JP6420932B1 - 光学式濃度測定装置および光学式濃度測定装置の製造方法 - Google Patents

光学式濃度測定装置および光学式濃度測定装置の製造方法 Download PDF

Info

Publication number
JP6420932B1
JP6420932B1 JP2018506629A JP2018506629A JP6420932B1 JP 6420932 B1 JP6420932 B1 JP 6420932B1 JP 2018506629 A JP2018506629 A JP 2018506629A JP 2018506629 A JP2018506629 A JP 2018506629A JP 6420932 B1 JP6420932 B1 JP 6420932B1
Authority
JP
Japan
Prior art keywords
core layer
thickness
film
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018506629A
Other languages
English (en)
Other versions
JPWO2018179752A1 (ja
Inventor
敏郎 坂本
敏郎 坂本
貴明 古屋
貴明 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Application granted granted Critical
Publication of JP6420932B1 publication Critical patent/JP6420932B1/ja
Publication of JPWO2018179752A1 publication Critical patent/JPWO2018179752A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • G02F1/2955Analog deflection from or in an optical waveguide structure] by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12138Sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本発明は、伝搬光のエバネッセント波の染み出し効率および光の取り出し効率の向上を図ることが可能な光導波路、光学式濃度測定装置および光導波路の製造方法を提供することを目的とする。光導波路(10)に備えられたコア層(11)は、第一膜厚を有する第一部分(11a)と、第一膜厚とは異なる第二膜厚を有する第二部分(11b)と、第一部分(11a)と第二部分(11b)との間を接続する第三部分(11c)とを有している。第三部分(11c)は、第一部分(11a)と第二部分(11b)のうち、膜厚が小さい第二部分(11b)側から膜厚が大きい第一部分(11a)側へ向けて膜厚を漸次増加させ、最大傾斜角が10°以上45°以下となるように形成されている。

