JP6430388B2 - 硬化性組成物、硬化物および硬化性組成物の使用方法 - Google Patents

硬化性組成物、硬化物および硬化性組成物の使用方法 Download PDF

Info

Publication number
JP6430388B2
JP6430388B2 JP2015537987A JP2015537987A JP6430388B2 JP 6430388 B2 JP6430388 B2 JP 6430388B2 JP 2015537987 A JP2015537987 A JP 2015537987A JP 2015537987 A JP2015537987 A JP 2015537987A JP 6430388 B2 JP6430388 B2 JP 6430388B2
Authority
JP
Japan
Prior art keywords
component
group
optical element
carbon atoms
curable composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015537987A
Other languages
English (en)
Other versions
JPWO2015041341A1 (ja
Inventor
優美 松井
優美 松井
幹広 樫尾
幹広 樫尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Publication of JPWO2015041341A1 publication Critical patent/JPWO2015041341A1/ja
Application granted granted Critical
Publication of JP6430388B2 publication Critical patent/JP6430388B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5455Silicon-containing compounds containing nitrogen containing at least one group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5477Silicon-containing compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Die Bonding (AREA)
  • Sealing Material Composition (AREA)

Description

本発明は、透明性、耐熱性、接着性に優れ、かつ、温度変化に対する耐久性にも優れる硬化物が得られる硬化性組成物、この組成物を硬化してなる硬化物、並びに、前記組成物を光素子用接着剤又は光素子用封止剤として使用する方法に関する。
近年、硬化性組成物は、光素子封止体を製造する際に、光素子用接着剤や光素子用封止剤等の光素子固定材用組成物として利用されてきている。
光素子には、半導体レーザー(LD)等の各種レーザーや発光ダイオード(LED)等の発光素子、受光素子、複合光素子、光集積回路等がある。近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されてきている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い光素子の発熱量がさらに大きくなっていく傾向にある。
ところが、近年における光素子の高輝度化に伴い、光素子固定材用組成物の硬化物が、より高いエネルギーの光や光素子から発生するより高温の熱に長時間晒されることで、劣化して接着力が低下するという問題が生じた。
この問題を解決するべく、特許文献1〜3において、ポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物が提案されている。
しかしながら、特許文献1〜3に記載されたポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物の硬化物であっても、十分な接着力を保ちつつ、耐熱性及び透明性を得るのが困難な場合があった。
また、近年における光素子の高輝度化及び長寿命化に伴い、用いる光素子固定材は、温度変化に対する耐久性にも優れることが重要になってきている。
従って、透明性、耐熱性、接着性に優れ、かつ、温度変化に対する耐久性にも優れる硬化物が得られる硬化性組成物の開発が切望されている。
特開2004−359933号公報 特開2005−263869号公報 特開2006−328231号公報
本発明は、かかる従来技術の実情に鑑みてなされたものであり、透明性、耐熱性、接着性に優れ、かつ、温度変化に対する耐久性にも優れる硬化物が得られる硬化性組成物、この組成物を硬化してなる硬化物、並びに、前記組成物を光素子用接着剤又は光素子用封止剤として使用する方法を提供することを課題とする。
本発明者らは上記課題を解決すべく鋭意研究を重ねた。その結果、以下に述べるように、特定のシラン化合物重合体と、分子内に、イソシアヌレート骨格を有するシランカップリング剤とを特定の割合で含有する組成物は、透明性、耐熱性及び接着性に優れ、かつ、温度変化に対する耐久性にも優れる硬化物となることを見出し、本発明を完成するに至った。
かくして本発明によれば、下記〔1〕〜〔5〕の硬化性組成物、〔6〕、〔7〕の硬化物、〔8〕、〔9〕の硬化性組成物の使用方法が提供される。
〔1〕下記の(A)成分と(B)成分とを、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3〜100:90の割合で含有することを特徴とする硬化性組成物。
(A)成分:下記式(a−1)
Figure 0006430388
〔式中、Rは、炭素数1〜20のアルキル基、炭素数3〜10のシクロアルキル基、及び無置換若しくは置換基を有する炭素数6〜20のアリール基から選ばれる基を表し、Zは、水酸基、炭素数1〜10のアルコキシ基又はハロゲン原子を表す。mは正の整数を表し、n、oはそれぞれ独立して、0または正の整数を表す。R同士、Z同士は、互いに同一でも、異なっていてもよい。〕
で示されるシラン化合物重合体
(B)成分:分子内に、イソシアヌレート骨格を有するシランカップリング剤
〔2〕前記(A)成分のシラン化合物重合体の重量平均分子量が、1,000〜30,000である、〔1〕に記載の硬化性組成物。
〔3〕前記(B)成分のシランカップリング剤が、下記式(b−1)又は式(b−2)で示される化合物である、〔1〕に記載の硬化性組成物。
Figure 0006430388
(式中、Rは、水酸基、炭素数1〜10のアルコキシ基又はハロゲン原子を表し、Rは、炭素数1〜6のアルキル基、又は無置換若しくは置換基を有するアリール基を表す。複数のR同士、R同士は、それぞれ同一であっても相異なっていてもよい。tは、1〜10の整数を表す。)
〔4〕さらに、下記の(C)成分を含有する、〔1〕に記載の硬化性組成物。
(C)成分:分子内に、ウレア構造を有するシランカップリング剤
〔5〕光素子固定材用組成物である、〔1〕に記載の硬化性組成物。
〔6〕前記〔1〕に記載の硬化性組成物を硬化してなる硬化物。
〔7〕光素子固定材である〔7〕に記載の硬化物。
〔8〕前記〔1〕に記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。
〔9〕前記〔1〕に記載の硬化性組成物を、光素子固定材用封止剤として使用する方法。
本発明の硬化性組成物によれば、透明性、耐熱性、接着性に優れ、かつ、温度変化に対する耐久性にも優れる硬化物が得られる硬化物を得ることができる。
本発明の硬化性組成物は、光素子固定材を形成する際に使用することができ、特に、光素子用接着剤、及び光素子用封止剤として好適に使用することができる。
以下、本発明を、1)硬化性組成物、2)硬化物、及び、3)硬化性組成物の使用方法、に項分けして詳細に説明する。
