JP6744851B2 - 光導波路及び光学式濃度測定装置 - Google Patents

光導波路及び光学式濃度測定装置 Download PDF

Info

Publication number
JP6744851B2
JP6744851B2 JP2017229493A JP2017229493A JP6744851B2 JP 6744851 B2 JP6744851 B2 JP 6744851B2 JP 2017229493 A JP2017229493 A JP 2017229493A JP 2017229493 A JP2017229493 A JP 2017229493A JP 6744851 B2 JP6744851 B2 JP 6744851B2
Authority
JP
Japan
Prior art keywords
core layer
optical waveguide
support portion
longitudinal direction
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017229493A
Other languages
English (en)
Other versions
JP2019100770A (ja
Inventor
敏郎 坂本
敏郎 坂本
立志 八木
立志 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2017229493A priority Critical patent/JP6744851B2/ja
Priority to US16/480,374 priority patent/US11313796B2/en
Priority to PCT/JP2018/005776 priority patent/WO2018163779A1/ja
Publication of JP2019100770A publication Critical patent/JP2019100770A/ja
Application granted granted Critical
Publication of JP6744851B2 publication Critical patent/JP6744851B2/ja
Priority to US17/651,811 priority patent/US11686679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

本発明は、光導波路及び光学式濃度測定装置に関する。
結晶などで形成された薄膜などの構造体を形成する材料の屈折率が構造体の外部の材料の屈折率よりも大きいとき、構造体の中を伝搬する光は、構造体と構造体の外部との界面で全反射を繰り返しながら進行していく。
図17に示すように、構造体51の中を伝搬する光Lは、構造体51と物質53との界面で全反射するとき、構造体51の内部を伝搬する光の他に屈折率の小さい物質53側に染み出す。この染み出しは、エバネッセント波と呼ばれ、光Lが構造体51を伝搬していく過程で構造体51に隣接している物質によって吸収されうる。図17では、構造体51の内部を伝搬する光Lの強度が光強度E1として図示され、エバネッセント波の強度が光強度E2として図示されている。このため、構造体51を伝搬している光Lの強度変化から、構造体51に接している物質53の検出や同定などが可能になる。上述したエバネッセント波の原理を利用した分析法は、全反射吸収分光(ATR:Attenuated Total Reflection)法と呼ばれ、物質の化学組成分析などに利用されている。
特許文献1には、ATR法をセンサに応用した光導波路型センサが提案されている。この光導波路型センサは、基板の上にコア層を形成して光を通し、エバネッセント波を利用してコア層に接する物質を検出するようになっている。
コア層を伝搬させる光としては赤外線を用いることが一般的である。物質には特定の波長の赤外線を選択的に吸収する特性があるため、被測定物質の吸収スペクトルに合わせた赤外線を伝搬させることで、物質の分析やセンシングを行うことが出来る。
特開2005−300212号公報
気体や液体などを検出するセンサは、種々の使用態様において、高感度に安定して被測定物質を検出できることが求められる。
本発明は、センサの感度を低下させることなく、コア層を支えるための支持部を持った光導波路および光学式濃度測定装置を提供することを目的とする。
上記目的を達成するために、本発明の一態様による光導波路は、被測定気体または被測定液体の濃度を測定する光学式濃度測定装置に用いる光導波路であって、基板と、長手方向に沿って延伸し、光が伝搬可能なコア層と、前記コア層よりも屈折率の小さい材料で形成され、前記基板の少なくとも一部と前記コア層の少なくとも一部とを接続し、前記基板に対して前記コア層を支持する第1の支持部および第2の支持部と、を備え、前記コア層と接続される前記第1の支持部および前記第2の支持部の接続部分は、前記コア層の前記長手方向に垂直な断面における中心から外表面までの距離が最短である位置から外れており、前記コア層の幅方向において、中心から一方の端の間に前記第1の支持部の接続部分が位置し、前記中心から他方の端の間に前記第2の支持部の接続部分が位置することを特徴とする。
