JP6437637B2 - 測定チャネルを貫流する流動媒体の少なくとも1つのパラメータを決定するためのセンサ構成 - Google Patents

測定チャネルを貫流する流動媒体の少なくとも1つのパラメータを決定するためのセンサ構成 Download PDF

Info

Publication number
JP6437637B2
JP6437637B2 JP2017514604A JP2017514604A JP6437637B2 JP 6437637 B2 JP6437637 B2 JP 6437637B2 JP 2017514604 A JP2017514604 A JP 2017514604A JP 2017514604 A JP2017514604 A JP 2017514604A JP 6437637 B2 JP6437637 B2 JP 6437637B2
Authority
JP
Japan
Prior art keywords
sensor
channel
main channel
main
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017514604A
Other languages
English (en)
Other versions
JP2017528718A (ja
Inventor
マイス、トルステン
ブリーゼ、アヒム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2017528718A publication Critical patent/JP2017528718A/ja
Application granted granted Critical
Publication of JP6437637B2 publication Critical patent/JP6437637B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

従来技術では、流動媒体、即ち液体及び/又は気体の流体特性を決定するための数多くの方法及び装置が知られている。ここで、流体特性とは、基本的に任意の物理的及び/又は化学的に測定可能な特性値であって、流動媒体の流れを評価し又は数値化する上記特性のことである。この特性値は特に、流速及び/又は質量流量及び/又は体積流量でありうる。
本発明は、以下では特に、例えばコンラート・ライフ(Konrad Reif)編による「自動車内のセンサ」(Sensoren im Kraftfahrzeug)(2010年、第1版、146〜148ページ)で説明されているような、所謂ホットフィルムエアマスメータ(Heissfilmluftmassenmesser)に関して記載される。このようなホットフィルムエアマスメータは通常、流れている流動媒体が流過可能な測定表面又はセンサ領域としてセンサ膜を有するセンサチップ、特にシリコンセンサチップに基づいている。センサチップは通常、例えばセンサチップの測定表面に配置可能な少なくとも2つの温度センサ及び少なくとも1つの加熱要素を含む。流動媒体の流れに影響を受ける温度プロフィールであって、温度センサにより検知可能な上記温度プロフィールの非対称性から、流動媒体の質量流量及び/又は体積流量を推測することが可能である。ホットフィルムエアマスメータは、通常、固定的に又は交換可能に流体管路に導入されうる差込みフィーラとして構成される。上記流体管路は、例えば、内燃機関の吸気管路でありうる。
ここでは、媒体の一部の流れが、ホットフィルムエアマスメータの内部に設けられた少なくとも1つの主チャネルを通って流れる。主チャネルの入口と出口との間には、バイパスチャネルが形成される。特にバイパスチャネルは、主チャネルの入口を通って進入した媒体の一部の流れの方向を変向させるための湾曲した区間を有するように形成され、この湾曲した区間は、さらに進むと、センサチップが配置された区間へと移行する。後者の区間は、本来の測定チャネルであり、この中にセンサチップが配置されている。その際にバイパスチャネルの内部には、流れを案内し、媒体の一部の流れが測定チャネルのチャネル壁から剥離することに抗して作用する手段が設けられる。さらに、主流れ方向の方を向いた開口の領域にある主チャネルの入口領域には、傾斜が付けられた又は湾曲した面が設けられ、この面は、入口領域に流れ込んだ媒体がセンサチップへと導く主チャネルの構成要素によって方向を逸らされるように、構成されている。このことによって、媒体に含まれる液体粒子又は固体粒子は、その慣性によりセンサチップに到達できず、センサチップを汚しえない。
このようなホットフィルムエアマスメータは、現場では、複数の要件及び境界条件を満たす必要がある。適切な流体動力学的な構成によりホットフィルムエアマスメータ全体の圧力低下を低減するという目標と並んで、主要な課題のうちの1つは、信号品質と、油滴及び水滴、並びに、煤、塵粒、及びそれ以外の固体粒子による汚染に対するこのような装置の堅牢性と、をさらに改善することである。上記の信号品質は、例えば、センサチップへと案内する測定チャネルを通る媒体の質量流量、並びに、場合によっては、信号のドリフト(Signaldrift)の低減、及び、信号対雑音比の改善に関連している。その際に、信号のドリフトは、実際に発生する質量流量と、製造時に校正の枠組みにおいて定められた、出力すべき信号と、の間の特性曲線関係の変化という意味における、例えば媒体の質量流量のずれに関する。信号対雑音比を定める際には、時系列において早期に出力された信号が観察されるが、これに対して、特性曲線又は信号のドリフトは、平均値の変化に関連している。
上記の形態による一般的なホットフィルムエアマスメータでは通常、センサチップが取り付けられ又は導入されているセンサ支持体が、測定チャネルへと突入している。例えば、センサチップは、センサ支持体に貼り付けられ又は貼設されうる。センサ支持体は、例えば、電子部品、回路基板の形態による制御及び評価回路も貼設可能な金属製の底板と共に、1つのユニットを形成することが可能である。例えば、センサ支持体は、電子モジュールの射出成形されたプラスチック部品として構成されうる。センサチップ、並びに、制御及び評価回路は、例えばボンディング結合によって互いに結合されうる。このようにして作成された電子モジュールは、例えば、センサハウジングに張り付けられ、差込みフィーラ全体がカバーで閉鎖される。
上記センサ構成によりもたらされる改善策にも関わらず、依然として、信号検出精度に関しては改善の余地がある。
ホットフィルムエアマスメータが可能な限り干渉の少ないエアマス信号を伝達できるためには、差込みフィーラへと流れ、さらに当該差込みフィーラ内の測定チャネルを通って、特にセンサチップの測定表面を流過する可能な限り均一な流入量が重要である。センサ支持体の端面と、測定チャネルの壁と、の間には間隙が存在し、この間隙の幅は、製造技術的に変動する。センサ支持体の領域において、測定チャネルを流れる流動媒体は、3つの部分質量流に分かれる。第1の部分質量流は、センサ支持体及びセンサチップの上方を流れ、第2の部分質量流は、センサ支持体の下方を流れ、第3の部分質量流は、上記間隙を通って流れる。センサ支持体の周囲を流れた後に、流速及び圧力が変動する不安定な後流が形成される。このことによって、上流側でも、特にセンサチップの領域においても流量の変動が生じ、これにより、センサ支持体の寸法及び流速にとって典型的な変動形態により、測定信号が変動する。
