JP6521526B2 - モータ駆動制御装置およびこれを備えた工作機械 - Google Patents

モータ駆動制御装置およびこれを備えた工作機械 Download PDF

Info

Publication number
JP6521526B2
JP6521526B2 JP2016002801A JP2016002801A JP6521526B2 JP 6521526 B2 JP6521526 B2 JP 6521526B2 JP 2016002801 A JP2016002801 A JP 2016002801A JP 2016002801 A JP2016002801 A JP 2016002801A JP 6521526 B2 JP6521526 B2 JP 6521526B2
Authority
JP
Japan
Prior art keywords
speed
control
deceleration
motor
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016002801A
Other languages
English (en)
Other versions
JP2017123763A (ja
Inventor
櫻井 努
努 櫻井
陽司 津久井
陽司 津久井
宗生 脇坂
宗生 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DMG Mori Co Ltd
Original Assignee
DMG Mori Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DMG Mori Co Ltd filed Critical DMG Mori Co Ltd
Priority to JP2016002801A priority Critical patent/JP6521526B2/ja
Publication of JP2017123763A publication Critical patent/JP2017123763A/ja
Application granted granted Critical
Publication of JP6521526B2 publication Critical patent/JP6521526B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、工作機械等に用いられるモータの駆動を制御するためのモータ駆動制御装置およびこれを備えた工作機械に関するものである。
従来、工作機械等に用いられるモータを制御するための制御モードとしては、モータを一定速度で回転させる際に用いられる速度制御と、回転軸を所定の停止位置(角度)に一致させる際に用いられる位置制御とがある。そして、モータを回転状態から所定の停止位置(角度)に位置決めする際には、速度制御によって最大トルクで減速させた後、制御モードを位置制御に切り換えて停止させるシーケンスが採用されている。速度制御では、最大トルクを発生させて迅速に減速できる一方、当該最大トルクでは振動、オーバーシュート、計測誤差等が発生し、正確な位置決めができないためである。
上記シーケンスにおいては、図20に示すように、位置制御への切り換えタイミングが遅すぎると、最大トルクで減速させる時間が長くなり、速度が低下し過ぎるため、位置決めにかかる時間が長くなってしまう。一方、位置制御への切り換えタイミングが早すぎると、最大トルクで減速させる時間が短くなり、回転量が無駄に多くなるため、減速にかかる時間が長くなってしまう。このため、モータの総回転数が最も少なくなるように位置決め動作を最適化するには、最適なタイミングで位置制御へ切り換えることが重要である。
ただし、工作機械等のモータおいては、回転軸に把持されるワーク(被切削物)の重さや形状等によって、発生するイナーシャ(回転慣性モーメント)が異なる。このため、図21に示すように、当該イナーシャが小さいときは、最大トルクで減速する際の減速度が大きく、図22に示すように、当該イナーシャが大きいときは、最大トルクで減速する際の減速度が小さい。したがって、上述した最適な切り換えタイミングは、イナーシャによっても異なるし、回転軸の初期角度や位置決め角度によっても変わってしまう。
なお、特開2014−7790号公報の第二実施形態には、上述した切り換えタイミングをモータに固有のベース回転速度で固定し、当該ベース回転速度までは最大トルクで減速するとともに、当該ベース回転速度よりも低い場合には、減速に最低限必要な減速所要距離に基づいて、停止位置まで一定の減速度で減速させるモータ駆動制御装置が提案されている(特許文献1)。
特開2014−7790号公報
しかしながら、特許文献1に記載された発明においては、最大トルクでの高速回転中に位置検出値や最大加速度を計測する必要があるため、計測誤差が発生しやすく、オーバーシュート対策が取りにくいという問題がある。また、当該オーバーシュート等によって、所定の停止位置で停止できなかった場合には、図23に示すように、一旦停止してから再度加減速して、もう1回転させる必要があるため、結局、停止するまでの時間が無駄に長引いてしまうという問題もある。
そこで、本願発明者らは、特願2015−136510号において、速度制御から位置制御への切り換えタイミングを最適化することにより、できるだけ少ない回転数で迅速かつ確実にモータを所定の停止位置に停止可能なモータ駆動制御技術を提案している。ただし、当該技術は、モータが高速度で回転している状態からの位置決めには適しているものの、モータが比較的低速度で回転している状態からの位置決めや、停止している状態からの位置決めには改善の余地があった。
本発明は、以上のような背景技術のもとでなされたものであって、モータが比較的低速度で回転している状態や停止している状態からであっても、できるだけ少ない回転数で迅速かつ確実にモータを所定の停止位置に停止させることができるモータ駆動制御装置およびこれを備えた工作機械を提供することを目的としている。
本発明に係るモータ駆動制御装置は、モータが比較的低速度で回転している状態や停止している状態からであっても、できるだけ少ない回転数で迅速かつ確実にモータを所定の停止位置に停止させるという課題を解決するものであり、位置検出手段によって検出された前記モータの位置情報に基づいて、前記モータの現在速度、前記モータの加速度または減速度、および現在位置と停止位置との差分値を算出するモータ状態算出部と、前記モータを最大トルクで減速制御しても安定して停止できる速度の最小値である最大減速可能速度を算出する最大減速可能速度算出部と、イナーシャが最小のときにイナーシャを測定するために必要な移動距離の最小値であるイナーシャ測定最小距離を算出するイナーシャ測定最小距離算出部と、前記モータの駆動制御開始時における初速度が前記最大減速可能速度未満であって、前記差分値が前記イナーシャ測定最小距離以上の場合、最大トルクで加速した後、速度制御および位置制御によって減速する第2モードを実行し、前記初速度が前記最大減速可能速度未満であって、前記差分値が前記イナーシャ測定最小距離よりも小さい場合、最大トルクで加速した際の最大加速度よりも小さい設定加速度で加速した後、当該設定加速度で減速する第3モードを実行する加減速制御部と、を有する。
また、本発明の一態様として、第2モードを適切に実現するという課題を解決するために、前記加減速制御部が、前記第2モードを実行する場合、前記モータの最大減速度にマージン設定用比率を掛け合わせて位置制御用減速度を算出する位置制御用減速度算出部と、前記初速度と、前記最大加速度と、前記位置制御用減速度と、前記差分値と、前記マージン設定用比率と、前記位置制御用減速度で駆動制御する時間の最小値として設定される位置制御時間とに基づいて、前記最大加速度での加速時間と前記最大減速度での減速時間と前記位置制御時間との和が最小となる速度を、前記モータの駆動制御を加速制御から減速制御に切り換える第一最大速度として算出する第一最大速度算出部と、前記最大減速度と、前記第一最大速度と、前記差分値と、前記マージン設定用比率と、前記位置制御時間とに基づいて、前記最大減速度での移動距離と前記位置制御用減速度での移動距離との和が最小となる速度を、前記モータの駆動制御を速度制御から位置制御に切り換える第二制御速度として算出する切換速度算出部とを有し、前記加減速制御部は、前記モータの速度が前記第一最大速度よりも小さいうちは最大トルクで加速制御し、前記モータの速度が前記第一最大速度に到達すると最大トルクで減速制御し、前記モータの速度が前記第二制御速度よりも小さくなった後には前記位置制御用減速度で減速制御してもよい。