Description

本発明は、光学式濃度測定装置および光学式濃度測定装置の製造方法に関する。
結晶などで形成された薄膜などの構造体の中を伝搬する光は、構造体を形成する材料の屈折率が、構造体の外部の材料の屈折率よりも大きい場合、構造体の外部との界面で全反射を繰り返しながら進行していく。構造体を伝搬する光は、この界面で全反射するとき、屈折率の小さい外部側に染み出している。この染み出しは、エバネッセント波(図13参照)と呼ばれている。エバネッセント波は、光が伝搬していく過程で構造体に隣接している物質により吸収されうる。このため、構造体を伝搬している光の強度変化から、構造体に接している物質の検出や同定などが可能になる。上述したエバネッセント波の原理を利用した分析法は、全反射吸収分光法(ATR:Attenuated Total Reflection法)と呼ばれ、物質の化学組成分析などに利用されている。伝搬させる光としては赤外線を用いることが一般的である。物質には特定の波長の赤外線を選択的に吸収する特性があるため、被測定物質の吸収スペクトルに合わせた赤外線を伝搬させることで、物質の分析やセンシングを行うことが出来る。
特許文献1には、ATR法をセンサに応用した光導波路型センサが提案されている。この光導波路型センサは、基板の上にコア層を形成して光を通し、エバネッセント波を利用してコア層に接する物質を検出するようになっている。
ATR法を利用したセンサでは、エバネッセント波と被測定物質を干渉させる量を多くさせることによりセンサ感度を向上させることができる。エバネッセント波を増やすには、光が伝搬するコア層の膜厚を薄くすることが求められる。
一方、図13に示したように、ATR法を利用したセンサでは、光源(不図示)からの光Lを光導波路のコア層51に導入する箇所と、光導波路のコア層51から光検出器(不図示)に向けて取り出す箇所が必要になる。そのため、光源と光導波路の間、光検出器と光導波路との間のそれぞれには、光Lの光軸を曲げるために回折格子(グレーティング)が設けられることが多い。その際、回折格子での光の損失が少ないほど、光検出器で検出される信号の強度が大きく取れてセンサとしては感度が上がる。
非特許文献1および特許文献2には、回折格子における光の取り出し効率を向上させるための、回折格子の設計方針が開示されている。非特許文献1には、回折格子を構成するコア層の厚さを、コア層を構成する材料中での光の波長の1/2の整数倍にすることによって、回折格子における光の取り出し効率を上げることが開示されている。このようにコア層の膜厚を設計することによって、コア層表面の凹凸によって直接上方に散乱される光の位相と、下方に散乱されてからコア層の裏面で反射されて戻ってくる光の位相とが揃うため、回折格子における光の取り出し効率が向上する。また、特許文献2には、回折格子の溝周期および溝深さについて、最適値があることが開示されている。回折格子の溝周期を光の伝搬波長の0.4倍とし、溝深さを光の伝搬波長の0.097倍とすることにより、TEモードおよびMTモード共に最も効率良く光の取り出しが行える。
特開2005−300212号公報 特開2011−43699号公報
R.M.Emmons and D.G.Hall,"Buried−Oxide Silicon−on−Insulatores II:Waveguide Grating Couplers", JOURNAL OF QUANTUM ELECTRONICS, Vol.28, NO.1, JANUARY 1992, pp. 164−175.
本発明の目的は、伝搬光のエバネッセント波の染み出し効率および光の取り出し効率の向上を図ることが可能な光学式濃度測定装置および光学式濃度測定装置の製造方法を提供することにある。
記目的を達成するために、本発明の一態様による光学式濃度測定装置は、第一膜厚を有する第一部分、前記第一膜厚とは異なる第二膜厚を有する第二部分、および前記第一部分と前記第二部分との間を接続する第三部分を有し、光を伝搬可能なコア層を有する光導波路と、波長が2μm以上10μm未満の赤外線を前記コア層に入射可能な光源と、前記コア層を伝搬した赤外線を受光可能な検出部と、を備え、前記第一部分は回折格子部を有し、前記第二部分は光伝搬部を有し、前記第三部分は、前記第一部分と前記第二部分のうち、膜厚が小さい側から大きい側へ向けて膜厚を漸次増加させており、前記光伝搬部の膜厚は、前記波長よりも小さく、前記光伝搬部の少なくとも一部は、被測定気体または被測定液体と接触可能である、または、前記波長よりも薄い膜厚の膜を介して被測定気体または被測定液体と接触可能であることを特徴とする。
また、上記目的を達成するために、本発明の一態様による光導波路の製造方法は、熱酸化法により、シリコン層の表面に選択的に酸化膜を形成する第一工程と、エッチングにより前記酸化膜を除去することで、第一膜厚を有する第一部分、前記第一膜厚とは異なる第二膜厚を有する第二部分、および前記第一部分と前記第二部分との間を接続する第三部分を前記シリコン層にコア層を形成する第二工程と、波長が2μm以上10μm未満の赤外線を出射可能な光源を設置する第三工程と、前記コア層を伝搬した赤外線を受光可能な検出部を配置する第四工程とを備え、前記第二工程において、被測定気体または被測定液体と接触可能、または、前記波長よりも薄い膜厚の膜を介して被測定気体または被測定液体と接触可能であり、前記波長よりも膜厚の小さな光伝搬部を前記第二部分に形成し、回折格子部を前記第一部分に形成することを特徴とする。
さらに、上記目的を達成するために、本発明の他の態様による光導波路の製造方法は、エッチングにより、シリコン層に選択的に溝を形成して第一膜厚を有する第一部分および前記第一膜厚とは異なる第二膜厚を有する第二部分を形成する第一工程と、水素雰囲気中で熱処理することにより、前記第一部分と前記第二部分のうち、膜厚が小さい側から大きい側へ向けて前記シリコン層の膜厚を漸次増加させた傾斜構造を有する第三部分を形成して前記シリコン層にコア層を形成する第二工程と、波長が2μm以上10μm未満の赤外線を出射可能な光源を設置する第三工程と、前記コア層を伝搬した赤外線を受光可能な検出部を配置する第四工程とを備え、前記第二工程において、被測定気体または被測定液体と接触可能、または、前記波長よりも薄い膜厚の膜を介して被測定気体または被測定液体と接触可能であり、前記波長よりも膜厚の小さな光伝搬部を前記第二部分に形成し、回折格子部を前記第一部分に形成することを特徴とする。
本発明の各態様によれば、伝搬光のエバネッセント波の染み出し効率および光の取り出し効率の向上を図ることが可能となる。
本発明の一実施形態による光導波路10並びに光学式濃度測定装置1の概略構成と、光学式測定装置1を利用したATR法によるセンシングを示す図である。 本発明の一実施形態による光導波路10を説明する図であって、異なる膜厚領域を持つコア層11の接続部において、コア層11外部への光の漏れを示すシミュレーション結果(その1)である。 本発明の一実施形態による光導波路10を説明する図であって、異なる膜厚領域を持つコア層11の接続部において、コア層11外部への光の漏れを示すシミュレーション結果(その2)である。 本発明の一実施形態による光導波路10を説明する図であって、異なる膜厚領域を持つコア層11の接続部において、接続部の傾斜角とコア層外部への光の漏れ量の関係を示すシミュレーション結果である。 本発明の一実施形態による光導波路10を説明する図であって、異なる膜厚領域を持つコア層11の接続部において、光がコア層11の第二部分11b(薄膜側)からコア層11の第一部分11a(厚膜側)に導入された時の例を示す図である。 バーズビークを説明するための図である。 本発明の一実施形態による光導波路10の第一の製造方法を説明するための図(その1)である。 本発明の一実施形態による光導波路10の第一の製造方法を説明するための図(その2)である。 本発明の一実施形態による光導波路10の第一の製造方法を説明するための図(その3)である。 本発明の一実施形態による光導波路10の第二の製造方法を説明するための図(その1)である。 本発明の一実施形態による光導波路10の第二の製造方法を説明するための図(その2)である。 本発明の一実施形態による光導波路10の第二の製造方法を説明するための図(その3)である。 光導波路を伝搬する光のエバネッセント波を説明するための図である。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
<光導波路>
本発明の一実施形態に係る光導波路は、光を伝搬可能なコア層を備えている。コア層は第一膜厚を有する第一部分と、第一膜厚とは異なる第二膜厚を有する第二部分と、第一部分と第二部分との間を接続する第三部分とを有している。第三部分は、第一部分と第二部分のうち、膜厚が小さい側から大きい側へ向けて膜厚を漸次増加させ、最大傾斜角が10°以上45°以下である。
ここで最大傾斜角は、光導波路を第一部分、第二部分及び第三部分を含む断面で断面視を行い、以下の手順で求める。
まず、第三部分の水平方向の寸法を、第一部分の膜厚と第二部分の膜厚との差の5%〜25%の値で分割する。
次に、分割された各水平区間内における第三部分の縁の形状を一次関数で近似する。一次関数での近似については、ある水平区間内における第三部分の端点同士を線分で結んだものとする。
ここで、各区間の一次関数のうち、水平方向に対して最も傾斜が大きい一次関数の角度を最大傾斜角と定義する。
なお、上述の最大傾斜角の算出方法については、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)を用いた画像解析により算出する事ができる。
例えば、第一部分の膜厚と第二部分の膜厚との差が500nmの場合、第三部分の水平方向の寸法を25nm〜125nm間隔の区間に分割し、分割された各水平区間内における第三部分の縁の形状を一次関数で近似する。そして、各区間の一次関数のうち、水平方向に対して最も傾斜が大きい一次関数の角度を最大傾斜角として算出する。