本発明の硬化性組成物は、下記の(A)成分と(B)成分とを、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3〜100:90の割合で含有することを特徴とする。
(A)成分(シラン化合物重合体(A))
本発明の硬化性組成物に用いる(A)成分は、下記式(a−1)で示されるシラン化合物重合体(A)である。
Figure 0006430388
前記式(a−1)において、式:−(RSiO3/2)−で表される繰り返し単位、式:−(RSiZO2/2)−で表される繰り返し単位、及び、式:−(RSiZ1/2)−で表される繰り返し単位は、それぞれ、下記(a11)〜(a13)で表すことができる。なお(a11)〜(a13)において、「−O−」は、隣接する2つのSi原子に共有されている酸素原子を表す。
Figure 0006430388
前記式(a−1)中、Rは、炭素数1〜20のアルキル基、炭素数3〜10のシクロアルキル基、及び無置換若しくは置換基を有する炭素数6〜20のアリール基から選ばれる基を表し、Zは、水酸基、炭素数1〜10のアルコキシ基又はハロゲン原子を表す。mは正の整数を表し、n、oはそれぞれ独立して、0または正の整数を表す。R同士、Z同士は、互いに同一でも、異なっていてもよい。
本発明に用いるシラン化合物共重合体(A)において、前記式(a−1)中、m、n、oがそれぞれ2以上のとき、前記式(a11)〜(a13)で表される繰り返し単位同士はそれぞれ、同一であっても相異なっていてもよい。
の、炭素数1〜20のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、イソオクチル基、n−ノニル基、n−デシル基、n−ドデシル基等が挙げられる。
の、炭素数3〜10のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。
の、無置換若しくは置換基を有する炭素数6〜20のアリール基のアリール基としては、フェニル基、1−ナフチル基、2−ナフチル基等が挙げられる。アリール基の置換基としては、メチル基、エチル基、n−プロピル基、t−ブチル基等のアルキル基;フッ素原子、塩素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;等が挙げられる。
これらの中でも、Rとしては炭素数1〜20のアルキル基が好ましく、炭素数1〜10のアルキル基がより好ましい。
Zは、水酸基、炭素数1〜10のアルコキシ基又はハロゲン原子を表す。
炭素数1〜10のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、t−ブトキシ基等が挙げられる。
ハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
これらの中でも、Zは、水酸基又は炭素数1〜10のアルコキシ基が好ましく、水酸基又は炭素数1〜6のアルコキシ基がより好ましい。
mは正の整数を表し、n、oはそれぞれ独立して、0または正の整数を表す。
シラン化合物重合体(A)は、単独重合体(Rが一種の重合体)であっても、共重合体(Rが二種以上の重合体)であってもよい。
シラン化合物重合体(A)が共重合体である場合、シラン化合物重合体(A)は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれの共重合体であってもよい。また、シラン化合物重合体(A)の構造は、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のいずれの構造であってもよい。
シラン化合物重合体(A)の重量平均分子量(Mw)は、好ましくは1,000〜30,000の範囲であり、より好ましくは1,200〜20,000であり、特に好ましくは1,500〜15,000の範囲である。このような範囲内の重量平均分子量を有するシラン化合物重合体(A)を用いることで、透明性、耐熱性、接着性により優れる硬化物が得られる硬化性組成物を得ることができる。
重量平均分子量(Mw)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる。
シラン化合物重合体(A)の分子量分布(Mw/Mn)は、特に制限されないが、通常1.0〜8.0、好ましくは1.5〜7.0の範囲であり、特に好ましくは3.0〜6.0の範囲である。このような範囲内の分子量分布を有するシラン化合物重合体(A)を用いることで、透明性、耐熱性、接着性により優れる硬化物が得られる硬化性組成物を得ることができる。
シラン化合物重合体(A)は一種単独で、あるいは二種以上を組み合わせて用いることができる。
シラン化合物重合体(A)の製造方法は特に限定されない。例えば、以下のように、式(1):RSi(OR(X3−uで示されるシラン化合物(1)を縮合させることにより、シラン化合物重合体(A)を製造することができる。ここで、「縮合」は、加水分解及び重縮合反応を含む広い概念で用いている。
式(1)中、Rは前記と同じ意味を表す。Rは炭素数1〜10のアルキル基を表し、Xはハロゲン原子を表し、uは0〜3の整数を表す。
の炭素数1〜10のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基等が挙げられる。
のハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
uが2以上のとき、OR同士は同一であっても相異なっていてもよい。また、(3−u)が2以上のとき、X同士は同一であっても相異なっていてもよい。
シラン化合物(1)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−プロピルトリプロポキシシラン、n−プロピルトリブトキシシラン、n−ブチルトリメトキシシラン、イソブチルトリメトキシシラン、n−ペンチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、イソオクチルトリエトキシシラン等のアルキルトリアルコキシシラン化合物類;
シクロプロピルトリメトキシシラン、シクロプロピルトリエトキシシラン、シクロプロピルトリプロポキシシラン、シクロブチルトリメトキシシラン、シクロブチルトリエトキシシラン、シクロブチルトリプロポキシシラン、シクロペンチルトリメトキシシラン、シクロペンチルトリエトキシシラン、シクロペンチルトリプロポキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、シクロヘキシルトリプロポキシシラン、シクロオクチルトリメトキシシラン、シクロオクチルトリエトキシシラン、シクロオクチルトリプロポキシシラン等のシクロアルキルトリアルコキシシラン化合物類;
フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、ナフチルトリメトキシシラン、ナフチルトリエトキシシラン、ナフチルトリプロポキシシラン、4−メチルフェニルトリメトキシシラン、4−メチルフェニルトリエトキシシラン、4−メチルフェニルトリプロポキシシラン、2−クロロフェニルトリメトキシシラン等のアリールトリアルコキシシラン化合物類;
メチルクロロジメトキシシラン、メチルクロロジエトキシシラン、メチルジクロロメトキシシラン、メチルブロモジメトキシシラン、エチルクロロジメトキシシラン、エチルクロロジエトキシシラン、エチルジクロロメトキシシラン、エチルブロモジメトキシシラン、n−プロピルクロロジメトキシシラン、n−プロピルジクロロメトキシシラン、n−ブチルクロロジメトキシシラン、n−ブチルジクロロメトキシシラン等のアルキルハロゲノアルコキシシラン化合物類;
シクロプロピルクロロジメトキシシラン、シクロプロピルクロロジエトキシシラン、シクロプロピルジクロロメトキシシラン、シクロプロピルブロモジメトキシシラン、シクロブチルクロロジメトキシシラン、シクロブチルクロロジエトキシシラン、シクロブチルジクロロメトキシシラン、シクロブチルブロモジメトキシシラン、シクロペンチルクロロジメトキシシラン、シクロヘキシルクロロジメトキシシラン、シクロオクチルクロロジメトキシシラン等のシクロアルキルハロゲノアルコキシシラン化合物類;