さらに、本発明の一態様として、第3モードを適切に実現するという課題を解決するために、前記加減速制御部が、前記第3モードを実行する場合、前記設定加速度と前記差分値とに基づいて、前記モータの駆動制御を加速制御から減速制御に切り換える第二最大速度を算出する第二最大速度算出部を有し、前記加減速制御部は、前記モータの速度が前記第二最大速度よりも小さいうちは前記設定加速度で加速制御し、前記モータの速度が前記第二最大速度に到達すると前記設定加速度で減速制御してもよい。
また、本発明の一態様として、第2モードで制御するか、第3モードで制御するかを判定するという課題を解決するために、前記イナーシャ測定最小距離算出部は、下記式(2)を用いて前記イナーシャ測定最小距離を算出してもよい。
min=amax(2T +XT−X)/2+ω …式(2)
ただし、各記号は以下を表す。
ω:初速度
max:設定最大加速度
X:マージン設定用比率
:イナーシャを測定するために必要な時間
T:位置制御時間
さらに、本発明の一態様として、第2モードにおいて、最大加速度での加速時間と最大減速度での減速時間と位置制御時間との和を最小化するという課題を解決するために、第一最大速度算出部は、下記式(6)を満たす前記モータが停止するまでに必要な回転数nの最小値を用いて、下記式(5)によって前記第一最大速度ωmax1を算出してもよい。
ωmax1=√[{ω −a X(1−X)}/2+a(L+2πn)] …式(5)
n≧〔[ω +a X(1−X)]/2a−L〕/2π …式(6)
ただし、各記号は以下を表す。
ω:初速度
:最大加速度(最大減速度)
n:モータが停止するまでに必要な回転数
L:現在位置と停止位置との差分値
X:マージン設定用比率
T:位置制御時間
また、本発明に係る工作機械は、上述したいずれかの態様のモータ駆動制御装置を備えてなる。
本発明によれば、モータが比較的低速度で回転している状態や停止している状態からであっても、できるだけ少ない回転数で迅速かつ確実にモータを所定の停止位置に停止させることができる。
本発明に係るモータ駆動制御装置およびこれを備えた工作機械の一実施形態を示すブロック図である。 モータのトルク特性を示す図である。 本実施形態の駆動制御によるモータの動作を示す図である。 本実施形態の駆動制御によるモータの動作と、位置制御時間を設定しない場合の動作を示す図である。 本実施形態において、最大減速可能速度の算出方法を説明する図である。 本実施形態において、イナーシャ測定最小距離を説明する図である。 本実施形態において、イナーシャ測定最小距離の算出方法を説明する図である。 本実施形態の駆動制御によるモータの動作と、高速領域から減速度にマージンを持たせた場合の動作を示す図である。 本実施形態において、第二制御速度の算出方法を説明する図である。 本実施形態において、位置制御用減速度の調整方法を示す図である。 本実施形態において、第一最大速度の算出方法を説明する図である。 本実施形態のモータ駆動制御装置の動作を示すフローチャートである。 本実施形態において、第1モードの動作を示すグラフである。 本実施形態において、第1モードの動作を示すフローチャートである。 本実施形態において、第2モードの動作を示すグラフである。 本実施形態において、第2モードの動作を示すフローチャートである。 本実施形態において、第3モードの動作を示すグラフである。 本実施形態において、第3モードの動作を示すフローチャートである。 本発明に係るモータ駆動制御装置による動作と、特許文献1の動作とを比較した図である。 モータの駆動制御において、速度制御から位置制御への切り換えタイミングと停止までにかかる時間との関係を示す図である。 モータの駆動制御において、ワークのイナーシャが小さいときの切り換えタイミングを示す図である。 モータの駆動制御において、ワークのイナーシャが大きいときの切り換えタイミングを示す図である。 特許文献1の駆動制御において、停止位置で停止できなかった場合の動作を示す図である。
以下、本発明に係るモータ駆動制御装置およびこれを備えた工作機械の一実施形態について図面を用いて説明する。
本実施形態のモータ駆動制御装置1は、図1に示すように、上位コントローラ10からの指示に基づいて、工作機械11に用いられるモータ11aの駆動を制御し、所定の停止位置に位置決めを行うためのものである。以下、各構成について詳細に説明する。
上位コントローラ10は、モータ駆動制御装置1にモータ11aの駆動制御に関する指示を出すものであり、プログラマブル・ロジック・コントローラ(PLC)やパーソナルコンピュータ等によって構成されている。上位コントローラ10は、モータ駆動制御装置1へ出力する設定条件として、停止位置と、位置決め条件と、停止判定速度と、第一制御速度と、マージン設定用比率と、位置制御時間と、設定最大加速度と、イナーシャ測定時間と、設定加速度とが設定可能に構成されている。
停止位置は、モータ11aの回転軸を停止させたい位置(角度)を設定するものである。位置決め条件は、停止位置に対する許容誤差範囲を設定するものであり、例えば「停止位置に対して±1度以内」のように設定される。停止判定速度は、モータ11aの位置決めが完了したか否かを判定するための速度を設定するものである。
第一制御速度は、モータ11aの減速度の最大値である最大減速度が算出されるタイミングにおけるモータ速度を示すものである。一般的に、モータ11aにおけるトルク特性は、図2に示すように、モータ11aに固有のベース回転速度(ベース回転数)までは一定のトルクを出力するのに対し、ベース回転速度以上では、弱め界磁制御によって出力(=トルク×回転速度)が一定となるように制御されている。このため、本実施形態では、図3に示すように、モータ速度がベース回転速度まで減速された直後の減速度(傾き)を最大減速度と考え、第一制御速度としては、制御対象となるモータ11aのベース回転速度が設定されている。
マージン設定用比率は、モータ11aの最大減速度に掛け合わせて、位置制御時の減速度である位置制御用減速度を算出するためパラメータである。本実施形態において、マージン設定用比率は、図3に示すように、後述する第二制御速度以下での位置制御用減速度を最大減速度よりも緩やかにしてマージンを持たせ、モータ11aが必ず安定して停止しうるようになっており、例えば90〜95%程度の値が設定される。
位置制御時間は、位置制御用減速度で駆動制御する時間の最小値として設定されるパラメータである。上述したとおり、本実施形態では、位置制御用減速度にマージンが設定されるが、位置制御用減速度で駆動制御する時間が短すぎると、図4に示すように、最大トルクで減速時の計測誤差を吸収し切れない場合がある。この場合、モータ11aの停止後、さらに1回転させる必要があるため、停止するまでの時間が無駄に長引いてしまう。そこで、本実施形態では、最低でも位置制御時間の間は、位置制御を実行するようにマージンが設定されており、例えば10〜100msec程度の値が設定される。
設定最大加速度は、回転軸にかかるイナーシャ(回転慣性モーメント)が最小のときに、モータ11aを最大トルクで加速した際の加速度を示すものである。本実施形態において、イナーシャが最小の場合とは、例えば、回転軸にワーク等が取り付けられていない場合である。あるいは、同じワークを繰り返し量産加工する場合等には、加工後のワークが取り付けられている状態で測定したイナーシャが最小となる。本実施形態において、設定最大加速度は、工作機械11に用いられるモータ11aの種類等に応じて予め設定されている。なお、回転軸にかかるイナーシャが最小のときに、モータ11aを最大トルクで減速した際の減速度も設定最大加速度と同一であるため、当該減速度を含めて設定最大加速度というものとする。
イナーシャ測定時間は、回転軸にかかるイナーシャを測定するために必要な時間を示すものである。通常、イナーシャを測定するには、数サイクル分のデータが必要となる。このため、イナーシャ測定時間は、工作機械11に用いられるモータ11aの種類等に応じて必要な時間が確保されている。
設定加速度は、後述する第3モードにおいて使用する加速度である。本実施形態において、設定加速度は、手動操作時の加速度等のように、他のパラメータとして別途設定されている値が援用されている。しかしながら、設定加速度は、当該値に限定されるものではなく、最大トルクで加速した際の最大加速度よりも小さい値に設定されていればよい。
工作機械11は、旋盤、ボール盤、中ぐり盤、フライス盤、歯切り盤、研削盤等のように、金属、木材、石材、樹脂等のワークに対して、切断、穿孔、研削、研磨、圧延、鍛造、折り曲げ等の加工を施すための機械である。工作機械11は、図1に示すように、モータ駆動制御装置1の加減速制御部41から供給される駆動信号に基づいて駆動制御されるモータ11aと、このモータ11aの位置情報(回転角度位置)を検出するロータリエンコーダ等の位置検出手段11bとを有している。なお、本実施形態では、工作機械11の主軸モータを制御対象としているが、他のモータ11aを制御することも可能である。