本発明の実施形態に係る光導波路によれば、最大傾斜角が45°以下である事により、伝搬光のエバネッセント波の染み出し効率と光の取り出し効率が共に優れた光導波路を提供する事が可能となる。すなわち、本発明の実施形態に係る光導波路によれば、伝搬光のエバネッセント波の染み出し効率および光の取り出し効率の向上を図ることが可能になる。
また、第三部分の平均傾斜角は30°以下であってもよい。
ここで平均傾斜角は、光導波路を第一部分、第二部分及び第三部分を含む断面で断面視を行い、以下の手順で求める。
まず、第三部分の縁を形成する線分において、第一部分から膜厚が全体(第一部分の膜厚と第二部分の膜厚との差)の5%変化した点を始点とし、第二部分から膜厚が全体の5%変化した点を終点とする。
次に、前述の始点と終点を線分で結び、この線分の水平方向に対する傾斜角を平均傾斜角と定義する。
例えば、第一部分の膜厚と第二部分の膜厚との差が500nmの場合、第三部分の縁を形成する線分において、第一部分から膜厚が25nm変化した点を始点とし、第二部分から膜厚が25nm変化した点を終点として、始点と終点を線分で結ぶ。その線分の水平方向に対する角度を平均傾斜角として算出する。
なお、上述の平均傾斜角の算出方法については、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)を用いた画像解析により算出する事ができる。
これにより、最大傾斜角が同程度の場合にも、光導波路の光の取り出し効率をさらに向上させる事が可能となる。
以下、光導波路を構成する各構成要件について、具体例を挙げて説明する。
<コア層>
コア層は、光が伝搬可能であれば特に制限されない。具体的には、シリコン(Si)やガリウムひ素(GaAs)等で形成されたコア層が挙げられる。
コア層は、第一膜厚を有する第一部分と、第一膜厚とは異なる第二膜厚を有する第二部分と、第一部分と第二部分との間を接続する第三部分と、を有している。第三部分は、第一部分と第二部分のうち、膜厚が小さい側から大きい側へ向けて膜厚を漸次増加させ、最大傾斜角が10°以上45°以下である。第一膜厚および第二膜厚が異なってさえいれば、第一膜厚と第二膜厚の大小関係は問わない。
第三部分の平均傾斜角は30°以下であってもよい。これにより、最大傾斜角が同程度の場合にも、光導波路の光の取り出し効率をさらに向上させる事が可能となる。
第一部分は回折格子部を有し、第二部分は光伝搬部を有していてもよい。これにより、光が第二部分を伝搬する際のエバネッセント波の染み出し効率と、光を第一部分から取り出す際の取り出し効率とを向上させる事が可能となる。
ここで回折格子部とは、コア層の表面に特定の周期(周期は複数であっても可)で凹凸が形成されている部分を意味する。または、凹部と凸部を含む平面で光導波路を断面視した場合に、凹凸の凹部の溝が深くなり、コア層を切り離す状態であってもよい。その場合は、凸部は不連続で島状に形成されていることになる。
回折格子部は凹部を有している。凹部の深さは、コア層の光伝搬部の膜厚よりも大きくてもよい。その理由は、エバネッセント波を効率的にコア層から染み出させるためには、コア層の光伝搬部は伝搬波長よりも十分に小さいことが好ましいが、回折格子で光を曲げる領域では、波長に近いオーダーの寸法(ここでは溝深さ)で回折格子が形成されていると、効率良く光を回折させることが出来るからである。つまり、回折格子部の凹部の深さをコア層の光伝搬部の膜厚よりも大きくすることは、エバネッセント波を用いたセンサのセンサ感度を向上させることに繋がる。
回折格子部は凹部を有している。凹部の膜厚は、コア層の光伝搬部の膜厚よりも大きくてもよい。その理由は、コア層からエバネッセント波を効率的に染み出させるためには、コア層の光伝搬部は伝搬波長よりも十分に小さいことが好ましいが、回折格子で光を曲げる領域では、波長に近いオーダーの寸法(ここでは凹部膜厚)で回折格子が存在していることで、効率良く光を回折させることが出来るからである。つまり、回折格子部の凹部の膜厚をコア層の光伝搬部の膜厚よりも大きくすることは、エバネッセント波を用いたセンサのセンサ感度を向上させることに繋がる。
回折格子部の平均膜厚は、コア層の光伝搬部の膜厚よりも大きくてもよい。その理由は、コア層からエバネッセント波を効率的に染み出させるためには、コア層の光伝搬部は伝搬波長よりも十分に小さいことが好ましいが、回折格子で光を曲げる領域では、波長に近いオーダーの寸法(ここでは平均膜厚)で回折格子が存在していることで、効率良く光を回折させることが出来るからである。つまり、回折格子部の平均膜厚をコア層の光伝搬部の膜厚よりも大きくすることは、エバネッセント波を用いたセンサのセンサ感度を向上させることに繋がる。
回折格子部は凸部を有している。凸部の膜厚は、コア層の光伝搬部の膜厚よりも大きくてもよい。その理由は、コア層からエバネッセント波を効率的に染み出させるためには、コア層の光伝搬部は伝搬波長よりも十分に小さいことが好ましいが、回折格子で光を曲げる領域では、波長に近いオーダーの寸法(ここでは凸部膜厚)で回折格子が存在していることで、効率良く光を回折させることが出来るからである。つまり、回折格子部の凸部の膜厚を光伝搬部の膜厚よりも大きくすることは、エバネッセント波を用いたセンサのセンサ感度を向上させることに繋がる。
コア層は単結晶で形成されることが好ましい。これによりコア層内の結晶欠陥を低減させ、伝搬光のコア層内部での散乱を抑制し、伝搬損失を小さくできる。
また、コア層の少なくとも一部は、被測定気体または被測定液体と接触可能に設けられていてもよい。また、コア層の少なくとも一部は、コア層を伝搬する光の波長よりも薄い膜厚の膜を介して被測定気体または被測定液体と接触可能に設けられていてもよい。これにより、エバネッセント波と被測定気体または被測定液体を干渉させ、被測定気体または被測定液体の濃度を測定することが可能となる。
コア層を伝搬する光はアナログ信号としての赤外線であってもよい。ここでアナログ信号としての赤外線とは、光のエネルギーの変化を0(低レベル)および1(高レベル)の2値で判定するのではなく、光のエネルギーの変化量を扱う信号であることを意味する。これにより、各実施形態に係る光導波路をセンサや分析装置に適用することができる。またこの場合、赤外線の波長は2μm以上10μm以下であってもよい。この波長帯は環境に代表的に浮遊するガス(CO、CO、NO、NO、SO、CH、HO等)が吸収する波長帯である。これにより各実施形態に係る光導波路をガスセンサとして利用することができる。
<基板>
基板は、基板上に支持部及びコア層を形成可能であれば特に制限されない。具体的には、シリコン基板やGaAs基板等が挙げられる。
<支持部>
支持部は、基板の少なくとも一部とコア層の少なくとも一部とを接続する。支持部は、コア層を伝搬する光に対してコア層よりも屈折率が小さい材料であり、基板及びコア層を接合可能であれば特に制限されない。一例として、支持部の形成材料として、SiO等が挙げられる。
支持部の形成方法の一例としては、SOI(Silicon On Insulator)基板の埋め込み酸化膜(BOX:Buried Oxide)層(SiO層)をエッチングすることで、コア層(Si層)と基板(Si層)をBOX層で支持する構造を形成することができる。
<保護膜>
本発明の一実施形態に係る光導波路は、コア層の表面の少なくとも一部に形成されて膜厚が1nm以上20nm未満であり、屈折率が前記コア層を形成する材料よりも小さい保護膜をさらに備えてもよい。保護膜の膜厚が1nm以上であることで、コア層の表面に自然酸化膜が形成されることを抑制することが可能となる。また、保護膜の膜厚が20nm未満であることで、コア層から染み出すエバネッセント波と周囲の気体または液体との干渉量を大幅に低減させることがない。これにより、コア層から染み出すエバネッセント波と周囲の気体または液体との干渉量を大幅に低減させることなく、コア層の表面状態の変化を防止することが可能となる。
膜厚の下限としては、2nmであってよく、膜厚の上限としては、5nmであってよい。
保護膜として、具体的にはシリコン窒化膜やシリコン酸窒化膜等が挙げられる。保護膜は、単層の膜であってもよく、また複数の膜で有する積層膜であってもよい。
例えばコア層がシリコンで形成される場合、保護膜の材料としてはシリコン窒化膜やシリコン酸化膜、シリコン酸窒化膜であってもよい。窒素を含む膜は酸化を抑制する効果がある。また、シリコン酸化膜、シリコン窒化膜、シリコン酸窒化膜は、シリコンよりも屈折率が十分に小さいためクラッド層の形成材料としても優れている。さらに、特にシリコン窒化膜やシリコン酸窒化膜は、赤外線の吸収も少ない。これにより、コア層の表面に保護膜を形成した場合に、被測定気体または被測定液体の検出感度の低下を抑えられる。
また、保護膜は窒素を含んでいてもよい。これにより、コア層の酸化をより抑制することが可能となる。窒素を含む膜は、単層膜であってもよいし、窒素を含む膜と窒素を含まない膜との積層膜であってもよい。保護膜の窒素含有率が高い程、酸化抑止効果が高くなる。保護膜は、窒素を含む膜の少なくとも一部の領域において、1%以上の窒素含有率をもつ膜であってもよい。
例えばコア層がシリコンで形成される場合、保護膜の材料としてはシリコン窒化膜やシリコン酸化膜、シリコン酸窒化膜であってもよい。窒素を含む膜は酸化を抑制する効果がある。また、シリコン酸化膜、シリコン窒化膜、シリコン酸窒化膜は、シリコンよりも屈折率が十分に小さいためクラッド層の形成材料としても優れている。さらに、特にシリコン窒化膜やシリコン酸窒化膜は、赤外線の吸収も少ない。これにより、コア層の表面に保護膜を形成した場合に、被測定気体または被測定液体の検出感度の低下を抑えられる。
ここで、シリコン等の物質は、空気中に放置した場合、表面にシリコン酸化膜が自然形成されることがある。この自然酸化膜は、膜厚が1nm未満であり、窒素を含まないため、これらの点で本発明における保護膜とは区別される。
保護膜の形成方法としては、熱化学気相成長(CVD:Chemical Vapor Deposition)法による堆積や酸化処理といった方法を用いることが可能である。保護膜は、シリコン窒化膜の場合は熱CVD法による堆積処理を用いて形成することができ、シリコン酸窒化膜の場合はNOやNOを含む雰囲気下での酸化処理によって形成することができる。