さらに、上記目的を達成するために、本発明の一態様による光学式濃度測定装置は、上記本発明のいずれかの態様による光導波路と、前記コア層に光を入射可能な光源と、前記コア層を伝搬した光を受光可能な検出部と、を備えることを特徴とする。
本発明によれば、センサ感度を低下させることなく、コア層を支えるための支持部を持った光導波路および光学式濃度測定装置を提供することが可能となる。
本発明の実施形態による光導波路並びに光学式濃度測定装置1の概略構成と、光学式濃度測定装置を利用したATR法によるセンシングとを説明する図である。 本発明の実施形態による光導波路の概略構成を示す図であって、図1中のA−A線、C−C線で切断した光導波路の端面図である。 本発明の実施形態による光導波路の概略構成を示す図であって、図1中のB−B線で切断した光導波路の端面図である。 図1の第1の支持部および第2の支持部の配置を説明するための、光導波路を光源または光検出器側から見た平面図である。 本発明の実施形態による光導波路の製造方法を説明するための、SOI基板の平面図である。 図5のSOI基板をD−D線、F−F線、E−E線、G−G線で切断した断面を示す断面図である。 本発明の実施形態による光導波路の製造方法を説明するための、光導波路主要部の平面図である。 図7の光導波路主要部をD−D線、F−F線、E−E線、G−G線で切断した断面を示す断面図である。 本発明の実施形態による光導波路の製造方法を説明するための、一部をマスク層で覆った光導波路主要部の平面図である。 図9の光導波路主要部をD−D線、F−F線で切断した断面を示す断面図である。 図9の光導波路主要部をE−E線で切断した断面を示す断面図である。 図9の光導波路主要部をG−G線で切断した断面を示す断面図である。 本発明の実施形態による光導波路の製造方法を説明するための、BOX層の一部を除去した光導波路主要部の平面図である。 図13の光導波路主要部をD−D線、F−F線で切断した断面を示す断面図である。 図13の光導波路主要部をE−E線で切断した断面を示す断面図である。 図13の光導波路主要部をG−G線で切断した断面を示す断面図である。 光導波路を伝搬する光のエバネッセント波を説明するための図である。 従来の断続的な支持部を持った光導波路を説明するための図である。 従来の断続的な支持部を持った光導波路を説明するための図であって、図18中のH−H線で切断した光導波路の断面図である。 本発明の実施形態の変形例による光導波路の概略構成を示す図であって、図1中のB−B線またはC−C線でで切断した光導波路の端面図である。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
<光導波路>
本発明の実施態様に係る光導波路は、被測定気体または被測定液体の濃度を測定する光学式濃度測定装置に用いる光導波路であって、基板と、長手方向に沿って延伸し且つ光が伝搬可能なコア層と、基板の少なくとも一部とコア層の少なくとも一部とを接続し基板に対してコア層を支持するコア層よりも屈折率の小さい材料からなる第1の支持部および第2の支持部と、を備え、コア層と接続される支持部の第1の支持部および第2の支持部の接続部分は、コア層の長手方向に垂直な断面における中心から外表面までの距離が最短である位置から外れており、コア層の幅方向において、中心から一方の端の間に第1の支持部の接続部分が位置し、中心から他方の端の間に第2の支持部の接続部分が位置する。なお、長手方向とは、少なくとも1方向に沿って延伸している形状の三次元構造物における、最も長く延びている方向であって、直線状の方向だけでなく、曲線状の方向を含む。また、コア層の長手方向に垂直な断面は、例えば、矩形であるが、矩形に限定されない。当該断面は、円形でなく、当該断面の中心から外表面までの距離が当該断面の中心を軸にした回転によって変動する任意の形状であればよい。また、屈折率は、任意の波長の光に対して、あるいは特定の波長の光に対する屈折率である。特定の波長の光は、特に光学式濃度測定装置において、コア層を伝搬する光である。また、幅方向とは、本実施形態において、コア層の長手方向に垂直且つ基板の主面に平行な方向である。基板の主面とは、基板の板厚方向に垂直な表面であって、さらに言換えると、本実施形態において、基板を形成する6面の中で、面積が最大である面である。第1の支持部の接続部分と第2の支持部の接続部分とが長手方向に沿って断続的に存在してもよい。第1の支持部の接続部分と第2の支持部の接続部分とが長手方向に沿って交互に存在してもよい。また、コア層の少なくとも一部は、露出、または、薄膜により被覆されていてもよい。なお、薄膜は、光学式濃度測定装置において、コア層を伝搬する光の波長より薄い膜厚である。
ATR法を利用したセンサでは、エバネッセント波と被測定物質との相互作用量を増加させること、及び、被測定物質以外の材料への光吸収を低減させることによりセンサ感度を向上させることができる。被測定物質以外の材料への光吸収を低減させるためには、コア層を支える支持部を光の伝搬に沿った方向に対して断続的に存在させ、コア層の多くの部分を露出させることが有効である。