モータ駆動制御装置1は、工作機械11を制御する数値制御装置等のコンピュータによって構成されており、図1に示すように、各種のデータを記憶するとともに、演算処理手段3が演算処理を行う際のワーキングエリアとして機能する記憶手段2と、記憶手段2にインストールされたモータ駆動制御プログラム1aを実行することにより、各種の演算処理を実行し後述する各構成部として機能する演算処理手段3とを有している。以下、各構成手段について説明する。
記憶手段2は、ハードディスク、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ等で構成されており、図1に示すように、プログラム記憶部21と、設定条件記憶部22とを有している。
プログラム記憶部21には、本実施形態のモータ駆動制御装置1を制御するためのモータ駆動制御プログラム1aがインストールされている。そして、演算処理手段3が、当該モータ駆動制御プログラム1aを実行することにより、コンピュータとしてのモータ駆動制御装置1を後述する各構成部として機能させるようになっている。なお、本実施形態において、モータ駆動制御プログラム1aは、モータ11aの基本的な制御モードとして、一定速度に制御するための速度制御モードと、回転軸を所望の停止位置に位置決めするための位置制御モードとを備えている。
また、モータ駆動制御プログラム1aは、後述するとおり、本発明に係る特徴的な制御モードとして、モータ11aの駆動制御開始時における初速度と、現在位置から停止位置までの差分値とに応じて選択される、以下の3つのモードを有している。
第1モード:初速度がベース回転数近傍より低速であって、後述する最大減速可能速度以上の場合に好適なモード
第2モード:初速度が最大減速可能速度未満であって、差分値が後述するイナーシャ測定最小距離以上の場合に好適なモード
第3モード:初速度が最大減速可能速度未満であって、差分値がイナーシャ測定最小距離よりも小さい場合に好適なモード
なお、モータ駆動制御プログラム1aの利用形態は、上記構成に限られるものではない。例えば、CD−ROMやUSBメモリ等のように、コンピュータで読み取り可能な非一時的な記録媒体にモータ駆動制御プログラム1aを記憶させておき、当該記録媒体から直接読み出して実行してもよい。また、外部サーバ等からクラウドコンピューティング方式やASP(Application Service Provider)方式等で利用してもよい。
設定条件記憶部22は、上位コントローラ10から出力された各種の設定条件を記憶するものである。本実施形態では、上述したとおり、停止位置と、位置決め条件と、停止判定速度と、第一制御速度と、マージン設定用比率と、位置制御時間と、設定最大加速度と、イナーシャ測定時間と、設定加速度とが、上位コントローラ10で予め設定されており、これらの設定条件が設定条件記憶部22に読み込まれて記憶されるようになっている。
つぎに、演算処理手段3は、CPU(Central Processing Unit)等によって構成されており、記憶手段2にインストールされたモータ駆動制御プログラム1aを実行することにより、図1に示すように、設定条件取得部31と、位置情報取得部32と、モータ状態算出部33と、最大減速可能速度算出部34と、イナーシャ測定最小距離算出部35と、位置制御用減速度算出部36と、切換速度算出部37と、位置制御用減速度調整部38と、第一最大速度算出部39と、第二最大速度算出部40と、加減速制御部41と、位置決め完了判定部42として機能するようになっている。以下、各構成部についてより詳細に説明する。
設定条件取得部31は、モータ11aの位置決めに必要な各種の設定条件を取得するものである。本実施形態において、設定条件取得部31は、上位コントローラ10から出力された停止位置、位置決め条件、停止判定速度、第一制御速度、マージン設定用比率、位置制御時間、設定最大加速度およびイナーシャ測定時間からなる設定条件を取得し、これらの設定条件を設定条件記憶部22に保存するようになっている。
位置情報取得部32は、モータ11aの位置情報(回転角度位置)を取得するものである。本実施形態において、位置情報取得部32は、図1に示すように、工作機械11に設けられた位置検出手段11bによって検出されたモータ11aの位置情報を取得し、モータ状態算出部33へ出力するようになっている。
モータ状態算出部33は、モータ11aの状態を示す各種の値を算出するものである。本実施形態において、モータ状態算出部33は、位置検出手段11bによって検出されたモータ11aの位置情報を位置情報取得部32から取得し、当該位置情報に基づいてモータ11aの状態を算出する。
具体的には、モータ状態算出部33は、位置情報を1回微分した値をモータ11aの現在速度として算出し、位置情報を2回微分した値をモータ11aの加速度または減速度として算出する。また、モータ状態算出部33は、後述するとおり、第1モードでは、数サイクル分の減速度データに基づいて最大減速度を算出し、第2モードでは、数サイクル分の加速度データに基づいて最大加速度を算出するようになっている。さらに、モータ状態算出部33は、位置情報によって特定される現在位置と、設定条件として記憶されている停止位置との差分値を算出するようになっている。
最大減速可能速度算出部34は、モータ11aを最大トルクで減速制御しても安定して停止できる速度の最小値である最大減速可能速度を算出するものである。本実施形態では、モータ11aが停止している状態からの位置決めの他、モータ11aが比較的低速度で回転している状態からの位置決めを想定している。このため、モータ11aを最大トルクで減速制御すると直ちに停止してしまい、安定して停止できなくなる速度の閾値を最大減速可能速度として算出する。そして、この最大減速可能速度によって、第1モードで制御するか、第2モードまたは第3モードで制御するかが判定されるようになっている。
具体的には、モータ11aを最大トルクで減速制御して安定して停止する場合には、図5に示すように、イナーシャ測定時間の間は最大トルクで減速した後、位置制御時間の間は位置制御用減速度(マージン設定用比率×設定最大加速度)で減速されることとなる。このため、最大減速可能速度算出部34は、設定条件記憶部22に記憶されている設定最大加速度、イナーシャ測定時間、マージン設定用比率および位置制御時間に基づいて、下記式(1)によって最大減速可能速度ωを算出するようになっている。
ω=amax+XamaxT …式(1)
ただし、各記号は以下を表す。
max:設定最大加速度
:イナーシャ測定時間
X:マージン設定用比率
T:位置制御時間
イナーシャ測定最小距離算出部35は、回転軸にかかるイナーシャが最小のときに、イナーシャを測定するために必要な移動距離の最小値であるイナーシャ測定最小距離を算出するものである。本実施形態では、上述したとおり、モータ11aが比較的低速度で回転している状態からの位置決めや、モータ11aが停止している状態からの位置決めを想定している。しかしながら、現在位置が停止位置に非常に近い場合には、イナーシャを算出した時点から最短距離で停止できずに、一旦加速してもう1周することが想定される。
このため、イナーシャが最小のときに、イナーシャを測定することにより最低限進んでしまう距離であって、最大トルクで加速および減速すると停止位置に停止できなくなる距離の閾値をイナーシャ測定最小距離として算出する。実際にイナーシャが存在する場合には、図6に示すように、イナーシャ測定最小距離よりも最小距離は小さくなる。このため、現在位置から停止位置までの距離がイナーシャ測定最小距離よりも小さければ、イナーシャがいかなる値であっても最大トルクでは停止できないためである。そして、このイナーシャ測定最小距離によって、第2モードで制御するか、第3モードで制御するかが判定されるようになっている。
具体的には、イナーシャ測定最小距離は、図7に示すように、初速度ωの状態からイナーシャ測定時間Tの間、設定最大加速度amaxで加速したときの移動距離Sと、後述する第一最大速度ωmax1から第二制御速度ωまで減速したときの移動距離Sと、位置制御時間Tの間に第二制御速度ωから停止するまでの移動距離Sとの合計である。
ここで、イナーシャ測定最小距離の算出方法について具体的に説明する。図7に示すように、上記移動距離S〜Sは、それぞれ以下の式で表される。
=amax /2+ω
=amax /2+ω
=Xamax/2
また、ωmax1からωまで減速したときの時間tは以下の式で表される。
=(ωmax1−ω)/amax=T−XT