<光学式濃度測定装置>
本発明の一実施形態に係る光学式濃度測定装置は、本発明の一実施形態に係る光導波路と、コア層に光を入射可能な光源と、コア層を伝搬した光を受光可能な検出部と、を備える。
以下、光学式濃度測定装置を構成する各構成要件について、具体例を挙げて説明する。
<光源>
光源は、コア層に光を入射可能であれば特に制限されない。ガスの測定に赤外線を用いる場合には光源として、白熱電球やセラミックヒータ、MEMS(Micro Electro Mechanical Systems)ヒータや赤外線LED(Light Emitting Diode)などを用いることができる。また、ガスの測定に紫外線を用いる場合には光源として、水銀ランプや紫外線LEDなどを用いることができる。また、ガスの測定にX線を用いる場合には光源として、電子ビームや電子レーザーなどを用いることができる。
光学式濃度測定装置に備えられる光導波路のコア層を伝搬する光は、アナログ信号としての赤外線であってもよい。ここで、アナログ信号としての赤外線とは、光のエネルギーの変化を0(低レベル)および1(高レベル)の2値で判定するのではなく、光のエネルギーの変化量を扱う信号であることを意味する。これにより、光学式濃度測定装置をセンサや分析装置に適用することができる。またこの場合、赤外線の波長は2μm以上10μm以下であってもよい。この波長帯は環境に代表的に浮遊するガス(CO、CO、NO、NO、SO、CH、HO等)が吸収する波長帯である。これにより本実施形態に係る光学式濃度測定装置をガスセンサとして利用することができる。
<検出部>
検出部は、光導波路のコア層を伝搬した光を受光可能であれば特に制限されない。ガスの測定に赤外線を用いる場合には検出部として、焦電センサ(Pyroelectric sensor)、サーモパイル(Thermopile)あるいはボロメータ(Bolometer)等の熱型赤外線センサや、ダイオードあるいはフォトトランジスタ等の量子型赤外線センサ等を用いることができる。また、ガスの測定に紫外線を用いる場合には検出部として、ダイオードやフォトトランジスタ等の量子型紫外線センサ等を用いることができる。また、ガスの測定にX線を用いる場合には検出部として、各種半導体センサを用いることができる。
<光導波路の製造方法>
本発明の一実施形態に係る光導波路の製造方法は、熱酸化法により、光を伝搬可能なコア層の表面に選択的に酸化膜を形成する第一工程と、エッチングにより酸化膜を除去することで、コア層に膜厚の異なる2つの部分を形成する第二工程とを備える。これにより、簡易なプロセスで、コア層に第一膜厚を有する第一部分と、第一膜厚とは異なる第二膜厚を有する第二部分と、第一部分と第二部分との間を接続する第三部分とを形成する事が可能となる。
また第一工程の前に、コア層の一部をシリコン窒化膜で覆う工程をさらに有していてもよい。シリコン窒化膜に覆われた箇所ではコア層の酸化が妨げられ、覆われていない箇所ではコア層の酸化が進むため、コア層において、酸化膜が形成された箇所と、酸化膜がされていない箇所とでは、コア層の表面に緩やかな傾斜を付けることが出来る。具体的な製造方法については、後述する。
本発明の一実施形態に係る光導波路の第二の製造方法は、エッチングにより、光を伝搬可能なコア層に選択的に溝を形成する第一工程と、水素雰囲気中で熱処理することによりコア層を形成する原子をマイグレーションさせ、溝の底部から溝の頂部(すなわち、溝の谷部から溝の山部)に向かってコア層の膜厚を漸次増加させた傾斜構造を形成する第二工程とを備える。これにより、簡易なプロセスで、コア層に第一膜厚を有する第一部分と、第一膜厚とは異なる第二膜厚を有する第二部分と、第一部分と第二部分との間を接続する第三部分とを形成する事が可能となる。具体的な製造方法については、後述する。
〔実施形態〕
本発明の一実施形態に係る光導波路について、図1から図9を用いて説明する。まず、本実施形態に係る光導波路10および光導波路10を備える光学式濃度測定装置1並びにこれらを用いたATR法による被測定物質の検出方法について図1から図6を用いて説明する。
図1は、本実施形態による光学式濃度測定装置1の概略構成を示す図であるとともに、本実施形態による光導波路10を利用したATR法の概念図でもある。図1に示すように、光学式濃度測定装置1は、濃度などを検出するガスが存在する外部空間2に設置されて使用される。光学式濃度測定装置1は、本実施形態による光導波路10と、光導波路10に備えられたコア層11に光(本実施形態では赤外線IR)を入射可能な光源20と、コア層11を伝搬した赤外線IRを受光可能な光検出器(検出部の一例)40とを備えている。
光導波路10は、基板15と、赤外線IR(光の一例)が伝搬可能なコア層11と、基板15の少なくとも一部とコア層11の少なくとも一部を接続し基板15に対してコア層11を支持する支持部17とを備えている。コア層11および基板15は例えばシリコン(Si)で形成され、支持部17は例えば二酸化ケイ素(SiO)で形成されている。基板15および支持部17は例えば板状を有している。
コア層11は、第一膜厚を有する第一部分11aと、第一膜厚とは異なる第二膜厚を有する第二部分11bと、第一部分11aと第二部分11bとの間を接続する第三部分11cとを有している。第一部分11aは、コア層11の両端のそれぞれからコア層11の長手方向の中心に向かう一定の領域である第一領域に設けられている。第一部分11aは、コア層11の2箇所に設けられている。第二部分11bは、コア層11の長手方向の中心から両端部に向かう一定の領域である第二領域に設けられている。第二部分11bは、コア層11の1箇所に設けられている。第三部分11cは、第一領域および第二領域の間の一定の領域である第三領域に設けられている。第三部分11cもコア層11の2箇所に設けられている。詳細は後述するが、第三部分11cは、第一部分11aと第二部分11bのうち、膜厚が小さい側(本実施形態では第二部分11b側)から大きい側(第一部分11a側)へ向けて膜厚を漸次増加させ、最大傾斜角が10°以上45°以下となるように形成されている。また、第三部分11cは、平均傾斜角が30°以下に形成されている。
光導波路10は、コア層11の長手方向の一端部に形成されたグレーティングカプラ(回折格子部の一例)118と、コア層11の長手方向の他端部に形成されたグレーティングカプラ(回折格子部の一例)119とを有している。グレーティングカプラ118は、光源20の下方に配置されている。グレーティングカプラ118は、光源20から入射する赤外線IRをコア層11を伝搬する赤外線IRに結合するようになっている。グレーティングカプラ119は、光検出器40の下方に配置されている。グレーティングカプラ119は、コア層11を伝搬する赤外線IRを取り出して光検出器40に向けて出射するようになっている。
このように、光源20側(光入射側)に配置される第一部分11aは、グレーティングカプラ118を有し、光検出器40側(光出射側)に配置される第一部分11aは、グレーティングカプラ119を有している。また、第二部分11bは、グレーティングカプラ118から入射してグレーティングカプラ119から出射される赤外線IRが伝搬する光伝搬部を有している。コア層11から染み出すエバネッセント波EWは主に、光伝搬部を有する第二部分11bにおいて外部空間2に存在する被測定物質に吸収される。
ここで、コア層11についてより詳細に説明する。本実施形態に係る光導波路10を適用したATR法を用いたセンサでは、エバネッセント波を被測定物質と干渉させる領域は、膜厚の薄いコア層を形成して、コア層の周りに染み出すエバネッセント波の量を増やすことが望ましい。一方、光をコア層に導入したり、コア層から取り出したりする場合には、コア層に回折格子を形成する必要があるが、中赤外領域の光を効率良く曲げる場合、回折格子を形成する領域のコア層膜厚や回折格子の溝深さは、ある程度の厚みが必要である。
そこで、図1に示すように、本実施形態に係る光導波路10では、コア層11は、エバネッセント波EWを染み出させて外部空間2に存在する被測定物質と干渉させることを目的とした領域(第二領域)には、膜厚が薄く形成された第二部分11bを有している。一方、コア層11は、光(本実施形態では赤外線IR)を導入することを目的とした領域(第一領域)、および光を取り出すことを目的とした領域(第一領域)には、第二領域の第二部分11bよりも厚く形成された第一部分11aを有している。第一部分11aの表面には、回折格子(グレーティングカプラ118,119)を形成するための溝が掘られている。第二部分11bの膜厚は例えば約250nmであり、第一部分11aの膜厚は例えば約750nmである。また、グレーティングカプラ118,119の溝深さは、例えば約400nmである。
コア層11は、第一領域および第二領域の間の領域である第三領域に、第三部分11cを有している。第三部分11cは、第一部分11aと第二部分11bを接続する接続部としての機能を発揮するようになっている。第三部分11cは、第二部分11bが設けられた第二領域から第一部分11aが設けられた第一領域に向かって、膜厚が緩やかな傾斜をもって厚くなっていてもよい。また、コア層11の表面は、グレーティングカプラ118,119の溝が形成されている箇所を除き、膜厚傾斜がある領域も含めて可能な限りラフネスが小さくてもよい。コア層11の表面に急峻な膜厚変化がある場合、膜厚の厚い領域から膜厚の薄い領域に光が伝搬する時に、コア層11から外部に漏れ出ていく光が多くなる。