従って、測定チャネルを貫流する流動媒体の少なくとも1つのパラメータを決定するためのセンサ構成であって、公知の方法及びストラテジの欠点が少なくとも大幅に回避され、特に、チャネル構造内での質量流量の変動が低減され、信号雑音が低減され、流れの感度(Anstroemempfindlichkeit)が下げられ、調整可能性が改善された上記センサ構成が提案される。
測定チャネルを貫流する流動媒体の少なくとも1つのパラメータ、特に、内燃機関の吸気質量流量を決定するためのセンサ構成は、センサハウジング、即ち特に、流体管路に導入され又は導入可能でありチャネル構造がその内部に形成された差込みフィーラと、流動媒体のパラメータを決定するための、チャネル構造内に配置された少なくとも1つのセンサチップと、を有する。センサハウジングは、流動媒体の主流れ方向の方を向いた、チャネル構造への入口と、チャネル構造からの出口と、を有する。チャネル構造は、主チャネルと、測定チャネルと、を含む。測定チャネルは、主チャネルから分岐している。センサチップは、測定チャネル内に配置されている。主チャネルと測定チャネルとは共に、チャネル構造から出口へと連通している。
出口は、センサハウジングの端面に配置されうる。主流れ方向における、出口の中心点と入口との間隔は、11.0〜15.0mm、好適に12.0mm〜14.0mm、例えば13.0mmでありうる。出口の中心線は、下流側で主流れ方向に対して20°〜60°の角度で傾けられうる。出口は、幅が3.0mm〜8.0mm、例えば5.0mmでありうる。主チャネルは、測定チャネルが分岐する少なくとも1つの第1の主チャネル区間と、第2の主チャネル区間と、を有しうる。第2の主チャネル区間は、チャネル構造の、測定チャネルと主チャネルとが合流する統合区間に隣接しうる。第2の主チャネル区間は、第1の主チャネル区間に対して10°〜160°の角度に、好適には135°に配置されうる。第2の主チャネル区間の幅は、測定チャネルの幅よりも小さくありうる。主チャネルは、第1の主チャネル区間と第2の主チャネル区間とを接続する少なくとも1つの湾曲した主チャネル区間を有しうる。主流れ方向における、湾曲した主チャネル区間と入口との最大間隔は、8.0mm〜20.0mmでありうる。第2の主チャネル区間の幅は、第1の主チャネル区間の幅よりも小さくありうる。主チャネルは、湾曲した主チャネル区間で細くなりうる。湾曲した区間は、少なくとも2つの曲率半径を有しうる。センサ構成はさらに、センサハウジングを閉鎖するためのカバーを含みうる。チャネル構造は、上記カバーに形成されうる。
主流れ方向とは、本発明の枠組みにおいて、センサ又はセンサ構成がある場所での流動媒体の局所的な流れ方向として理解され、その際に例えば、乱流のような不規則性は考慮しないでよい。特に、主流れ方向とは、流れている流動媒体の、局所的な平均的な搬送方向として理解されうる。従って、主流れ方向は、一方では、センサ構成自体がある場所での流れ方向に関し、又は、センサハウジングの内部のチャネル内での、例えば、センサ支持体又はセンサチップがある場所での流れ方向にも関し、その際に、上記の2つの主流れ方向は異なっていてもよい。従って、本発明の枠組みにおいて、どの場所での主流れ方向に関するのかが常に示される。詳細に明記されない限り、主流れ方向は、センサ構成がある場所に関する。
下流側の構成とは、本発明の枠組みにおいて、流動媒体が主流れ方向に流れて、基準点より時間的に後に到達する箇所での或る構成要素の構成として理解される。
同様に、本発明の枠組みにおいて、構成要素の上流側の構成とは、主流れ方向に流れた流動媒体が、基準点より時間的に早く到達する箇所での或る構成要素の構成として理解される。
本発明の枠組みにおいて、センサ支持体は、全体が又は部分的に回路支持体として、特に回路基板として構成され、又は、回路支持体の一部、特に回路基板の一部として構成されうる。例えば、回路支持体、特に回路基板は、延長部を有し、この延長部は、センサ支持体を形成し、チャネルに、例えばホットフィルムエアマスメータの測定チャネルに突入している。回路支持体、特に回路基板の残りの部分は、例えば、センサ構成又は当該センサ構成の差込みフィーラのハウジング内の、例えば電子回路室内に収容されうる。
その際に回路基板とは、本発明の枠組みにおいて一般的に、例えば導電経路、接続端子等の電子的構造の支持体としても利用可能であり好適に1つ以上のこのような電子的構造を有するほぼプレート形状の要素として理解される。その際に基本的には、少なくともプレート形状からの僅かなずれも考慮され、概念的には一緒に捉えられる。回路基板は、例えば、プラスチック材料、及び/又は、セラミック材料で製造され、例えば、エポキシ樹脂、特に繊維強化エポキシ樹脂で製造されうる。特に、回路基板は例えば、導電経路が設けられた、導電経路がプリントされた回路基板(プリント基板、PCB:Printed Circuit Board)として構成されうる。
このようにして、センサ構成の電子モジュールが極めて簡素化され、例えば、底板又は別体のセンサ支持体を用いなくてもよい。底板及びセンサ支持体は、1つの回路基板によって置換可能であり、この1つの回路基板に、例えばセンサ構成の制御及び評価回路も、全体が又は部分的に配置されうる。センサ構成の上記制御及び評価回路は、少なくとも1つのセンサチップを制御するため、及び/又は、センサチップが生成した信号を評価するために用いられる。このようにして、上記の構成要素を1つに纏めることにより、センサ構成の製造コストが著しく削減され、電子モジュールのために必要な設置空間が著しく縮小される。
センサ構成は、特に、少なくとも1つのハウジングを有し、このハウジング内にチャネルが形成される。例えば、チャネルは、主チャネルと、バイパスチャネル又は測定チャネルと、を含み、センサ支持体及びセンサチップは、例えば、パイパスチャネル又は測定チャネル内に配置されうる。さらに、ハウジングは、バイパスチャネルから分離された電子回路室を有し、その際に、電子モジュール又は回路基板は、ほぼ電子回路室内に収容されうる。その場合には、センサ支持体は、上記チャネルへと突入している、回路基板の延長部として構成されうる。この構成は、従来技術で公知のコストが掛かる電子モジュールに対して、技術的に比較的簡単に実現される。代替的に、センサ支持体は、電子モジュールの、底板と一体に成形されたプラスチック部品として形成可能であると理解されたい。
特に、センサ支持体として回路基板が利用される場合、さらに、それ以外の場合、及び/又は、他の媒体がセンサ支持体として利用される際にも、センサ支持体は、少なくとも部分的に、積層センサ支持体として形成されうる。このように、センサ支持体は、所謂積層化(Multilayer)技術により形成され、互いに結合された2つ以上の支持層を有する。例えば、この支持層自体は、金属、プラスチック、又はセラミック材料、又は複合材料で製造され、結合技術によって、特に接着によって、互いに結合される。」