したがって、イナーシャ測定最小距離算出部35は、下記式(2)を用いてイナーシャ測定最小距離Sminを算出するようになっている。
min=S+S+S=amax(2T +XT−X)/2+ω …式(2)
ただし、各記号は以下を表す。
ω:初速度
max:設定最大加速度
X:マージン設定用比率
:イナーシャを測定するために必要な時間
T:位置制御時間
位置制御用減速度算出部36は、第1モードまたは第2モードにおいて、位置制御時に使用する減速度である位置制御用減速度を算出するものである。本実施形態において、位置制御用減速度算出部36は、モータ状態算出部33によって算出されたモータ11aの最大加速度または最大減速度を取得するとともに、設定条件記憶部22からマージン設定用比率を取得する。そして、位置制御用減速度算出部36は、当該最大加速度または最大減速度にマージン設定用比率を掛け合わせて位置制御用減速度を算出するようになっている。
具体的には、第1モードにおいて、位置制御用減速度算出部36は、最大減速度にマージン設定用比率を掛け合わせて位置制御用減速度を算出する。一方、第2モードにおいて、位置制御用減速度算出部36は、最大トルク時の最大減速度と最大加速度とが一致していると想定し、当該最大加速度にマージン設定用比率を掛け合わせて位置制御用減速度を算出するようになっている。なお、トルクの値が同じであれば、摩擦の影響によって最大減速度が最大加速度よりも大きくなり、安全に停止しやすいため、上記想定が可能となる。
切換速度算出部37は、第1モードまたは第2モードにおいて、モータ11aの駆動制御を速度制御から位置制御に切り換えるタイミングを規定する第二制御速度を算出するものである。図8に示すように、高速領域から減速度にマージンを持たせてしまうと、わずかなマージンでも停止までにかかる時間が増大し、無駄が発生してしまう。そこで、切換速度算出部37は、できるだけ最大トルクで減速させる時間を確保しつつ、かつ、確実に停止位置で停止しうるような切り換えタイミングを特定するようになっている。
具体的には、切換速度算出部37は、モータ状態算出部33によって算出された最大減速度および差分値と、設定条件記憶部22に記憶されている第一制御速度、マージン設定用比率および位置制御時間とに基づいて、最大減速度での移動距離と位置制御用減速度での移動距離との和が最小となる速度を第二制御速度として算出するようになっている。
ここで、第二制御速度の算出方法について具体的に説明する。図9に示すように、第一制御速度ωから第二制御速度ωまでは、最大減速度aで時間tをかけて減速し、第二制御速度ωから停止するまでは、位置制御用減速度aで時間tをかけて減速した場合、以下の式(a)〜(d)が成り立つ。
=(ω+ω)t/2:aで減速したときの移動距離 …式(a)
=ω/2:aで減速したときの移動距離 …式(b)
ω=a+a …式(c)
ω=a …式(d)
また、停止するまでの移動距離は、現在位置と停止位置との差分値Lおよびモータ11aの回転数nを用いてL+2πnと表されるから、上記式(a)〜(d)より、以下の式(e)が成り立つ。
+S=ω/2+ω(t+t)/2=L+2πn …式(e)
さらに、上述したマージン設定用比率Xおよび位置制御時間Tのマージンパラメータを用いて以下の関係式(f),(g)が成り立つ。
=aX …式(f)
≧T …式(g)
以上において、上記式(c),(d)より導出される、t=(ω−ω)/aおよびt=ω/aを、上記式(e)に代入すると、下記式(h)が成り立つ。
ω (1/2a−1/2a)+ω /2a=L+2πn …式(h)
よって、上記式(h)および上記式(f)により、第二制御速度ωについては、下記式(3)が導出される。
ω=√[{X/(1−X)}・{2a(L+2πn)−ω }] …式(3)
ここで、上記式(3)のルート(根号)の中が正の数であるためには、下記式(i)を満たす必要がある。
n≧(ω /2a−L)/2π …式(i)
一方、上記式(d),(f),(g)より、マージンに対する制限として、下記式(j)が成り立つ。
ω≧aT=aXT …式(j)
よって、上記式(i)および上記式(j)により、モータ11aが停止するまでに必要な回転数nについては、下記式(4)が導出される。
n≧〔[ω +{(1−X)/X}(aXT)]/2a−L〕/2π …式(4)
すなわち、切換速度算出部37は、下記式(4)を満たすモータ11aが停止するまでに必要な回転数nの最小値を用いて、下記式(3)によって第二制御速度ωを算出するようになっている。
ω=√[{X/(1−X)}・{2a(L+2πn)−ω }] …式(3)
n≧〔[ω +{(1−X)/X}(aXT)]/2a−L〕/2π …式(4)
ただし、各記号は以下を表す。
ω:第一制御速度(ベース回転速度)
ω:第二制御速度(切換速度)
:最大減速度
n:モータが停止するまでに必要な回転数
L:現在位置と停止位置との差分値
X:マージン設定用比率
T:位置制御時間
位置制御用減速度調整部38は、第1モードまたは第2モードにおいて、位置検出手段11bによる測定誤差を吸収するように位置制御用減速度を調整するものである。本実施形態において、位置制御用減速度調整部38は、加減速制御部41が、第二制御速度よりも小さい速度でモータ11aを減速制御している間、最新の位置情報に基づいて位置制御用減速度を調整する。
具体的には、図10に示すように、第二制御速度よりも小さい速度ωでモータ11aを減速制御している時点において、停止位置までの残りの移動距離Sを時間tをかけて減速する場合、上記式(b)と同様、下記式(k)が成り立つ。
=ω/2 …式(k)
また、当該時点において、位置制御用減速度aで減速している場合、速度ωについては、上記式(d)と同様、下記式(l)が成り立つ。
ω=a …式(l)
よって、上記式(k),(l)により、以下の式(m)が導出される。
=ω /2a …式(m)
以上より、位置制御用減速度調整部38は、位置制御を実行している間、最新の位置情報に基づいて、モータ状態算出部33によって算出された残りの移動距離Sおよび速度ωを取得し、上記式(m)が成立するか否かを常時監視する。そして、上記式(m)が成り立たなくなったとき(S≠ω /2aとなったとき)は、位置制御用減速度aのままでは停止位置に停止できないことを意味するから、位置制御用減速度の調整が必要と判断し、上記式(m)を変形した下記式(n)により調整後の位置制御用減速度aを算出する。
=ω /2S …式(n)
そして、位置制御用減速度調整部38は、当該調整後の位置制御用減速度aを加減速制御部41へ指示するようになっている。
なお、上述した位置制御用減速度の調整に際し、仮に大きな外乱等の発生により、調整後の位置制御用減速度aが、最大減速度aよりも大きくなってしまった場合、オーバーシュートが発生する等、所望の制御が不能となってしまうおそれがある。そこで、上記のような場合(a>a)には、位置制御用減速度調整部38が、マージン設定用比率Xを適宜低減させ、再設定するようにしてもよい。例えば、マージン設定用比率Xが95%に設定されていた場合には、90%にすることで上記のような場合が回避される。ただし、上記のように再設定する場合でも、当該再設定の前に発生するオーバシュートや多くの回転は避けられない。そのため、量産する場合等には、予め所定のマージン設定用比率Xでテスト加工を行い、上手くいかない場合には、より安全側のマージン設定用比率Xを設定することで外乱等の影響を最小限に抑えることが好ましい。
第一最大速度算出部39は、第2モードにおいて、モータ11aの駆動制御を加速制御から減速制御に切り換える第一最大速度を算出するものである。本実施形態において、第一最大速度算出部39は、モータ状態算出部33によって算出された初速度(現在速度)、最大加速度および差分値と、設定条件記憶部22に記憶されているマージン設定用比率および位置制御時間と、位置制御用減速度算出部36によって算出された位置制御用減速度とに基づいて、最大加速度での加速時間と最大減速度での減速時間と位置制御時間との和が最小となる速度を、第一最大速度として算出するようになっている。
ここで、第一最大速度の算出方法について具体的に説明する。図11に示すように、現在速度ωから第一最大速度ωmax1までは、最大加速度aで時間tをかけて加速し、第一最大速度ωmax1から第二制御速度ωまでは、最大減速度aで時間tをかけて減速し、第二制御速度ωから停止するまでは、位置制御用減速度a(=Xa)で位置制御時間Tをかけて減速した場合、各制御区間における移動距離S〜Sは、それぞれ以下の式で表される。
=(ωmax1+ω)t/2 …式(A)
=(ωmax1+ω)t/2 …式(B)
=ωT/2 …式(C)
また、ωからωmax1まで加速したときの時間t、およびωmax1からωまで減速したときの時間tは、それぞれ以下の式で表される。