ここで、膜厚が変化する部分でのコア層から外部に漏れ出る光について図2および図3を用いて説明する。図2および図3は、波長4.26μmの赤外線を、膜厚750nmのコア層から膜厚250nmのコア層に伝搬させた時のシミュレーション結果である。図2中上段および図3中上段には、シミュレーションに用いたコア層の概略形状が図示され、図2中下段及び図3中下段には、コア層を伝搬する赤外線の状態が図示されている。図2中下段および図3中下段に示す図では、図中、右から左に向かって赤外線をコア層に伝搬させた状態が示されている。図2は、膜厚傾斜のある接続部(第三部分11c)の水平距離を500nmとし、膜厚250nmの第二部分11bから膜厚750nmの第一部分11aにかけてサイン波で接続した場合の結果を示す図である。第三部分11cの最大傾斜角は、約58°であり、平均傾斜角は45°である。図3は、接続部(第三部分11c)の水平距離を2000nmとし、膜厚250nmの第二部分11bから膜厚750nmの第一部分11aにかけてサイン波で接続した場合の結果を示す図である。第三部分11cの最大傾斜角は21°であり、平均傾斜角は14°である。
図2および図3を比較すると、コア層の外部に漏れ出ていく光の量は、第三部分11cにおいて急峻な膜厚変化が起こり傾斜角の大きい図2に示す状態の方が多いことがわかる。
次に、接続部(第三部分11c)の形状をサイン波形状から1次関数形状に徐々に変化させることで最大傾斜角と平均傾斜角を変化させ、様々な傾斜角において、コア層外部に漏れ出る光の割合(図4の説明では「漏れ光割合」と称する場合がある)を調査したシミュレーション結果を図4に示す。横軸は接続部の最大傾斜角(°)を示し、縦軸は漏れ光割合(%)を示している。図4中に示す◇印は、接続部の平均傾斜角が45°での漏れ光割合を表し、図4中に示す□印は、接続部の平均傾斜角が27°での漏れ光割合を表している。図4中に示す△印は、接続部の平均傾斜角が18°での漏れ光割合を表し、図4中に示す×印は、接続部の平均傾斜角が14°での漏れ光割合を表し、図4中に示す*印は、接続部の平均傾斜角が11°での漏れ光割合を表している。平均傾斜角のそれぞれにおいて、漏れ光割合の結果が5個表されている。図4では、同じ平均傾斜角同士では、5個の漏れ光割合の結果のうち、右側にあるほどサイン波形状に近く、左側にあるほど1次関数形状に近いものとなっている。なお、1番右側はサイン波形状と等しく、1番左側は1次関数形状と等しい。
図4より分かるように、コア層の外部に漏れ出ていく光の割合は、異なる膜厚間の接続部の最大傾斜角にほぼ依存し、最大傾斜角が45°以下になる領域から減少していく。また、最大傾斜角は10°まで小さくすることで、外部に漏れ出る光量が1%以下になり、膜厚傾斜部での漏れの影響をほとんど無くすことが出来る。接続部の傾斜を緩やかにし過ぎると、第一部分11aおよび第二部分11bの膜厚差をつけるために必要なスペース(長さ)が多く必要になるため、最大傾斜角が10°未満の状態は逆に好ましくない。
また、平均傾斜角の影響もある。最大傾斜角が45°以下の領域において、同程度の最大傾斜角同士の点を比べる平均傾斜角が小さい方が、コア層外部に漏れ出る光の割合が小さくなる。この効果は平均傾斜角が30°以下の時に見られてくる。
次に、コア層の膜厚の薄い領域から膜厚の厚い領域に光を伝搬させ、その先にグレーティングカプラが形成されている系や、コア層が終端されている系について考える。図5に示すように、グレーティングカプラ119では、光(赤外線IR)を様々な方向に散乱させるため、例えば領域α1において、必ず逆方向に伝搬する反射光RLが存在している。また、コア層11の終端部(領域α2)でも反射光RLは必ず発生する。このとき、これらの反射光RLは、コア層11の膜厚の厚い領域(第一部分11a)から膜厚の薄い領域(第二部分11b)に向かって伝搬することになるため、最大傾斜角が急峻であると、第一部分11aから第二部分11bに赤外線IRを伝搬させるときと同様に、外部に漏れ出ていく量が増えてしまう。したがって、膜厚の異なるコア層11を接続する領域では、最大傾斜角を10°以上45°以下としてよく、平均傾斜角を30°以下としてもよい。
一方、コア層11の表面のラフネスも非常に重要である。コア層11の表面にラフネスの大きい領域があると、コア層11を伝搬する赤外線IRが乱反射してコア層11の外に漏れ出てしまうためである。詳細は後述するが、本実施形態では、第三部分11cの形成に、図6に示すような、熱酸化時に形成されるいわゆるバーズビークや、後述する図12に示すような、水素雰囲気中での原子のマイグレーションを利用している。このため、第三部分11cにおいて、非常に緩やかな傾斜を持たせながら、表面ラフネスの小さい表面を実現することが出来る。第三部分11cの最大角度は10°以上45°以下であってよく、10°以上30°以下であってもよい。また、第三部分11cの平均傾斜角は30°以下であってもよい。さらに、コア層11は結晶欠陥の少ない単結晶であってもよい。結晶欠陥の少ない単結晶であることで、コア層11の内部での伝搬光の散乱が抑えられ、コア層11の伝搬損失を小さく出来る。
以上説明したように、コア層11の表面に最大傾斜角が10°以上45°以下の傾斜をつけ、第二部分11bに対して第一部分11aの膜厚を厚く形成することで、コア層11の外部に期待せずに漏れ出ていく光を抑制し、ATR法によるセンサの性能を向上させることが出来る。
ところで、ATR法を用いた従来の光導波路を備える光学式濃度測定装置は、本実施形態による光学式濃度測定装置1と同様に、一方のグレーティングカプラから赤外線を光導波路のコア層に導入し、コア層を伝搬させて、もう一方のグレーティングカプラ側から取り出し、その先にある光検出器で赤外線の量を検出するという構成を有している。ATR法を用いたセンサでは中赤外領域の波長を取り扱うことが多く、中赤外領域の赤外線に対しては、エバネッセント波を染み出させることを目的としたコア層と、回折格子により光を取り出すことを目的としたコア層とでは、最適なコア層膜厚が大きく異なる。
具体的には、例えばシリコンをコア層として用いる光導波路では、エバネッセント波を効率的に染み出させるために、コア層の膜厚を200nm程度に薄く形成することがある。一方、膜厚200nmは、中赤外領域の赤外線を効率よく取り出すための回折格子の膜厚としては薄すぎる。例えばシリコンコア層の屈折率が3.4とし、コア層を伝搬させる赤外線の波長が4μmの場合、非特許文献1に記載の方法で回折格子を設計すると、回折格子を形成する領域のコア層の膜厚は約590nmが最適膜厚となる。膜厚590nmは、エバネッセント波を効率的に染み出させるコア層膜厚と大きく異なる。すなわち、エバネッセント波を染み出させることを目的とした薄膜のコア層に、そのまま回折格子を形成すると、光の取り出し効率が悪くなってしまう。
また、例えば伝搬させる赤外線の波長が4μmとし、特許文献2に記載の方法で回折格子の溝深さを設計すると、約390nmの溝深さが最適値となる。この値は、上述のとおり、エバネッセント波を効率的に染み出させるためのコア層膜厚である200nmよりも大きくなる。このため、上述の条件では、エバネッセント波を染み出させることを目的とした薄膜のコア層に、光取り出し効率が最適となる溝深さの回折格子を形成することが出来ない。
上述の2つのいずれの例においても、エバネッセント波を染み出させることを目的とした薄膜のコア層に、光取り出し効率が最適となる回折格子を形成することができないという問題がある。一方、光取り出し効率が最適となる回折格子が形成できるコア層では、エバネッセント波を効率的に染み出させることができないという問題がある。このように、従来の光導波路では、エバネッセント波の染み出し効率と、回折格子の光取り出し効率とはトレードオフの関係にあり、両立させることが困難であるという問題がある。
これに対し、本実施形態による光導波路10は、赤外線IRの伝搬に適した膜厚を有する第二部分11bと、赤外線IRの取り出しに適した溝深さのグレーティングカプラ119が形成可能な膜厚の第一部分11aと、第一部分11aおよび第二部分11bの間を低損失に光を伝搬可能に調整された第三部分11cとを有するコア層11を備えている。これにより、光導波路10は、従来の光導波路の上記問題を解決し、伝搬光のエバネッセント波の染み出し効率および光の取り出し効率の向上を図ることが可能となる。
<光導波路および光学式濃度測定装置の第一の製造方法>
次に、本実施形態に係る光導波路および光学式濃度測定装置の第一の製造方法について、図1を参照しつつ、図7から図9を用いて説明する。図7から図9は、光導波路10の製造工程断面図を示している。光導波路10は、1枚の支持基板150に同時に複数の光導波路主要部を形成した後に個片化して製造される。図7から図9では、形成される複数の光導波路のうちの1つの光導波路のみの製造工程が図示されている。
まず、シリコンで形成され最終的に基板15となる支持基板150と、シリコンで形成されコア層11が形成される活性基板110のいずれか一方、または両方にSiO膜を形成し、このSiO膜を挟むようにして支持基板150および活性基板110を貼り合わせて熱処理して結合する。その後、活性基板110を所定の厚さまで研削・研磨するなどして活性基板110の膜厚を調整する。これにより、図7に示すように、支持基板150と、支持基板150上に形成されたBOX層170と、BOX層170上に形成された活性基板110とを有し、「シリコン−絶縁層−シリコン」構造を有するSOI基板100が形成される。
次に、SOI基板100の表面に酸化膜60を形成し、酸化膜60の表面にシリコン窒化膜を形成する。次に、酸化膜60上に形成されたシリコン窒化膜に対して、リソグラフィ技術、エッチング技術およびアッシング技術を施して、図7に示すように、ハードマスク80を形成する。ハードマスク80が形成される領域は、最終的にコア層11の第一部分11aおよび第三部分11cの一部が形成される第一領域および第三領域の一部(図1参照)に相当する。ハードマスク80を開口させて酸化膜60が露出している領域は、最終的にコア層11の第二部分11bおよび第三部分11cの一部が形成される第二領域および第三領域の一部(図1参照)に相当する。
次に、図8に示すように、例えば800℃以上の水蒸気を含む酸素雰囲気下で、ハードマスク80が形成されたSOI基板100を熱酸化する。このとき、最終的に第一部分11aが形成される第一領域と最終的に第二部分11bが形成される第二領域の接続部にあたり最終的に第三部分11cが形成される第三領域(図1参照)にバーズビーク65が形成される。バーズビーク65の形状は、ハードマスク80として用いるシリコン窒化膜の膜厚によってある程度、制御できる。当該シリコン窒化膜の膜厚を薄くすると、バーズビーク65の底面の傾斜角を緩やかにすることが出来る。
