JP6642404B2 - 異常検出装置 - Google Patents

異常検出装置 Download PDF

Info

Publication number
JP6642404B2
JP6642404B2 JP2016242069A JP2016242069A JP6642404B2 JP 6642404 B2 JP6642404 B2 JP 6642404B2 JP 2016242069 A JP2016242069 A JP 2016242069A JP 2016242069 A JP2016242069 A JP 2016242069A JP 6642404 B2 JP6642404 B2 JP 6642404B2
Authority
JP
Japan
Prior art keywords
value
abnormality
detection value
torque
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016242069A
Other languages
English (en)
Other versions
JP2018098932A (ja
Inventor
征輝 西山
征輝 西山
広文 山下
広文 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016242069A priority Critical patent/JP6642404B2/ja
Priority to PCT/JP2017/044384 priority patent/WO2018110502A1/ja
Publication of JP2018098932A publication Critical patent/JP2018098932A/ja
Application granted granted Critical
Publication of JP6642404B2 publication Critical patent/JP6642404B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、異常検出装置に関する。
従来、電圧センサの故障を診断する故障診断装置が知られている。例えば特許文献1では、電圧と電流との関係から演算される第1のモータ出力、および、トルク指令値とモータ回転速度との関係から算出される第2のモータ出力に基づいて電圧センサの故障を検出している。
特開2007−282299号公報
しかしながら特許文献1では、故障診断のために必要な情報量が多く、また、モータ出力の演算に乗除演算を用いており、演算負荷が大きい。
本発明は、上述の課題に鑑みてなされたものであり、その目的は、同様に特性が変化する値の異常を適切に特定可能である異常検出装置を提供することにある。
第1発明の異常検出装置は、第1取得部(521)と、第2取得部(522)と、異常特定部(523)と、を備える。
第1取得部は、車両(90)に搭載される第1のセンサ(40)の検出値である第1検出値を取得する。
第2取得部は、車両に搭載され、第1のセンサと出力が同様に変化する第2のセンサ(45)の検出値である第2検出値を、第1検出値とは速度が異なる取得形態で取得する。
異常特定部は、第1検出値および第2検出値が変化するタイミングであって、同時に取得された第1検出値と第2検出値との比較により異常判定を行い、異常判定結果に基づいて第1検出値または第2検出値のどちらが異常であるかを特定する。
出力差が生じるタイミングでの2つの値の比較により、適切に異常を特定することができる。
第2発明の異常検出装置は、第1取得部(513)と、第2取得部(512)と、異常特定部(513)と、を備える。
第1取得部は、車両(90)に搭載される第1のセンサ(140)の検出値である第1検出値に基づいて演算される第1演算値を取得する。
第2取得部は、車両に搭載される第2のセンサ(23)の検出値である第2検出値に基づいて演算される値であって、第1演算値と同様に変化する第2演算値を、第1演算値とは速度が異なる取得形態で取得する。
異常特定部は、第1演算値および第2演算値が変化するタイミングであって、同時に取得される第1演算値と第2演算値との比較により異常判定を行い、異常判定結果に基づき、第1演算値と第2演算値のどちらが異常であるかを特定する。
値に差が生じるタイミングでの2つの値の比較により、適切に異常を特定することができる。
本発明の第1実施形態による車両を説明する模式図である。 本発明の第1実施形態によるモータ駆動システムを説明する概略構成図である。 本発明の第1実施形態による異常特定処理を説明するフローチャートである。 本発明の第1実施形態による異常特定処理を説明するタイムチャートである。 本発明の第1実施形態による異常特定処理を説明するタイムチャートである。 本発明の第2実施形態による制御装置を説明するブロック図である。
以下、本発明による異常検出装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
本発明の第1実施形態を図1〜図5に示す。
図1および図2に示すように、制御装置50は、車両90に適用される。本実施形態の車両90は、回転電機としての主機モータ3の駆動力にて走行する電気自動車である。本実施形態の主機モータ3は、永久磁石式同期型の3相交流の回転電機であって、電動機としての機能と発電機としての機能を併せ持つ、いわゆる「モータジェネレータ」である。以下適宜、主機モータ3を「MG」とする。
主機モータ3には、回転角を検出する回転角センサ4が設けられる。
主機モータ3の駆動力は、駆動軸91に伝達される。駆動軸91に伝達された駆動力は、デファレンシャルギア92および車軸93を介して駆動輪である前輪95を回転させる。図1には図示していないが、主機モータ3とデファレンシャルギア92との間に変速機を設けてもよい。変速機は、無段変速機であってもよいし、多段変速機であってもよい。
モータ制御システム1は、バッテリ10、リレー部15、インバータ20、第1のセンサとしてのインバータ入力電圧センサ40、第2のセンサとしてのバッテリ電圧センサ45、および、制御装置50等を備える。