フェニルクロロジメトキシシラン、フェニルクロロジエトキシシラン、フェニルジクロロメトキシシラン、フェニルブロモジメトキシシラン、ナフチルクロロジメトキシシラン、ナフチルクロロジエトキシシラン、ナフチルジクロロメトキシシラン、ナフチルブロモジメトキシシラン、4−メチルフェニルクロロジメトキシシラン、4−メチルフェニルジクロロメトキシシラン、4−メチルフェニルブロモジメトキシシラン、2−クロロフェニルクロロジメトキシシラン等のアリールハロゲノアルコキシシラン化合物類;
メチルトリクロロシラン、メチルトリブロモシラン、エチルトリトリクロロシラン、エチルトリブロモシラン、n−プロピルトリクロロシラン、n−プロピルトリブロモシラン、n−ブチルトリクロロシラン、イソブチルトリクロロシラン、n−ペンチルトリクロロシラン、n−ヘキシルトリクロロシラン、イソオクチルトリクロロシラン等のアルキルトリハロゲノシラン化合物類;
シクロプロピルトリクロロシラン、シクロプロピルトリブロモシラン、シクロブチルトリクロロシラン、シクロブチルトリブロモシラン、シクロペンチルトリクロロシラン、シクロペンチルトリブロモシラン、シクロヘキシルトリクロロシラン、シクロヘキシルトリブロモシラン、シクロオクチルトリクロロシラン、シクロオクチルトリブロモシラン等のシクロアルキルトリハロゲノシラン化合物類;
フェニルトリクロロシラン、フェニルトリブロモシラン、ナフチルトリクロロシラン、ナフチルトリブロモシラン、4−メチルフェニルトリクロロシラン、4−メチルフェニルトリブロモシラン、2−クロロフェニルトリクロロシラン等のアリールトリハロゲノシラン化合物類;等が挙げられる。
これらのシラン化合物(1)は一種単独で、或いは二種以上を組み合わせて用いることができる。
これらの中でも、シラン化合物(1)としては、接着性により優れる硬化物が得られる硬化性組成物を得ることができることから、アルキルトリアルコキシシラン化合物類、シクロアルキルトリアルコキシシラン化合物類、又はアリールトリアルコキシシラン化合物類が好ましい。
前記シラン化合物(1)を縮合させる方法としては、特に限定されないが、シラン化合物(1)を溶媒に溶解し、所定量の触媒を添加し、所定温度で撹拌する方法が挙げられる。
用いる触媒は、酸触媒及び塩基触媒のいずれであってもよい。
酸触媒としては、塩酸、硫酸、硝酸、リン酸等の無機酸;メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、酢酸、トリフルオロ酢酸等の有機酸;等が挙げられる。
塩基触媒としては、アンモニア水、トリメチルアミン、トリエチルアミン、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ピリジン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、アニリン、ピコリン、1,4−ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の有機塩水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt−ブトキシド、カリウムt−ブトキシド等の金属アルコキシド;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。
触媒の使用量は、シラン化合物の総モル量に対して、通常、0.1mol%〜10mol%、好ましくは1mol%〜5mol%の範囲である。
用いる溶媒は、シラン化合物の種類等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、s−ブチルアルコール、t−ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は一種単独で、或いは二種以上を混合して用いることができる。
溶媒の使用量は、溶媒1リットルあたり、シラン化合物の総モル量が、通常0.1mol〜10mol、好ましくは0.5mol〜10molとなる量である。
シラン化合物を縮合(反応)させるときの温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃〜100℃の範囲である。反応温度があまりに低いと縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。反応は、通常30分から20時間で完結する。
反応終了後は、酸触媒を用いた場合は、反応溶液に炭酸水素ナトリウム等のアルカリ水溶液を添加することにより、塩基触媒を用いた場合は、反応溶液に塩酸等の酸を添加することにより中和を行い、その際に生じる塩をろ別又は水洗等により除去し、目的とするシラン化合物重合体を得ることができる。
上記方法により、シラン化合物重合体(A)を製造する際、シラン化合物(1)のOR又はXのうち、脱水及び/又は脱アルコールされなかった部分は、シラン化合物重合体(A)中に残存する。すなわち、残存するOR又はXが1つである場合は、前記式(a−1)において(CHR−D−SiZO2/2)として残存し、残存するOR又はXが2つである場合は、式(a−1)において(CHR−D−SiZ1/2)として残存する。
(B)成分(分子内に、イソシアヌレート骨格を有するシランカップリング剤)
本発明の硬化性組成物は、(B)成分として、分子内に、イソシアヌレート骨格を有するシランカップリング剤(以下、「シランカップリング剤(B)」ということがある。)を含む。本発明の硬化性組成物は、シランカップリング剤(B)を含有するため、その硬化物は、透明性、耐熱性、接着性に優れ、かつ、温度変化に対する耐久性にも優れるものとなる。
シランカップリング剤(B)としては、分子内に、イソシアヌレート骨格を有するシランカップリング剤であれば特に制限はない。イソシアヌレート骨格とは、下記式で示される骨格をいう。
Figure 0006430388
シランカップリング剤(B)としては、下記式(b−1)又は式(b−2)で示されるシランカップリング剤が挙げられる。
Figure 0006430388
式中、Rは、水酸基、炭素数1〜10のアルコキシ基又はハロゲン原子を表す。複数のR同士は同一であっても相異なっていてもよい。
炭素数1〜10のアルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、s−ブトキシ基、イソブトキシ基、t−ブトキシ基等が挙げられる。
ハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
これらの中でも、Rは、炭素数1〜10のアルコキシ基が好ましく、炭素数1〜6のアルコキシ基がより好ましい。
は、炭素数1〜6のアルキル基又は無置換若しくは置換基を有するアリール基を表す。複数のR同士は同一であっても相異なっていてもよい。
炭素数1〜6のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基等が挙げられる。
無置換若しくは置換基を有するアリール基としては、フェニル基、4−クロロフェニル基、4−メチルフェニル基等が挙げられる。
tはそれぞれ独立して、1〜10の整数を表し、1〜6の整数であるのが好ましく、3であるのが特に好ましい。
式:−(CH)−Si(Rで表される基同士、又は式:−(CH)−Si(R(R)で表される基同士は、それぞれ同一であっても相異なっていてもよい。
式(b−1)で表される化合物の具体例としては、1,3,5−N−トリス(3−トリメトキシシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−トリエトキシシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−トリイソプロポキシシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−トリブトキシシリルプロピル)イソシアヌレート等の、1,3,5−N−トリス〔(トリ(炭素数1〜6)アルコキシ)シリル(炭素数1〜10)アルキル〕イソシアヌレート等が挙げられる。
