度間隔Δθonは、電気角90度から120度の範囲内の角度、例えば、100度、110度、又は下限オン角度間隔Δθonmin等に設定されればよい。
(3)上記の各実施の形態においては、組間位相差Δθpが電気角30度に設定されている場合を例として説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、組間位相差Δθpは、電気角30以外の角度に設定されてもよく、この場合は、上述したように、式(2)から式(4)に従って、第2制御モードのオン角度間隔Δθonが設定されればよい。
(4)上記の実施の形態1においては、切換条件として回転速度及び電源電圧に応じて第1制御モードと第2制御モードとが切り替えられ、実施の形態2においては、切換条件としてスイッチング素子の温度に応じて第1制御モードと第2制御モードとが切り替えられる場合を例として説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、回転速度及び電源電圧の切換条件と、スイッチング素子の温度の切換条件とが組み合わされてもよい。例えば、スイッチング制御部33は、基本判定として、回転速度及び電源電圧に応じて第1制御モードと第2制御モードとのいずれに切り替えるかを判定し、基本判定の結果が、第1制御モードに切り替えると判定している場合であっても、スイッチング素子の温度が切換判定値よりも高い場合は、最終的に第2制御モードに切り替えると判定する。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 回転電機の制御装置、10 回転電機、11 第1組の3相巻線、12 第2組の3相巻線、16 直流電源、21 第1組のインバータ、22 第2組のインバータ、23 正極側のスイッチング素子、24 負極側のスイッチング素子、30 制御器、31 回転情報検出部、32 電源電圧検出部、33 スイッチング制御部、34 素子温度検出部、Δθon オン角度間隔、Δθonmin 下限オン角度間隔、Δθp 組間位相差

Claims (7)

  1. 2組の3相巻線を有する回転電機を制御する回転電機の制御装置であって、
    各組について、直流電源の正極側に接続される正極側のスイッチング素子と前記直流電源の負極側に接続される負極側のスイッチング素子とが直列接続され、直列接続の接続点が対応する相の巻線に接続される直列回路を、3相各相に対応して3セット設けたインバータと、
    各組について、相間で電気角120度の位相差を設けて、各相の前記正極側のスイッチング素子及び前記負極側のスイッチング素子を、相互に電気角180度の位相差を設けて電気角360度あたり1回だけオンする矩形波制御を、組間で位相差を設けて実行するスイッチング制御部と、を備え、
    前記スイッチング制御部は、予め設定された切換条件に応じて、前記正極側のスイッチング素子及び前記負極側のスイッチング素子をオンする角度間隔であるオン角度間隔を電気角120度から180度の範囲内の角度に設定する第1制御モードと、前記オン角度間隔を電気角90度から120度の範囲内の角度に設定する第2制御モードと、を切り替え
    前記矩形波制御の組間の位相差を、電気角0度から60度の範囲内の角度に設定している場合は、前記第2制御モードにおいて、前記組間の位相差から30度を減算した値の絶対値を、90度に加算して得られる下限オン角度間隔から120度の範囲内の角度に、前記オン角度間隔を設定し、
    前記組間の位相差を、電気角60度から120度の範囲内の角度に設定している場合は、前記第2制御モードにおいて、前記組間の位相差から90度を減算した値の絶対値を、90度に加算して得られる下限オン角度間隔から120度の範囲内の角度に、前記オン角度間隔を設定する回転電機の制御装置。
  2. 2組の3相巻線を有する回転電機を制御する回転電機の制御装置であって、
    各組について、直流電源の正極側に接続される正極側のスイッチング素子と前記直流電源の負極側に接続される負極側のスイッチング素子とが直列接続され、直列接続の接続点が対応する相の巻線に接続される直列回路を、3相各相に対応して3セット設けたインバータと、
    各組について、相間で電気角120度の位相差を設けて、各相の前記正極側のスイッチング素子及び前記負極側のスイッチング素子を、相互に電気角180度の位相差を設けて電気角360度あたり1回だけオンする矩形波制御を、組間で位相差を設けて実行するスイッチング制御部と、を備え、
    前記スイッチング制御部は、予め設定された切換条件に応じて、前記正極側のスイッチング素子及び前記負極側のスイッチング素子をオンする角度間隔であるオン角度間隔を電気角120度から180度の範囲内の角度に設定する第1制御モードと、前記オン角度間隔を電気角90度から120度の範囲内の角度に設定する第2制御モードと、を切り替え、
    前記組間の位相差を、電気角0度から60度の範囲内の角度に設定している場合は、前記第2制御モードにおいて、前記組間の位相差から30度を減算した値の絶対値を、90度に加算して得られる下限オン角度間隔を、前記オン角度間隔に設定し、
    前記組間の位相差を、電気角60度から120度の範囲内の角度に設定している場合は、前記第2制御モードにおいて、前記組間の位相差から90度を減算した値の絶対値を、90度に加算して得られる下限オン角度間隔を、前記オン角度間隔に設定する回転電機の制御装置。
  3. 前記スイッチング制御部は、
    前記組間の位相差を電気角30度又は電気角90度に設定し、前記第2制御モードにおいて、前記オン角度間隔を電気角90度に設定する請求項1又は2に記載の回転電機の制御装置。
  4. 前記矩形波制御の組間の位相差は、前記3相巻線の組間の位相差に設定されている請求項1からのいずれか一項に記載の回転電機の制御装置。
  5. 前記スイッチング制御部は、前記切換条件として前記回転電機の回転速度及び前記直流電源の電源電圧に応じて、前記第1制御モードと前記第2制御モードとを切り替える請求項1からのいずれか一項に記載の回転電機の制御装置。
  6. 前記スイッチング素子の温度を検出する素子温度検出部を更に備え、
    前記スイッチング制御部は、前記切換条件として前記スイッチング素子の温度に応じて、前記第1制御モードと前記第2制御モードとを切り替える請求項1からのいずれか一項に記載の回転電機の制御装置。
  7. 前記スイッチング制御部は、前記オン角度間隔を変化させる際に、前記オン角度間隔を次第に変化させる請求項1からのいずれか一項に記載の回転電機の制御装置。
JP2018104241A 2018-05-31 2018-05-31 回転電機の制御装置 Active JP6541844B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018104241A JP6541844B1 (ja) 2018-05-31 2018-05-31 回転電機の制御装置
US16/385,201 US10840844B2 (en) 2018-05-31 2019-04-16 Controller for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018104241A JP6541844B1 (ja) 2018-05-31 2018-05-31 回転電機の制御装置