次に、熱リン酸により、ハードマスク80を除去する。その後、フッ酸などを用いて酸化膜60を除去する。このようにして、図9に示すように、SOI基板100のTOPシリコン層の表面、すなわち活性基板110の表面には、最終的に第一部分11aが形成される領域に設けられた第一平坦面110aと、最終的に第二部分11bが形成される領域に設けられた第二平坦面110bと、最終的に第三部分11cが形成される領域に設けられ第一平坦面110aと第二平坦面110bの間で緩やかに傾斜する傾斜面110cとが形成される。
その後、グレーティングカプラ118,119の凹部となる領域のみを開口させたマスク(不図示)を用いてリソグラフィ、エッチングおよびアッシングを行い、SOI基板100のTOPシリコン層の第一平坦面110aにグレーティングカプラ118,119の溝を形成する。
次に、活性基板110に対してリソグラフィ、エッチングおよびアッシングを実施し、BOX層170上に個別化されたコア層11を形成する。
次に、支持基板150を所定領域で切断してSOI基板100を個片化する。これにより、光導波路10(図1参照)が完成する。
さらに、図1に示すように、光導波路10のグレーティングカプラ118に赤外線を入射できるように光源20を設置し、光導波路10のグレーティングカプラ119から出射する赤外線を受光できるように光検出器40を配置することにより、光学式濃度測定装置1が完成する。
なお、コア層11のパターンを先に形成した後に、グレーティングカプラ118,119の溝を形成する製造工程順としても良い。また、SOI基板100の一部を浮かせたいわゆるペデスタル構造のコア層を形成する場合は、コア層11を形成した後に、SOI基板のBOX層170をエッチングする工程を追加してもよい。さらに、コア層11の表面に保護膜を形成してもよい。この保護膜は、窒素を含む膜であってよく、膜厚は1nm以上20nm未満であってもよい。コア層11の表面に保護膜を形成することで、光導波路10の測定感度を保ちながら、自然酸化などによるコア層11の表面の劣化を防止することが出来る。その結果、経年劣化が防止される光導波路10および光学式濃度測定装置1を製造することができる。
<光導波路および光学式濃度測定装置の第二の製造方法>
次に、本実施形態に係る光導波路および光学式濃度測定装置の第二の製造方法について、図1および図9を参照しつつ、図10から図12を用いて説明する。なお、上述の光導波路および光学式濃度測定装置の第一の製造方法と共通する箇所の説明は省略する。図10および図11は、本実施形態に係る光導波路および光学式濃度測定装置の第二の製造方法における光導波路の製造工程断面図を示している。第二の製造方法においても、光導波路は、1枚の支持基板に同時に複数の光導波路主要部を形成した後に個片化して製造される。図10および図11では、形成される複数の光導波路のうちの1つの光導波路のみの製造工程が図示されている。図12は、製造過程における光導波路主要部の断面形状の変化を示しており、活性基板に形成された溝の底部と頂部の境界近傍を示す断面SEM画像である。図12では、理解を容易にするため、SEM画像に写しだされた活性基板の上方の背景の画像の図示が省略されている。
第一の製造方法と同様の方法により形成されたSOI基板100に設けられた活性基板110の最終的にコア層11が形成される領域に、リソグラフィ技術、エッチング技術を用いて図10に示すように、フォトレジストで形成されたレジストマスクRMをマスクとして、活性基板110に溝111を選択的に形成する。溝111の頂部111aは最終的にコア層11の第一部分11aおよび第三部分11cの一部が形成される第一領域および第三領域の一部(図1参照)に相当する。溝111の底部111bは、最終的にコア層11の第二部分11bおよび第三部分11cの一部が形成される第二領域および第三領域の一部(図1参照)に相当する。
次に、アッシング技術によりレジストマスクRMを除去した後、図11に示すように、水素雰囲気中での熱処理を実施し、シリコン原子をマイグレーションさせて、溝111の底部111bから溝111の頂部111aに向かって活性基板110の最終的にコア層11が形成される領域の膜厚を漸次増加させた傾斜構造111cを形成する。すなわち、最終的に第一部分11aが形成される第一領域と最終的に第二部分11bが形成される第二領域との接続部にあたり最終的に第三部分11cが形成される第三領域(図1参照)に緩やかな傾斜が形成される。傾斜構造111cは、溝部111の底部111bと溝部111の頂部111aとの間で緩やかに傾斜する形状を有している。
水素雰囲気中での熱処理は、例えば1100℃の高温で実施する。図12(a)に示すように、水素雰囲気中での熱処理を実施する前では、溝111は、底部111bから頂部111aに向かってシリコン(Si)で形成された活性基板110の膜厚が急激に増加する階段状を有している。一方、図12(b)に示すように、水素雰囲気中での熱処理を実施した後では、溝111は、底部111bから頂部111aに向かって活性基板110の膜厚が漸次増加する傾斜構造111cを有する。これにより、溝111の底部111bと頂部111aとの間に、非常に緩やかな傾斜が形成出来ていることがわかる。
なお、第一の製造方法で示したバーズビークを利用した傾斜形成技術(以下、「第一傾斜形成技術」と称する場合がある)と第二の製造方法で示している水素雰囲気中での熱処理による傾斜の形成技術(以下、「第二傾斜形成技術」と称する場合がある)は、活性基板110に形成したい傾斜高さで使い分けてもよい。第一傾斜形成技術では、活性基板110における傾斜高さが熱酸化法で形成する酸化膜厚に由来する。このため、第一傾斜形成技術は、傾斜高さの均一性を得るのに非常に優れている。その一方で、第一傾斜形成技術は、傾斜高さが高くなるほど形成が難しくなる。例えば活性基板110に1μmの傾斜高さを得るためには、活性基板110上に少なくとも膜厚2μm以上の酸化膜を熱酸化で形成しなければならない。このため、活性基板110上に酸化膜を形成するために、非常に長時間の酸化処理を実施しなければならなくなる。一方、第二傾斜形成技術では、活性基板110における傾斜高さは水素雰囲気中での熱処理前の溝111の深さで制御することができる。このため、第二傾斜形成技術は、第一傾斜形成技術と比較して、活性基板110において高さの高い傾斜を得るのに適している。例えば活性基板110に傾斜高さが1μmの傾斜構造111cを形成する場合、深さ1μmの溝111を形成するエッチングを実施し、その後、10分程度の水素雰囲気中での熱処理を実施すればよい。また、第二傾斜形成技術は、第一傾斜形成技術と比較して、傾斜角度も制御しやすく、より緩やかな傾斜を活性基板110に形成したければ、熱処理時間を長く実施すればよい。しかしながら、溝111を掘るプロセスでのエッチングレートのバラツキにより、傾斜高さの均一性は、第一傾斜形成技術の方が第二傾斜形成技術よりも良くなる。このため、活性基板110に傾斜構造111cを形成する技術は、光導波路および光学式濃度測定装置の用途に合わせて使い分けることが好ましい。
このようにして、SOI基板100のTOPシリコン層の表面、すなわち活性基板110の表面には、最終的に第一部分11aが形成される領域に設けられた第一平坦面110aと、最終的に第二部分11bが形成される領域に設けられた第二平坦面110bと、最終的に第三部分11cが形成される領域に設けられ第一平坦面110aと第二平坦面110bとの間で緩やかに傾斜する傾斜面110cとが形成される。傾斜面110cは、傾斜構造111cの表面である。
その後、グレーティングカプラ118,119(図1参照)の凹部となる領域のみを開口させたマスク(不図示)を用いてリソグラフィ、エッチングおよびアッシングを行い、図9に示すように、SOI基板100のTOPシリコン層の第一平坦面110aにグレーティングカプラ118,119の溝を形成する。
以降は第一の製造方法に示した内容と同様の製造方法により光学式濃度測定装置1が完成する。なお、第二の製造方法においても、コア層11のパターンを先に形成した後に、グレーティングカプラ118,119の溝を形成する製造工程順としても良い。また、SOI基板100の一部を浮かせたいわゆるペデスタル構造のコア層を形成する場合は、コア層を形成した後に、SOI基板100のBOX層170をエッチングする工程を追加してもよい。さらに、コア層11の表面に保護膜を形成してもよい。この保護膜は、窒素を含む膜であってよく、膜厚は1nm以上20nm未満であってもよい。コア層11の表面に保護膜を形成することで、光導波路10の測定感度を保ちながら、自然酸化などによるコア層11の表面の劣化を防止することが出来る。その結果、経年劣化が防止される光導波路10および光学式濃度測定装置1を製造することができる。
以上説明したように、本実施形態による光導波路の製造方法および光学式濃度測定装置の製造方法によれば、特別な製造技術を用いずに、コア層の光伝搬部の膜厚とグレーティングカプラ119を設ける領域の膜厚とを最適化することができる。これにより、本実施形態による光導波路の製造方法および光学式濃度測定装置の製造方法によれば、伝搬光のエバネッセント波の染み出し効率および光の取り出し効率の向上を図ることが可能な光導波路および光学式濃度測定装置を製造することができる。
1 光学式濃度測定装置
2 外部空間
10 光導波路
11,51 コア層
11a 第一部分
11b 第二部分
11c 第三部分
15 基板
17 支持部
20 光源
40 光検出器
60 酸化膜
65 バーズビーク
80 ハードマスク
100 SOI基板
110 活性基板
110a 第一平坦面
110b 第二平坦面
110c 傾斜面
111 溝
111a 頂部
111b 底部
111c 傾斜構造
118,119 グレーティングカプラ
150 支持基板
EW エバネッセント波
IR 赤外線
RL 反射光
RM レジストマスク
α1,α2 領域