バッテリ10は、例えばニッケル水素またはリチウムイオン等の充放電可能な二次電池により構成される直流電源である。また、バッテリとして、電気二重層キャパシタ等を用いてもよい。バッテリ10は、SOC(State Of Charge)が所定の範囲内となるように制御される。バッテリ10の電力は、主に、インバータ20を経由して主機モータ3に供給され、主機モータ3の駆動に用いられる。また、バッテリ10は、主機モータ3の回生により生じた電力により充電される。
リレー部15は、バッテリ10とインバータ20との間に設けられる。リレー部15は、高電位側配線11に設けられる高電位側リレー16、および、低電位側配線12に設けられる低電位側リレー17を含む。高電位側リレー16および低電位側リレー17は、機械式リレーであってもよいし、半導体リレーであってもよい。
リレー部15は、バッテリ10とドライブ回路21との間の断接を切り替え可能であって、リレー部15をオンすることで、バッテリ10とドライブ回路21とを導通し、オフすることで、バッテリ10とドライブ回路21とを遮断する。
インバータ20は、ドライブ回路21、コンデンサ25、および、MG制御部52を有する。図中、「制御部」を「ECU」と記載する。
ドライブ回路21は、6つのスイッチング素子211〜216を有する3相インバータを含む。スイッチング素子211〜216は、いずれもIGBTであり、両面放熱可能に設けられる。IGBTに替えて、MOSFET等を用いてもよい。ドライブ回路21は、冷却水が循環する図示しないインバータ冷却器により冷却される。
高電位側に接続されるスイッチング素子211〜213は、コレクタが高電位側配線11に接続され、エミッタがそれぞれ対になる低電位側のスイッチング素子214〜216のコレクタに接続される。低電位側に接続されるスイッチング素子214〜216のエミッタは、低電位側配線12に接続される。対になる高電位側のスイッチング素子211〜213と低電位側のスイッチング素子214〜216との接続点は、それぞれ、主機モータ3の各相巻線の一端に接続される。
対になる高電位側のスイッチング素子211〜213と低電位側のスイッチング素子214〜216とは、MG制御部52からの駆動信号に基づき、交互に、かつ、相補的にオンオフ作動される。インバータ20は、スイッチング素子211〜216のオンオフ作動を制御することで、直流電力を3相交流電力に変換し、主機モータ3に出力する。主機モータ3の各相に流れる電流は、電流センサ23により検出される。電流センサ23は、全相に設けられていなくてもよく、1相または2相の電流センサを省略し、電流センサが設けられていない相の電流を演算により求めるようにしてもよい。電流センサ23の検出値であるモータ電流Imは、配線43を経由して、MG制御部52に出力される。
ドライブ回路21とリレー部15との間には、図示しない昇圧コンバータが設けられ、ドライブ回路21には、昇圧コンバータにより昇圧された電圧が印加される。
コンデンサ25は、ドライブ回路21に並列に接続される。
インバータ入力電圧センサ40は、バッテリ10とドライブ回路21との間に設けられる。詳細には、インバータ入力電圧センサ40は、リレー部15とドライブ回路21との間に設けられる。インバータ入力電圧センサ40は、ドライブ回路21に印加される電圧を検出する。インバータ入力電圧センサ40の検出値は、配線41により、MG制御部52に出力される。
バッテリ電圧センサ45は、バッテリ10の電圧を検出する。バッテリ電圧センサ45の検出値は、配線46によりバッテリ制御部53に出力され、車両通信網60を経由してMG制御部52に出力される。
以下、インバータ入力電圧センサ40の検出値をインバータ入力電圧Vinv、バッテリ電圧センサ45の検出値をバッテリ電圧Vbatとする。本実施形態では、インバータ入力電圧Vinvが「第1検出値」に対応し、バッテリ電圧Vbatが「第2検出値」に対応する。
制御装置50は、車両制御部51、MG制御部52、および、バッテリ制御部53等を有する。車両制御部51、MG制御部52、および、バッテリ制御部53は、いずれもマイコン等を主体として構成される。車両制御部51、MG制御部52、および、バッテリ制御部53における各処理は、ROM等の実体的なメモリ装置に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
車両制御部51、MG制御部52、および、バッテリ制御部53は、CAN(Controller Area Network)等の車両通信網60を介して接続されており、情報を授受可能である。
車両制御部51は、図示しないアクセルセンサ、シフトスイッチ、ブレーキスイッチ、車速センサ等からの信号を取得し、取得されたこれらの信号に基づき、車両90全体の制御を司る。車両制御部51は、アクセル開度および車速等に基づいて主機モータ3の駆動に係るトルク指令値trq*を演算する。トルク指令値trq*は、MG制御部52に出力される。
MG制御部52は、第1取得部521、第2取得部522、異常特定部523、および、信号生成部525を備える。
第1取得部521は、配線41を経由して、インバータ入力電圧センサ40からインバータ入力電圧Vinvを取得する。
第2取得部522は、車両通信網60を経由して、バッテリ電圧センサ45からバッテリ電圧Vbatを取得する。
以下、単にインバータ入力電圧Vinvまたはバッテリ電圧Vbatという場合、MG制御部52にて取得された値を意味するものとする。
異常特定部523は、第1取得部521にて取得されたインバータ入力電圧Vinv、および、第2取得部522にて取得されたバッテリ電圧Vbatに基づき、異常特定を行う。異常特定の詳細は、後述する。
信号生成部525は、モータ電流Im、インバータ入力電圧Vinv、トルク指令値trq*、および、回転角センサ4の検出値等に基づいて駆動信号を生成し、駆動信号をドライブ回路21に出力する。MG制御部52は、駆動信号に基づいてスイッチング素子211〜216のオンオフ作動を制御することで、主機モータ3の駆動を制御する。本実施形態では、電流フィードバック制御により主機モータ3の駆動を制御する。電流フィードバック制御に替えて、トルクフィードバック制御等であってもよい。
バッテリ制御部53は、主機バッテリ情報として、バッテリ10の電圧、電流、温度、SOC等の情報を取得する。バッテリ制御部53は、バッテリ10のSOCが所定の範囲内となるように、バッテリ10の状態を監視する。
ところで、リレー部15がオンされているとき、インバータ入力電圧センサ40とバッテリ電圧センサ45とは、主機モータ3の駆動状態の変化に伴い、概ね同様に出力が変化する。具体的には、例えば主機モータ3の回生時等、主機モータ3のトルクが減少するトルクダウン時、インバータ入力電圧Vinvおよびバッテリ電圧Vbatは、一時的に上昇し、その後、定常状態に戻る。また、例えば主機モータ3の力行時等、主機モータ3のトルクが増加するトルクアップ時、インバータ入力電圧Vinvおよびバッテリ電圧Vbatは、一時的に減少し、その後、定常状態に戻る。
また、MG制御部52では、インバータ入力電圧Vinvを、インバータ入力電圧センサ40から配線41を経由して直接的に取得する。一方、MG制御部52は、バッテリ電圧Vbatを、バッテリ制御部53から通信にて取得する。そのため、MG制御部52では、バッテリ電圧Vbatが取得されるタイミングは、インバータ入力電圧Vinvが取得されるタイミングより、通信遅れの分、例えば数十ms程度、遅れる。
上述の通り、インバータ入力電圧Vinvとバッテリ電圧Vbatとは、主機モータ3のトルク変化に応じて同様に変化する。そのため、MG制御部52にて取得されるインバータ入力電圧Vinvおよびバッテリ電圧Vbatは、インバータ入力電圧センサ40およびバッテリ電圧センサ45が共に正常であれば、主機モータ3のトルク変化に伴い、インバータ入力電圧Vinvが先行して変化し、通信遅れの分、遅れてバッテリ電圧Vbatが変化する。
本実施形態では、同様に変化する検出値の取得速度差を利用し、どちらのセンサに異常が生じているかを特定している。
本実施形態の異常特定処理を図3のフローチャートに基づいて説明する。この処理は、MG制御部52にて、所定の周期で実施される。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。他のステップも同様である。
最初のS101では、MG制御部52は、オフセット異常が生じているか否かを判断する。オフセット異常が生じているか否かは、主機モータ3のトルクが安定しているときの定常時電圧偏差ΔVsの絶対値が、オフセット異常判定閾値THsより大きい状態が所定期間Rsに亘って継続している場合、オフセット異常が生じていると判断する。オフセット異常が生じている場合、オフセット異常フラグをセットしておき、フラグの有無にて本ステップの判断を行ってもよい。
定常時電圧偏差ΔVsは、式(1)で表される。定常時電圧偏差ΔVsは、主機モータ3のトルクが安定しているときに演算され、メモリ等に記憶される。
ΔVs=Vinv−Vbat ・・・(1)
オフセット異常が生じていないと判断された場合(S101:NO)、S117へ移行する。オフセット異常が生じていると判断された場合(S101:YES)、S102へ移行する。
S102では、MG制御部52は、トルクダウン要求時の所定タイミングか否かを判断する。ここでは、トルク減少量がトルク判定閾値TDthより大きい場合をトルクダウン要求時とする。また、所定タイミングとは、通信遅れにより、バッテリ電圧Vbatがインバータ入力電圧Vinvに対して遅れて変化しているタイミングとする。望ましくは、所定タイミングは、トルク変化に応じたインバータ入力電圧Vinvの変化が一時的な安定状態となり、バッテリ電圧Vbatが一時的な安定状態に至っていないタイミングである。本実施形態では、トルクダウン要求開始から所定期間Rdが経過した後の最初の演算時を、「トルクダウン時の所定タイミング」とする。トルクダウン要求時の所定タイミングではないと判断された場合(S102:NO)、S105へ移行する。トルクダウン要求時の所定タイミングであると判断された場合(S102:YES)、S103へ移行する。
S103では、MG制御部52は、インバータ入力電圧Vinvおよびバッテリ電圧Vbatを取得する。ここで取得されるインバータ入力電圧Vinvおよびバッテリ電圧Vbatは、トルクダウン要求時の所定タイミングであって、同じタイミングでデータストアされた値とする。なお、「同じ」とみなせる程度の誤差は許容される。
S104では、MG制御部52は、補正後電圧偏差ΔVcがセンサ異常判定閾値THc1より小さいか否かを判断する。補正後電圧偏差ΔVcは、式(2)により算出される。式(2)中のVinv_aは、インバータ入力電圧Vinvについてオフセット誤差の補正を行った補正後インバータ入力電圧である(式(3)参照)。なお、バッテリ電圧Vbatをオフセット補正するようにしてもよい。
ΔVc=Vinv_a−Vbat ・・・(2)
Vinv_a=Vinv−ΔVs ・・・(3)
本実施形態では、式(2)の演算により、補正後インバータ入力電圧Vinv_aとバッテリ電圧Vbatの大小比較を行う。したがって、センサ異常判定閾値THc1は、0または0に近い所定値に設定される。後述のセンサ異常閾値THc2も同様である。センサ異常判定閾値THc1、THc2は、同じ値であってもよいし、異なる値であってもよい。
補正後電圧偏差ΔVcがセンサ異常判定閾値THc1より小さいと判断された場合(S104:YES)、S108へ移行する。補正後電圧偏差ΔVcがセンサ異常判定閾値THc1以上であると判断された場合(S104:NO)、S109へ移行する。
トルクダウン要求時の所定タイミングではないと判断された場合(S102:NO)に移行するS105では、MG制御部52は、トルクアップ要求時の所定タイミングか否かを判断する。ここでは、トルク増加量がトルク判定閾値TUthより大きい場合をトルクアップ要求時とする。所定タイミングは、トルクダウン時と同様であり、トルクアップ要求開始から所定期間Rd経過後の最初の演算時とする。トルクダウン時とトルクアップ時とで、所定期間Rdは同じでもよいし、異なっていてもよい。トルクアップ要求時の所定タイミングではないと判断された場合(S105:NO)、S117へ移行する。トルクアップ要求時の所定タイミングであると判断された場合(S105:YES)、S106へ移行する。
S106では、MG制御部52は、S103と同様、トルクアップ要求時の所定タイミングにて、インバータ入力電圧Vinvおよびバッテリ電圧Vbatを取得する。
S107では、MG制御部52は、補正後電圧偏差ΔVcがセンサ異常判定閾値THc2より大きいか否かを判断する。補正後電圧偏差ΔVcがセンサ異常判定閾値THc2より大きいと判断された場合(S107:YES)、S108へ移行する。補正後電圧偏差ΔVcがセンサ異常判定閾値THc2以下であると判断された場合(S107:NO)、S109へ移行する。
トルクダウン時の所定タイミングであって、補正後電圧偏差ΔVcがセンサ異常判定閾値THc1より小さい場合(S102:YES、かつ、S104:YES)、または、トルクアップ時の所定タイミングであって、補正後電圧偏差ΔVcがセンサ異常判定閾値THc2より大きい場合(S105:YES、かつ、S107:YES)に移行するS108では、MG制御部52は、第1カウンタをカウントアップする。第1カウンタは、インバータ入力電圧Vinvが異常であると判定された判定回数をカウントするカウンタである。
トルクダウン時の所定タイミングであって、補正後電圧偏差ΔVcがセンサ異常判定閾値THc1以上である場合(S102:YES、かつ、S104:NO)、または、トルクアップ時の所定タイミングであって、補正後電圧偏差ΔVcがセンサ異常判定閾値THc2以下である場合(S105:YES、かつ、S107:NO)に移行するS109では、MG制御部52は、第2カウンタをカウントアップする。第2カウンタは、インバータ入力電圧Vinvが異常ではない、すなわちバッテリ電圧Vbatが異常であると判定された判定回数をカウントするカウンタである。
以下、第1カウンタのカウント値を第1カウント値、第2カウンタのカウント値を第2カウント値とする。
S110では、MG制御部52は、判定回数が所定回数Nより大きいか否かを判断する。判定回数は、補正後電圧偏差ΔVcによる閾値判定を行った回数であって、第1カウント値と第2カウント値との和である。判定回数が所定回数N以下であると判断された場合(S110:NO)、S117へ移行する。判定回数が所定回数Nより大きいと判断された場合(S110:YES)、S111へ移行する。
S111では、MG制御部52は、判定回数における第1カウント値の割合である異常判定確率Perrを演算する。
S112では、MG制御部52は、異常判定確率Perrが確率判定閾値Pthより大きいか否かを判断する。異常判定確率Perrが確率判定閾値Pth以下であると判断された場合(S112:NO)、S115へ移行する。MG制御部52は、異常判定確率Perrが確率判定閾値Pthより大きいと判断された場合(S112:YES)、S113へ移行する。
S113では、MG制御部52は、インバータ入力電圧Vinvが異常であると特定し、インバータ入力電圧センサ40に異常が生じている旨の情報を車両制御部51に送信する。
S114では、MG制御部52は、インバータ入力電圧Vinvに替えて、バッテリ電圧Vbatを用いた代用制御により、主機モータ3の駆動を制御する。
S115では、MG制御部52は、バッテリ電圧Vbatが異常であると特定し、バッテリ電圧センサ45に異常が生じている旨の情報を車両制御部51等に送信する。
S116では、MG制御部52は、インバータ入力電圧Vinvは正常であるので、インバータ入力電圧Vinvを用いた主機モータ3の駆動制御を継続する。
S117では、MG制御部52は、S116と同様、インバータ入力電圧Vinvを用いた主機モータ3の駆動制御を継続する。
本実施形態の異常特定処理を図4および図5のタイムチャートに基づいて説明する。図4では、共通時間軸を横軸とし、(a)はMGトルク、(b)はインバータ入力電圧Vinvおよびバッテリ電圧Vbat、(c)は第1カウント値、(d)はインバータ入力電圧Vinvの異常特定、(e)はバッテリ電圧Vbatの異常特定、(f)はMG制御を示す。図4(d)、(e)では、正常または異常未確定を「0」、異常確定を「1」とする。また、図4(b)では、バッテリ電圧Vbatを実線、正常時のインバータ入力電圧Vinvを二点鎖線、インバータ入力電圧Vinvが中間値に張り付くような特性異常が生じている場合を一点鎖線で示す。説明のため、同じ値になる箇所については、若干ずらして記載している。
インバータ入力電圧Vinvおよびバッテリ電圧Vbatが正常である場合、時刻x1にて、主機モータ3のトルクであるMGトルクが減少すると、インバータ入力電圧Vinvおよびバッテリ電圧Vbatが上昇する。実際には、インバータ入力電圧センサ40の検出値とバッテリ電圧センサ45の検出値とは、略同時に変化する。一方、MG制御部52では、インバータ入力電圧Vinvを配線41により直接的に取得しているのに対し、バッテリ電圧Vbatを通信にて取得しているため、MG制御部52にてバッテリ電圧Vbatが取得されるタイミングは、インバータ入力電圧Vinvよりも遅れる。換言すると、主機モータ3にてトルク変化が生じた場合、MG制御部52内では、インバータ入力電圧Vinvがバッテリ電圧Vbatに先行して変化するように認識される。そのため、インバータ入力電圧Vinvおよびバッテリ電圧Vbatが共に正常であれば、トルクダウン開始の時刻x1から所定期間Rdが経過したタイミングである時刻x2では、インバータ入力電圧Vinvがバッテリ電圧Vbatよりも大きい。したがって、インバータ入力電圧Vinvおよびバッテリ電圧Vbatが共に正常の場合、補正後電圧偏差ΔVcは、正の値となる。
また、図4(b)に一点鎖線で示すように、電圧偏差ΔV1がオフセット異常判定閾値THsより大きい状態が所定期間Rs以上に亘って継続している。このとき、トルク変化がない状態では、インバータ入力電圧Vinvまたはバッテリ電圧Vbatのどちらに異常が生じているのかを判別することができない。
そこで本実施形態では、通信遅れの影響により、インバータ入力電圧Vinvから遅れてバッテリ電圧Vbatが変化することを利用し、オフセット異常時において、インバータ入力電圧Vinvまたはバッテリ電圧Vbatのどちらに異常が生じているかを特定する。
異常特定処理の詳細を図5に基づいて説明する。図5では、(a)はインバータ入力電圧Vinvおよびバッテリ電圧Vbatが共に正常である場合、(b)はインバータ入力電圧Vinvが異常である場合、(c)はバッテリ電圧Vbatが異常である場合を示している。図5では、トルクダウン時の所定タイミングをxtとした。
図5(a)に示すように、上述の通り、インバータ入力電圧Vinvおよびバッテリ電圧Vbatが共に正常であれば、トルクダウンに伴い、インバータ入力電圧Vinvが先行して上昇し、追ってバッテリ電圧Vbatが上昇する。そのため、トルクダウン時の所定タイミングxtにおいて、インバータ入力電圧Vinvは、バッテリ電圧Vbatより大きい値となる。したがて、補正後電圧偏差ΔVcは、正の値となる。
図5(b)に示すように、インバータ入力電圧Vinvが異常であって、インバータ入力電圧Vinvが上昇しないと、トルクダウン時の所定タイミングxtにおいて、バッテリ電圧Vbatが補正後インバータ入力電圧Vinv_aより大きい値となる。この場合、補正後電圧偏差ΔVcは負の値となり、センサ異常判定閾値THc1より小さい値となる。したがって、第1カウンタをカウントアップする。
図5(c)に示すように、バッテリ電圧Vbatが異常であって、バッテリ電圧Vbatが上昇しないと、トルクダウン時の所定タイミングxtにおいて、補正後インバータ入力電圧Vinv_aは、バッテリ電圧Vbatより大きい値となる。したがって、補正後電圧偏差ΔVcは正の値となる。したがって、第2カウンタをカウントアップする。
ここで、トルクアップ時について補足しておく。主機モータ3にてトルクアップが生じると、インバータ入力電圧Vinvおよびバッテリ電圧Vbatが共に正常であれば、インバータ入力電圧Vinvが先行して低下し、追ってバッテリ電圧Vbatが低下する。すなわち、トルクアップ時は、トルクダウン時とは電圧変化方向が逆向きになる。したがって、トルクアップ時の所定タイミングにおいては、共に正常であれば、インバータ入力電圧Vinvは、バッテリ電圧Vbatより小さい値となる。そのため、正常時、補正後電圧偏差ΔVcは、負の値となる。
インバータ入力電圧Vinvが異常であれば、トルクアップ時の所定タイミングにおける補正後電圧偏差ΔVcが正の値となるので、第1カウンタをカウントアップする。
バッテリ電圧Vbatが異常であれば、トルクアップ時の所定タイミングにおける補正後電圧偏差ΔVcが負の値となるので、第2カウンタをカウントアップする。
図4に戻り、トルクダウン時の所定タイミングである時刻x2では、バッテリ電圧Vbatが補正後インバータ入力電圧Vinv_aより大きいので、補正後電圧偏差ΔVcは負の値となる。したがって、図4(c)に示すように、第1カウンタがカウントアップされる。
同様の異常が継続しているとき、時刻x3にて再度トルクダウンが生じると、トルクダウン時の所定タイミングである時刻x4にて、補正後電圧偏差ΔVcを演算し、第1カウンタをカウントアップする。
このように、トルク変化ごとに補正後電圧偏差ΔVcに応じた異常判定を行っていく。本実施形態では、トルク変化1回につき1回の判定を行う。図4では、トルクダウン時を例示しているが、例えば、前回がトルクダウン時であり、今回がトルクアップ時、といった具合に、異常判定時のトルク変化方向は問わない。
時刻x10にて、判定回数が所定回数Nより大きくなり、かつ、異常判定確率Perrが確率判定閾値Pthより大きくなると、MG制御部52は、インバータ入力電圧Vinvの異常であると特定する。また、MG制御部52は、主機モータ3の制御において、インバータ入力電圧Vinvに替えて、バッテリ電圧Vbatを用いた代替制御に移行する。
MG制御部52は、インバータ入力電圧Vinvを配線41にて取得するのに対し、バッテリ電圧Vbatを通信にて取得する。インバータ入力電圧Vinvおよびバッテリ電圧Vbatは電気的には略同時に変化する値であるが、MG制御部52では、値が変化する場合、取得経路の違いにより過渡的に異なる値となる。
本実施形態では、この過渡的な取得値の差を利用し、値に差が現れるタイミングでのインバータ入力電圧Vinvとバッテリ電圧Vbatとの比較により、インバータ入力電圧Vinvまたはバッテリ電圧Vbatのどちらが異常かを特定している。すなわち、先行して変化すべき値であるインバータ入力電圧Vinvよりも、遅れて変化するはずのバッテリ電圧Vbatが先に変化した場合、インバータ入力電圧Vinvが異常であると特定する。換言すると、「正常時に先行して変化する第1検出値よりも、第2検出値が先に変化した場合、第1検出値が異常であると特定する」ということである。これにより、例えば乗除演算等、CPU負荷の高い演算を行うことなく異常特定が可能である。また、電流検出値等を利用する必要がなく、少ない情報での異常特定が可能である。
本実施形態では、インバータ入力電圧Vinvとバッテリ電圧Vbatとの比較により異常特定を行っているが、例えば微分値等、値の変化を検出できる演算値に基づいて異常特定を行うことも可能である。
また、通信タイミングのズレなどの影響により、トルク変化時の所定タイミングにて差を検出できないことも考えられる。そのため、本実施形態では、トルク変化ごとに1回の検出を行うとともに、判定回数が所定回数Nより大きい場合における異常判定確率Perrに基づいて異常特定を行っている。確率を用いて異常特定を行うことで、誤判定を避け、適切に異常箇所を特定することができる。
異常特定処理により、インバータ入力電圧Vinvまたはバッテリ電圧Vbatのどちらが異常であるかが特定される。インバータ入力電圧Vinvが異常であれば、バッテリ電圧Vbatを用いた代替制御に移行する。これにより、インバータ入力電圧センサ40に異常が生じた場合であっても、代替制御により主機モータ3の制御を継続可能であるので、車両90を退避走行させることができる。また、バッテリ電圧Vbatを主機モータ3の制御に用いていない場合、主機モータ3ではインバータ入力電圧Vinvを用いた通常制御を継続し、バッテリ電圧Vbatが異常である旨の情報を、車両通信網60を経由して、車両制御部51等に送信する。
以上説明したように、MG制御部52は、第1取得部521と、第2取得部522と、異常特定部523と、を備える。
第1取得部521は、車両90に搭載されるインバータ入力電圧センサ40の検出値であるインバータ入力電圧Vinvを取得する。
第2取得部522は、車両90に搭載され、インバータ入力電圧センサ40と出力が同様に変化するバッテリ電圧センサ45の検出値であるバッテリ電圧Vbatを、インバータ入力電圧Vinvとは速度が異なる取得形態で取得する。具体的には、第1取得部521は、インバータ入力電圧センサ40から配線41を経由して直接的にインバータ入力電圧Vinvを取得するのに対し、第2取得部522は、他の制御部であるバッテリ制御部53から車両通信網60を経由してバッテリ電圧Vbatを取得する。
異常特定部523は、インバータ入力電圧Vinvおよびバッテリ電圧Vbatが変化するタイミングであって、同時に取得されたインバータ入力電圧Vinvとバッテリ電圧Vbatとの比較により異常判定を行い、異常判定結果に基づいてインバータ入力電圧Vinvまたはバッテリ電圧Vbatのどちらが異常であるかを特定する。
本実施形態では、インバータ入力電圧センサ40とバッテリ電圧センサ45の出力が同様に変化し、かつ、通信速度の差によりバッテリ電圧Vbatの変化の検出が遅れることを利用し、出力差が生じるタイミングでの2つの値の比較により、適切に異常を特定することができる。これにより、異常特定に要する情報量を抑えることができる。また、乗除演算等の複雑な演算が不要であるので、異常特定による演算負荷の増大を抑制することができる。
第1のセンサであるインバータ入力電圧センサ40は、車両90の駆動源である主機モータ3に電力を供給するバッテリ10とドライブ回路21との間に設けられる。
第2のセンサであるバッテリ電圧センサ45は、バッテリ10の電圧を検出する。
第1取得部521は、配線41を経由してインバータ入力電圧Vinvを取得する。
第2取得部522は、車両通信網60を経由してバッテリ電圧Vbatを取得する。
これにより、インバータ入力電圧Vinvおよびバッテリ電圧Vbatの異常を適切に特定することができる。
異常特定部523は、主機モータ3のトルクが変化した所定タイミングにて取得されたインバータ入力電圧Vinvとバッテリ電圧Vbatとを比較する。
主機モータ3のトルクが変化すると、インバータ入力電圧Vinvおよびバッテリ電圧Vbatが同様に変化するので、インバータ入力電圧Vinvとバッテリ電圧Vbatとを適切に比較することができる。
異常特定部523は、主機モータ3のトルクが減少するトルクダウン時の所定タイミングにおいて、オフセット補正後のインバータ入力電圧である補正後インバータ入力電圧Vinv_aがバッテリ電圧Vbatより小さい場合、または、主機モータ3のトルクが増加するトルクアップ時の所定タイミングにおいて、補正後インバータ入力電圧Vinv_aがバッテリ電圧Vbatより大きい場合、インバータ入力電圧Vinvが異常であると判定する。これにより、インバータ入力電圧Vinvの異常を適切に特定することができる。
なお、「オフセット補正後の第1検出値」に係る「オフセット補正」とは、第1検出値を直接的にオフセット補正することに限らず、第2検出値をオフセット補正することも含む概念であるものとする。
異常特定部523は、1回の出力変化にて1回の異常判定を行うとともに、異常判定回数が所定回数Nより大きいときの異常判定確率Perrに基づき、インバータ入力電圧Vinvまたはバッテリ電圧Vbatのどちらが異常であるかを特定する。具体的には、異常判定回数におけるインバータ入力電圧Vinvが異常であると判定された回数である第1カウント値の割合を異常判定確率Perrとし、異常判定確率Perrが確率判定閾値Pthより大きい場合、インバータ入力電圧Vinvが異常であると特定する。
これにより、検出精度を高めることができる。
本実施形態では、MG制御部52が「異常検出装置」、インバータ入力電圧センサ40が「第1のセンサ」、バッテリ電圧センサ45が「第2のセンサ」に対応する。また、インバータ入力電圧Vinvが「第1検出値」、バッテリ電圧Vbatが「第2検出値」に対応する。また、本実施形態では、配線41が「配線」に対応する。
(第2実施形態)
本発明の第2実施形態を図6に示す。本実施形態のモータ制御システム1は、異常特定処理が異なる以外の点については、第1実施形態と同様であり、図6においては、本実施形態の異常特定処理に係る構成以外の記載を省略した。
図6に示すように、車両制御部51は、第1トルク演算部511、演算値取得部512、および、異常特定部513等を備える。また、MG制御部52は、第2トルク演算部527等を備える。
車両制御部51の第1トルク演算部511は、車両挙動センサ140から、配線141を経由して取得される車両情報に基づき、主機モータ3(図6では不図示)のトルクである第1トルク値trq1を演算する。車両挙動センサ140は、車両90の挙動に関する車両情報を取得するものであって、例えば、車両90の加速度を検出する加速度センサである。
MG制御部52の第2トルク演算部527は、電流センサ23により検出されるモータ電流Im等に基づき、主機モータ3のトルクである第2トルク値trq2を演算する。第2トルク値trq2は、車両通信網60を経由して、車両制御部51に送信される。
車両制御部51の演算値取得部512は、車両通信網60を経由してMG制御部52から送信される第2トルク値trq2を取得する。
異常特定部513は、トルクダウン時またはトルクアップ時の所定タイミングにて第1トルク値trq1と第2トルク値trq2とを比較することで、第1トルク値trq1または第2トルク値trq2のどちらが異常であるかを特定する。
第1トルク値trq1は、配線141を経由して取得された車両情報に基づいて演算される値である。一方、第2トルク値trq2は、車両通信網60を経由して、MG制御部52から取得される値である。そのため、主機モータ3のトルクが変化した場合、車両制御部51では、第1トルク値trq1が先行して変化し、遅れて第2トルク値trq2が変化する。
したがって、異常特定部513では、トルクダウン時またはトルクアップ時の所定のタイミングにおける第1トルク値trq1と第2トルク値trq2とを比較することで、第1トルク値trq1または第2トルク値trq2のどちらが異常かを特定することができる。なお、第1トルク値trq1および第2トルク値trq2は、トルクダウン時に減少し、トルクアップ時に上昇する値であるため、第1実施形態の電圧値とは変化方向が逆向きとなるものの、異常特定処理の詳細は、第1実施形態と同様であるので、説明を省略する。
これにより、トルク監視を適切に行うことができる。なお、第1トルク値trq1は、実トルク値に替えて、指令としてもよい。
車両制御部51は、演算値取得部512と、異常特定部513と、を備える。
異常特定部513は、車両90に搭載される車両挙動センサ140の検出値である車両情報に基づいて演算される第1トルク値trq1を取得する。
演算値取得部512は、車両90に搭載される電流センサ23の検出値であるモータ電流Imに基づいて演算される値であって、第1トルク値trq1と同様に変化する第2トルク値trq2を、第1トルク値trq1とは速度が異なる取得形態で取得する。
異常特定部513は、第1トルク値trq1および第2トルク値trq2が変化するタイミングであって、同時に取得される第1トルク値trq1と第2トルク値trq2との比較により異常判定を行い、異常判定結果に基づき、第1トルク値trq1または第2トルク値trq2のどちらが異常であるかを特定する。
本実施形態では、第1検出値は、車両90のトルクに関する車両情報であり、第2検出値は、車両90の駆動源である主機モータ3の電流値である。また、第1トルク値trq1および第2トルク値trq2は、車両90の駆動トルクに係る値である。
本実施形態では、第1トルク値trq1と第2トルク値trq2とが同様に変化し、かつ、通信速度の差により、MG制御部52から取得される第2トルク値trq2の変化の検出が遅れることを利用し、トルク値trq1、trq2の差が生じるタイミングでの2つの値の比較により、適切に異常を特定することができる。これにより、異常特定に要する情報量を抑えることができる。また、乗除演算等の複雑な演算が不要であるので、異常特定による演算負荷の増大を抑制することができる。また、トルク監視を適切に行うことができる。
また、上記実施形態と同様の効果を奏する。
本実施形態では、車両制御部51が「異常検出装置」、演算値取得部512が「第2取得部」、異常特定部513が「第1取得部」および「異常特定部」に対応する。また、車両挙動センサ140が「第1のセンサ」、電流センサ23が「第2のセンサ」に対応する。さらにまた、第1トルク値trq1が「第1演算値」、第2トルク値trq2が「第2演算値」に対応する。
(他の実施形態)
第1実施形態では、第1のセンサがインバータ入力電圧センサであり、第2のセンサがバッテリ電圧センサである。他の実施形態では、第1のセンサが高電位側配線または低電位側配線の電流を検出する電流センサであり、第2のセンサがバッテリ内の電流を検出する電流センサであってもよい。また、第1のセンサおよび第2のセンサは、出力が同様に変化する特性のものであれば、どのようなものであってもよい。なお、例えば所定のゲインを乗じたり、所定のオフセット補正を行ったりすることで出力が一致するようなものについても、「出力が同様に変化する」という概念に含まれるものとする。第1演算値および第2演算値についても同様である。
上記実施形態では、第1検出値を第1のセンサから配線を経由して直接的に取得し、第2検出値を他の制御部から通信により取得している。他の実施形態では、第1検出値および第2検出値は、速度が異なる取得形態であれば、どのような形態で取得されるように構成してもよい。例えば、第1検出値および第2検出値を共に通信にて取得するようにし、通信周期をずらして一方に通信遅れを発生させることで、速度を異ならせるようにしてもよい。
第1実施形態では、制御装置には、車両制御部、MG制御部、および、バッテリ制御部の3つのECUが含まれる。他の実施形態では、制御装置を構成するECUは、2つ以下、あるいは、4つ以上であってもよい。また、いずれの制御部を異常検出装置としてもよい。
上記実施形態では、回転電機である主機モータは、永久磁石式の3相交流の回転電機である。他の実施形態では、主機モータとしてどのような回転機を用いてもよい。
上記実施形態では、電源システム制御装置が適用される車両は、1つの主機モータの動力を用いて走行するEV車両である。他の実施形態では、主機モータは、複数であってもよい。他の実施形態では、回転電機制御装置が適用される車両は、EV車両に限らず、車両の駆動源として主機モータに加えエンジンを備えるハイブリッド車や、燃料電池車や、電車等であってもよい。
上記実施形態では、車両は前輪駆動車である。他の実施形態では、車両は、後輪駆動車であってもよいし、四輪駆動車であってもよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
3・・・主機モータ(回転電機)
40・・・インバータ入力センサ(第1のセンサ)
45・・・バッテリ電圧センサ(第2のセンサ)
52・・・MG制御部(異常検出装置)
523・・・異常特定部
521・・・第1取得部
522・・・第2取得部
90・・・車両

Claims (7)

  1. 車両(90)に搭載される第1のセンサ(40)の検出値である第1検出値を取得する第1取得部(521)と、
    前記車両に搭載され前記第1のセンサと出力が同様に変化する第2のセンサ(45)の検出値である第2検出値を、前記第1検出値とは速度が異なる取得形態で取得する第2取得部(522)と、
    前記第1検出値および前記第2検出値が変化するタイミングであって、同時に取得された前記第1検出値と前記第2検出値と比較により異常判定を行い、異常判定結果に基づいて前記第1検出値または前記第2検出値のどちらが異常であるかを特定する異常特定部(523)と、
    を備える異常検出装置。
  2. 前記第1のセンサは、前記車両の駆動源である回転電機(3)に電力を供給するバッテリ(10)とドライブ回路(21)との間に設けられるインバータ入力電圧センサであり、
    前記第2のセンサは、前記バッテリの電圧を検出するバッテリ電圧センサであり、
    前記第1取得部は、配線(41)を経由して前記第1検出値を取得し、
    前記第2取得部は、車両通信網(60)を経由して前記第2検出値を取得する請求項1に記載の異常検出装置。
  3. 前記異常特定部は、前記回転電機(3)のトルクが変化したときの所定タイミングに取得された前記第1検出値と前記第2検出値とを比較する請求項2に記載の異常検出装置。
  4. 前記異常特定部は、前記回転電機のトルクが減少するトルクダウン時の所定タイミングにおいて、オフセット補正後の前記第1検出値が前記第2検出値より小さい場合、または、前記回転電機のトルクが増加するトルクアップ時の所定タイミングにおいて、オフセット補正後の前記第1検出値が前記第2検出値より大きい場合、前記第1検出値の異常であると判定する請求項3に記載の異常検出装置。
  5. 車両(90)に搭載される第1のセンサ(140)の検出値である第1検出値に基づいて演算される第1演算値を取得する第1取得部(513)と、
    前記車両に搭載される第2のセンサ(23)の検出値である第2検出値に基づいて演算される値であって、前記第1演算値と同様に変化する第2演算値を、前記第1演算値とは速度が異なる取得形態で取得する第2取得部(512)と、
    前記第1演算値および前記第2演算値が変化するタイミングであって、同時に取得される前記第1演算値と前記第2演算値との比較により異常判定を行い、異常判定結果に基づき、前記第1演算値または前記第2演算値のどちらが異常であるかを特定する異常特定部(513)と、