式(b−2)で表される化合物の具体例としては、1,3,5−N−トリス(3−ジメトキシメチルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジメトキシエチルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジメトキシイソプロピルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジメトキシn−プロピルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジエトキシメチルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジエトキシエチルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジエトキシイソプロピルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジエトキシn−プロピルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジイソプロポキシメチルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジイソプロポキシエチルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジイソプロポキシイソプロピルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジイソプロポキシn−プロピルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジブトキシメチルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジブトキシエチルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジブトキシイソプロピルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジブトキシn−プロピルシリルプロピル)イソシアヌレート等の、1,3,5−N−トリス{〔ジ(炭素数1〜6)アルコキシ〕〔(炭素数1〜6)アルキル〕シリル(炭素数1〜10)アルキル}イソシアヌレート;
1,3,5−N−トリス(3−ジメトキシフェニルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジエトキシフェニルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジイソプロポキシフェニルシリルプロピル)イソシアヌレート、1,3,5−N−トリス(3−ジブトキシフェニルシリルプロピル)イソシアヌレート等の、1,3,5−N−トリス{〔ジ(炭素数1〜6)アルコキシ〕〔(炭素数6〜20)アリール〕シリル(炭素数1〜10)アルキル}イソシアヌレート;
1,3,5−N−トリス(3−トリクロロシリルプロピル)イソシアヌレート、1,3,5,−N−トリス(3−トリクロロシリルプロピル)イソシアヌレート等の1,3,5−N−トリス〔トリハロゲノシリル(炭素数1〜10)アルキル〕イソシアヌレート;等が挙げられる。
これらの中でも、(B)成分としては、式(b−1)で表される化合物を用いるのが好ましく、1,3,5−N−トリス(3−トリメトキシシリルプロピル)イソシアヌレート、又は1,3,5−N−トリス(3−トリエトキシシリルプロピル)イソシアヌレートを用いるのがより好ましい。
シランカップリング剤(B)は、1種単独で、或いは2種以上を組み合わせて用いることができる。
(A)成分と(B)成分との含有割合(質量比)は、〔(A)成分〕:〔(B)成分〕=100:0.3〜100:90、好ましくは100:2〜100:55、特に好ましくは100:5〜100:20である。
このような割合で(A)成分及び(B)成分を用いることにより、本発明の硬化性組成物の硬化物は、透明性、耐熱性、接着性に優れ、かつ、温度変化に対する耐久性にも優れるものとなる。
本発明の硬化性組成物には、本発明の目的を阻害しない範囲で、上記成分に、さらに他の成分を含有させてもよい。
他の成分としては、下記の(C)成分(分子内に、ウレア構造を有するシランカップリング剤)、酸化防止剤、紫外線吸収剤、光安定剤、希釈剤等が挙げられる。
(C)成分は、分子内に、ウレア構造を有するシランカップリング剤(以下、「シランカップリング剤(C)」ということがある。)である。
(B)成分に加えて、(C)成分を含有する硬化性組成物の硬化物は、透明性、耐熱性、接着性により優れるものとなる。
シランカップリング剤(C)としては、分子内にウレア構造を有するシランカップリング剤であれば特に制限はない。ウレア構造とは、式:−NH−CO−NH−で示される構造をいう。
シランカップリング剤(C)としては、下記式(c−1)又は式(c−2)で示されるシランカップリング剤が挙げられる。
Figure 0006430388
式中、Rは、水酸基、炭素数1〜10のアルコキシ基又はハロゲン原子を表す。複数のR同士は同一であっても相異なっていてもよい。
炭素数1〜10のアルコキシ基やハロゲン原子の具体例としては、式(b−1)、式(b−2)中のRとして示したものと同様のものが挙げられる。
これらの中でも、Rは、炭素数1〜10のアルコキシ基が好ましく、炭素数1〜6のアルコキシ基がより好ましい。
は、炭素数1〜6のアルキル基又は無置換若しくは置換基を有するアリール基を表す。これらの基の具体例としては、式(b−1)、式(b−2)中のRとして示したものと同様のものが挙げられる。
vはそれぞれ独立して、1〜10の整数を表し、1〜6の整数であるのが好ましく、3であるのが特に好ましい。
式:−(CH)−Si(Rで表される基同士、又は式:−(CH)−Si(R(R)で表される基同士は、それぞれ同一であっても相異なっていてもよい。
式(c−1)で表される化合物の具体例としては、N,N’−ビス(3−トリメトキシシリルプロピル)ウレア、N,N’−ビス(3−トリエトキシシリルプロピル)ウレア、N,N’−ビス(3−トリプロポキシシリルプロピル)ウレア、N,N’−ビス(3−トリブトキシシリルプロピル)ウレア、N,N’−ビス(2−トリメトキシシリルエチル)ウレア等のN,N’−ビス〔(トリ(炭素数1〜6)アルコキシシリル)(炭素数1〜10)アルキル〕ウレア;
N,N’−ビス(3−トリクロロシリルプロピル)ウレア、N,N’−ビス(3−トリブロモシリルプロピル)ウレア等のN,N’−ビス〔トリハロゲノシリル(炭素数1〜10)アルキル〕ウレア;等が挙げられる。
式(c−2)で表される化合物の具体例としては、N,N’−ビス(3−ジメトキシメチルシリルプロピル)ウレア、N,N’−ビス(3−ジメトキシエチルシリルプロピル)ウレア、N,N’−ビス(3−ジエトキシメチルシリルプロピル)ウレア等のN,N’−ビス〔(ジ(炭素数1〜6)アルコキシ(炭素数1〜6)アルキルシリル(炭素数1〜10)アルキル)ウレア;
N,N’−ビス(3−ジメトキシフェニルシリルプロピル)ウレア、N,N’−ビス(3−ジエトキシフェニルシリルプロピル)ウレア等のN,N’−ビス〔(ジ(炭素数1〜6)アルコキシ(炭素数6〜20)アリールシリル(炭素数1〜10)アルキル)ウレア;
N,N’−ビス(3−ジクロロメチルシリルプロピル)ウレア等のN,N’−ビス〔ジハロゲノ(炭素数1〜6)アルキルシリル(炭素数1〜10)アルキル)ウレア;
N,N’−ビス(3−ジクロロフェニルシリルプロピル)ウレア等のN,N’−ビス〔ジハロゲノ(炭素数6〜20)アリールシリル(炭素数1〜10)アルキル)ウレア;等が挙げられる。
(C)成分は、1種単独で、或いは2種以上を組み合わせて用いることができる。
これらの中でも、(C)成分としては、式(c−1)で表される化合物を用いるのが好ましく、N,N’−ビス(3−トリメトキシシリルプロピル)ウレア、又は、N,N’−ビス(3−トリエトキシシリルプロピル)ウレアを用いるのがより好ましい。