=(ωmax1−ω)/a …式(D)
=(ωmax1−ω)/a …式(E)
また、停止するまでの移動距離は、現在位置と停止位置との差分値Lおよびモータ11aの回転数nを用いてL+2πnと表されるから、上記式(A)〜(C)より、以下の式(F)が成り立つ。
+S+S=(ωmax1+ω)t/2+(ωmax1+ω)t/2+ωT/2=L+2πn …式(F)
さらに、上述したマージン設定用比率Xおよび位置制御時間Tのマージンパラメータを用いて以下の関係式(G)が成り立つ。
ω=aT=aXT …式(G)
以上において、上記式(D),(E)を上記式(F)に代入すると、下記式(H)が成り立つ。
2ωmax1 −ω −ω +aTω=2a(L+2πn) …式(H)
これをωmax1についてまとめると、ωmax1>0であるから以下の式が成り立つ。
ωmax1=√[{ω +ω −aTω)}/2+a(L+2πn)] …式(I)
よって、上記式(I)および上記式(G)により、第一最大速度ωmax1については、下記式(5)が導出される。
ωmax1=√[{ω −a X(1−X)}/2+a(L+2πn)] …式(5)
ここで、上記式(5)のルート(根号)の中が正の数であるためには、モータ11aが停止するまでに必要な回転数nが、下記式(6)を満たす必要がある。
n≧〔[ω +a X(1−X)]/2a−L〕/2π …式(6)
すなわち、第一最大速度算出部39は、下記式(6)を満たす、モータ11aが停止するまでに必要な回転数nの最小値を用いて、下記式(5)によって第一最大速度ωmax1を算出するようになっている。
ωmax1=√[{ω −a X(1−X)}/2+a(L+2πn)] …式(5)
n≧〔[ω +a X(1−X)]/2a−L〕/2π …式(6)
ただし、各記号は以下を表す。
ω:初速度
:最大加速度(最大減速度)
n:モータが停止するまでに必要な回転数
L:現在位置と停止位置との差分値
X:マージン設定用比率
T:位置制御時間
第二最大速度算出部40は、第3モードにおいて、モータの駆動制御を加速制御から減速制御に切り換える第二最大速度を算出するものである。本実施形態において、第二最大速度算出部40は、設定条件記憶部22に記憶されている設定加速度と、モータ状態算出部33によって算出された差分値とに基づいて、モータの駆動制御を加速制御から減速制御に切り換える第二最大速度を算出するようになっている。
具体的には、第二最大速度算出部40は、差分値Lが1回転以内であることを前提とすると、第二最大速度に到達するまでの時間t(停止位置に到達するまでの時間の半分)と、設定加速度asetとから、以下の式が成り立つ。
L=aset …式(7)
また、第3モードにおいて、速度と時間の関係を示すグラフが二等辺三角形になることを想定すると、第二最大速度ωmax2は、asettで表される。よって、第二最大速度算出部40は、下記式(8)によって第二最大速度ωmax2を算出するようになっている。
ωmax2=aset×√(L/aset)=√(asetL) …式(8)
ただし、各記号は以下を表す。
set:設定加速度
L:現在位置と停止位置との差分値
加減速制御部41は、モータ11aに駆動信号を出力し加速制御および減速制御を実行するものである。本実施形態において、加減速制御部41は、モータ状態算出部33によって算出されたモータ11aの現在速度を常時監視する。そして、モータ11aの駆動制御開始時における初速度と、現在位置から停止位置までの差分値とに基づいて、上述した第1モード、第2モードおよび第3モードのうち、いずれかのモードを択一的に実行するようになっている。
具体的には、第1モードでは、加減速制御部41は、モータの速度が第二制御速度以上であれば最大トルクで減速制御し、モータの速度が第二制御速度よりも小さくなった後には位置制御用減速度で減速制御する。また、第2モードでは、加減速制御部41は、モータの速度が第一最大速度よりも小さいうちは最大トルクで加速制御し、モータの速度が第一最大速度に到達すると最大トルクで減速制御し、モータの速度が第二制御速度よりも小さくなった後には位置制御用減速度で減速制御する。さらに、第3モードでは、加減速制御部41は、モータの速度が第二最大速度よりも小さいうちは設定加速度で加速制御し、モータの速度が第二最大速度に到達すると設定加速度で減速制御する。
また、本実施形態において、加減速制御部41は、位置制御用減速度調整部38によって位置制御用減速度が調整された場合には、当該調整後の位置制御用減速度aによって減速制御(位置制御)を実行するようになっている。
位置決め完了判定部42は、モータ11aの位置決めが完了したか否かを判定するものである。本実施形態において、位置決め完了判定部42は、設定条件記憶部22に記憶されている停止位置、位置決め条件および停止判定速度を参照し、位置情報取得部32によって取得された位置情報(現在位置)が、当該停止位置に対して許容誤差範囲内にあるか否か、およびモータ状態算出部33によって算出された現在速度が、当該停止判定速度以下であるか否かを判定する。そして、位置決め完了判定部42は、現在位置が停止位置に対して許容誤差範囲内であり、かつ、現在速度が停止判定速度以下である場合のみ、位置決めが完了したと判定するようになっている。
つぎに、本実施形態のモータ駆動制御装置1による作用について、図12のフローチャートを参照しつつ説明する。なお、本実施形態では、モータ11aが比較的低速度で回転している状態からの位置決め、または停止している状態からの位置決めを想定している。このため、ベース回転数よりも高速度で回転している状態から位置決めする場合は、特願2015−136510号に係る駆動制御に従って、モータ11aの速度が第二制御速度よりも大きいうちは最大トルクで減速制御(速度制御)し、モータ11aの速度が第二制御速度よりも小さくなった後には、位置制御用減速度で減速制御(位置制御)するようになっている。
本実施形態のモータ駆動制御装置1によって工作機械11のモータ11aを制御し、所定の停止位置に位置決めを行う場合、まず、設定条件取得部31が、上位コントローラ10から出力された停止位置、位置決め条件、停止判定速度、第一制御速度、マージン設定用比率、位置制御時間、設定最大加速度、イナーシャ測定時間および設定加速度からなる設定条件を取得し、設定条件記憶部22に保存する(ステップS1)。これにより、モータ駆動制御装置1が位置決めシーケンスへ移行する。
つぎに、位置情報取得部32が、位置検出手段11bによって検出された位置情報を取得すると(ステップS2)、モータ状態算出部33が、当該位置情報に基づいて、モータ11aの現在速度、加速度または減速度、および現在位置と停止位置との差分値を算出する(ステップS3)。これにより、モータ11aの現在の状態情報が把握される。なお、以降の処理ステップにおいて、位置情報取得部32による位置情報の取得ステップ(ステップS2)およびモータ状態算出部33による状態情報の算出ステップ(ステップS3)に相当する処理ついては、一つのステップにまとめて説明するものとする。
つづいて、最大減速可能速度算出部34が、設定最大加速度、イナーシャ測定時間、マージン設定用比率および位置制御時間に基づいて、最大減速可能速度を算出する(ステップS4)。これにより、モータ11aを最大トルクで減速制御しても安定して停止できる速度の最小値が最大減速可能速度として求められる。このため、現在速度が最大減速可能速度以上であれば(ステップS5:NO)、第1モードで制御する(ステップS7)。
一方、現在速度が最大減速可能速度未満であれば(ステップS5:YES)、第2モードまたは第3モードで制御するべく、イナーシャ測定最小距離算出部35が、イナーシャ測定最小距離を算出する(ステップS6)。これにより、回転軸にかかるイナーシャが最小のときに、イナーシャを測定するために必要な移動距離の最小値がイナーシャ測定最小距離として求められる。このため、差分値がイナーシャ測定最小距離以上であれば(ステップS8:YES)、第2モードで制御し(ステップS9)、差分値がイナーシャ測定最小距離よりも小さい場合(ステップS8:NO)、第3モードで制御する(ステップS10)。以下、第1モード、第2モードおよび第3モードのそれぞれについて説明する。
[1]第1モードについて
第1モードが実行される場合、モータ11aの初速度は、図13に示すように、ベース回転数の近傍から低速域に存在することとなる。このため、図14に示すように、加減速制御部41は、まず最大トルクでモータ11aの減速制御を開始する(ステップS11)。このとき、モータ11aの初速度は最大減速可能速度以上であるため、最大トルクで減速制御しても直ちに停止することがなく、安定して停止できることが担保される。