    を備える異常検出装置。
  6. 前記第1検出値は、前記車両の挙動に関する車両情報であり、
    前記第2検出値は、前記車両の駆動源である回転電機の電流値であり、
    前記第1演算値および前記第2演算値は、前記車両の駆動トルクに係る値である請求項5に記載の異常検出装置。
  7. 前記異常特定部は、1回の出力変化にて1回の異常判定を行うとともに、異常判定回数が所定回数より大きいときの異常判定確率に基づき、前記第1検出値または前記第2検出値のどちらが異常であるかを特定する請求項1〜6のいずれか一項に記載の異常検出装置。
JP2016242069A 2016-12-14 2016-12-14 異常検出装置 Active JP6642404B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016242069A JP6642404B2 (ja) 2016-12-14 2016-12-14 異常検出装置
PCT/JP2017/044384 WO2018110502A1 (ja) 2016-12-14 2017-12-11 異常検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016242069A JP6642404B2 (ja) 2016-12-14 2016-12-14 異常検出装置

Publications (2)

Publication Number Publication Date
JP2018098932A JP2018098932A (ja) 2018-06-21
JP6642404B2 true JP6642404B2 (ja) 2020-02-05

Family

ID=62559553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242069A Active JP6642404B2 (ja) 2016-12-14 2016-12-14 異常検出装置

Country Status (2)

Country Link
JP (1) JP6642404B2 (ja)
WO (1) WO2018110502A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259392B2 (ja) * 2019-02-21 2023-04-18 株式会社デンソー 発電制御装置
JP7452026B2 (ja) 2020-01-23 2024-03-19 株式会社デンソー モータ制御システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109743B2 (ja) * 2008-03-21 2012-12-26 トヨタ自動車株式会社 動力システムおよびその制御方法並びに車両
JP2012249440A (ja) * 2011-05-27 2012-12-13 Toyota Motor Corp 電源システム状態判定装置
JP5736974B2 (ja) * 2011-06-01 2015-06-17 トヨタ自動車株式会社 電池の故障判定装置
JP6186248B2 (ja) * 2013-11-05 2017-08-23 日立オートモティブシステムズ株式会社 インバータの異常判定装置
JP2016116262A (ja) * 2014-12-11 2016-06-23 トヨタ自動車株式会社 駆動装置
JP2016134948A (ja) * 2015-01-16 2016-07-25 トヨタ自動車株式会社 電源システム

Also Published As

Publication number Publication date
WO2018110502A1 (ja) 2018-06-21
JP2018098932A (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6497298B2 (ja) 異常診断装置
JP6119778B2 (ja) インバータの制御装置
JP5681256B2 (ja) 自動車の電圧放電装置及びその方法
US10053086B2 (en) Hybrid vehicle
JP6237699B2 (ja) 異常検出装置
US10348238B2 (en) Drive system
US9868434B2 (en) Vehicle and control method for vehicle
US9455655B2 (en) Motor control system
JP2010011688A (ja) 回転電機駆動制御装置
JP6642404B2 (ja) 異常検出装置
JP5556635B2 (ja) 車両および電流検出装置の異常判定方法
US10826425B2 (en) Drive device and control method for vehicle
JP5955209B2 (ja) 電力変換システムの故障検知装置
CN104627162A (zh) 驱动控制装置
JP2015192582A (ja) 電流センサの故障検出装置
JP6950755B2 (ja) インバータ制御方法、及びインバータ制御装置
JP2017022907A (ja) 電流センサ異常診断装置
JP2010220384A (ja) 回転電機制御装置
JP2015107765A (ja) 車両の故障判定装置
CN111464059B (zh) 电力变换装置
US11474156B2 (en) Electrically-driven vehicle and control method for electrically-driven vehicle
JP6381723B1 (ja) 回転電機の制御装置および制御方法
JP7345972B2 (ja) モータ制御装置
JP6451533B2 (ja) 電流センサ異常診断装置
JP7302194B2 (ja) 異常判定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R151 Written notification of patent or utility model registration

Ref document number: 6642404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250