(C)成分を用いる場合、(A)成分と(C)成分との含有割合(質量比)は、〔(A)成分〕:〔(C)成分〕=100:0.3〜100:30が好ましく、100:5〜100:20がより好ましい。
このような割合で(C)成分を配合することにより、本発明の硬化性組成物の硬化物は、透明性、耐熱性、接着性により優れ、かつ、温度変化に対する耐久性により優れるものとなる。
酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。
リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。
フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。
硫黄系酸化防止剤としては、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート等が挙げられる。
これら酸化防止剤は一種単独で、或いは二種以上を組み合わせて用いることができる。酸化防止剤の使用量は、(A)成分に対して、通常、10質量%以下である。
紫外線吸収剤は、得られる硬化物の耐光性を向上させる目的で添加される。
紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
紫外線吸収剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
紫外線吸収剤の使用量は、(A)成分に対して、通常、10質量%以下である。
光安定剤は、得られる硬化物の耐光性を向上させる目的で添加される。
光安定剤としては、例えば、ポリ[{6−(1,1,3,3,−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
光安定剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
光安定剤の使用量は、(A)成分に対して、通常、10質量%以下である。
希釈剤は、硬化性組成物の粘度を調整するため添加される。
希釈剤としては、例えば、グリセリンジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ジグリシジルアニリン、ネオペンチルグリコールグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、アルキレンジグリシジルエーテル、ポリグリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、4−ビニルシクロヘキセンモノオキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド等が挙げられる。
これらの希釈剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
本発明の硬化性組成物は、例えば、前記(A)、(B)成分、及び、所望により他の成分を所定割合で配合して、公知の方法により混合、脱泡することにより得ることができる。
以上のようにして得られる本発明の硬化性組成物によれば、高エネルギーの光が照射される場合や高温状態に置かれた場合であっても、長期にわたって優れた透明性及び高い接着力を有するとともに、温度変化に対する耐久性にも優れる硬化物を得ることができる。
したがって、本発明の硬化性組成物は、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。特に、光素子の高輝度化に伴う、光素子固定材の劣化に関する問題を解決することができることから、本発明の硬化性組成物は、光素子固定用組成物として好適に使用することができる。
2)硬化物
本発明の第2は、本発明の硬化性組成物を硬化してなる硬化物である。
本発明の硬化性組成物を硬化する方法としては加熱硬化が挙げられる。硬化するときの加熱温度は、通常、100〜200℃であり、加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
本発明の硬化物は、透明性、耐熱性、接着性に優れ、かつ、温度変化に対する耐久性にも優れるものである。
前記硬化物が透明性に優れることは、光透過率を測定することで確認することができる。硬化物の光透過率(初期透過率)は、例えば、波長400nm、450nmの光で、80%以上が好ましい。
前記硬化物が耐熱性に優れることは、硬化物を高温下に置いた後であっても透明性の変化が小さいことから確認することができる。透明性は、150℃で500時間加熱した後に、波長400nm、450nmの透過率が、共に80%以上であることが好ましい。なお、硬化物の初期透過率および加熱後の透過率は、実施例に記載した試験方法により測定することができる。
本発明の硬化物が高い接着力を有することは、例えば、次のようにして接着力を測定することで確認することができる。すなわち、シリコンチップのミラー面に硬化性組成物を塗布し、塗布面を被着体の上に載せ圧着し、加熱処理して硬化させる。これを、予め所定温度(例えば、23℃、100℃)に加熱したボンドテスターの測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との接着力を測定する。
硬化物の接着力は、23℃において、40N/2mm□以上であることが好ましく、100℃において、20N/2mm□以上であることがより好ましい。
本発明の硬化物が温度変化に対する耐久性に優れることは、上記の接着力測定の試験片と同様の方法により試験片付被着体を作製し、この試験片付被着体を用いて、温度サイクル試験を行った後、上記と同様の方法により接着力を測定することで確認することができる。
具体的には、−40℃で30分間維持後、100℃で30分間維持する操作を1サイクルとし、100サイクル繰り返す温度サイクル試験後に、試験片と被着体との接着力を23℃において測定したときに、その接着力が、温度サイクル試験を行っていない試験片の23℃における接着力に比べて、30%以上に維持されることが好ましく、60%以上に維持されることがより好ましい。
本発明の硬化物は、例えば、光学部品や成形体の原料、接着剤、コーティング剤、封止材等として好適に使用される。特に、本発明の硬化物は、光素子の高輝度化に伴う光素子固定材の劣化に関する問題を解決することができることから、光素子固定材として好適に使用することができる。
3)硬化性組成物の使用方法
本発明の第3は、本発明の硬化性組成物を、光素子用接着剤又は光素子用封止剤等の光素子固定材用組成物として使用する方法である。
光素子としては、LED、LD等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
〈光素子用接着剤〉
本発明の硬化性組成物は、光素子用接着剤として好適に使用することができる。
本発明の硬化性組成物を光素子用接着剤として使用する方法としては、接着の対象とする材料(光素子とその基板等)の一方又は両方の接着面に該組成物を塗布し、圧着した後、加熱硬化させ、接着の対象とする材料同士を強固に接着させる方法が挙げられる。
光素子を接着するための主な基板材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン−酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。
加熱硬化させる際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100〜200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
〈光素子用封止剤〉
本発明の硬化性組成物は、光素子封止体の封止剤として好適に用いることができる。
本発明の硬化性組成物を光素子用封止剤として使用する方法としては、例えば、該組成物を所望の形状に成形して、光素子を内包した成形体を得た後、そのものを加熱硬化させることにより光素子封止体を製造する方法等が挙げられる。