最大トルクで減速中、位置情報取得部32が位置情報を取得するとともに、モータ状態算出部33が各種の状態情報を算出し(ステップS12)、最大減速度が算出されるまで繰り返す(ステップS13)。これにより、実際にモータ11aの回転軸に発生しているイナーシャの影響を考慮した最大減速度が算出される。また、後述するとおり、最大トルクでの減速中に最大減速度が算出されることとなるため、イナーシャの異なるワークのそれぞれに対しても、常に最適な減速が可能となる。
最大減速度が算出されると(ステップS13:YES)、位置制御用減速度算出部36が、当該最大減速度にマージン設定用比率を掛け合わせて位置制御用減速度を算出する(ステップS14)。これにより、適切なマージン設定用比率を設定しておくことで、モータ11aが必ず安定して停止しうるような位置制御用減速度が算出される。
つづいて、切換速度算出部37が、最大減速度と、第一制御速度と、マージン設定用比率、位置制御時間と、差分値とに基づいて、最大減速度での移動距離と位置制御用減速度での移動距離との和が最小となる速度を第二制御速度として算出する(ステップS15)。これにより、最も少ない回転数でモータ11aを停止位置に停止しうるような、モータ11aの駆動制御を速度制御から位置制御に切り換えるのに最適なタイミングが特定される。
また、本実施形態において、第二制御速度の算出には、マージン設定用比率および位置制御時間という二つのマージンパラメータが使用される。このため、位置検出手段11bによる計測誤差や外乱の影響があったとしても安定して制御でき、停止位置に位置決めできずに一回転多く回転させたり、オーバーシュートを防止できずに逆回転させる必要がない。また、各マージンパラメータの設定値は、ワークによって変更する必要がなく、直感的でもあるため設定や調整が極めて容易である。
引き続き、最大トルクで減速されている間、位置情報取得部32によって位置情報が取得されるとともに、モータ状態算出部33によって各種の状態情報が算出され(ステップS16)、モータ11aの現在速度が第二制御速度よりも遅くなるまで繰り返される(ステップS17)。そして、モータ11aの速度が第二制御速度以上であるうちは(ステップS17:NO)、最大トルクで減速制御(速度制御)される。このため、最大トルクでの減速時間ができるだけ確保され、位置制御へ切り換える前までは迅速に減速されるため、位置決め完了までの時間が短縮される。
一方、モータ11aの速度が第二制御速度よりも小さくなると(ステップS17:YES)、位置制御用減速度調整部38が、位置制御用減速度の調整が必要か否かを判定する(ステップS18)。そして、調整が必要であれば(ステップS18:YES)、位置制御用減速度調整部38が、新たな位置制御用減速度を算出して調整を行う(ステップS19)。
これにより、位置検出手段11bの計測誤差等に起因して、停止位置で停止できないような位置制御用減速度が設定されていたとしても、位置制御時間によってマージンが確保されているため、最低でも位置制御時間の間は位置制御が実行される。このため、最新の位置情報に基づいて、確実に停止位置で停止できるように位置制御用減速度が適宜調整される。
つづいて、加減速制御部41は、位置制御用減速度の調整が不要であれば(ステップS18:NO)、ステップS14で算出された位置制御用減速度で減速制御(位置制御)を実行する(ステップS20)。また、位置制御用減速度が調整された場合は(ステップS18:YES)、当該調整後の位置制御用減速度によって減速制御(位置制御)を実行する(ステップS20)。
これにより、マージンが設定された位置制御用減速度で位置制御されるため、モータ11aの位置決め動作における安定性が向上する。また、位置制御時間によって予めマージンを確保することで、モータ11aが必ず停止位置で停止するため、モータ11aの位置決め動作における確実性が向上する。さらに、設定された位置制御時間を超えて駆動されることがないため、停止するまでの時間に想定外の無駄が発生しない。
位置制御されている間、位置情報取得部32によって位置情報が取得されるとともに、モータ状態算出部33によって各種の状態情報が算出され(ステップS21)、位置決めが完了するまでステップS18からの処理が繰り返される(ステップS22)。そして、位置決め完了判定部42によって、モータ11aの位置決めが完了したと判定されると(ステップS22:YES)、当該停止位置を保持し続けた状態で本シーケンスを終了する。
[2]第2モードについて
第2モードが実行される場合、モータ11aの初速度は、図15に示すように、極めて低速であるか停止状態である。このため、図16に示すように、加減速制御部41は、まず最大トルクでモータ11aの加速制御を開始する(ステップS31)。このとき、現在位置から停止位置までの差分値がイナーシャ測定最小距離以上であるため(ステップS8:YES)、最大トルクで加速および減速しても、イナーシャの算出を完了した時点から最短距離で停止位置に停止できることが担保される。
最大トルクで加速中、位置情報取得部32が位置情報を取得するとともに、モータ状態算出部33が各種の状態情報を算出し(ステップS32)、最大加速度が算出されるまで繰り返す(ステップS33)。これにより、実際にモータ11aの回転軸に発生しているイナーシャの影響を考慮した最大加速度が算出される。また、後述するとおり、最大トルクでの加速中に最大加速度が算出されることとなるため、イナーシャの異なるワークのそれぞれに対しても、常に最適な加減速が可能となる。
最大加速度が算出されると(ステップS33:YES)、位置制御用減速度算出部36が、当該最大加速度にマージン設定用比率を掛け合わせて位置制御用減速度を算出する(ステップS34)。このとき、加速時および減速時のトルクが同一(最大)であるため、最大加速度を最大減速度として利用することができる。また、適切なマージン設定用比率を設定しておくことで、モータ11aが必ず安定して停止しうるような位置制御用減速度が算出される。
つづいて、第一最大速度算出部39が、初速度と、最大加速度と、位置制御用減速度と、差分値と、マージン設定用比率と、位置制御用減速度で駆動制御する時間の最小値として設定される位置制御時間とに基づいて、最大加速度での加速時間と最大減速度での減速時間と位置制御時間との和が最小となる速度を、モータの駆動制御を加速制御から減速制御に切り換える第一最大速度として算出する(ステップS35)。
また、切換速度算出部37が、最大減速度と、第一制御速度と、マージン設定用比率、位置制御時間と、差分値とに基づいて、最大減速度での移動距離と位置制御用減速度での移動距離との和が最小となる速度を第二制御速度として算出する(ステップS36)。これにより、最も少ない回転数でモータ11aを停止位置に停止しうるような、モータ11aの駆動制御を速度制御から位置制御に切り換えるのに最適なタイミングが特定される。
また、本実施形態において、第二制御速度の算出には、マージン設定用比率および位置制御時間という二つのマージンパラメータが使用される。このため、位置検出手段11bによる計測誤差や外乱の影響があったとしても安定して制御でき、停止位置に位置決めできずに一回転多く回転させたり、オーバーシュートを防止できずに逆回転させる必要がない。また、各マージンパラメータの設定値は、ワークによって変更する必要がなく、直感的でもあるため設定や調整が極めて容易である。
引き続き、最大トルクで加速されている間、位置情報取得部32によって位置情報が取得されるとともに、モータ状態算出部33によって各種の状態情報が算出され(ステップS37)、モータ11aの現在速度が第一最大速度以上となるまで繰り返される(ステップS38)。そして、モータ11aの速度が第一最大速度より遅いうちは(ステップS38:NO)、最大トルクで加速制御される。このため、最大トルクでの加速時間ができるだけ確保され、減速制御へ切り換える前までは迅速に加速されるため、位置決め完了までの時間が短縮される。
一方、モータ11aの速度が第一最大速度に到達すると(ステップS38:YES)、加減速制御部41が加速制御から減速制御へと切り換え、第二制御速度を下回るまで(ステップS39:NO)、最大トルクで減速する(ステップS43)。その後、モータ11aの速度が第二制御速度を下回ると(ステップS39:YES)、位置制御用減速度調整部38が、位置制御用減速度の調整が必要か否かを判定する(ステップS40)。そして、調整が必要であれば(ステップS40:YES)、位置制御用減速度調整部38が、新たな位置制御用減速度を算出して調整を行う(ステップS41)。