このような構成の光導波路として、基板と、基板上に配置されたコア層と、基板とコア層とを接続し基板に対してコア層を断続的に支持する支持部とを備える光導波路が考えられる。このような構成の光導波路では、基板およびコア層の間には、コア層を支持するために必要な領域を除き所定の層が設けられていない。すなわち、このような構成の光導波路では、支持部が設けられた領域を除き、基板およびコア層の間には空間が形成されている。それにより、被測定物質とエバネッセント波が相互作用する領域を拡大し、また、コア層の基板側に設けられる材料による光Lの吸収を減らすことができる。その結果、光導波路を用いたセンサの感度が向上する。ただし、十分な機械的強度でコア層を支持するために、コア層と接続される支持部の接続部分が、コア層の幅方向において光軸OAから外表面までの距離が最短となる位置に存在させることが一般的に考えられるため、支持部によってエバネッセント波が吸収されてしまうという課題を有する。
本実施態様に係る光導波路によれば、コア層と接続される第1の支持部および第2の支持部のそれぞれの接続部分はコア層の長手方向に垂直な断面における中心から外表面までの距離が最短である位置から外れている。つまり、当該接続部分が、光の伝搬に沿った方向となる長手方向に対して直交し且つ支持部を含む平面内において、光が主に伝搬する中心に最も接近する位置よりも離れた位置に設けられている。これにより、本実施形態に係る光導波路は、第1の支持部および第2の支持部によるエバネッセント波の吸収を抑制しつつ、さらに第1の支持部および第2の支持部の両者に接続されない領域をコア層が有するため、測定用の光の伝搬損失を低減しながら、エバネッセント波と被測定気体または被測定液体との相互作用領域を広くとることができる。さらに、本実施形態に係る光導波路によれば、コア層の幅方向において中心から一方の端の間に第1の支持部の接続部分が位置し、中心から他方の端の間に第2の支持部の接続部分が位置していることで、コア層をマクロで見た時の対称性が良好なため、基板上に支持されるコア層の機械強度を向上し得る。このため、本実施形態に係る光導波路を備える光学式濃度測定装置において、高い機械強度を保ちながら測定感度を向上させることが可能になる。また、第1の支持部の接続部分および第2の支持部の接続部分が長手方向に沿って断続的に存在する。これにより、本実施形態にかかる光導波路は、コア層は長手方向において一部に第1の支持部または第2の支持部に接触しない外表面が増加するので、エバネッセント波と被測定気体または被測定液体との相互作用領域を拡大し得る。また、第1の支持部の接続部分および第2の支持部の接続部分が長手方向に沿って交互に存在する。これにより、本実施形態にかかる光導波路は、エバネッセント波と被測定気体または被測定液体との相互作用領域をさらに拡大し得る。
以下、光導波路を構成する各構成要件について、具体例を挙げて説明する。
<コア層>
コア層は、長手方向に沿って延伸し且つ光が長手方向に沿って伝搬可能であれば特に制限されない。具体的には、シリコン(Si)やガリウムひ素(GaAs)等で形成されたコア層が挙げられる。なお、長手方向とは、少なくとも1方向に沿って延伸している形状の三次元構造物における、最も長く延びている方向であって、直線状の方向だけでなく、曲線状の方向を含む。コア層の長手方向に沿った任意の位置における垂直な断面は、円形ではなく、当該断面の中心から外表面までの距離が当該断面の中心を軸にした回転によって変動する任意の形状、例えば矩形である。したがって、コア層は、本実施形態において長尺の板状である。
また、コア層の少なくとも一部は、露出することにより被測定気体または被測定液体と直接接触可能、または、コア層を伝搬する光の波長よりも薄い薄膜に被覆されることにより当該薄膜を介して被測定気体または被測定液体と接触可能であってもよい。これにより、エバネッセント波と被測定気体または被測定液体を相互作用させ、被測定気体または被測定液体の濃度を測定することが可能となる。
また、コア層の長手方向における少なくとも一部は、長手方向と垂直な断面においてコア層および基板の間の全領域に、後述の第1の支持部および第2の支持部が存在しなくてもよい。これにより、コア層からしみ出すエバネッセント波と周囲の気体または液体との相互作用量を増加させることが可能となる。なお、第1の支持部および第2の支持部が存在しないとは、コア層が、長手方向において互いに隣接する、第1の支持部または第2の支持部と、第1の支持部または第2の支持部との間に架渡されていることである。さらには、第1の支持部および第2の支持部が存在しないとは、コア層の基板に対向する全領域は、長手方向において互いに隣接する、第1の支持部または第2の支持部と、第1の支持部または第2の支持部との間で、空隙、または、コア層が伝搬する光の吸収率が第1の支持部および第2の支持部よりも低い媒質を、基板との間に有することである。
コア層を伝搬する光はアナログ信号としての赤外線であってもよい。ここでアナログ信号としての赤外線とは、光のエネルギーの変化を0(低レベル)および1(高レベル)の2値で判定するのではなく、光のエネルギーの変化量を扱う信号であることを意味する。これにより、各実施形態に係る光導波路をセンサや分析装置に適用することができる。またこの場合、赤外線の波長は2μm以上10μm以下であってもよい。この波長帯は環境に代表的に浮遊するガス(CO2、CO、NO、N2O、SO2、CH4、H2O等)が吸収する波長帯である。これにより各実施形態に係る光導波路をガスセンサとして利用することができる。
<基板>
基板は、基板上に支持部及びコア層を形成可能であれば特に制限されない。具体的には、シリコン基板やGaAs基板等が挙げられる。基板の主面とは、基板の水平方向(膜厚方向に垂直な方向)の表面を指す。
<第1の支持部および第2の支持部>
第1の支持部および第2の支持部は、基板の少なくとも一部とコア層の少なくとも一部とを接続する。また、第1の支持部および第2の支持部は、基板に対してコア層を支持するようになっている。第1の支持部および第2の支持部は、任意の波長の光またはコア層を伝搬する光に対してコア層よりも屈折率が小さい材料であり、基板及びコア層を接合可能であれば特に制限されない。一例として、第1の支持部および第2の支持部の形成材料として、SiO2等が挙げられる。
第1の支持部および第2の支持部は、コア層との接続部分がコア層の長手方向に垂直な断面における中心から外表面までの距離が最短である位置(本実施形態では断面が矩形であるコア層における幅方向の中央位置)から外れている。また、第1の支持部のコア層との接続部分は、コア層の幅方向において中心から一方の端の間に位置し、第2の支持部のコア層との接続部分はコア層の幅方向において中心から他方の端の間に位置している。第1の支持部および第2の支持部の接続部分は、コア層の長手方向に沿って断続的に存在させてもよい。第1の支持部および第2の支持部の接続部分は、コア層の長手方向に沿って交互に存在させてもよい。第1の支持部および第2の支持部の接続部分は、コア層の幅方向におけるコア層の端から該コア層の中心に近づくにつれて、コア層の長手方向に広がる形状であってもよい。このような形状であることにより、コア層の長手方向に沿って、第1の支持部または第2の支持部の無い領域から第1の支持部または第2の支持部の有る領域に向かう場合(またはその逆の場合)に、コア層の周囲の状況が段階的に変化する。その結果、コア層を伝搬する光にとって急激な周囲状況の変化を抑制できるため、コア層を伝搬する光の散乱損失を抑えることが可能となる。
第1の支持部および第2の支持部の形成方法の一例としては、SOI(Silicon On Insulator)基板の埋め込み酸化膜(BOX:Buried Oxide)層(SiO2層)のエッチングすることで、コア層(Si層)と基板(Si層)をBOX層で支持する構造を形成することができる。
<光学式濃度測定装置>
本発明の各実施形態に係る光学式濃度測定装置は、本発明の各実施形態に係る光導波路と、コア層に光を入射可能な光源と、コア層を伝搬した光を受光可能な検出部と、を備える。
以下、光学式濃度測定装置を構成する各構成要件について、具体例を挙げて説明する。
<光源>
光源は、コア層に光を入射可能であれば特に制限されない。ガスの測定に赤外線を用いる場合には光源として、白熱電球やセラミックヒータ、MEMS(Micro Electro Mechanical Systems)ヒータや赤外線LED(Light Emitting Diode)などを用いることができる。また、ガスの測定に紫外線を用いる場合には光源として、水銀ランプや紫外線LEDなどを用いることができる。また、ガスの測定にX線を用いる場合には光源として、電子ビームや電子レーザーなどを用いることができる。
光学式濃度測定装置に備えられる光導波路のコア層を伝搬する光は、アナログ信号としての赤外線であってもよい。ここで、アナログ信号としての赤外線とは、光のエネルギーの変化を0(低レベル)および1(高レベル)の2値で判定するのではなく、光のエネルギーの変化量を扱う信号であることを意味する。これにより、光学式濃度測定装置をセンサや分析装置に適用することができる。またこの場合、赤外線の波長は2μm以上10μm以下であってもよい。この波長帯は環境に代表的に浮遊するガス(CO2、CO、NO、N2O、SO2、CH4、H2O等)が吸収する波長帯である。これにより本実施形態に係る光学式濃度測定装置をガスセンサとして利用することができる。
<検出部>
検出部は、光導波路のコア層を伝搬した光を受光可能であれば特に制限されない。ガスの測定に赤外線を用いる場合には検出部として、焦電センサ(Pyroelectric sensor)、サーモパイル(Thermopile)あるいはボロメータ(Bolometer)等の熱型赤外線センサや、ダイオードあるいはフォトトランジスタ等の量子型赤外線センサ等を用いることができる。また、ガスの測定に紫外線を用いる場合には検出部として、ダイオードやフォトトランジスタ等の量子型紫外線センサ等を用いることができる。また、ガスの測定にX線を用いる場合には検出部として、各種半導体センサを用いることができる。
〔実施形態〕
本発明の実施形態による光導波路および光学式濃度測定装置について図1から図16を用いて説明する。
図1は、本実施形態による光学式濃度測定装置1の概略構成を示す図であるとともに、本実施形態による光導波路10を利用したATR法の概念図でもある。
図1に示すように、光学式濃度測定装置1は、濃度などを検出するガスが存在する外部空間2に設置されて使用される。光学式濃度測定装置1は、本実施形態による光導波路10と、光導波路10に備えられたコア層11に光(本実施形態では赤外線IR)を入射可能な光源20と、コア層11を伝搬した赤外線IRを受光可能な光検出器(検出部の一例)40とを備えている。
光導波路10は、基板15と、赤外線IR(光の一例)が伝搬可能なコア層11と、基板15の少なくとも一部とコア層11の少なくとも一部とを接続し基板15に対してコア層11を断続的に支持する第1の支持部17および第2の支持部18とを備えている。コア層11および基板15はシリコン(Si)で形成され、第1の支持部17および第2の支持部18は二酸化ケイ素(SiO2)で形成されている。
基板15は例えば板状を有し、コア層11は例えば直方体形状を有している。光導波路10は、コア層11の長手方向の一端部に形成されたグレーティングカプラ118と、コア層11の長手方向の他端部に形成されたグレーティングカプラ119とを有している。グレーティングカプラ118は、光源20の出射方向(本実施形態においては光導波路10の積層方向が鉛直方向に平行且つ基板15が鉛直下方側を向くように配置された状態における鉛直下方)に配置されている。グレーティングカプラ118は、光源20から入射する赤外線IRを、コア層11を伝搬する赤外線IRに結合するようになっている。グレーティングカプラ119は、光検出器40に対向する方向(本実施形態においては光導波路10の積層方向が鉛直方向に平行且つ基板15が鉛直下方側を向くように配置された状態における鉛直下方)に配置されている。グレーティングカプラ119は、コア層11を伝搬する赤外線IRを取り出して光検出器40に向けて出射するようになっている。
図2は図1中のA−A線、C−C線で切断した断面を示す端面図であり、図3は図1中のB−B線で切断した断面を示す端面図である。図4は、第1の支持部17および第2の支持部18の配置を説明するための、光導波路10を光源20または光検出器40側から見た平面図である。
図1、図2、図3に示すように、光導波路10は、第1の支持部17または第2の支持部18が設けられた領域を除いて、コア層11および基板15の間に、クラッド層などの所定の層を有さずに空隙13を有する構造をしている。
図2に示すように、コア層11と接続される第1の支持部17の接続部分171は、コア層11の長手方向に垂直な断面における中心から外表面までの距離が最短である位置NP(本実施形態における当該断面の幅方向の中央位置)から外れている。また、第1の支持部17の当該接続部分171は、コア層11の幅方向において中心から一方の端(図2における右側の端)の間に偏って位置している。また、図1に示すように、第1の支持部17の接続部分171は長手方向に沿って、断続的に存在している。
図3に示すように、コア層11と接続される第2の支持部18の接続部分181は、コア層11の長手方向に垂直な断面における中心から外表面までの距離が最短である位置NP(本実施形態における当該断面の幅方向の中央位置)から外れている。また、第2の支持部18の当該接続部分181は、コア層11の幅方向において、第1の支持部17の接続部分171とは反対側の端(図3における左側の端)の間に偏って位置している。また、図1に示すように、第2の支持部18の接続部分181は長手方向に沿って、断続的に存在している。
第1の支持部17および第2の支持部18それぞれの、少なくとも接続部分171、181はコア層11の長手方向に沿って、交互に存在する。さらには、図1、4に示すように、第1の支持部17および第2の支持部18は、コア層11の長手方向に沿って交互に存在する。
ここで、本実施形態による光導波路10の効果について、図18、図19に示す従来構造の光導波路80と比較しながら説明する。
ATR法を用いたセンサは、コア層内ではシングルモードで光を伝搬させることが多い。本実施形態による光学式濃度測定装置1でも、光導波路10に備えられたコア層11内ではシングルモードで光(赤外線)を伝搬させる例を挙げている。ただし、マルチモード伝搬させる場合でも、コア層11の中央を伝搬する光成分は存在するため、本発明の効果は得られる。図2、図3に示すように、コア層11内をシングルモードで赤外線IRを伝搬させると、赤外線IRの光軸OAは、赤外線IRの伝搬方向である長手方向に直交する平面で切断した断面において、コア層11のほぼ中心に位置する。また、このとき、コア層11の周りにしみ出すエバネッセント波EWは、光軸OAに近いコア層11の外表面付近で多くなり、光軸OAと重なるコア層11の中心からの距離が最短となる外表面付近で最も多くなる。なお、図19に示す、従来構造の光導波路80のコア層803を伝搬する赤外線IRのエバネッセント波EWの分布も、本実施形態の光導波路10と同様である。
ATR法を用いたセンサでは、コア層から染み出るエバネッセント波と被測定物質との相互作用領域を拡大させ(つまりコア層の露出部分を拡大させ)、かつ、被測定物質以外の材料への光の吸収(つまり支持部等による光の吸収)を低減させることで、センサとしての感度を上げられる。しかしながら、図18、図19に示す構造では、後述するように、コア層を光の伝搬方向に対して直交する平面で切断した断面において、コア層とコア層を支えるための支持部との接続部分が、コア層の中心からの距離が最短となる外表面付近に位置している。このため、シングルモード伝搬する光の光軸からの距離が最短となる外表面付近と、支持部とが重なってしまう。コア層の周りにしみ出すエバネッセント波は、光軸に近い表面付近で最も多くなるため、当該外表面付近に支持部があると、多くのエバネッセント波は支持部を形成する材料に吸収される。このため、このような構造を有する光導波路を用いたセンサは、被測定物質の検出感度が悪くなるという問題がある。
ここで、従来の光導波路80の上記問題について図18、図19を用いて説明する。図18、図19に示すように、従来構造の光導波路80では、支持部805は、光Lの伝搬方向である長手方向に対して直交し且つ支持部805を含む平面内(すなわち図19に示した断面)において、コア層803の中心と基板801との間に設けられている。このように、光Lの伝搬方向に直交する平面で切断した断面において、コア層803とコア層803を支えるための支持部805との接続部分が、コア層803の幅方向における中心に位置していると、支持部805の形成材料によるエバネッセント波EWの吸収が生じたり、支持部805の領域が妨げとなってエバネッセント波EWと被測定物質との相互作用領域が減少したりする。その結果、光導波路80を用いたセンサの感度が低下してしまう。
これに対し、図1、図2、図3、図4に示すように、本実施形態による光導波路10は、従来の光導波路80と同様に、コア層11および基板15の間に空隙13を形成しつつ、基板15に対してコア層11を第1の支持部17および第2の支持部18で支持する構造を有している。コア層11は長手方向に垂直な断面における中心に関して対称構造を有している。コア層11を伝搬する赤外線IRがシングルモードの場合、コア層11を伝搬する赤外線IRの光軸OAはコア層11の中央に重なる。そこで、図2、図3に示すように、第1の支持部17および第2の支持部18は、コア層11の幅方向における中心からそれぞれどちらかの端にずらされて(図2では右に、図3では左にずらされている)設けられている。これにより、エバネッセント波EWが最も集中する領域から第1の支持部17および第2の支持部18を遠ざけることができる。すなわち、コア層11との第1の支持部17および第2の支持部18それぞれの接続部分171、181は、長手方向に垂直な断面においてコア層11の中心から最短となる外表面付近に位置させない。また、コア層11の露出量を高く取るために、第1の支持部17および第2の支持部18は長手方向に沿って断続的に設けられており、さらに、光導波路10の機械強度を強くするために断続的に位置する第1の支持部17および第2の支持部18それぞれのコア層11との接続部分171、181は、コア層11の長手方向、すなわち赤外線IRの伝搬方向に沿って交互に配置されている。このように、光導波路10を備える光学式濃度測定装置1は、第1の支持部17および第2の支持部18の存在による被測定物質MOの検出特性の低下を極力防ぎながら、機械強度を強くすることができる。
次に、本実施形態による光導波路10の製造方法について図1、図2、図3を参照しつつ図5から図16を用いて説明する。図5は、光導波路10の製造工程平面図を示している。図6は、図5中に示すD−D線、F−F線、E−E線、G−G線で切断した光導波路10の製造工程断面図を示している。図7は、光導波路10の製造工程平面図を示している。図8は、図7中に示すD−D線、F−F線、E−E線、G−G線で切断した光導波路10の製造工程断面図を示している。図9は、光導波路10の製造工程平面図を示している。図10は、図9中に示すD−D線、F−F線で切断した光導波路10の製造工程断面図を示している。図11は、図9中に示すE−E線で切断した光導波路10の製造工程断面図を示している。図12は、図9中に示すG−G線で切断した光導波路10の製造工程断面図を示している。図13は、光導波路10の製造工程平面図を示している。図14は、図13中に示すD−D線、F−F線で切断した光導波路10の製造工程断面図を示している。図15は、図13中に示すE−E線で切断した光導波路10の製造工程断面図を示している。図16は、図13中に示すG−G線で切断した光導波路10の製造工程断面図を示している。
まず、シリコンで形成され最終的に基板15となる支持基板15aと、シリコンで形成されコア層11が形成される活性基板11aのいずれか一方、または両方にSiO2膜を形成し、このSiO2膜を挟むようにして支持基板15aおよび活性基板11aを貼り合わせて熱処理して結合する。その後、活性基板11aを所定の厚さまで研削・研磨するなどして活性基板11aの膜厚を調整する。これにより、図5、6に示すように、支持基板15aと、支持基板15a上に形成されたBOX層17aと、BOX層17a上に形成された活性基板11aとを有し、「シリコン−絶縁層−シリコン」構造を有するSOI基板100が形成される。
次に、SOI基板100をリソグラフィ技術およびエッチング技術を用いて活性基板11aをエッチングし、直方体形状のコア層11を形成する。これにより、図7、8に示すように、板状の支持基板15aと、支持基板15a上に形成され板状のBOX層17aと、BOX層17a上の一部に形成され四角柱状のコア層11とを有する光導波路主要部10aを形成する。
次に、図9から図11に示すように、コア層11およびBOX層17aの一部を覆うマスク層M1を形成する。マスク層M1はコア層11の幅方向の中心に対してどちらかの端側に偏って配置され、且つ、断続的に交互に配置する。なお、図12に示すように、長手方向における一部では、マスク層M1で覆われず、コア層11およびBOX層17aを露出させている。マスク層M1は、フォトレジストでもよいし、シリコン窒化膜等のハードマスクでもよい。
次に、マスク層M1をマスクとして光導波路主要部10aのBOX層17aの一部をウェットエッチングなどで除去する。これにより、図13から16に示すように、コア層11の幅方向における中心に対して両端側(図14において右側、図15において左側)に偏った位置(すなわちコア層11を伝搬する赤外線の光軸OAから幅方向においてずれた位置)に存在する第1の支持部17および第2の支持部18が、断続的に交互に形成され、コア層11の一部が基板15から離れた構造となる。つまり、コア層11と接続される第1の支持部17および第2の支持部18それぞれの接続部分171、181は、赤外線の伝搬方向である長手方向に対して直交し且つ第1の支持部17または第2の支持部18を含む平面内において、コア層11の中心から最短の外表面が位置する、幅方向の中心に位置せずに、コア層11の幅方向における中心に対してどちらか端側に偏って位置しており、且つ、接続部分171、181は赤外線の伝搬方向に沿って、断続的に且つ交互に形成される。コア層11の中心と基板15の主面15sとの間には、空隙13が形成される。
その後、マスク層M1をエッチングする。なお、本実施形態ではグレーティングカプラの形成を省略したが、図1に示すようなグレーティングカプラ118、119を形成する場合は、図7に示すコア層11の形成と当時もしくはその前後にグレーティングカプラ118、119を形成し、その後、図9に示すマスク層M1を形成するとよい。コア層11の長手方向の一端部にスリット状のグレーティングカプラ118を形成し、コア層11の長手方向の他端部にスリット状のグレーティングカプラ119を形成すると図1に示した構造となる。
次に、支持基板15aを所定領域で切断して光導波路主要部10aを個片化する。これにより、第1の支持部17および第2の支持部18が、コア層11の幅方向においてコア層11を伝搬する赤外線の光軸OAから偏った位置に断続的に交互に存在する光導波路10(図1、図2、図3、図4参照)が完成する。
さらに、図1に示すように、光導波路10のグレーティングカプラ118に赤外線IRを入射できるように光源20を設置し、光導波路10のグレーティングカプラ119から出射する赤外線IRを受光できるように光検出器40を配置することにより、光学式濃度測定装置1が完成する。
このように、光導波路10は、コア層11を支える第1の支持部17および第2の支持部18が、コア層11の長手方向に垂直な断面における中心に重なる(コア層11を伝搬する光の光軸OAに対して最短距離である)外表面からずれて、それぞれコア層11の幅方向の中心から一方の端側と他方の端側に存在する構造を有することで、第1の支持部17および第2の支持部18による被測定物質MOの検出特性の低下を防止したうえで、機械強度を強くすることができる。
なお、本実施形態では、第1の支持部17と第2の支持部18とが、コア層11の長手方向に垂直な方向の異なる断面の中で形成されているが、図20に示すように、コア層11の長手方向に垂直な方向の同一の断面の中で形成されても同様の効果が得られる。
以上説明したように、本実施形態によれば、センサの感度を低下させることなく、コア層11を支えるための第1の支持部17および第2の支持部18を持った光導波路10および光学式濃度測定装置1を提供することができる。
また、本実施形態による光導波路10は、コア層11を伝搬する光のエバネッセント波EWと被測定物質MOとの相互作用量を増加させ、第1の支持部17および第2の支持部18による当該エバネッセント波EWの吸収量を減少させることができる。これにより、本実施形態による光導波路10は、種々の仕様態様において高感度に安定して被測定物質MOを検出することができる。
1 光学式濃度測定装置
2 外部空間
10、80 光導波路
10a 光導波路主要部
11、803 コア層
11a 活性基板
13 空隙
15、801 基板
15a 支持基板
15s 主面
17 第1の支持部
18 第2の支持部
17a BOX層
40 光検出器
51 構造体
53 物質
100 SOI基板
118,119 グレーティングカプラ
171 第1の支持部の接続部分
181 第2の支持部の接続部分
805 支持部
EW エバネッセント波
IR 赤外線
L 光
MO 被測定物質
NP 中心から外表面までの距離が最短である位置
OA 光軸

Claims (9)

  1. 被測定気体または被測定液体の濃度を測定する光学式濃度測定装置に用いる光導波路であって、
    基板と、
    長手方向に沿って延伸し、光が伝搬可能なコア層と、
    前記コア層よりも屈折率の小さい材料で形成され、前記基板の少なくとも一部と前記コア層の少なくとも一部とを接続し、前記基板に対して前記コア層を支持する第1の支持部および第2の支持部と、
    を備え、
    前記コア層と接続される前記第1の支持部および前記第2の支持部の接続部分は、前記コア層の前記長手方向に垂直な断面における中心から外表面までの距離が最短である位置から外れており、
    前記コア層の幅方向において、中心から一方の端の間に前記第1の支持部の接続部分が位置し、前記中心から他方の端の間に前記第2の支持部の接続部分が位置する
    光導波路。
  2. 前記第1の支持部の接続部分と、前記第2の支持部の接続部分とが、前記長手方向に沿って断続的に存在する、
    請求項1に記載の光導波路。
  3. 前記第1の支持部の接続部分と、前記第2の支持部の接続部分とが、前記長手方向に沿って交互に存在する、
    請求項1または請求項2に記載の光導波路。
  4. 前記コア層の少なくとも一部は、露出、または、薄膜により被覆されている、
    請求項1から3のいずれか一項に記載の光導波路。
  5. 前記コア層の前記長手方向における少なくとも一部の位置における、該長手方向と垂直な断面において、前記コア層および前記基板の間の全領域には、前記第1の支持部および第2の支持部が存在しない