本発明の硬化性組成物を所望の形状に成形する方法としては、特に限定されるものではなく、通常のトランスファー成形法や、注型法等の公知のモールド法を採用できる。
加熱硬化する際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100〜200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
得られる光素子封止体は、本発明の硬化性組成物を用いているので、光素子に、白色や青色発光LED等の、発光のピーク波長が400〜490nmと短波長のものを用いても、熱や光により着色劣化することがない透明性、耐熱性に優れるものである。
次に実施例及び比較例により本発明を更に詳細に説明するが、本発明は下記の実施例に限定されるものではない。
(重量平均分子量測定)
下記製造例で得たシラン化合物重合体の重量平均分子量(Mw)は標準ポリスチレン換算値とし、以下の装置及び条件にて測定した。
装置名:HLC−8220GPC、東ソー社製
カラム:TSKgelGMHXL、TSKgelGMHXL、及び、TSKgel2000HXLを順次連結したもの
溶媒:テトラヒドロフラン
注入量:80μl
測定温度:40℃
流速:1ml/分
検出器:示差屈折計
(IRスペクトルの測定)
製造例で得たシラン化合物重合体のIRスペクトルは、フーリエ変換赤外分光光度計(Spectrum100、パーキンエルマー社製)を使用して測定した。
(製造例1)
300mlのナス型フラスコに、メチルトリエトキシシラン(信越化学工業社製)71.37g(400mmol)を仕込んだ後、内容物を撹拌しながら、リン酸0.20g(2mmol)を蒸留水21.6mlに溶解して得たリン酸水溶液を30℃で加えた。リン酸水溶液の添加後、30℃で2時間、次いで、70℃で5時間、内容物の撹拌を続けた。
次いで、水層のpHが4になるまで、有機層を精製水にて繰り返し洗浄した後、有機層をエバポレーターで濃縮した。得られた濃縮物を真空乾燥することにより、シラン化合物重合体1を53.5g得た。シラン化合物重合体1の重量平均分子量は8780、分子量分布は5.25であった。
シラン化合物重合体1のIRスペクトルデータを以下に示す。
Si−CH:1272cm−1,1409cm−1,Si−O:1132cm−1
(製造例2)
100mlのナス型フラスコに、エチルトリエトキシシラン(東京化成工業社製)9.62g(50mmol)を仕込んだ後、内容物を撹拌しながら、リン酸0.025g(0.25mmol)を蒸留水2.7mlに溶解して得たリン酸水溶液を30℃で加えた。リン酸水溶液の添加後、30℃で2時間、次いで、70℃で5時間、内容物の撹拌を続けた。
次いで、水層のpHが4になるまで、有機層を精製水にて繰り返し洗浄した後、有機層をエバポレーターで濃縮した。得られた濃縮物を真空乾燥することにより、シラン化合物重合体2を5.9g得た。シラン化合物重合体2の重量平均分子量は2150、分子量分布は1.96であった。
シラン化合物重合体2のIRスペクトルデータを以下に示す。
Si−CH−:1253cm−1,1415cm−1,−CH:2882cm−1,2964cm−1,Si−O:1132cm−1
(製造例3)
100mlのナス型フラスコに、プロピルトリエトキシシラン(東京化成工業社製)10.32g(50mmol)を仕込んだ後、内容物を撹拌しながら、リン酸0.025g(0.25mmol)を蒸留水2.7mlに溶解して得たリン酸水溶液を30℃で加えた。リン酸水溶液の添加後、30℃で2時間、次いで、70℃で5時間、内容物の撹拌を続けた。
次いで、水層のpHが4になるまで、有機層を精製水にて繰り返し洗浄した後、有機層をエバポレーターで濃縮した。得られた濃縮物を真空乾燥することにより、シラン化合物重合体3を6.2g得た。シラン化合物重合体3の重量平均分子量は2560、分子量分布は1.85であった。
シラン化合物重合体3のIRスペクトルデータを以下に示す。
Si−CH−:1253cm−1,1415cm−1,−CH:2958cm−1,2872cm−1,−CH−:2931cm−1,Si−O:1132cm−1
(実施例1)
製造例1で得たシラン化合物重合体1 100部(質量部、以下同じ)に、(B)成分として、1,3,5−N−トリス〔3−(トリメトキシシリル)プロピル〕イソシアヌレート1部を加え、全容を十分に混合、脱泡することにより硬化性組成物1を得た。
(実施例2〜18、比較例1〜5)
第1表に示す割合で各成分を用いたことを除き、実施例1と同様にして実施例2〜18、比較例1〜5の硬化性組成物2〜18、1r〜5rを得た。
第1表中の(A1)〜(A3)、(B1)、(C1)は以下の通りである。
(A1):シラン化合物重合体1
(A2):シラン化合物重合体2
(A3):シラン化合物重合体3
(B1):1,3,5−N−トリス〔3−(トリメトキシシリル)プロピル〕イソシアヌレート
(C1):N,N’−ビス〔3−(トリメトキシシリルプロピル)〕ウレア
Figure 0006430388
実施例1〜18及び比較例1〜5で得た硬化性組成物1〜18、1r〜5rの硬化物につき、下記のようにして、接着力、温度サイクル試験後の接着力、初期透過率、加熱後透過率を測定し、接着性、温度変化に対する耐久性、初期透明性、耐熱性(加熱後透明性)を確認した。測定結果及び評価を下記第2表に示す。
(接着力試験)
2mm角のシリコンチップのミラー面に、実施例1〜18及び比較例1〜5で得た硬化性組成物1〜18、1r〜5rのそれぞれを厚さが約2μmになるよう塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、予め所定温度(23℃、100℃)に加熱したボンドテスター(シリーズ4000、デイジ社製)の測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、スピード200μm/sで接着面に対し水平方法(せん断方向)に応力をかけ、23℃及び100℃における、試験片と被着体との接着力(N/2mm□)を測定した。
(温度変化に対する耐久性評価)
上記の接着力測定に用いた試験片付被着体と同様の試験片付被着体を作製し、この試験片付被着体を用いて、冷熱衝撃装置(TSA−71S、エスペック社製)にて−40℃で30分間維持後、100℃で30分間維持する操作を100サイクル繰り返した。前記温度サイクル試験後、上記と同様の方法により試験片と被着体との接着力を23℃で測定した。
温度サイクル試験後の試験片と被着体との接着力が、上記の接着力試験で得た、23℃における接着力を基準として、60%以上であるときを「A」、30%以上60%未満であるときを「B」、30%未満であるときを「C」と評価した。
(初期透過率の測定)
実施例1〜18及び比較例1〜5で得た硬化性組成物1〜18、1r〜5rのそれぞれを、長さ25mm、幅20mm、厚さ1mmとなるように鋳型に流し込み、140℃で6時間加熱して硬化させ、試験片をそれぞれ作製した。得られた試験片につき、分光光度計(MPC−3100、島津製作所社製)にて、波長400nm、450nmの初期透過率(%)を測定した。
(加熱後の透過率の測定)
初期透過率を測定した各試験片を150℃のオーブン中に500時間静置し、再度、波長400nm、450nmの透過率(%)を測定した。これを加熱後透過率とした。
Figure 0006430388
第2表から以下のことが分かる。
実施例1〜18で得られた硬化性組成物の硬化物は、接着力、温度変化に対する耐久性、初期透明性、加熱後透明性に優れている。特に、実施例9〜14、16、18で示されるように、(B)成分に加えて、(C)成分を用いることで、より接着力に優れたものとなる。
一方、比較例1〜3で得られた、(A)成分のみを硬化させて得られた硬化物は、接着力が低く、また、温度変化に対する耐久性にも劣っている。
また、比較例4、5で示されるように、(B)成分を含有せず、(A)成分と(C)成分を含有する硬化性組成物を硬化させた場合、本願発明の効果は得られないばかりでなく、かえって、硬化物の接着力が大きく低下する。

Claims (6)

  1. 下記の(A)成分と(B)成分とを、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3〜100:90の割合で含有することを特徴とする光素子固定材用組成物。
    (A)成分:下記式(a−1)
    Figure 0006430388
    〔式中、Rは、炭素数1〜20のアルキル基、炭素数3〜10のシクロアルキル基、及び無置換若しくは置換基を有する炭素数6〜20のアリール基から選ばれる基を表し、Zは、水酸基、炭素数1〜10のアルコキシ基又はハロゲン原子を表す。mは正の整数を表し、n、oはそれぞれ独立して、0または正の整数を表す。R同士、Z同士は、互いに同一でも、異なっていてもよい。〕
    で示される、重量平均分子量が、1,000〜20,000であるシラン化合物重合体
    (B)成分:下記式(b−1)又は式(b−2)
    Figure 0006430388
    (式中、Rは、水酸基、炭素数1〜10のアルコキシ基又はハロゲン原子を表し、Rは、炭素数1〜6のアルキル基又は無置換若しくは置換基を有するアリール基を表す。複数のR同士、R同士は、それぞれ同一であっても相異なっていてもよい。tは、1〜10の整数を表す。)で示される化合物。
  2. さらに、下記の(C)成分を含有する硬化性組成物からなる、請求項1に記載の光素子固定材用組成物。
    (C)成分:分子内に、ウレア構造を有するシランカップリング剤
  3. 請求項1又は2に記載の光素子固定材用組成物を硬化してなる硬化物。
  4. 光素子固定材である請求項3に記載の硬化物。
  5. 請求項1又は2に記載の光素子固定材用組成物を、光素子固定材用接着剤として使用する方法。
  6. 請求項1又は2に記載の光素子固定材用組成物を、光素子固定材用封止剤として使用する方法。
JP2015537987A 2013-09-20 2014-09-19 硬化性組成物、硬化物および硬化性組成物の使用方法 Active JP6430388B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013195835 2013-09-20
JP2013195835 2013-09-20
PCT/JP2014/074935 WO2015041341A1 (ja) 2013-09-20 2014-09-19 硬化性組成物、硬化物および硬化性組成物の使用方法