これにより、位置検出手段11bの計測誤差等に起因して、停止位置で停止できないような位置制御用減速度が設定されていたとしても、位置制御時間によってマージンが確保されているため、最低でも位置制御時間の間は位置制御が実行される。このため、最新の位置情報に基づいて、確実に停止位置で停止できるように位置制御用減速度が適宜調整される。
つづいて、加減速制御部41は、位置制御用減速度の調整が不要であれば(ステップS40:NO)、ステップS34で算出された位置制御用減速度で減速制御(位置制御)を実行する(ステップS42)。また、位置制御用減速度が調整された場合は(ステップS40:YES)、当該調整後の位置制御用減速度によって減速制御(位置制御)を実行する(ステップS42)。
これにより、マージンが設定された位置制御用減速度で位置制御されるため、モータ11aの位置決め動作における安定性が向上する。また、位置制御時間によって予めマージンを確保することで、モータ11aが必ず停止位置で停止するため、モータ11aの位置決め動作における確実性が向上する。さらに、設定された位置制御時間を超えて駆動されることがないため、停止するまでの時間に想定外の無駄が発生しない。
位置制御用減速度で減速されている間(ステップS42)、または上記最大トルクで減速されている間(ステップS43)、位置情報取得部32によって位置情報が取得されるとともに、モータ状態算出部33によって各種の状態情報が算出され(ステップS44)、位置決めが完了するまでステップS39からの処理が繰り返される(ステップS45:NO)。そして、位置決め完了判定部42によって、モータ11aの位置決めが完了したと判定されると(ステップS45:YES)、当該停止位置を保持し続けた状態で本シーケンスを終了する。
[3]第3モードについて
第3モードが実行される場合、モータ11aの初速度は、図17に示すように、ベース回転数の近傍から低速域に存在しており、かつ、現在位置が停止位置に非常に近い状態である。このため、図18に示すように、加減速制御部41は、まず設定加速度でモータ11aの加速制御を開始する(ステップS51)。これにより、モータ11aは、過度に加速されることがなく、最短距離で安定して停止できる速度まで加速される。
設定加速度での加速開始とともに、第二最大速度算出部40が、設定加速度と差分値とに基づいて、モータの駆動制御を加速制御から減速制御に切り換える第二最大速度を算出する(ステップS52)。そして、位置情報取得部32が位置情報を取得するとともに、モータ状態算出部33が各種の状態情報を算出し(ステップS53)、モータ11aの現在速度が第二最大速度以上となるまで繰り返される(ステップS54)。
そして、モータ11aの速度が第二最大速度に到達すると(ステップS54:YES)、加減速制御部41が加速制御から減速制御へと切り換え、位置決めが完了するまで設定加速度で減速する(ステップS55)。これにより、現在位置が停止位置に非常に近い場合であっても、もう一周させることなく、できるだけ短い距離で停止させることが可能となる。
設定加速度で減速されている間、位置情報取得部32によって位置情報が取得されるとともに、モータ状態算出部33によって各種の状態情報が算出され(ステップS56)、位置決めが完了するまでステップS55からの処理が繰り返される(ステップS59:NO)。そして、位置決め完了判定部42によって、モータ11aの位置決めが完了したと判定されると(ステップS59:YES)、当該停止位置を保持し続けた状態で本シーケンスを終了する。
以上のような本実施形態によれば、以下のような効果を奏する。
1.モータが比較的低速度で回転している状態や停止している状態からであっても、できるだけ少ない回転数で迅速かつ確実にモータを所定の停止位置に停止させることができる。
2.第1モードおよび第2モードでは、マージン設定用比率および位置制御時間という二つのマージンパラメータを用いた第二制御速度を切り換えタイミングとするため、計測誤差や外乱の影響があったとしても必ず安定して停止位置に位置決めすることができる。
3.第1モードおよび第2モードにおけるマージン設定用比率および位置制御時間は、ワークによって変更する必要がなく、直感的でもあるため簡単に設定や調整を行うことができる。
4.第1モードおよび第2モードでは、位置制御において、位置制御用減速度を調整できるため、計測誤差等があったとしても、確実に停止位置に停止することができる。
5.第3モードでは、現在位置が停止位置に非常に近い場合であっても、もう一周させることなく、できるだけ短い距離で停止させることができる。
6.最大減速可能速度を用いることにより、第1モードで制御するか、第2モードまたは第3モードで制御するかを判定することができる。
7.イナーシャ測定最小距離を用いることにより、第2モードで制御するか、第3モードで制御するかを判定することができる。
8.第一最大速度を用いることにより、第2モードにおいて、最大加速度での加速時間と最大減速度での減速時間と位置制御時間との和を最小化することができる。
9.第二最大速度を用いることにより、第3モードにおいて、最適なタイミングでモータの駆動制御を加速制御から減速制御に切り換えることができる。
なお、本発明に係るモータ駆動制御装置1の動作と、上述した特許文献1の動作とを比較すると、誤差が全くなく理論通りに停止位置で停止できた場合には、特許文献1の方が早く停止できる場合も存在しうる。しかしながら、現実的には、図19に示すように、特許文献1では、低速領域においても最大減速度に近い減速度のままで減速するため、多くの場合では計測誤差等により、停止位置で停止できず、さらに一回転させることとなる。
これに対し、本発明に係るモータ駆動制御装置1の動作によれば、上述したとおり、第二制御速度までは最大トルクで減速するため、停止するまでの時間が短縮される。また、第二制御速度以下では、マージンを持たせた位置制御用減速度で減速するため安定性が高く、最低でも位置制御時間の間は位置制御を行うため、必ず停止位置で停止できるという作用効果を奏し、現実的かつ理想的な制御結果が得られる。
なお、本発明に係るモータ駆動制御装置1およびこれを備えた工作機械11は、前述した実施形態に限定されるものではなく、適宜変更することができる。
例えば、上述した本実施形態では、数値制御装置の一機能としてモータ駆動制御装置1を実現させているが、この構成に限定されるものでない。すなわち、数値制御装置とは別個独立に、モータ駆動制御装置1を設けてもよい。
1 モータ駆動制御装置
1a モータ駆動制御プログラム
2 記憶手段
3 演算処理手段
10 上位コントローラ
11 工作機械
11a モータ
11b 位置検出手段
21 プログラム記憶部
22 設定条件記憶部
31 設定条件取得部
32 位置情報取得部
33 モータ状態算出部
34 最大減速可能速度算出部
35 イナーシャ測定最小距離算出部
36 位置制御用減速度算出部
37 切換速度算出部
38 位置制御用減速度調整部
39 第一最大速度算出部
40 第二最大速度算出部
41 加減速制御部
42 位置決め完了判定部

Claims (6)

  1. モータの駆動を制御するモータ駆動制御装置であって、
    位置検出手段によって検出された前記モータの位置情報に基づいて、前記モータの現在速度、前記モータの加速度または減速度、および現在位置と停止位置との差分値を算出するモータ状態算出部と、
    前記モータを最大トルクで減速制御しても安定して停止できる速度の最小値である最大減速可能速度を算出する最大減速可能速度算出部と、
    イナーシャが最小のときにイナーシャを測定するために必要な移動距離の最小値であるイナーシャ測定最小距離を算出するイナーシャ測定最小距離算出部と、
    前記モータの駆動制御開始時における初速度が前記最大減速可能速度未満であって、前記差分値が前記イナーシャ測定最小距離以上の場合、最大トルクで加速した後、速度制御および位置制御によって減速する第2モードを実行し、
    前記初速度が前記最大減速可能速度未満であって、前記差分値が前記イナーシャ測定最小距離よりも小さい場合、最大トルクで加速した際の最大加速度よりも小さい設定加速度で加速した後、当該設定加速度で減速する第3モードを実行する加減速制御部と、
    を有する、モータ駆動制御装置。
  2. 前記加減速制御部が、前記第2モードを実行する場合、
    前記モータの最大減速度にマージン設定用比率を掛け合わせて位置制御用減速度を算出する位置制御用減速度算出部と、
    前記初速度と、前記最大加速度と、前記位置制御用減速度と、前記差分値と、前記マージン設定用比率と、前記位置制御用減速度で駆動制御する時間の最小値として設定される位置制御時間とに基づいて、前記最大加速度での加速時間と前記最大減速度での減速時間と前記位置制御時間との和が最小となる速度を、前記モータの駆動制御を加速制御から減速制御に切り換える第一最大速度として算出する第一最大速度算出部と、