センサ構成の複数のセンサ層で積層化技術が利用されるこのような場合には、前縁が、支持層の様々な寸法によって、流動媒体の主流れ方向の方に向かって少なくとも部分的に段形状に実現されうる。このようにして、プロフィール(Profil)が、少なくとも段形状に近似的に実現される。例えば、このようにして、矩形状に形成された断面、又は、段形状によって近付けられて、少なくとも近似的に円形に、丸みを付けて、又は、楔形状の形成された断面が、センサ支持体の伸長面に対して垂直な切断面に形成される。センサチップは、当該センサチップが局所的な主流れ方向に対して垂直に方向付けられるように、センサ支持体に載置され又はセンサ支持体に配置されうる。例えば、センサチップは矩形状に構成され、その際に、この矩形の一辺が、局所的な主流れ方向に対して直交して、又は、局所的な主流れ方向に対してほぼ直交して、例えば、直角から10°以下の角度の分だけずれた方向付けにより、配置される。
センサチップは、少なくとも1つの電気接続線を介して電気的に接触させられる。例えば、センサ支持体は、特に、センサ支持体を形成する回路基板又は当該回路基板の延長部は、例えばポンディング法によりセンサチップ上の対応する接点と結合された1つ以上の導体経路及び/又は接触経路を有する。この場合には、電気接続線は、少なくとも1つの被覆部によって防護され、流動媒体から隔離されうる。この被覆部は、特に、所謂グロブトップ(Glob−Top)として構成され、例えば、電気接続線、即ち例えばボンディングワイヤを覆う樹脂滴及び/又は粒状接着剤(Klebstofftropfen)として構成されうる。このようにして、特に流体による影響も、上記電気接続線によって回避される。なぜならば、グロブトップは、平坦な表面を有するからである。
さらに、センサチップは、少なくとも1つのセンサ領域を有しうる。このセンサ領域は、例えば、例えば、多孔質セラミック材料から成るセンサ表面であってもよく、及び/又は、特にセンサ膜であってもよい。測定表面又はセンサ領域としてのセンサ膜は、流れている流動媒体により流過可能である。センサチップは、例えば、センサチップの測定表面に例えば配置された少なくとも2つの温度センサ及び少なくとも1つの加熱要素を含み、その際に、1の温度センサは、加熱要素の上流側に配置され、他の温度センサは、加熱要素の下流側に位置付けられる。これら温度センサにより検知された、流動媒体の流れに影響を受ける温度プロフィールの非対称性から、流動媒体の質量流量及び/又は体積流量が推測されうる。
本発明の基本的な考えは、従来の主チャネル出口を無くし、チャネル構造の内部で主チャネルと測定チャネルとを統合して、上流の方向に共有出口をずらすことである。側面に設けられた出口を無くして、共有出口を差し込みフィーラの端面に配置することによって、入口と出口とのほぼ対称的な配置が生じ、当該配置により、流れが変化した際、特に差込みフィーラでの迎え角が変化した際の感度がより低くなる。さらに、信号雑音が低減される。なぜならば、主チャネル及びバイパスチャネルでの、状況によっては逆位相で変動する2つの圧力がもはや作用せず、共有出口で1つの圧力レベルしか作用しないからである。図6で示すよどみ点の移動が減らされ、2つのチャネル部分を通っていく質量流の割合の時間的変化の規模が縮小される。ほぼ定常的な流体境界条件においても、共有出口が設けられる本発明に係る設計によって既に、流れの感度の低減及び信号雑音の低減がもたらされる。上流側へと共有出口をずらすことにより、入口の位置を維持したままで、入口と出口との間の間隔の縮小がもたらされる。これに関連した、入口及び出口を介して進み又は入口及び出口に存在する音波の区間を縮小することによって、即ち、これに伴う、有効として登録される圧力差の低減によって、チャネル構造内での質量流量の変動の低減がもたらされ、この結果さらに、値に応じて下がった、質量流量の低い示度(Minderanzeige)が実現される。側面に設けられた出口を無くして共有出口を形成することによって、主チャネル出口と測定チャネル出口との間の圧力差が無くなり、その結果、調整可能性が改善される。
本発明の更なる別の任意のユニット及び特徴は、図面に概略的に示される好適な実施例についての以下の明細書の記載から明らかとなろう。
センサ構成の斜視図を示す。 センサ構成の電子モジュールの拡大図を示す。 測定チャネル及びセンサ支持体を含む測定チャネルカバーの上面図を示す。 センサ構成の背面図を示す。 圧力波の可能な推移を示す。 流速の可能な分散を示す。 本発明に係るセンサ構成の斜視図を示す。 本発明に係るセンサ構成のチャネル構造の上面図を示す。
図1は、流動媒体のパラメータを決定するためのセンサ構成10の斜視図を示している。センサ構成10は、ホットフィルムエアマスメータとして構成され、差込みフィーラとして構成されたセンサハウジング12を備える。センサハウジング12は、例えば流体管路、特に内燃機関の吸気管路に差し込むことが可能である。センサハウジング12は、ハウジング本体14と、測定チャネルカバー16と、電子回路室18と、電子回路室18を閉鎖するための電子回路室カバー20と、を有する。測定チャネルカバー16には、チャネル構造22が形成されている。チャネル構造22は、図1のセンサハウジング12に関して下側26で主チャネル出口25(図6)に連通する主チャネル24と、主チャネル24から分岐したバイパスチャネル又は測定チャネル28と、を有する。バイパスチャネル又は測定チャネル28は、センサハウジング12の端面30に配置されたバイパスチャネル出口又は測定チャネル出口32に繋がっている。チャネル構造22によって、実装された状態においてセンサハウジング12がある場所での流動媒体の主流れ方向36の方を向いた入口開口部34を介して、流動媒体の典型的流量が流れられる。
図2は、センサ構成10の電子モジュール38の拡大図を示す。電子モジュール38が実装された状態において、片翼の形状によるセンサ支持体40が、測定チャネル28に突入している。このセンサ支持体40には、センサチップ42が、当該センサチップ42のセンサ領域として形成されたマイクロメカニカルなセンサ膜44を流動媒体が流過しうるように埋め込まれている。センサ支持体4は、センサチップ42と共に電子モジュール38の構成要素である。電子モジュール38はさらに、折り曲げられた底板46と、その上に取り付けられた、即ち例えば貼り付けられた回路基板48であって、制御及び評価回路50を備えた上記回路基板48と、を有する。センサチップ42は、ここではワイヤボンディングとして構成された電気接続線52を介して、制御及び評価回路50と電気的に接続されている。このようにして作成された電気モジュール38は、センサハウジング12のハウジング本体14の内部の電子回路室18に導入され、例えば張り付けられる。その際に、センサ支持体40は、チャネル構造22へと突入している。続いて、電子回路室18は、電子回路室カバー20により閉鎖される。
図3は、測定チャネルカバー16に設けられたチャネル構造22の上面図を示している。測定チャネルカバー16には、遠心力変向部54が配置されている。遠心力変向部54に対向して、気流剥離端部(Abrisskante)が設けられた対応輪郭部55が配置されている。測定チャネルカバー16はさらに、測定チャネル28に測定チャネル傾斜部56が形成されるように構成されている。さらに、図3では、センサ支持体40の構成が見える。センサ支持体40は、実装された状態において、測定チャネル28へと突入している。図3を見ると、センサ支持体40の、その裏側又は下側58が見える。この裏側又は下側58は、センサ支持体40の、センサ膜44に対向する側である。センサ支持体40はさらに、測定チャネル28内での流動媒体の主流れ方向60の方を向いた前縁62であって、丸く面取りをして形成されうる上記前縁62と、当該前縁62に下流側で対向する後縁64と、を有する。測定チャネル傾斜部56は、遠心力変向部54と、センサ支持体40の後縁64と、の間の領域に延在している。測定チャネル28は、少なくともセンサチップ42の領域においては、ハウジング本体14と、測定チャネルカバー16に形成された測定チャネル傾斜部56と、測定チャネルカバー16に形成された、電子回路室寄りの壁部分66と、測定チャネルカバー16に形成された、電子回路室とは反対の壁部分68と、によって画定される。さらに、測定チャネルカバー16は、センサハウジング12又はハウジング本体14の詳細には示されないピンのための位置決め輪郭部としての凹部70と、センサハウジング12と測定チャネルカバー16とをくっつけ合わせるためのサネハギシステムの壁又はサネ72と、を有する。特に、センサ支持体40の領域においては、確実で公差が小さい取り付けプロセス及び接着プロセスが保証される必要がある。但し、測定チャネルカバー16の取り付け及び接着の際の幾何学的公差によって、特に主チャネル出口25の領域においても、静的及び動的な質量流量信号に関するずれが生じる。なぜならば、そこでは、測定チャネル28に設けられた上記チャネル傾斜部56が、センサハウジング12の窓輪郭部と対になっているからである。
図4は、センサ構成10の背面図を示している。図4には、流体を案内するチャネル構造22の入口開口部34と、主チャネル出口25と、測定チャネル出口32と、での圧力比が示されている。入口開口部34では、周囲の静圧と比べてより高い圧力74が支配しており、測定チャネル出口32では、周囲の静圧と比べてより低い圧力76が支配しており、主チャネル出口25では、周囲の静圧の大きさによる圧力78が支配している。この圧力比によって、センサハウジング12内のチャネル構造22を通って流体が貫流する。測定チャネル出口32での圧力76と、主チャネル出口25での圧力78とは、全く異なる大きさで、理想的な貫流とは異なる比率でも出現可能であり、かつ、部分的に逆位相で、さらに1の出口での逆方向の圧力上昇が生じ同時に他の出口では圧力低下が生じるという可能性があるため、1つの入口と相互作用する2つの出口のトポロジによって、センサチップでの質量流量の変動が引き起こされる。このようなトポロジに条件付けられた質量流量の変動を、本発明に係る実現によるセンサ構成10によって低減すべるべきである。
図5は、このような流体条件における圧力波の可能な推移を示している。反射された、入射した圧力波80と、反射された圧力波82と、の結果として、重なり合った定常の圧力波84と、節点86と、特徴的な4分の1波長λ/4を有する腹88と、が生じる。接点86では、先に図4に関して説明した入口開口部34と、主チャネル出口25と、測定チャネル出口32と、での圧力レベルと関連して、例えばセンサハウジング12での、空気力学的なベース流体の圧力レベルが支配している。但し、接点86から遠ざかった際には、図5に係る追加的な圧力が印加される。この圧力は、特定の周波数により正の値の圧力から負の値の圧力へと変動し、これに基づいて、例えば空気等の特定の媒体について、その対応する音速により、対応する波長λが生成する。
接点86を起点として、波の伝播方向に沿って4分の1波長(=λ/4)進むと、腹88に到達する。即ち、固定の場所を越えて進む波によって、特定の振幅を有する圧力撹乱(Druckstoerung)が引き起こされる。反射されて、定在波84が形成された場合には振幅が足し合わされて、損失を無視しても、入射波の振幅が二倍になる。波長λの半分の間隔を置いて、腹88から腹88へと逆方向のピーク圧力に基づいて、4倍の振幅が発生しうる。
高周波での可聴音の(akustisch)圧力変動が、センサ構成10が置かれるエンジン領域において、例えば、特定のターボチャージャ駆動状態に基づいて発生する可能性がある。この特定のターボチャージャの駆動状態には、羽根での旋回失速、及び、ターボチャージャ段での圧送が挙げられる。音波の4分の1が、入口開口部34と、主チャネル出口25と、測定チャネル出口32と、に存在する場合が、図4では、入口開口部34及び主シャネル出口25についての記入された間隔λ/4によって、例示されている。入口開口部34及び測定チャネル出口25にも、対応することが当てはまる。この場合、図4に係る、右側の事前に支配している空気力学的な圧力比に、図4に係る追加的な可聴音の圧力振動が重なる。上記のターボチャージャ駆動状態の場合には完全に、3kHzの周波数と、これにより、100mm〜110mmの波長と、が発生しうる。対応するλ/4波長は、入口開口部34と主チャネル出口25との間又は入口開口部34と測定チャネル出口32との間の上記の距離と良好に一致する。センサ構成10の寸法がより小さい際にも、圧力波の対応する区間は、区間単位で生じる圧力差を介して、質量流量にとって重要なままである。
このような圧力振動は、センサ支持体40がある場所での測定チャネル28内で、質量流の特記すべき強い脈動が生じた場合には、エアマス信号に対して影響を及ぼす。その場合に、センサチップ42の境界層では、熱伝達に大きな影響を与えうる速度勾配の変動が生じる。上記文献では、この現象は「第2のストークス(Stokes)の問題」という概念において記載されている。熱的測定素子での非線形的な熱伝達に基づいて、このような脈動は、平均値に忠実には表されない。その代わりに、センサ構成10では示度が低くなる。
図3では、従来のトポロジによる流体案内の他に、本発明に係る実現において考慮されなければならない構造的な境界条件も見て取れる。センサハウジング12へと入口開口部34を通って進入する質量流の大部分は、測定チャネル出口32から、主チャネル出口25を介して再びセンサハウジング12から出る。質量流の小さな部分が、遠心力変向部54の領域、及び、気流剥離端部が設けられた対応輪郭部55の領域を介して測定チャネル28の内部に達し、さらに、マイクロメカニカルなセンサ膜44を有するセンサチップ42を備えたセンサ支持体40に到達する。最終的には、測定チャネルの質量流は、測定チャネル出口32を介してセンサハウジング12から出る。構造的な境界条件として、特に、センサハウジング12内のピンのための位置決め輪郭部としての凹部70と、測定チャネルカバー16とセンサハウジング12とをくっつけ合わせるためのサネハギシステムの壁又はサネ72と、が挙げられる。
図6は、チャネル構造22内での流速の可能な分散を示している。上記の流体トポロジによって、定常的な流動力学的境界条件においても、測定チャネル28と主チャネル24との分岐92において非定常の流体90が引き起こされる。図6には、80kg/hの総質量流についての、チャネル構造22の切断面における速度の分散が示されている。ここでは、入口開口部34での総質量流が、主チャネル出口25での質量流と、測定チャネル28内の質量流と、に分かれることが良く分かる。上記分岐について特徴的な点は、遠心力変向部54に対向する対応輪郭部55の壁のよどみ点94である。分岐する質量流の割合は、定常的な流体力学的境界条件自体においても一定ではなく、流体力学的な境界条件に応じて、即ち、総質量流量、入口開口部と主チャネル出口25と測定チャネル出口32とでの圧力、乱流の程度、流体管路内でのセンサハウジング12の迎え角等に応じて変化する。なぜならば、センサハウジング12の流過も、センサハウジング内のチャネル構造22の貫流も、ほぼ常に、非定常な特性を有するからである。追加的な可聴音の圧力変動が重ならない場合でも、主流チャネル用とバイパスチャネル用に出口が分けられた分岐トポロジによって、マイクロメカニカルなセンサ膜44での質量流量の変動が引き起こされる。これに対応する周波数に応じて、上記の変動は、特性曲線にとって重要となる可能性があり、又は、より大きな信号雑音を引き起こす可能性がある。
図7は、本発明に係るセンサ構成10の斜視図を示している。ここでは特に、上記の従来のセンサ構成との違いについて記載する。チャネル構造22は、測定チャネル28が分岐92で主チャネル24から分岐するよう構成される。但し、主シャネル24と測定チャネル28とは共に、端面30に配置された出口96に連通している。これにより、主シャネル出口25は設けられない。
図8は、本発明に係るセンサ構造10のチャネル構造22の上面図を示している。主流れ方向36における、出口96の中点と入口開口部34との間隔98は、11.0mm〜15.0mm、好適に12.0mm〜14.0mm、例えば13.0mmである。出口96の中心線100は、下流側で主流れ方向36に対して、30°〜50°の角度αに、例えば40°に傾けられている。出口96は、幅102が3.0mm〜8.0mm、例えば5.0mmである。チャネル構造22の特別な構成によって、主チャネル24は、測定チャネル28が分岐する少なくとも1つの第1の主チャネル区間104と、第2の主チャネル区間106と、を有する。その際に、第2の主チャネル区間106は、チャネル構造22の、測定チャネル28と主チャネル24とが合流する統合区間108に隣接している。第2の主チャネル区間106は、第1の主チャネル区間104に対して10°〜135°の角度βで、例えば45.5°で配置されている。第2の主チャネル区間106の幅110は、測定チャネル28の幅112よりも狭い。従って、第2の主チャネル区間106は、幅110が、1.0mm〜5.0mm、例えば2.2mmであるが、測定チャネル28の幅112は、当該幅112がポイント114又はより広いポイント116で決定されるかに従って、2.0mm又は3.0mm〜6.0mm、例えば、4.0mmである。
主チャネル24はさらに、第1の主チャネル区間104と第2の主チャネル区間106とを接続する少なくとも1つの湾曲した主チャネル区間118を有する。主流れ方向36おける、湾曲した主チャネル区間118と入口開口部34との間の最大間隔120は、10.0mm〜20.0mm、例えば15.22mmである。さらに、第2の主チャネル区間106の幅110は、第1の主チャネル区間104の幅122よりも狭い。従って、第1の主チャネル区間104の幅122は、2.0mm〜6.0mm、例えば4.2mmである。従って、主チャネル24は、湾曲した主チャネル区間118において細くなっている。特に、湾曲した主チャネル区間118は、2つの湾曲半径124、126を有する。主流れ方向36に対して第2の湾曲半径126の上流側に存在する第1の湾曲半径124は、3.0mm〜10.0mm、例えば5.0mmであるが、第2の湾曲半径126は、1.5mm〜10.0mm、例えば3.8mmである。
その際に、チャネル構造22は、以下のような幾何学形状的寸法を有する。遠心力変向部54自体は、丸く面取りして形成可能であり、この丸みについての半径128は、0.1mm〜0.5mm、例えば0.3mmの半径である。遠心力変向部54に隣接し入口開口部34の方向に延びている、主チャネル54のチャネル壁130は、遠心力変向部54に対向するチャネル壁に対して15°〜45°の角度γで、例えば30°に傾けられて形成されうる。遠心力変向部54に隣接する測定チャネル28のチャネル壁は、3.0mm〜8.0mmの半径132、例えば6.0mmの半径132により曲げられて形成されうる。対応輪郭部55も同様に、2.0mm〜6.0mmの半径134、例えば3.0mmの半径134により曲げられて形成されうる。測定チャネル28内の主流れ方向60に対して下流側では、測定チャネル28は、4.0mm〜10.0mmの半径136、例えば7.0mmの半径136により曲げられて形成されうる。その際に、湾曲した主チャネル区間118は、測定チャネル28とは反対の壁側に、0.1mm〜2.0mmの半径138、例えば0.8mmの半径138を有する。主チャネル区間24と測定チャネル28が統合される壁区間は、0.1mm〜2.0mmの半径140、例えば0.1mmの半径140により曲げられて形成されうる。主チャネル区間24と測定チャネル区間28とが統合されて壁区間は、遠心力変向部54に対向するチャネル壁に対して0°〜45°の角度δに、例えば9.1°に配置されうる。チャネル構造22はさらに湾曲して出口96へと延びており、即ち、1.0mm〜5.0mmの半径142、例えば2.8mmの半径142により、さらに、0.25mm〜3.0mmの半径144、例えば1.0mmの半径144により延びている。
以上、本発明に係るセンサ構成では、側面に設けられた主チャネル出口25が無く、主チャネル24は測定チャネル28と統合され、質量流は、共有出口96を通ってセンサハウジング12から出るよう案内される。半径、及び、対向する壁に対するずれという形態による遠心力変向部54での分岐領域の調整を介して、主チャネル24と測定チャネル28との統合箇所への、合流(Konvergenz)、内側半径、及び外側半径という形態による主チャネル24の流路を介して、並びに、この2つのチャネルのチャネル幅、統合箇所での半径、及び軸の方向付けという形態による統合領域の形成を介して、信号のばらつき、特性曲線の安定性、信号雑音、汚染された際の分離効果、従来の低周波での脈動の際及び高周波での可聴音の圧力振動の際の挙動等の多様な要請に関して、流体による貫流が調整されうる。
サネハギシステム及び位置決め輪郭部をコンパクトに保てることにより、特に、振幅が大きい低周波での脈動の際の挙動を調整するための、センサ支持体40の下流側での測定チャネルの長さ及び成形を最適化するための幾何学形状的な構成空間が獲得される。同様に、主チャネル24が変向される領域、及び、主チャネル24と測定チャネル28との統合領域における、様々な丸い面取りを介した介入の可能性も重要である。

Claims (11)

  1. チャネル構造(22)を貫流する流動媒体の少なくとも1つのパラメータを決定するためのセンサ構成(10)であって、前記センサ構成(10)は、センサハウジング(12)と、前記流動媒体の前記パラメータを決定するための、前記チャネル構造(22)内に配置された少なくとも1つのセンサチップ(42)と、を有し、前記センサハウジング(12)は、前記流動媒体の主流れ方向(36)の方を向いた、前記チャネル構造(22)への入口(34)と、前記チャネル構造(22)からの出口(96)と、を有し、前記チャネル構造(22)は、主チャネル(24)と、測定チャネル(28)と、を含み、前記測定チャネル(28)は、前記主チャネル(24)から分岐しており、前記センサチップ(42)は、前記測定チャネル(28)内に配置されている、前記センサ構成(10)において、
    前記主チャネル(24)と前記測定チャネル(28)とは共に、前記チャネル構造(22)から前記出口(96)へと連通しており、
    前記主チャネル(24)は、前記測定チャネル(28)が分岐する少なくとも1つの第1の主チャネル区間(104)と、第2の主チャネル区間(106)と、を有し、前記第2の主チャネル区間(106)は、前記チャネル構造(22)の、前記測定チャネル(28)と前記主チャネル(24)とが合流する統合区間(108)に隣接し、前記第2の主チャネル区間(106)は、前記第1の主チャネル区間(104)に対して10°〜135°の角度(β)に配置され、
    前記主チャネル(24)は、前記第1の主チャネル区間(104)と前記第2の主チャネル区間(106)とを接続する少なくとも1つの湾曲した主チャネル区間(118)を有し、前記主流れ方向(36)における、前記湾曲した主チャネル区間(118)と前記入口(34)との最大間隔(120)は、10.0mm〜20.0mmであり、
    湾曲した主チャネル区間(118)は、2つの湾曲半径(124、126)を有し、前記主流れ方向(36)に対して第2の湾曲半径(126)の上流側に存在する第1の湾曲半径(124)は3.0mm〜10.0mmであり、第2の湾曲半径(126)は1.5mm〜10.0mmであることを特徴とする、センサ構成(10)。
  2. 前記出口(96)は、前記センサハウジング(12)の端面(30)に配置されている、請求項1に記載のセンサ構成(10)。
  3. 前記主流れ方向(36)における、前記出口(96)の中心点と前記入口(34)との間隔(98)は、11.0mm〜15.0mmである、請求項1〜2のいずれか1項に記載のセンサ構成(10)。
  4. 前記主流れ方向(36)における、前記出口(96)の中心点と前記入口(34)との間隔(98)は、12.0mm〜14.0mmである、請求項3に記載のセンサ構成(10)。
  5. 前記出口(96)の中心線(100)は、下流側で前記主流れ方向(36)に対して30°〜50°の角度で傾けられている、請求項1〜4のいずれか1項に記載のセンサ構成(10)。
  6. 前記出口(96)は、幅(110)が3.0mm〜8.0mmである、請求項1〜5のいずれか1項に記載のセンサ構成(10)。
  7. 前記第2の主チャネル区間(106)の幅(110)は、前記測定チャネル(28)の幅(112)よりも狭い、請求項1〜6のいずれか1項に記載のセンサ構成(10)。
  8. 前記第2の主チャネル区間の幅(110)は、第1の主チャネル区間の幅(122)よりも狭い、請求項1〜7のいずれか1項に記載のセンサ構成(10)。
  9. 前記主チャネル(24)は、前記湾曲した主チャネル区間(118)で細くなっている、請求項1〜8のいずれか1項に記載のセンサ構成(10)。
  10. 内燃機関の吸気質量流量を決定するための、請求項1〜9のいずれか1項に記載のセンサ構成(10)。
  11. 前記センサハウジング(12)は、流体管路に導入され又は導入可能であり前記チャネル構造(22)がその内部に形成された差込みフィーラである、請求項1〜10のいずれかに記載のセンサ構成(10)。
JP2017514604A 2014-09-16 2015-07-22 測定チャネルを貫流する流動媒体の少なくとも1つのパラメータを決定するためのセンサ構成 Active JP6437637B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014218591.2A DE102014218591A1 (de) 2014-09-16 2014-09-16 Sensoranordnung zur Bestimmung wenigstens eines Parameters eines durch eine Kanalstruktur strömenden fluiden Mediums
DE102014218591.2 2014-09-16
PCT/EP2015/066738 WO2016041664A1 (de) 2014-09-16 2015-07-22 Sensoranordnung zur bestimmung wenigstens eines parameters eines durch eine kanalstruktur strömenden fluiden mediums

Publications (2)

Publication Number Publication Date
JP2017528718A JP2017528718A (ja) 2017-09-28
JP6437637B2 true JP6437637B2 (ja) 2018-12-12

Family

ID=53673108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017514604A Active JP6437637B2 (ja) 2014-09-16 2015-07-22 測定チャネルを貫流する流動媒体の少なくとも1つのパラメータを決定するためのセンサ構成

Country Status (7)

Country Link
US (1) US10663334B2 (ja)
EP (1) EP3194904B1 (ja)
JP (1) JP6437637B2 (ja)
KR (1) KR102447065B1 (ja)
CN (1) CN107076592B (ja)
DE (1) DE102014218591A1 (ja)
WO (1) WO2016041664A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3358315B1 (en) * 2015-09-30 2022-10-12 Hitachi Astemo, Ltd. Physical quantity detection device
JP2020106427A (ja) * 2018-12-27 2020-07-09 株式会社デンソー 物理量計測装置
DE112019000706T5 (de) 2018-02-07 2020-11-05 Denso Corporation Vorrichtung zur Messung einer physikalischen Größe
DE112021005498T5 (de) 2021-01-27 2023-08-03 Hitachi Astemo, Ltd. Einrichtung zur Ermittlung einer physikalischen Größe
DE102022206990A1 (de) 2022-07-08 2024-01-11 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung zur Erfassung wenigstens eines Parameters eines in einer Leitung strömenden gasförmigen Mediums

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19927818C2 (de) 1999-06-18 2003-10-23 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums
KR20010039993A (ko) * 1999-10-06 2001-05-15 오카무라 가네오 유량 및 유속 측정장치
JP3681627B2 (ja) * 1999-10-06 2005-08-10 日本特殊陶業株式会社 流量及び流速測定装置
DE60120339T2 (de) * 2001-01-05 2007-06-06 NGK Spark Plug Co., Ltd., Nagoya Gasdurchflussmessvorrichtung
DE10135142A1 (de) 2001-04-20 2002-10-31 Bosch Gmbh Robert Vorrichtung zur Bestimmung zumindest eines Parameters eines in einer Leitung strömenden Mediums
JP2003149016A (ja) 2001-11-12 2003-05-21 Denso Corp 流量測定装置
JP4754761B2 (ja) 2002-06-06 2011-08-24 株式会社デンソー 流量測定装置
JP2005140753A (ja) 2003-11-10 2005-06-02 Mitsubishi Electric Corp 内燃機関の吸入空気量測定装置
DE102006024745A1 (de) 2006-05-26 2007-12-06 Siemens Ag Massenstromsensorvorrichtung
DE102006045656A1 (de) * 2006-09-27 2008-04-03 Robert Bosch Gmbh Strömungsdynamisch verbesserter Steckfühler
DE102007019282A1 (de) 2007-04-24 2008-11-06 Robert Bosch Gmbh Vorrichtung zur Messung strömender Medien
JP4412357B2 (ja) * 2007-06-14 2010-02-10 株式会社デンソー 空気流量測定装置
DE102008049843B4 (de) 2008-10-01 2010-10-14 Continental Automotive Gmbh Luftmassensensor
JP5168223B2 (ja) 2009-05-01 2013-03-21 株式会社デンソー 空気流量測定装置
JP5273024B2 (ja) 2009-11-27 2013-08-28 株式会社デンソー 空気流量測定装置
DE102011005768A1 (de) * 2011-03-18 2012-09-20 Robert Bosch Gmbh Vorrichtung zur Erfassung mindestens einer Eigenschaft eines fluiden Mediums
DE102011078004A1 (de) * 2011-06-22 2012-12-27 Robert Bosch Gmbh Sensoranordnung zur Bestimmung wenigstens einer Strömungseigenschaft eines mit einer Hauptströmungsrichtung strömenden fluiden Mediums
DE102012224049A1 (de) * 2012-12-20 2014-06-26 Robert Bosch Gmbh Sensorvorrichtung zur Erfassung mindestens einer Strömungseigenschaft eines fluiden Mediums
DE102013226345A1 (de) * 2013-12-18 2015-06-18 Robert Bosch Gmbh Sensoranordnung zur Bestimmung wenigstens eines Parameters eines durch einen Kanal strömenden fluiden Mediums
DE102014201213A1 (de) * 2014-01-23 2015-07-23 Robert Bosch Gmbh Sensoranordnung zur Bestimmung wenigstens eines Parameters eines durch eine Kanalstruktur strömenden fluiden Mediums
DE102014217870A1 (de) * 2014-09-08 2016-03-10 Robert Bosch Gmbh Sensoranordnung zur Bestimmung wenigstens eines Parameters eines durch einen Messkanal strömenden fluiden Mediums
DE102014225303A1 (de) * 2014-12-09 2016-06-09 Robert Bosch Gmbh Sensor zur Bestimmung wenigstens eines Parameters eines durch einen Messkanal strömenden fluiden Mediums

Also Published As

Publication number Publication date
WO2016041664A1 (de) 2016-03-24
CN107076592A (zh) 2017-08-18
US20180188087A1 (en) 2018-07-05
US10663334B2 (en) 2020-05-26
DE102014218591A1 (de) 2016-03-17
EP3194904B1 (de) 2021-06-02
KR20170056552A (ko) 2017-05-23
KR102447065B1 (ko) 2022-09-26
JP2017528718A (ja) 2017-09-28
EP3194904A1 (de) 2017-07-26
CN107076592B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
JP6437637B2 (ja) 測定チャネルを貫流する流動媒体の少なくとも1つのパラメータを決定するためのセンサ構成
JP6334818B2 (ja) 測定チャネルを貫流する流動媒体の少なくとも1つのパラメータを決定するためのセンサ構成
US9217655B2 (en) Sensor system for determining at least one flow property of a fluid medium flowing in a main flow direction
JP4904024B2 (ja) 導管内を流動する媒体の少なくとも1つのパラメータを測定するための装置
JP3877777B2 (ja) 流れ媒体の質量を測定する装置
JP4140553B2 (ja) 空気流量測定装置
JP5182314B2 (ja) 空気流量測定装置
US4104915A (en) Ultrasonic device for the determination of the rate of air flow in the inlet duct of an internal combustion engine
JP4934198B2 (ja) 最適化された流出部を備えた差込み式センサ
JP2007093422A (ja) 流量測定装置
JP3758111B2 (ja) 空気流量測定装置
JP6477195B2 (ja) 流量測定装置
JP4169803B2 (ja) 流れる媒体の質量を測定するための測定装置
JP3985801B2 (ja) 空気流量測定装置
KR102301752B1 (ko) 채널을 관류하는 유체 매체의 하나 이상의 매개변수를 측정하는 센서 장치
JP2017211384A (ja) 測定チャネルを貫流する流動媒体の少なくとも1つのパラメータを決定するセンサ
JP4089654B2 (ja) 空気流量測定装置
JP2019138707A (ja) 物理量計測装置
JPH04157325A (ja) 熱式空気流量計
JP2018025549A (ja) 流量測定装置
JP5477446B2 (ja) 空気流量測定装置
JP2019066430A (ja) 流量測定装置
JP6674917B2 (ja) 熱式流量計
JP5218384B2 (ja) 空気流量測定装置
JPH1172362A (ja) フルイディック型流量計

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170315

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181114

R150 Certificate of patent or registration of utility model

Ref document number: 6437637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250