Publications (2)

Publication Number Publication Date
JPWO2015041341A1 JPWO2015041341A1 (ja) 2017-03-02
JP6430388B2 true JP6430388B2 (ja) 2018-11-28

Family

ID=52688988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015537987A Active JP6430388B2 (ja) 2013-09-20 2014-09-19 硬化性組成物、硬化物および硬化性組成物の使用方法

Country Status (8)

Country Link
US (1) US9540490B2 (ja)
EP (1) EP3034560A4 (ja)
JP (1) JP6430388B2 (ja)
KR (1) KR102213302B1 (ja)
CN (1) CN105531324B (ja)
MY (1) MY176313A (ja)
TW (2) TWI664237B (ja)
WO (1) WO2015041341A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745253A (zh) * 2013-09-20 2016-07-06 琳得科株式会社 固化性组合物、固化物和固化性组合物的使用方法
CN106833505B (zh) * 2017-02-14 2020-09-29 东莞市博君来胶粘材料科技有限公司 一种耐高温的单组份室温硫化硅酮密封胶及其制备方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1063288A (en) * 1973-11-21 1979-09-25 Melvin D. Beers Curable compositions and process
US4788170A (en) * 1987-07-06 1988-11-29 General Electric Company Method for preparing tin complex curing catalyst
JPH07119359B2 (ja) * 1987-08-28 1995-12-20 東芝シリコ−ン株式会社 電気・電子部品用プライマ−組成物
US4959407A (en) * 1989-06-01 1990-09-25 General Electric Company RTV silicones having bis(ureido)silane chain extenders and aminoxy siloxane crosslinkers
JP2001123119A (ja) * 1999-10-27 2001-05-08 Dainippon Toryo Co Ltd コーティング組成物
TWI251615B (en) * 2001-12-14 2006-03-21 Asahi Kasei Corp Coating composition for forming low-refractive index thin layers
JP4734832B2 (ja) 2003-05-14 2011-07-27 ナガセケムテックス株式会社 光素子用封止材
DE102004006612A1 (de) * 2004-02-10 2005-08-25 Degussa Ag Keramischer Wandverkleidungsverbund
JP4963781B2 (ja) * 2004-02-25 2012-06-27 リンテック株式会社 ポリシルセスキオキサングラフト共重合体の製造方法、粘着剤および粘着シート
JP2005263869A (ja) 2004-03-16 2005-09-29 Nagase Chemtex Corp 光半導体封止用樹脂組成物
JP2006073950A (ja) * 2004-09-06 2006-03-16 Kansai Electric Power Co Inc:The 高耐熱半導体装置
JP2006328231A (ja) 2005-05-26 2006-12-07 Nagase Chemtex Corp 光素子用封止樹脂組成物
US8299198B2 (en) * 2006-07-21 2012-10-30 Kaneka Corporation Polysiloxane composition, molded body obtained from the same, and optodevice member
US8399592B2 (en) * 2007-04-17 2013-03-19 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
JP2008285503A (ja) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp 防汚コーティング液
US8426112B2 (en) * 2007-09-11 2013-04-23 Nissan Chemical Industries, Ltd. Resist underlayer film forming composition containing polymer having nitrogen-containing silyl group
CN102007165B (zh) * 2008-02-14 2016-04-13 琳得科株式会社 由聚有机硅氧烷化合物构成的成型材料、密封材料及光元件密封体
TWI443167B (zh) * 2008-02-19 2014-07-01 Lintec Corp And a polyorganosiloxane compound as a main component
JP5526823B2 (ja) * 2009-02-24 2014-06-18 信越化学工業株式会社 シリコーン樹脂で封止された光半導体装置
JP5549124B2 (ja) * 2009-06-16 2014-07-16 Jsr株式会社 ポジ型感放射線性組成物、層間絶縁膜及びその形成方法
JP4964928B2 (ja) * 2009-09-15 2012-07-04 信越化学工業株式会社 アンダーフィル材組成物及び光半導体装置
TWI504681B (zh) * 2010-03-08 2015-10-21 Lintec Corp A hardening composition, a hardened product, and a hardening composition
KR20110132521A (ko) * 2010-06-02 2011-12-08 신에쓰 가가꾸 고교 가부시끼가이샤 우레이도 실란 화합물 및 실온 경화성 오가노폴리실록산 조성물
JP2012111850A (ja) * 2010-11-25 2012-06-14 Yokohama Rubber Co Ltd:The シリコーン樹脂組成物、ならびに、これを用いて得られるシリコーン樹脂含有構造体および光半導体素子封止体
US20130295374A1 (en) * 2010-12-02 2013-11-07 Jie Tang Graphene sheet film connected with carbon nanotubes, method for producing same, and graphene sheet capacitor using same
JP5472166B2 (ja) * 2011-03-15 2014-04-16 Jsr株式会社 硬化性組成物、トレンチ埋め込み方法、硬化膜および半導体発光素子
JP5914991B2 (ja) * 2011-06-01 2016-05-11 横浜ゴム株式会社 加熱硬化性シリコーン樹脂組成物
KR101867459B1 (ko) * 2011-07-04 2018-06-14 제이엔씨 주식회사 이소시아눌 골격, 에폭시기 및 SiH기를 가지는 오르가노 폴리실록산 또는 실세스퀴옥산 골격을 포함하는 화합물 및 상기 화합물을 밀착 부여재로서 포함하는 열경화성 수지 조성물, 경화물, 및 광 반도체용 봉지재
JP5991523B2 (ja) * 2011-08-25 2016-09-14 セメダイン株式会社 常温湿気硬化性接着剤組成物
JP6036054B2 (ja) * 2012-03-22 2016-11-30 日立化成株式会社 半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置
TW201400572A (zh) * 2012-03-23 2014-01-01 Lintec Corp 硬化性組合物、硬化物以及硬化性組合物之使用方法
WO2013147090A1 (ja) * 2012-03-29 2013-10-03 リンテック株式会社 ガスバリア性積層体、その製造方法、電子デバイス用部材及び電子デバイス
US20140187732A1 (en) * 2013-01-02 2014-07-03 PosiBond LLC Grout and mortar compositions
MY173820A (en) * 2013-02-28 2020-02-24 Lintec Corp Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
JP6361624B2 (ja) * 2014-10-17 2018-07-25 信越化学工業株式会社 活性エネルギー線硬化型シリコーンコーティング組成物及び被覆物品
JP7119359B2 (ja) * 2017-11-30 2022-08-17 ブラザー工業株式会社 液体吐出装置

Also Published As

Publication number Publication date
KR20160058788A (ko) 2016-05-25
TW201522510A (zh) 2015-06-16
US9540490B2 (en) 2017-01-10
TWI664237B (zh) 2019-07-01
US20160229961A1 (en) 2016-08-11
MY176313A (en) 2020-07-28
JPWO2015041341A1 (ja) 2017-03-02
KR102213302B1 (ko) 2021-02-05
EP3034560A1 (en) 2016-06-22
CN105531324A (zh) 2016-04-27
TWI663214B (zh) 2019-06-21
EP3034560A4 (en) 2017-04-05
WO2015041341A1 (ja) 2015-03-26
CN105531324B (zh) 2018-09-21
TW201922933A (zh) 2019-06-16

Similar Documents

Publication Publication Date Title
JP6761491B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
JP5744221B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
KR102672356B1 (ko) 경화성 조성물, 경화성 조성물의 제조 방법, 경화물, 경화성 조성물의 사용 방법, 및 광 디바이스
JP5940456B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
JP6046898B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
KR102105811B1 (ko) 경화성 조성물, 경화물, 경화성 조성물의 사용 방법, 그리고, 광 소자 밀봉체 및 그 제조 방법
JP5981668B2 (ja) 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物、及び、硬化性組成物等の使用方法
JP6430388B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2015041339A1 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
JP6062120B2 (ja) 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2015041344A1 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2015041343A1 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2015041340A1 (ja) シラン化合物重合体、硬化性組成物、硬化物および硬化性組成物の使用方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181031

R150 Certificate of patent or registration of utility model

Ref document number: 6430388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250