    前記最大減速度と、前記第一最大速度と、前記差分値と、前記マージン設定用比率と、前記位置制御時間とに基づいて、前記最大減速度での移動距離と前記位置制御用減速度での移動距離との和が最小となる速度を、前記モータの駆動制御を速度制御から位置制御に切り換える第二制御速度として算出する切換速度算出部とを有し、
    前記加減速制御部は、前記モータの速度が前記第一最大速度よりも小さいうちは最大トルクで加速制御し、前記モータの速度が前記第一最大速度に到達すると最大トルクで減速制御し、前記モータの速度が前記第二制御速度よりも小さくなった後には前記位置制御用減速度で減速制御する、請求項1に記載のモータ駆動制御装置。
  3. 前記加減速制御部が、前記第3モードを実行する場合、
    前記設定加速度と前記差分値とに基づいて、前記モータの駆動制御を加速制御から減速制御に切り換える第二最大速度を算出する第二最大速度算出部を有し、
    前記加減速制御部は、前記モータの速度が前記第二最大速度よりも小さいうちは前記設定加速度で加速制御し、前記モータの速度が前記第二最大速度に到達すると前記設定加速度で減速制御する、請求項1または請求項2に記載のモータ駆動制御装置。
  4. 前記イナーシャ測定最小距離算出部は、下記式(2)を用いて前記イナーシャ測定最小距離を算出する、請求項1から請求項3のいずれかに記載のモータ駆動制御装置;
    min=amax(2T +XT−X)/2+ω …式(2)
    ただし、各記号は以下を表す。
    ω:初速度
    max:設定最大加速度
    X:マージン設定用比率
    :イナーシャを測定するために必要な時間
    T:位置制御時間
  5. 第一最大速度算出部は、下記式(6)を満たす前記モータが停止するまでに必要な回転数nの最小値を用いて、下記式(5)によって前記第一最大速度ωmax1を算出する、請求項2に記載のモータ駆動制御装置;
    ωmax1=√[{ω −a X(1−X)}/2+a(L+2πn)] …式(5)
    n≧〔[ω +a X(1−X)]/2a−L〕/2π …式(6)
    ただし、各記号は以下を表す。
    ω:初速度
    :最大加速度(最大減速度)
    n:モータが停止するまでに必要な回転数
    L:現在位置と停止位置との差分値
    X:マージン設定用比率
    T:位置制御時間
  6. 請求項1から請求項5のいずれかに記載のモータ駆動制御装置を備えてなる工作機械。
JP2016002801A 2016-01-08 2016-01-08 モータ駆動制御装置およびこれを備えた工作機械 Expired - Fee Related JP6521526B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016002801A JP6521526B2 (ja) 2016-01-08 2016-01-08 モータ駆動制御装置およびこれを備えた工作機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016002801A JP6521526B2 (ja) 2016-01-08 2016-01-08 モータ駆動制御装置およびこれを備えた工作機械

Publications (2)

Publication Number Publication Date
JP2017123763A JP2017123763A (ja) 2017-07-13
JP6521526B2 true JP6521526B2 (ja) 2019-05-29

Family

ID=59306421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016002801A Expired - Fee Related JP6521526B2 (ja) 2016-01-08 2016-01-08 モータ駆動制御装置およびこれを備えた工作機械

Country Status (1)

Country Link
JP (1) JP6521526B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108462428B (zh) * 2018-03-21 2020-03-13 上海小蚁科技有限公司 电机速度调节方法及装置、计算机可读存储介质、终端
CN108762325A (zh) * 2018-05-28 2018-11-06 长春博信光电子有限公司 云台移动速度的控制方法、装置及云台
EP3582387B1 (de) * 2019-05-06 2021-03-17 Pfeiffer Vacuum Gmbh Abbremsverfahren für einen permanentmagnet-synchronmotor
JP7363615B2 (ja) * 2020-03-16 2023-10-18 セイコーエプソン株式会社 圧電駆動装置及びその制御方法
WO2024042670A1 (ja) * 2022-08-25 2024-02-29 ファナック株式会社 モータ制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262082A (ja) * 1987-04-15 1988-10-28 Toshiba Corp モ−タの制御装置
JP4250051B2 (ja) * 2003-10-07 2009-04-08 オリエンタルモーター株式会社 位置制御用モータの制御装置
JP5003832B1 (ja) * 2011-03-08 2012-08-15 株式会社安川電機 モータ制御装置及びモータ制御方法
JP5751433B2 (ja) * 2013-02-06 2015-07-22 株式会社安川電機 モータ制御装置及びモータ制御方法

Also Published As

Publication number Publication date
JP2017123763A (ja) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6521526B2 (ja) モータ駆動制御装置およびこれを備えた工作機械
CN108073135B (zh) 工作机械及其控制方法
JP5152443B1 (ja) 数値制御装置
JP5300970B2 (ja) 主軸の回転制御方法及び工作機械の制御装置
US9612595B2 (en) Chatter vibration suppressing method and machine tool
US20150168938A1 (en) Controller for Spindle Motor
JP6592143B2 (ja) 電動機の制御装置
US9651936B2 (en) Machining method
JP3699458B2 (ja) 切削抵抗検出方法及び切削抵抗による加工制御方法並びに制御装置
JP6752092B2 (ja) 真円度測定機
JP5878794B2 (ja) 主軸位置決め装置
JP6140223B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP7364396B2 (ja) 工作機械の制御装置および制御システム
US10031507B2 (en) Servo control device
CN105527928A (zh) 机床的控制装置以及控制方法
JP6893792B2 (ja) 工作機械および振動抑制方法
JP2016190276A (ja) 数値制御装置と制御方法
JP6490520B2 (ja) モータ駆動制御装置およびこれを備えた工作機械
US11243221B2 (en) Monitoring device and monitoring method of main spindle rotating speed in machine tool, and machine tool
JP6423904B2 (ja) 工作機械の数値制御装置
JP7109318B2 (ja) 工作機械および工具異常判定方法
JP6310944B2 (ja) 機械装置の設計改善作業を支援する方法及び装置
JP5494378B2 (ja) ねじ切り制御方法及びその装置
JP2017072880A (ja) 切削負荷予測方法、切削負荷予測システム、及び切削負荷予測プログラム及び記憶媒体
JP6605926B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6521526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees