JP6497298B2 - 異常診断装置 - Google Patents

異常診断装置 Download PDF

Info

Publication number
JP6497298B2
JP6497298B2 JP2015220268A JP2015220268A JP6497298B2 JP 6497298 B2 JP6497298 B2 JP 6497298B2 JP 2015220268 A JP2015220268 A JP 2015220268A JP 2015220268 A JP2015220268 A JP 2015220268A JP 6497298 B2 JP6497298 B2 JP 6497298B2
Authority
JP
Japan
Prior art keywords
value
power supply
power
supply voltage
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015220268A
Other languages
English (en)
Other versions
JP2017093138A (ja
Inventor
有里 村田
有里 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015220268A priority Critical patent/JP6497298B2/ja
Priority to US15/348,653 priority patent/US10024945B2/en
Publication of JP2017093138A publication Critical patent/JP2017093138A/ja
Application granted granted Critical
Publication of JP6497298B2 publication Critical patent/JP6497298B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、異常診断装置に関する。
従来、電圧センサの故障診断を行う電圧センサの故障診断装置が知られている。例えば特許文献1では、バッテリ電圧とインバータ電圧との差が所定値αより大きいとき、インバータの電圧指令値および電流検出値に基づいて交流モータの出力を算出するとともに、トルク指令値およびモータ回転速度に基づいて交流モータの出力を算出する。そして、両者の差の絶対値が所定値P0以下であれば、バッテリ電圧センサに故障が生じていると判断している。
特許第4793058号公報
特許文献1では、パワーでの比較によって電圧センサの故障を特定しているが、故障検出にて演算されるパワーからは、理論的に、バッテリ電圧を直接的に推定することができない。また、電圧の絶対値によって検出閾値を変える必要があるため、特に電圧の使用領域が広い装置において、検出精度を確保することが難しい。
本発明は、上述の課題に鑑みてなされたものであり、その目的は、電源電圧センサの異常を適切に判定可能な異常診断装置を提供することにある。
本発明の異常診断装置は、消費電力推定部(63)と、電源電圧推定部(63)と、異常判定部(65)と、を備える。消費電力推定部は、主機モータ(10)の消費電力、および、電源(30)の電力を使用する補機(41、42)の消費電力を推定し、消費電力推定値を演算する。主機モータは、車両(100)の駆動源であって、電源から供給される電力で駆動される。
電源電圧推定部は、消費電力推定値、および、電源の電流を検出する電源電流センサ(36)の検出値に基づく値である電源電流検出値に基づき、電源の電圧の推定値である電源電圧推定値を演算する。
異常判定部は、電源電圧推定値と、電源の電圧を検出する電源電圧センサ(35)の検出値に基づく値である電源電圧検出値との比較結果に基づき、電源電圧センサの異常を判定する。
第1態様では、異常判定に用いられる電源電圧推定値は、電源の電力を用いる装置(10、41)を制御する他の制御装置(51、52)との通信遅れに応じて補正された値である。
第2態様では、異常判定部は、主機モータの駆動状態が安定駆動状態である場合、電源電圧センサの異常判定を行う。
本発明では、電源電圧推定値を演算し、電源電圧検出値と直接的に比較することで、電源電圧センサの異常を適切に判定することができる。
本発明の第1実施形態による車両制御システムの概略構成図である。 本発明の第1実施形態による異常判定処理を説明するフローチャートである。 本発明の第1実施形態による異常判定処理を説明するタイムチャートである。 本発明の第2実施形態による異常判定処理を説明するフローチャートである。 本発明の第2実施形態による遅れ補正を説明するタイムチャートである。 本発明の第2実施形態による補正後消費電力推定値および補正前の消費電力推定値を説明するタイムチャートである。 本発明の第3実施形態による異常判定処理を説明するフローチャートである。 本発明の第3実施形態による遅れ補正を説明するタイムチャートである。
以下、本発明による異常診断装置を図面に基づいて説明する。なお、以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
本発明の第1実施形態を図1〜図3に示す。
図1に示すように、本実施形態の異常診断装置は、車両100全体としての動作を制御する車両制御システム90に適用される。車両制御システム90は、エンジン91、主機モータ10、インバータ20、バッテリ30、および、制御部50等を含む。
車両100は、駆動源として、エンジン91および主機モータ10を備える、所謂「ハイブリッド車両」である。主機モータ10およびエンジン91の駆動力は、ギア93等を経由して、車軸94に伝達され、駆動輪95を駆動する。エンジン91は、図示しないエンジンECUにより駆動が制御される。
主機モータ10は、例えば永久磁石式同期型の3相交流の回転機である。主機モータ10は、電源としてのバッテリ30からの電力によって駆動されてトルクを発生する電動機としての機能、および、エンジン91や駆動輪95から伝達されるトルクによって駆動されて発電する発電機としての機能を兼ね備える、所謂「モータジェネレータ」である。
以下、主機モータ10が電動機として機能する場合を中心に説明する。
主機モータ10は、U相コイル11、V相コイル12、および、W相コイル13を有する。電流センサ14、15は、3相のうちのいずれか2相の電流を検出するものである。本実施形態では、電流センサ14がV相コイル12の電流であるV相電流Ivを検出し、電流センサ15がW相コイル13の電流であるW相電流Iwを検出する。電流センサ14、15の検出値は、MG−ECU51に出力される。
また、主機モータ10には、主機モータ10のロータの電気角θを検出する回転角センサ17が設けられる。回転角センサ17は、例えばレゾルバである。回転角センサ17の検出値は、MG−ECU51に出力される。
インバータ20は、バッテリ30と主機モータ10との間に設けられ、6つのスイッチング素子21〜26を有する。スイッチング素子21〜26は、IGBTであるが、MOSFETやサイリスタ等であってもよい。スイッチング素子21〜26には、それぞれ、低電位側から高電位側へ向かう電流を許容する還流ダイオードが並列に接続される。
スイッチング素子21〜26は、ブリッジ接続され、MG−ECU51から出力される駆動信号に基づいてオンオフ作動が制御される。これにより、バッテリ30の直流電力が交流電力に変換され、主機モータ10に供給される。また、主機モータ10にて発電された交流電力が直流電力に変換され、バッテリ30に供給される。
平滑コンデンサ28は、インバータ20と並列に接続され、インバータ20に入力される電圧であるインバータ入力電圧Vinvを平滑化する。
バッテリ30は、例えばニッケル水素電池、リチウムイオン電池等の充放電可能な二次電池である。また、バッテリ30に替えて、電源として電気二重層キャパシタ等を用いてもよい。
電源リレー32は、インバータ20および平滑コンデンサ28と、バッテリ30との間に設けられ、インバータ20側とバッテリ30側との間の電力供給を遮断可能である。以下、電源リレー32に対し、バッテリ30側を上流側とし、バッテリ30と反対側を下流側とする。
バッテリ電圧センサ35は、電源リレー32よりもバッテリ30側に設けられ、バッテリ30の電圧であるバッテリ電圧VBを検出する。
バッテリ電流センサ36は、電源リレー32よりもバッテリ30側に設けられ、バッテリ30の電流であるバッテリ電流IBを検出する。
バッテリ電圧センサ35の検出値、および、バッテリ電流センサ36の検出値は、電池制御ECU53に出力される。図中、バッテリ電圧センサを「VBセンサ」、バッテリ電流センサを「IBセンサ」と記す。
バッテリ30の電力は、主機モータ10に加え、エアコン41および補機バッテリ42にも供給される。本実施形態では、エアコン41および補機バッテリ42が「補機」に対応する。
エアコン41には、電源リレー32の下流側からバッテリ30の電力が供給される。エアコン41での消費電力であるエアコン消費電力P_ACは、エアコンECU52に出力される。
補機バッテリ42は、車両100に用いられる各種補機類への電力を供給するものであり、DCDCコンバータ45を経由して電力が供給される。DCDCコンバータ45は、電源リレー32の下流側に接続され、バッテリ30の電圧を、補機バッテリ42に供給可能な電圧に変圧する。DCDCコンバータ45の消費電力であるDCDC消費電力P_DCDCは、パワーマネジメントECU(以下、「PM−ECU」という。)60に出力される。
制御部50は、MG−ECU51、エアコンECU52、電池制御ECU53、PM−ECU60、および、図示しないエンジンECUを含む。各ECUは、マイコン等を主体として構成される。制御部50における各処理は、ROM等の実体的なメモリ装置に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
MG−ECU51、エアコンECU52、電池制御ECU53、PM−ECU60、および、エンジンECUは、バスラインBを介したCAN(Controller Area Network)通信等により、互いに情報を授受可能である。
MG−ECU51は、主機モータ10の駆動を制御する。詳細には、MG−ECU51は、相電流Iv、Iwおよび電気角θ等に基づき、PWM制御等により、スイッチング素子21〜26のオンオフ作動を制御する駆動信号を生成する。生成された駆動信号は、図示しない駆動回路等を経由してスイッチング素子21〜26に出力される。スイッチング素子21〜26のオンオフ作動を制御することで、主機モータ10の駆動が制御される。
エアコンECU52は、エアコン41の駆動を制御する。
電池制御ECU53は、バッテリ電圧VBおよびバッテリ電流IBを取得し、バッテリ30のSOC(State Of Charge)が所定の範囲内となるように監視する。
PM−ECU60は、車両100に搭載されている各種機器への電力供給を管理する。PM−ECU60は、エアコン消費電力P_AC、DCDC消費電力P_DCDC、バッテリ電圧センサ35の検出値、バッテリ電流センサ36の検出値、アクセル開度、ブレーキ踏力、および、車速等を取得する。PM−ECU60にて取得されるこれらの値は、センサや装置等から直接的に取得するように構成してもよいし、他のECUから通信を用いて取得するように構成してもよい。
PM−ECU60は、機能ブロックとして、指令演算部61、電圧推定部63、異常判定部65を有する。
指令演算部61は、アクセル開度、ブレーキ踏力、および、車速等に基づき、主機モータ10の駆動制御に係る指令値として、トルク指令値trq*および回転数指令値N*を演算する。トルク指令値trq*および回転数指令値N*は、通信によりMG−ECU51に出力される。
電圧推定部63は、バッテリ電圧VBの推定に用いるバッテリ30の消費電力推定値PC_estを推定する。消費電力推定値PC_estは、式(1)で表される。式中のP_mgは主機モータ10の消費電力、P_accは補機の消費電力を意味する。本実施形態では、補機消費電力P_accは、エアコン消費電力P_ACおよびDCDC消費電力P_DCDCとする。例えば、電動パワーステアリング装置等、バッテリ30の電力を使用する補機が他にもある場合、補機消費電力P_accに適宜加える。また、式中のP_lossは、電力ロスであって、所定値を予め設定しておく。
PC_est=P_mg+P_acc+P_loss
=trq*×N*+(P_AC+P_DCDC)+P_loss
・・・(1)
電圧推定部63は、消費電力推定値PC_estおよびバッテリ電流検出値IB_snsに基づき、バッテリ電圧推定値VB_estを演算する。バッテリ電流検出値IB_snsは、バッテリ電流センサ36の検出値に基づく値である。バッテリ電圧推定値VB_estは、式(2)で表される。なお、バッテリ電流センサ36等の異常判定は別途に行われるものとし、バッテリ電圧推定値VB_estの演算に用いられる各パラメータは正常である前提とする。
VB_est=PC_est/IB_sns ・・・(2)
異常判定部65は、バッテリ電圧検出値VB_snsと、バッテリ電圧推定値VB_estとの比較により、バッテリ電圧センサ35の異常を判定する。バッテリ電圧検出値VB_snsは、バッテリ電圧センサ35の検出値に基づく値である。
ここで、バッテリ電圧センサ35の異常判定処理を図2のフローチャートに基づいて説明する。この処理は、PM−ECU60にて、所定の間隔で実行される。
最初のステップS101では、PM−ECU60は、電源リレー32が接続中か否かを判断する。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。他のステップも同様である。電源リレー32が接続中ではないと判断された場合(S101:NO)、S102以降の処理を行わない。電源リレー32が接続中であると判断された場合(S101:YES)、S102へ移行する。
S102では、PM−ECU60は、以降の処理で用いる各パラメータを読み込む。
S103では、異常判定部65は、主機モータ10が安定駆動状態か否かを判断する。本実施形態では、MGトルクtrqおよびMG回転数Nの変化率が判定閾値以下である場合、安定駆動状態とみなす。なお、MGトルクtrqおよびMG回転数Nは、指令値、検出値または推定値のいずれであってもよい。また、MGトルクtrqおよびMG回転数Nに替えて、アクセル開度の変化率が所定範囲内である場合、主機モータ10が安定駆動状態であるとみなしてもよい。主機モータ10が安定駆動状態ではないと判断された場合(S103:NO)、バッテリ電圧センサ35の異常判定を行わず、S110へ移行する。主機モータ10が安定駆動状態であると判断された場合(S103:YES)、S104へ移行する。
S104では、異常判定部65は、バッテリ電流検出値IB_snsの絶対値が、電流判定閾値Ithより大きいか否かを判断する。バッテリ電流検出値IB_snsの絶対値が電流判定閾値Ith以下であると判断された場合(S104:NO)、バッテリ電圧センサ35の異常判定を行わず、S110へ移行する。バッテリ電流検出値IB_snsが0に近い値の場合、式(2)の演算が0で除算する所謂「0割り」に近い状態となり、バッテリ電圧推定値VB_estの演算誤差が大きくなる。そのため、バッテリ電流検出値IB_snsが電流判定閾値Ith以下の場合、バッテリ電圧センサ35の異常判定を禁止している。なお、バッテリ電圧センサ35の検出精度が必要な場合ほど、電流判定閾値Ithを大きく設定する。バッテリ電流検出値IB_snsの絶対値が電流判定閾値Ithより大きいと判断された場合(S104:YES)、S105へ移行する。
S105では、電圧推定部63は、消費電力推定値PC_estを演算する(式(1)参照)。
S106では、電圧推定部63は、バッテリ電圧推定値VB_estを演算する(式(2)参照)。
S107では、異常判定部65は、バッテリ電圧推定値VB_estとバッテリ電圧検出値VB_snsとの差の絶対値が電圧判定閾値Vthより大きいか否かを判断する。バッテリ電圧推定値VB_estとバッテリ電圧検出値VB_snsとの差の絶対値が電圧判定閾値Vth以下であると判断された場合(S107:NO)、S109へ移行する。なお、後述の継続時間Xが0でない場合、継続時間Xをリセットする。バッテリ電圧推定値VB_estとバッテリ電圧検出値VB_snsとの差の絶対値が電圧判定閾値Vthより大きいと判断された場合(S107:YES)、バッテリ電圧推定値VB_estとバッテリ電圧検出値VB_snsとの差の絶対値が電圧判定閾値Vthより大きいと判断されてからの継続時間Xの計時を開始し、S108へ移行する。継続時間Xの計時が開始されている場合は、計時を継続する。
S108では、異常判定部65は、継続時間Xが判定時間Xth以上か否かを判断する。継続時間Xが判定時間Xthより短いと判断された場合(S108:NO)、S109へ移行する。継続時間Xが判定時間Xth以上であると判断された場合(S108:YES)、S111へ移行する。
バッテリ電圧推定値VB_estとバッテリ電圧検出値VB_snsとの差の絶対値が電圧判定閾値Vth以下である場合(S107:NO)、または、継続時間Xが判定時間Xthより短い場合(S108:NO)に移行するS109では、異常判定部65は、バッテリ電圧センサ35が正常であると判定する。
S103またはS104で否定判断された場合、もしくは、S109に続いて移行するS110では、PM−ECU60は、バッテリ電圧検出値VB_snsを用いて制御を継続する。具体的には、例えば指令演算部61は、バッテリ電圧検出値VB_snsを用いて、トルク指令値trq*および回転数指令値N*を演算する。
バッテリ電圧推定値VB_estとバッテリ電圧検出値VB_snsとの差の絶対値が電圧判定閾値Vthよい大きい状態が判定時間Xth以上継続した場合(S107:YES、かつ、S108)に移行するS111では、異常判定部65は、バッテリ電圧センサ35が異常であると判定し、異常フラグをセットする。
S112では、PM−ECU60は、バッテリ電圧推定値VB_estを用いて制御を継続する。具体的には、例えば指令演算部61は、バッテリ電圧推定値VB_estを用いて、トルク指令値trq*および回転数指令値N*を演算する。すなわち、バッテリ電圧センサ35が異常であると判定された場合、バッテリ電圧推定値VB_estをフェールセーフ値として使用して、トルク指令値trq*等を演算することで、車両100の走行を継続可能である。なお、バッテリ電圧センサ35が異常判定された状態にてバッテリ電圧推定値VB_estを用いて制御を継続する場合、バッテリ電圧センサ35が正常であるときと同様の制御としてもよいし、例えば、トルク制限を行う等、正常時とは異なる制御(例えばバックアップ制御)としてもよい。
異常判定処理を説明するタイムチャートを図3に示す。図3は、共通時間軸を横軸とし、(a)がMGトルク、(b)がMG回転数、(c)がバッテリ電流、(d)がバッテリ消費電力、(e)がバッテリ電圧推定値、(f)がバッテリ電圧検出値、(g)が異常フラグを示す。図3(f)には、バッテリ電圧推定値VB_estを一点鎖線で記載した。また、図3(g)では、異常フラグがセットされている状態を「1」、セットされていない状態を「0」とした。また、図3の例では、補機消費電力P_accが一定であるものとする。
図3(a)、(b)に示すように、トルク指令値trq*および回転数指令値N*を一定とし、主機モータ10を一定駆動した場合、図3(c)、(d)に示すように、バッテリ電流検出値IB_snsおよび消費電力推定値PC_estが略一定となる。また、図3(e)に示すように、バッテリ電流検出値IB_snsおよび消費電力推定値PC_estに基づいて演算されるバッテリ電圧推定値VB_estも略一定となる。
また、図3(e)、(f)に示すように、バッテリ電圧センサ35に異常が生じる時刻x11までの期間において、バッテリ電圧推定値VB_estとバッテリ電圧検出値VB_snsとは、共に、ある値V1となり、略一致する。
時刻x11にてバッテリ電圧センサ35に異常が生じると、バッテリ電圧推定値VB_estとバッテリ電圧検出値VB_snsとが乖離する。本実施形態では、時刻x12にて、バッテリ電圧推定値VB_estとバッテリ電圧検出値VB_snsとの差の絶対値が電圧判定閾値Vthより大きくなる。また、時刻x12以降、バッテリ電圧推定値VB_estとバッテリ電圧検出値VB_snsとの差の絶対値が電圧判定閾値Vthより大きい状態が継続される。異常判定部65は、バッテリ電圧推定値VB_estとバッテリ電圧検出値VB_snsとの差の絶対値が電圧判定閾値Vthより大きい状態が、判定時間Xthに亘って継続された時刻x13にて、バッテリ電圧センサ35に異常が生じていると判定し、異常フラグをセットする。
本実施形態では、バッテリ電圧推定値VB_estとバッテリ電圧検出値VB_snsとの比較により、バッテリ電圧センサ35の異常を検出している。例えばパワーでの比較を行う場合、電圧の絶対値に応じて検出閾値を変更する必要がある等、電圧の使用領域が広い場合、検出精度を確保することが難しい。
一方、本実施形態では、電圧値同士での比較であるため、バッテリ電圧センサ35が正常であれば、バッテリ電圧推定値VB_estとバッテリ電圧検出値VB_snsとの偏差が略0となる。そのため、電圧判定閾値Vthは、センサ仕様等に応じ、例えば0近傍の値に設定すればよく、電圧判定閾値Vthの設定が容易であるとともに、電圧の絶対値によらず、電圧判定閾値Vthを固定値とすることができる。また、幅広い電圧領域において、バッテリ電圧センサ35の異常検出精度を確保することができる。
また、バッテリ電圧推定値VB_estは、主機モータ10のトルク指令値trq*および回転数指令値N*、補機消費電力であるエアコン消費電力P_ACおよびDCDC消費電力P_DCDC、ならびに、バッテリ電流検出値IB_snsに基づいて演算される。すなわち、バッテリ電圧推定値VB_estの演算にインバータ入力電圧Vinvを用いていないので、PM−ECU60は、図示しないインバータ入力電圧センサからの信号を取得する必要がない。
以上、主機モータ10の駆動状態が力行である場合を説明した。主機モータ10の駆動状態が回生である場合、MG消費電力P_mgが負の値になり、力行の場合と同様に各演算および異常判定を行うことができる。
以上説明したように、PM−ECU60は、電圧推定部63と、異常判定部65と、を備える。
電圧推定部63は、主機モータ10の消費電力であるMG消費電力P_mg、および、バッテリ30の電力を使用するエアコン41および補機バッテリ42の消費電力を含む補機消費電力P_accを推定し、消費電力推定値PC_estを演算する。主機モータ10は、車両100の駆動源であって、バッテリ30から供給される電力で駆動される。
電圧推定部63は、消費電力推定値PC_est、および、バッテリ30の電流を検出するバッテリ電流センサ36の検出値に基づく値であるバッテリ電流検出値IB_snsに基づき、バッテリ30の電圧の推定値であるバッテリ電圧推定値VB_estを演算する。詳細には、消費電力推定値PC_estをバッテリ電流検出値IB_snsで除した値を、バッテリ電圧推定値VB_estとする。
異常判定部65は、バッテリ電圧推定値VB_estと、バッテリ30の電圧を検出するバッテリ電圧センサ35の検出値に基づく値であるバッテリ電圧検出値VB_snsとの比較結果に基づき、バッテリ電圧センサ35の異常を判定する。
本実施形態では、バッテリ電圧推定値VB_estを演算し、バッテリ電圧検出値VB_snsと直接的に比較することで、、バッテリ電圧センサ35の異常を適切に判定することができる。また、電圧値同士の比較により異常判定を行うので、異常判定に係る電圧判定閾値Vthを、センサ仕様等に応じて容易に決定することができる。
バッテリ電圧センサ35が異常であると判定された場合、異常判定に用いたバッテリ電圧推定値VB_estを用いて制御を継続可能であるので、別途の演算を行うことなく、車両100の走行を継続することができる。
また、異常判定部65は、主機モータ10の駆動状態が安定駆動状態である場合、バッテリ電圧センサ35の異常判定を行う。換言すると、主機モータ10の駆動状態が安定駆動状態ではない場合、バッテリ電圧センサ35の異常判定を禁止する。これにより、主機モータ10の駆動が不安定であることに起因するバッテリ電圧推定値VB_estの変動により、バッテリ電圧センサ35に異常が生じていると誤判定されるのを防ぐことができる。
本実施形態では、PM−ECU60が「異常診断装置」に対応し、電圧推定部63が「消費電力推定部」および「電源電圧推定部」に対応する。また、バッテリ電圧センサ35が「電源電圧センサ」に対応し、バッテリ電流センサ36が「電源電流センサ」に対応する。さらにまた、バッテリ電圧検出値VB_snsが「電源電圧検出値」、バッテリ電圧推定値VB_estが「電源電圧推定値」、バッテリ電流検出値IB_snsが「電源電流検出値」に対応する。
(第2実施形態)
本発明の第2実施形態を図4〜図6に示す。
第2実施形態および第3実施形態では、異常判定に用いるバッテリ電圧推定値VB_estにおいて、通信遅れを考慮する点が上記実施形態と異なる。
本実施形態では、説明を簡略化するため、DCDC消費電力P_DCDCを省略し、エアコン41の消費電力を、補機消費電力P_accとする。そして、消費電力推定値PC_estの演算には、エアコン41の消費電力として、エアコン電力指令値P_AC*を用いる。エアコン電力指令値P_AC*は、PM−ECU60にて演算され、エアコンECU52に出力されるものとする。第3実施形態も同様とする。
図4に示すように、本実施形態の異常判定処理では、図2のS105とS106との間に、S115が追加されている。また、本実施形態では、消費電力推定値PC_estについて、少なくとも通信遅れに相当する期間の分、過去値が図示しない記憶部に保持されているものとする。その他の点については、第1実施形態と同様である。
S115では、異常判定部65は、消費電力推定値PC_estの遅れ補正を行う。具体的には、消費電力遅れ時間Δxに応じた過去値を、今回のバッテリ電圧推定値VB_estの演算に用いる補正後消費電力推定値PC_est_aとする。消費電力遅れ時間Δxは、例えば10[ms]程度のオーダーで設定されるものであり、主機モータ10の制御周期(例えば数[μs])と比較して長く設定される。本実施形態では、消費電力遅れ時間Δxは、通信周期に応じた所定値とするが、可変としてもよい。
本実施形態では、PM−ECU60と主機モータ10の駆動を制御するMG−ECU51とが、異なるECUにて構成される。また、PM−ECU60で生成されたトルク指令値trq*および回転数指令値N*は、CAN等の通信によりMG−ECU51に送信される。そのため、主機モータ10にて指令に応じた電力が消費されるタイミングは、PM−ECU60にて指令が生成されるタイミングよりも遅くなる。この遅れ幅は、PM−ECU60とMG−ECU51との間の通信周期に依存し、システム構成により略一定となる。エアコン41における消費電力についても同様である。
そこで本実施形態では、予め設定された消費電力遅れ時間Δxに応じ、消費電力推定値PC_estを補正する。
ある時刻xにおける各パラメータに(x)を付すと、式(1)は、式(3)に書き替えられる。また、消費電力遅れ時間Δxに応じて消費電力推定値PC_estを補正した値である補正後消費電力推定値PC_est_aは、式(4)となる。
PC_est(x)
=trq*(x)×N*(x)+P_AC*(x)+P_loss(x)
・・・(3)
PC_est_a(x)=PC_est(x+Δx) ・・・(4)
電圧推定部63は、補正後消費電力推定値PC_est_aをバッテリ電流検出値IB_snsで除して、バッテリ電圧推定値VB_estを演算する(式(2)参照)。そして、演算されたバッテリ電圧推定値VB_estを用いて、バッテリ電圧センサ35の異常判定が行われる。
なお、本実施形態では、バッテリ電圧センサ35およびバッテリ電流センサ36の検出値は、電池制御ECU53を介さずに直接的にPM−ECU60にて取得されるものとする。すなわち、バッテリ電圧検出値VB_snsおよびバッテリ電流検出値IB_snsに通信遅れがないものとする。
遅れ補正を説明するタイムチャートを図5に示す。図5では、共通時間軸を横軸とし、(a)がアクセル開度、(b)がMG回転数、(c)がMGトルク、(d)がエアコン消費電力、(e)が消費電力推定値を示す。後述の図8も同様である。
図5(a)〜(c)に示すように、アクセル開度が一定割合で増加しているとき、回転数指令値N*およびトルク指令値trq*も一定割合で増加する。また、図5(d)に示すように、時刻x20にて、エアコン電力指令値P_AC*がステップ状に増加するものとする。
この場合、図5(e)に示すように、消費電力推定値PC_estは、時刻x20にて、エアコン電力指令値P_AC*の変化に伴ってステップ状に増加するとともに、他の時間帯では、トルク指令値trq*および回転数指令値N*の増加に伴って増加する。
上述の通り、実際の電力消費は、指令の生成、および、当該指令に基づいて演算される消費電力推定値PC_estよりも、消費電力遅れ時間Δxの分、遅れる。そこで本実施形態では、補正後消費電力推定値PC_est_aを、消費電力推定値PC_estを消費電力遅れ時間Δxに応じて補正した値としている。
図6は、車速一定で条件で車両100を走行させる場合のシミュレーション結果である。図6(a)において、実線が補正後消費電力推定値PC_est_a、破線が補正前の消費電力推定値PC_est、一点鎖線が消費電力検出値PC_snsを示す。消費電力検出値PC_snsは、式(5)で表される。
PC_sns=VB_sns×IB_sns ・・・(5)
また、図6(b)において、実線が補正後消費電力推定値PC_est_aと消費電力検出値PC_snsとの偏差、破線が補正前の消費電力推定値PC_estと消費電力検出値PC_snsとの偏差である。図中、説明のため、補正後消費電力推定値PC_est_aを(k)、補正前の消費電力推定値PC_estを(j)、消費電力検出値PC_snsを(h)とした。
図6(b)に示すように、補正後消費電力推定値PC_est_aと消費電力検出値PC_snsとの偏差(=(k)−(h))は、補正前の消費電力推定値PC_estと消費電力検出値PC_snsとの偏差(=(j)−(h))より小さい。すなわち、通信遅れ分を補正することで、消費電力の推定精度を高めることができ、ひいてはバッテリ電圧VBの推定精度が高まる。これにより、バッテリ電圧センサ35の異常検出精度を高めることができる。
本実施形態では、異常判定に用いられるバッテリ電圧推定値である補正後バッテリ電圧推定値VB_est_aは、バッテリ30の電力を用いる装置である主機モータ10を制御するMG−ECU51、または、エアコン41を制御するエアコンECU52との通信遅れに応じて補正された値である。
詳細には、電圧推定部63は、演算されたバッテリ電圧推定値VB_estを通信遅れに応じて補正する。そして、異常判定部65は、補正後バッテリ電圧推定値VB_est_aを用いてバッテリ電圧センサ35の異常判定を行う。
これにより、通信遅れを考慮することで、バッテリ電圧VBの推定精度を高めることができる。また、演算されたバッテリ電圧推定値VB_estの通信遅れを一括で補正することで、処理負荷の増加を抑えつつ、バッテリ電圧VBの推定精度を高めることができる。これにより、バッテリ電圧センサ35の異常検出精度を高めることができる。
また、上記実施形態と同様の効果を奏する。
(第3実施形態)
本発明の第3実施形態を図7および図8に示す。
第2実施形態では、演算された消費電力推定値PC_estについて遅れ補正を行うが、本実施形態では、消費電力推定値PC_estの演算に用いるパラメータごとに遅れ補正を行う。
図7に示すように、本実施形態の異常判定処理では、図2のS104で肯定判断された場合、S105の前にS114が追加されている。また、本実施形態では、遅れ補正を行うパラメータについて、少なくとも通信遅れに相当する期間の分、過去値が図示しない記憶部に保持されているものとする。その他の点については、第1実施形態と同様である。
S114では、異常判定部65は、バッテリ電圧推定値VB_estの演算に用いる各パラメータについて、遅れ補正を行う。本実施形態では、トルク指令値trq*、回転数指令値N*、および、エアコン電力指令値P_AC*の遅れ補正を行うものとする。
図8に示すように、MG遅れ時間Δx1に応じた過去値を、補正後トルク指令値trq*_a、および、補正後回転数指令値N*_aとする。また、エアコン遅れ時間Δx2に応じた過去値を、補正後エアコン電力指令値P_AC*_aとする。
補正後回転数指令値N*_a、補正後トルク指令値trq*_a、補正後エアコン電力指令値P_AC*_aは、式(6)〜(8)となる。
*_a(x)=N*(x+Δx1) ・・・(6)
trq*_a(x)=trq*(x+Δx1) ・・・(7)
P_AC*_a(x)=P_AC*(x+Δx2) ・・・(8)
MG遅れ時間Δx1は、PM−ECU60とMG−ECU51との間の通信遅れに応じた値である。また、エアコン遅れ時間Δx2は、PM−ECU60とエアコンECU52との間の通信遅れに応じた値である。
MG遅れ時間Δx1およびエアコン遅れ時間Δx2は、例えば10[ms]程度のオーダーでそれぞれの通信周期等に応じて設定されるものであり、主機モータ10の制御周期(例えば数[μs])と比較して長く設定される。なお、MG遅れ時間Δx1およびエアコン遅れ時間Δx2は、異なる値であってもよいし、同じ値であってもよい。また本実施形態では、MG遅れ時間Δx1およびエアコン遅れ時間Δx2を所定値とするが、可変としてもよい。
電圧推定部63は、補正後回転数指令値N*_a、補正後トルク指令値trq*_a、および、補正後エアコン電力指令値P_AC*_aを用いて、消費電力推定値PC_estを演算する。すなわち、式(1)のトルク指令値trq*および回転数指令値N*に替えて、補正後トルク指令値trq*_aおよび補正後回転数指令値N*_aとする。また、補機消費電力P_accの演算に、補正後エアコン電力指令値P_AC*_aを用いる。
また本実施形態では、電力ロスP_lossは、補正後回転数指令値N*_aおよび補正後トルク指令値trq*_aを引数とするマップ演算により設定される。電力ロスP_lossについても、補正後回転数指令値N*_aおよび補正後トルク指令値trq*_aに基づいて演算することで、通信遅れが補正されている、と捉えることもできる。
演算される消費電力推定値PC_estは、図8(e)に示す如くとなる。
本実施形態では、消費電力推定値PC_estの演算に用いる各パラメータを、通信遅れに応じて補正している。すなわち、通信遅れを考慮したパラメータを用いて演算された消費電力推定値PC_estに基づいて演算されるバッテリ電圧推定値VB_estは、通信遅れに応じた補正された値である、といえる。
特に、本実施形態では、パラメータに応じた遅れ時間Δx1、Δx2を用い、パラメータごとに通信遅れを補正しているので、よりきめ細かく通信遅れが補正される。これにより、消費電力およびバッテリ電圧をより精度よく推定できるので、バッテリ電圧センサ35の異常検出精度を高めることができる。
本実施形態では、第2実施形態と同様、異常判定に用いられる電源電圧推定値は、主機モータ10を制御するMG−ECU51、または、エアコン41を制御するエアコンECU52との通信遅れに応じて補正された値である。
本実施形態では、電圧推定部63は、消費電力推定値PC_estの演算に用いられるパラメータを、通信遅れに応じて補正する。なお、消費電力推定値PC_estは、バッテリ電圧推定値VB_estの演算に用いられるものであって、消費電力推定値PC_estの演算に用いられるパラメータは、「電源電圧推定値の演算に用いられるパラメータ」の概念に含まれるものとする。
これにより、通信遅れを考慮することで、バッテリ電圧VBの推定精度を高めることができる。また、パラメータ毎に通信遅れを補正可能であるので、バッテリ電圧VBの推定精度をより高めることができる。これにより、バッテリ電圧センサ35の異常検出精度を高めることができる。
また、上記実施形態と同様の効果を奏する。
第2実施形態および第3実施形態において、主機モータ10およびエアコン41が「電源の電力を用いる装置」に対応し、MG−ECU51およびエアコンECU52が「電源の電力を用いる装置を制御する他の制御装置」に対応する。
(他の実施形態)
(ア)電圧推定部
上記実施形態では、補機をエアコンおよび補機バッテリとし、エアコン消費電力およびDCDC消費電力に基づき、補機消費電力を演算する。他の実施形態では、補機消費電力に、電動パワーステアリング装置等の他の補機での消費電力が含まれるようにしてもよい。
上記実施形態では、MG消費電力の演算には、トルク指令値および回転数指令値を用いる。他の実施形態では、MG消費電力の演算に用いる値は、指令値に限らず、電流センサや回転角センサの検出値から演算されるトルク検出値や回転数検出値を用いてもよい。補機消費電力の演算についても同様である。また、遅れ補正を行う場合、電圧推定に用いる値に応じ、式(1)、(2)中の各パラメータのタイミングが揃うように、補正値を適宜設定することが望ましい。
第3実施形態では、主機モータの消費電力、および、補機消費電力について、それぞれ通信遅れが補正される。他の実施形態では、主機モータの消費電力、または、補機消費電力の一方の通信遅れ補正を省略してもよい。また、補機消費電力が、複数の補機(例えば、エアコン、DCDCコンバータ、および、電動パワーステアリング装置等)の消費電力に基づくものである場合、全ての消費電力について、それぞれ遅れ補正を行ってもよいし、一部の消費電力における遅れ補正を省略してもよい。また、補機消費電力として一括で遅れ補正を行ってもよい。
また、第3実施形態では、電源電流検出値については、遅れ補正を行っていない。他の実施形態では、他のパラメータとのタイミングを揃えるべく、電源電流検出値についても遅れ補正を行ってもよい。この場合、比較する電源電圧検出値についても、タイミングが揃うように補正することが望ましい。
(イ)異常判定部
上記実施形態では、主機モータが安定駆動状態であり、かつ、バッテリ電流検出値が電流判定閾値より大きいときに電源電圧センサの異常判定を行う。他の実施形態では、S103の処理を省略し、主機モータの安定駆動状態の判定を省略してもよい。また、他の実施形態では、S104の処理を省略し、バッテリ電流検出値に係る判定を省略してもよい。
(ウ)異常診断装置
上記実施形態では、PM−ECUが異常診断装置に対応する。他の実施形態では、消費電力推定部、電源電圧推定部、および、異常判定部の一部または全部が、PM−ECU以外の他のECUにより構成されるようにしてもよい。
(エ)車両制御システム
上記実施形態では、車両制御システムは、車両の駆動源として、エンジンおよび1つの主機モータを備える。他の実施形態では、主機モータが複数であってもよい。例えば、主機モータが2つである場合、例えば、所謂、シリーズパラレル方式とし、一方の主機モータを主に発電機として用い、他方の主機モータを主に電動機として用いるようにしてもよい。主機モータは、シリーズパラレル方式に限らず、所謂、シリーズ方式や、パラレル方式等、どのように配置してもよい。主機モータが複数である場合、主機モータごとに、トルクおよび回転数に基づいて消費電力を演算して加算した値を「主機モータの消費電力」とすればよい。なお、消費電力が負の値であれば、主機モータの回生により発電している状態であるが、主機モータの回生による発電電力についても、広義の「消費電力」の概念に含まれるものとする。
また他の実施形態では、車両の駆動源としてのエンジンを省略してもよく、車両が所謂「EV車両」であってもよい。また、電源として燃料電池を用いる「FC車両」であってもよい。
また、他の実施形態では、電源とインバータとの間に昇圧システムを設けてもよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
10・・・主機モータ
30・・・バッテリ(電源)
35・・・バッテリ電圧センサ(電源電圧センサ)
36・・・バッテリ電流センサ(電源電流センサ)
41・・・エアコン(補機) 42・・・補機バッテリ(補機)
50・・・制御部
60・・・PM−ECU(異常診断装置)
63・・・電圧推定部(消費電力推定部、電源電圧演算部)
65・・・異常判定部
100・・・車両

Claims (5)

  1. 車両(100)の駆動源であって電源(30)から供給される電力で駆動される主機モータ(10)の消費電力、および、前記電源の電力を使用する補機(41、42)の消費電力を推定し、消費電力推定値を演算する消費電力推定部(63)と、
    前記消費電力推定値、および、前記電源の電流を検出する電源電流センサ(36)の検出値に基づく値である電源電流検出値に基づき、前記電源の電圧の推定値である電源電圧推定値を演算する電源電圧推定部(63)と、
    前記電源電圧推定値と、前記電源の電圧を検出する電源電圧センサ(35)の検出値に基づく値である電源電圧検出値との比較結果に基づき、前記電源電圧センサの異常を判定する異常判定部(65)と、
    を備え
    異常判定に用いられる前記電源電圧推定値は、前記電源の電力を用いる装置(10、41)を制御する他の制御装置(51、52)との通信遅れに応じて補正された値である異常診断装置。
  2. 前記消費電力推定部は、前記消費電力推定値の演算に用いられるパラメータを、通信遅れに応じて補正する請求項に記載の異常診断装置。
  3. 前記電源電圧推定部は、演算された前記電源電圧推定値を、通信遅れに応じて補正する請求項に記載の異常診断装置。
  4. 前記異常判定部は、前記主機モータの駆動状態が安定駆動状態である場合、前記電源電圧センサの異常判定を行う請求項1〜のいずれか一項に記載の異常診断装置。
  5. 車両(100)の駆動源であって電源(30)から供給される電力で駆動される主機モータ(10)の消費電力、および、前記電源の電力を使用する補機(41、42)の消費電力を推定し、消費電力推定値を演算する消費電力推定部(63)と、
    前記消費電力推定値、および、前記電源の電流を検出する電源電流センサ(36)の検出値に基づく値である電源電流検出値に基づき、前記電源の電圧の推定値である電源電圧推定値を演算する電源電圧推定部(63)と、
    前記電源電圧推定値と、前記電源の電圧を検出する電源電圧センサ(35)の検出値に基づく値である電源電圧検出値との比較結果に基づき、前記電源電圧センサの異常を判定する異常判定部(65)と、
    を備え
    前記異常判定部は、前記主機モータの駆動状態が安定駆動状態である場合、前記電源電圧センサの異常判定を行う異常診断装置。
JP2015220268A 2015-11-10 2015-11-10 異常診断装置 Active JP6497298B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015220268A JP6497298B2 (ja) 2015-11-10 2015-11-10 異常診断装置
US15/348,653 US10024945B2 (en) 2015-11-10 2016-11-10 Abnormality diagnosis apparatus that determines an abnormality of a power-supply voltage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015220268A JP6497298B2 (ja) 2015-11-10 2015-11-10 異常診断装置

Publications (2)

Publication Number Publication Date
JP2017093138A JP2017093138A (ja) 2017-05-25
JP6497298B2 true JP6497298B2 (ja) 2019-04-10

Family

ID=58667548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015220268A Active JP6497298B2 (ja) 2015-11-10 2015-11-10 異常診断装置

Country Status (2)

Country Link
US (1) US10024945B2 (ja)
JP (1) JP6497298B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108156837B (zh) * 2015-10-13 2020-12-11 三菱电机株式会社 交流旋转电机的控制装置及电动助力转向装置
JP6439658B2 (ja) 2015-11-10 2018-12-19 株式会社デンソー 電圧センサ異常診断装置
JP6464995B2 (ja) 2015-11-10 2019-02-06 株式会社デンソー 電圧センサ異常診断装置
JP6529459B2 (ja) * 2016-04-06 2019-06-12 日立オートモティブシステムズ株式会社 モータ駆動装置、及びこれを用いた電動パワーステアリング装置
JP6683152B2 (ja) * 2017-02-23 2020-04-15 株式会社デンソー 異常診断装置
WO2020010531A1 (zh) * 2018-07-10 2020-01-16 北京中电普华信息技术有限公司 故障检测方法、设备
CN111347878B (zh) * 2018-12-21 2021-09-21 比亚迪股份有限公司 车辆启动的控制方法和装置
CN109633461B (zh) * 2018-12-27 2020-07-24 北汽福田汽车股份有限公司 车辆及其电池的亏电识别方法和系统、服务器
JP7251390B2 (ja) * 2019-07-30 2023-04-04 株式会社デンソー 電子制御装置
US11513488B2 (en) * 2020-09-10 2022-11-29 Motional Ad Llc Controlling power of electronic devices on a vehicle
US20220332214A1 (en) * 2021-04-19 2022-10-20 Ford Global Technologies, Llc Traction battery pack state estimation

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4377164B2 (ja) * 2003-06-10 2009-12-02 株式会社日立製作所 蓄電装置の異常検出方法、蓄電装置の異常検出装置および蓄電システム
JP4103781B2 (ja) * 2003-11-19 2008-06-18 トヨタ自動車株式会社 負荷駆動回路における異常監視装置
DE112004002939B4 (de) * 2004-09-22 2020-09-03 Toyota Jidosha Kabushiki Kaisha Gerät und Verfahren zur Überwachung einer Lastansteuerungsschaltung bezüglich einer Anomalie
JP4622872B2 (ja) * 2006-01-26 2011-02-02 トヨタ自動車株式会社 車両の電源装置、車両および車両の電源装置の制御方法
JP4793058B2 (ja) * 2006-04-03 2011-10-12 日産自動車株式会社 電圧センサの故障診断装置
JP4730280B2 (ja) * 2006-10-23 2011-07-20 トヨタ自動車株式会社 車両用電源制御装置
JP4573884B2 (ja) * 2008-06-18 2010-11-04 三菱電機株式会社 車載電子制御装置の電源異常検出回路
JP2014166033A (ja) * 2013-02-25 2014-09-08 Toyota Motor Corp 電源装置
JP2015076987A (ja) * 2013-10-09 2015-04-20 トヨタ自動車株式会社 車両の電源装置
JP6186248B2 (ja) 2013-11-05 2017-08-23 日立オートモティブシステムズ株式会社 インバータの異常判定装置
JP6439658B2 (ja) 2015-11-10 2018-12-19 株式会社デンソー 電圧センサ異常診断装置
JP6464995B2 (ja) 2015-11-10 2019-02-06 株式会社デンソー 電圧センサ異常診断装置

Also Published As

Publication number Publication date
JP2017093138A (ja) 2017-05-25
US20170131378A1 (en) 2017-05-11
US10024945B2 (en) 2018-07-17

Similar Documents

Publication Publication Date Title
JP6497298B2 (ja) 異常診断装置
JP5880967B2 (ja) 交流電動機の制御装置
US9903931B2 (en) Diagnostic device for voltage sensors
US8981688B2 (en) Control device for AC motor
US9007028B2 (en) Control device for electric power storage device and vehicle equipped with the same
JP6119778B2 (ja) インバータの制御装置
JP5929873B2 (ja) 交流電動機の制御装置
JP6079437B2 (ja) 電動車両の制御方法
US20130311026A1 (en) Vehicle and control method for vehicle
US10348238B2 (en) Drive system
US10099563B2 (en) Power supply device for vehicle and method for controlling the same
JP6464995B2 (ja) 電圧センサ異常診断装置
JP6863046B2 (ja) 自動車
EP3569439B1 (en) Drive device and control method for vehicle
JP5994816B2 (ja) 回転電機制御システム
JP6642404B2 (ja) 異常検出装置
JP6269328B2 (ja) 同期モータの制御装置、及び、これを備える車両制御システム
JP7069858B2 (ja) インバータの制御方法及びインバータ制御装置
JP6683052B2 (ja) コンバータ装置
JP6451600B2 (ja) 電圧センサ異常診断装置
JP7345972B2 (ja) モータ制御装置
JP2010239812A (ja) 電源装置
JP2020137199A (ja) モータ駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R151 Written notification of patent or utility model registration

Ref document number: 6497298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250