Claims (17)

  1. 第一膜厚を有する第一部分、前記第一膜厚とは異なる第二膜厚を有する第二部分、および前記第一部分と前記第二部分との間を接続する第三部分を有し、光を伝搬可能なコア層を有する光導波路と、
    波長が2μm以上10μm未満の赤外線を前記コア層に入射可能な光源と、
    前記コア層を伝搬した赤外線を受光可能な検出部と、
    を備え、
    前記第一部分は回折格子部を有し、
    前記第二部分は光伝搬部を有し、
    前記第三部分は、前記第一部分と前記第二部分のうち、膜厚が小さい側から大きい側へ向けて膜厚を漸次増加させており、
    前記光伝搬部の膜厚は、前記波長よりも小さく、
    前記光伝搬部の少なくとも一部は、被測定気体または被測定液体と接触可能である、または、前記波長よりも薄い膜厚の膜を介して被測定気体または被測定液体と接触可能である
    学式濃度測定装置
  2. 前記第三部分は、漸次増加させた膜厚傾斜の最大傾斜角が10°以上45°以下である
    請求項に記載の光学式濃度測定装置
  3. 前記第三部分は、漸次増加させた膜厚傾斜の平均傾斜角が30°以下である
    請求項またはに記載の光学式濃度測定装置
  4. 前記回折格子部は凹部を有し、
    前記凹部の深さは、前記光伝搬部の膜厚よりも大きい
    請求項からまでの何れか一項に記載の光学式濃度測定装置
  5. 前記回折格子部は凹部を有し、
    前記凹部の膜厚は、前記光伝搬部の膜厚よりも大きい
    請求項からまでの何れか一項に記載の光学式濃度測定装置
  6. 前記回折格子部の平均膜厚は、前記光伝搬部の膜厚よりも大きい
    請求項からまでの何れか一項に記載の光学式濃度測定装置
  7. 前記回折格子部は凸部を有し、
    前記凸部の膜厚は、前記光伝搬部の膜厚よりも大きい
    請求項からまでの何れか一項に記載の光学式濃度測定装置
  8. 前記コア層は単結晶で形成される
    請求項1からまでのいずれか一項に記載の光学式濃度測定装置
  9. 前記コア層の表面の少なくとも一部に形成され、膜厚が1nm以上20nm未満であり、前記コア層よりも屈折率が小さい保護膜を備える
    請求項1からまでの何れか一項に記載の光学式濃度測定装置
  10. 前記保護膜はシリコン窒化膜またはシリコン酸窒化膜である
    請求項に記載の光学式濃度測定装置
  11. 前記薄い膜厚の膜は、前記保護膜又は自然酸化膜である
    請求項9又は10に記載の光学式濃度測定装置。
  12. 前記コア層を伝搬する光はアナログ信号としての赤外線である
    請求項1から請求項11までの何れか一項に記載の光学式濃度測定装置
  13. 前記回折格子部は、前記光源と対向する第1の回折格子部を有する
    請求項1から請求項12までの何れか一項に記載の光学式濃度測定装置。
  14. 前記回折格子部は、前記検出部と対向する第2の回折格子部を有する
    請求項1から請求項13までの何れか一項に記載の光学式濃度測定装置。
  15. 熱酸化法により、シリコン層の表面に選択的に酸化膜を形成する第一工程と、
    エッチングにより前記酸化膜を除去することで、第一膜厚を有する第一部分、前記第一膜厚とは異なる第二膜厚を有する第二部分、および前記第一部分と前記第二部分との間を接続する第三部分を前記シリコン層にコア層を形成する第二工程と、
    波長が2μm以上10μm未満の赤外線を出射可能な光源を設置する第三工程と、
    前記コア層を伝搬した赤外線を受光可能な検出部を配置する第四工程と
    を備え
    前記第二工程において、被測定気体または被測定液体と接触可能、または、前記波長よりも薄い膜厚の膜を介して被測定気体または被測定液体と接触可能であり、前記波長よりも膜厚の小さな光伝搬部を前記第二部分に形成し、回折格子部を前記第一部分に形成する
    学式濃度測定装置の製造方法。
  16. 前記第一工程の前に、前記シリコン層の一部をシリコン窒化膜で覆う工程をさらに有する
    請求項15に記載の光学式濃度測定装置の製造方法。
  17. エッチングにより、シリコン層に選択的に溝を形成して第一膜厚を有する第一部分および前記第一膜厚とは異なる第二膜厚を有する第二部分を形成する第一工程と、
    水素雰囲気中で熱処理することにより、前記第一部分と前記第二部分のうち、膜厚が小さい側から大きい側へ向けて前記シリコン層の膜厚を漸次増加させた傾斜構造を有する第三部分を形成して前記シリコン層にコア層を形成する第二工程と、
    波長が2μm以上10μm未満の赤外線を出射可能な光源を設置する第三工程と、
    前記コア層を伝搬した赤外線を受光可能な検出部を配置する第四工程と
    を備え
    前記第二工程において、被測定気体または被測定液体と接触可能、または、前記波長よりも薄い膜厚の膜を介して被測定気体または被測定液体と接触可能であり、前記波長よりも膜厚の小さな光伝搬部を前記第二部分に形成し、回折格子部を前記第一部分に形成する
    学式濃度測定装置の製造方法。
JP2018506629A 2017-03-30 2018-01-25 光学式濃度測定装置および光学式濃度測定装置の製造方法 Active JP6420932B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017068957 2017-03-30
JP2017068957 2017-03-30
PCT/JP2018/002281 WO2018179752A1 (ja) 2017-03-30 2018-01-25 光導波路、光学式濃度測定装置および光導波路の製造方法