Publications (2)

Publication Number Publication Date
JP6541844B1 true JP6541844B1 (ja) 2019-07-10
JP2019213246A JP2019213246A (ja) 2019-12-12

Family

ID=67212209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018104241A Active JP6541844B1 (ja) 2018-05-31 2018-05-31 回転電機の制御装置

Country Status (2)

Country Link
US (1) US10840844B2 (ja)
JP (1) JP6541844B1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022093787A (ja) * 2020-12-14 2022-06-24 ローム株式会社 モータドライバ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118186A (en) * 1994-09-14 2000-09-12 Coleman Powermate, Inc. Throttle control for small engines and other applications
JP2004320861A (ja) 2003-04-14 2004-11-11 Denso Corp 車両用3相電動発電機の制御装置
JP2011211800A (ja) * 2010-03-29 2011-10-20 Panasonic Electric Works Co Ltd モータ制御装置及びそれを用いたdcモータ並びにポンプ
JP5837229B2 (ja) * 2012-11-22 2015-12-24 三菱電機株式会社 車両用交流電動発電機
JP5907137B2 (ja) * 2013-10-02 2016-04-20 株式会社デンソー 電力変換装置および電力変換システム

Also Published As

Publication number Publication date
US20190372499A1 (en) 2019-12-05
US10840844B2 (en) 2020-11-17
JP2019213246A (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
JP6394030B2 (ja) インバータ制御装置
US9979329B2 (en) Power converting device and power converting system
EP2031749B1 (en) On-vehicle rotary electric machine operating on two modes of rectification
US9300231B2 (en) Output control apparatus of a motor and method for controlling a controller of the same
JP2008109759A (ja) 回転電機の制御装置
JP5253264B2 (ja) モータ駆動装置
US11757373B2 (en) Power converter
JP2009232604A (ja) 回転電機制御システム
JP6671402B2 (ja) 車両用電源装置
JP6541844B1 (ja) 回転電機の制御装置
EP3550718B1 (en) Driving control device and driving control method
JP2012244740A (ja) 駆動装置
JP6398835B2 (ja) 回転電機の制御装置
US7928676B2 (en) Vehicle motor control apparatus
JP2004129379A (ja) モータ制御装置、およびモータの駆動制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP6091571B1 (ja) 回転電機、及び回転電機の制御方法
JP5441951B2 (ja) 回転電機
CN107531232B (zh) 电动机装置
JP6421681B2 (ja) 電動発電機装置
JP6152309B2 (ja) モータ駆動装置
JP7185480B2 (ja) 電力変換装置
JP4298896B2 (ja) 動力出力装置
JP6058085B1 (ja) 回転電機および回転電機の制御方法
JP2023081073A (ja) 回転電機の制御装置、回転電機の制御方法、及び回転電機の制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190611

R151 Written notification of patent or utility model registration

Ref document number: 6541844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350