Publications (2)

Publication Number Publication Date
JP6420932B1 true JP6420932B1 (ja) 2018-11-07
JPWO2018179752A1 JPWO2018179752A1 (ja) 2019-04-04

Family

ID=63677331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018506629A Active JP6420932B1 (ja) 2017-03-30 2018-01-25 光学式濃度測定装置および光学式濃度測定装置の製造方法

Country Status (3)

Country Link
US (1) US11353399B2 (ja)
JP (1) JP6420932B1 (ja)
WO (1) WO2018179752A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160047A (ja) * 2019-03-25 2020-10-01 旭化成エレクトロニクス株式会社 光学式濃度測定装置および光導波路

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11892438B2 (en) * 2019-12-12 2024-02-06 Asahi Kasei Microdevices Corporation Optical densitometer and optical waveguide
US11243350B2 (en) 2020-03-12 2022-02-08 Globalfoundries U.S. Inc. Photonic devices integrated with reflectors
CN111883643B (zh) * 2020-07-23 2021-04-09 中国科学院上海微系统与信息技术研究所 一种可集成式中红外光探测器及其制备方法
JP2022053491A (ja) 2020-09-24 2022-04-05 旭化成エレクトロニクス株式会社 光学式化学分析装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135887A (ja) * 1999-11-01 2001-05-18 Hitachi Ltd 光半導体装置及び光伝送システム
JP2005070557A (ja) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd スポットサイズ変換器およびその製造方法
JP2005274208A (ja) * 2004-03-23 2005-10-06 Nippon Telegr & Teleph Corp <Ntt> 導波路型光源
JP2005300212A (ja) * 2004-04-07 2005-10-27 Nippon Telegr & Teleph Corp <Ntt> 光導波路型センサ及びその製造方法
JP2005331614A (ja) * 2004-05-18 2005-12-02 Nippon Telegr & Teleph Corp <Ntt> 導波路型光センサ
JP2006508398A (ja) * 2002-11-27 2006-03-09 ゼネラル・エレクトリック・カンパニイ 三次元相互接続のための光ビア
JP2006171078A (ja) * 2004-12-13 2006-06-29 Hitachi Cable Ltd 3次元テーパ構造を有するデバイスの製造方法
WO2008066160A1 (fr) * 2006-12-01 2008-06-05 Nec Corporation Convertisseur optique et procédé de fabrication afférent
WO2008111447A1 (ja) * 2007-03-14 2008-09-18 Nec Corporation 光導波路及びその製造方法
JP2011197453A (ja) * 2010-03-19 2011-10-06 Furukawa Electric Co Ltd:The 半導体光導波路素子、半導体光導波路アレイ素子、およびその製造方法
JP2013250193A (ja) * 2012-06-01 2013-12-12 Nippon Telegr & Teleph Corp <Ntt> 光導波路及び分析素子
JP2015084081A (ja) * 2013-09-20 2015-04-30 沖電気工業株式会社 光素子の製造方法及び光素子
US20150309261A1 (en) * 2014-04-29 2015-10-29 Corning Optical Communications LLC Grating-coupler assembly with small mode-field diameter for photonic-integrated-circuit systems

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69514867D1 (de) * 1994-06-10 2000-03-09 Ceramoptec Gmbh Verfahren zur Herstellung Mikroporöse Siliziumdioxyd-Faser mit Siliziumdioxyd Mantel
JP3236199B2 (ja) 1995-08-25 2001-12-10 日本電気株式会社 平面光導波路型バイオケミカルセンサ
JP4025538B2 (ja) 2001-11-30 2007-12-19 日本電気株式会社 光導波路基板
JP2005062298A (ja) 2003-08-08 2005-03-10 Sony Corp 光導波路及びその製造方法、並びに光情報処理装置
JP4679582B2 (ja) 2005-08-29 2011-04-27 三井化学株式会社 光導波路フィルムとその製造方法、それを含む光電気混載フィルムおよび電子機器
JP2010271369A (ja) 2009-05-19 2010-12-02 Hitachi Chem Co Ltd フレキシブル光導波路
JP5317198B2 (ja) 2009-08-21 2013-10-16 国立大学法人東京工業大学 グレーティング結合器
US10451520B2 (en) * 2012-08-31 2019-10-22 Nec Corporation Optical probe, inspection device, and inspection method
US9239432B2 (en) * 2013-03-14 2016-01-19 Micron Technology, Inc. Photonics grating coupler and method of manufacture
US10215692B2 (en) * 2014-10-16 2019-02-26 Agency For Science, Technology And Research Optical waveguide structure and optical gas sensor, and methods of fabrication thereof
JP6379245B1 (ja) * 2017-03-16 2018-08-22 沖電気工業株式会社 光導波路素子及び受信回路

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135887A (ja) * 1999-11-01 2001-05-18 Hitachi Ltd 光半導体装置及び光伝送システム
JP2006508398A (ja) * 2002-11-27 2006-03-09 ゼネラル・エレクトリック・カンパニイ 三次元相互接続のための光ビア
JP2005070557A (ja) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd スポットサイズ変換器およびその製造方法
JP2005274208A (ja) * 2004-03-23 2005-10-06 Nippon Telegr & Teleph Corp <Ntt> 導波路型光源
JP2005300212A (ja) * 2004-04-07 2005-10-27 Nippon Telegr & Teleph Corp <Ntt> 光導波路型センサ及びその製造方法
JP2005331614A (ja) * 2004-05-18 2005-12-02 Nippon Telegr & Teleph Corp <Ntt> 導波路型光センサ
JP2006171078A (ja) * 2004-12-13 2006-06-29 Hitachi Cable Ltd 3次元テーパ構造を有するデバイスの製造方法
WO2008066160A1 (fr) * 2006-12-01 2008-06-05 Nec Corporation Convertisseur optique et procédé de fabrication afférent
WO2008111447A1 (ja) * 2007-03-14 2008-09-18 Nec Corporation 光導波路及びその製造方法
JP2011197453A (ja) * 2010-03-19 2011-10-06 Furukawa Electric Co Ltd:The 半導体光導波路素子、半導体光導波路アレイ素子、およびその製造方法
JP2013250193A (ja) * 2012-06-01 2013-12-12 Nippon Telegr & Teleph Corp <Ntt> 光導波路及び分析素子
JP2015084081A (ja) * 2013-09-20 2015-04-30 沖電気工業株式会社 光素子の製造方法及び光素子
US20150309261A1 (en) * 2014-04-29 2015-10-29 Corning Optical Communications LLC Grating-coupler assembly with small mode-field diameter for photonic-integrated-circuit systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EMMONS, ROBERT AND HALL, DENNIS: "Buried-Oxide Silicon-on-Insulator Structures II: Waveguide Grating Couplers", IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 28, no. 1, JPN6018014031, January 1992 (1992-01-01), US, pages 164 - 175, ISSN: 0003780521 *
HATTASAN ET AL.: "High-Efficiency SOI Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrar", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 24, no. 17, JPN6018014036, 1 September 2012 (2012-09-01), US, pages 1536 - 1538, XP055542311, ISSN: 0003780522, DOI: 10.1109/LPT.2012.2208452 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160047A (ja) * 2019-03-25 2020-10-01 旭化成エレクトロニクス株式会社 光学式濃度測定装置および光導波路
JP7409881B2 (ja) 2019-03-25 2024-01-09 旭化成エレクトロニクス株式会社 光学式濃度測定装置および光導波路

Also Published As

Publication number Publication date
US11353399B2 (en) 2022-06-07
WO2018179752A1 (ja) 2018-10-04
JPWO2018179752A1 (ja) 2019-04-04
US20200116631A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP6420932B1 (ja) 光学式濃度測定装置および光学式濃度測定装置の製造方法
JP6530521B2 (ja) 光導波路及び光学式濃度測定装置
JP5187344B2 (ja) 光導波路型センサ
US11313797B2 (en) Optical waveguide and optical concentration measuring apparatus
US11686679B2 (en) Optical waveguide and optical concentration measuring apparatus wherein evanescent wave interacts with gas or liquid through the protection film of the waveguide
JP2005300212A (ja) 光導波路型センサ及びその製造方法
JP6348242B1 (ja) 光導波路及び光学式濃度測定装置
JP2005061904A (ja) 光導波路型センサ
US20210181103A1 (en) Optical densitometer and optical waveguide
JP7161363B2 (ja) 光導波路および光学式濃度測定装置
JP6640403B1 (ja) 光導波路及び光学式濃度測定装置
JP6733062B2 (ja) 光導波路及び光学式濃度測定装置
JP7179549B2 (ja) 光導波路、光学式濃度測定装置、および製造方法
Song et al. A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip
JP6744851B2 (ja) 光導波路及び光学式濃度測定装置
US11280729B2 (en) Optical density measuring apparatus and optical waveguide
JP2021096227A (ja) 光学式濃度測定装置および光導波路
JP6815438B2 (ja) 光導波路及び光学式濃度測定装置
JP4654901B2 (ja) 光導波路型デバイス、温度計測装置および温度計測方法
JP7409881B2 (ja) 光学式濃度測定装置および光導波路
US11549885B2 (en) Optical chemical analysis apparatus
Dupont Low loss Silicon Nitride Waveguides for Photonic Integrated Circuits
JP2021096228A (ja) 光学式濃度測定装置および光導波路
Lim et al. Biochemical spectroscopy based on germanium-on-insulator platform for mid-infrared optical sensor
JP2021096226A (ja) 光学式濃度測定装置および光導波路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180208

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181012

R150 Certificate of patent or registration of utility model

Ref document number: 6420932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150