    請求項1から4までのいずれか一項に記載の光導波路。
  6. 前記第1の支持部および前記第2の支持部の接続部分は、前記コア層の幅方向における前記コア層の端から該コア層の中心に近づくにつれて、前記コア層の長手方向に広がる形状である
    請求項1から5までのいずれか一項に記載の光導波路。
  7. 前記コア層を伝搬する光はアナログ信号としての赤外線である
    請求項1から6までのいずれか一項に記載の光導波路。
  8. 請求項1から7までのいずれか一項に記載の光導波路と、
    前記コア層に光を入射可能な光源と、
    前記コア層を伝搬した光を受光可能な検出部と、
    を備える光学式濃度測定装置。
  9. 前記光源は波長が2μm以上10μm未満の赤外線を前記コア層に入射する
    請求項8に記載の光学式濃度測定装置。
JP2017229493A 2017-03-06 2017-11-29 光導波路及び光学式濃度測定装置 Active JP6744851B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017229493A JP6744851B2 (ja) 2017-11-29 2017-11-29 光導波路及び光学式濃度測定装置
US16/480,374 US11313796B2 (en) 2017-03-06 2018-02-19 Optical waveguide and optical concentration measuring apparatus comprising a support with a shifted connecting portion
PCT/JP2018/005776 WO2018163779A1 (ja) 2017-03-06 2018-02-19 光導波路及び光学式濃度測定装置
US17/651,811 US11686679B2 (en) 2017-03-06 2022-02-21 Optical waveguide and optical concentration measuring apparatus wherein evanescent wave interacts with gas or liquid through the protection film of the waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229493A JP6744851B2 (ja) 2017-11-29 2017-11-29 光導波路及び光学式濃度測定装置

Publications (2)

Publication Number Publication Date
JP2019100770A JP2019100770A (ja) 2019-06-24
JP6744851B2 true JP6744851B2 (ja) 2020-08-19

Family

ID=66973378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229493A Active JP6744851B2 (ja) 2017-03-06 2017-11-29 光導波路及び光学式濃度測定装置

Country Status (1)

Country Link
JP (1) JP6744851B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022053491A (ja) 2020-09-24 2022-04-05 旭化成エレクトロニクス株式会社 光学式化学分析装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7318909B2 (en) * 2001-12-12 2008-01-15 Trustees Of Princeton University Method and apparatus for enhanced evanescent field exposure in an optical fiber resonator for spectroscopic detection and measurement of trace species
JP3816072B2 (ja) * 2003-10-28 2006-08-30 ローム株式会社 光導波路型センサおよびそれを用いた測定装置
JP4237665B2 (ja) * 2004-04-07 2009-03-11 日本電信電話株式会社 光導波路型センサ及びその製造方法
KR100860701B1 (ko) * 2007-03-14 2008-09-26 한양대학교 산학협력단 장거리 표면 플라즈몬 이중 금속 광도파로 센서
SE540878C2 (en) * 2015-06-29 2018-12-11 Briano Floria Ottonello A sensor device and a method of detecting a component in gas

Also Published As

Publication number Publication date
JP2019100770A (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
JP4511857B2 (ja) フォトニック結晶を応用したセンサおよび検出対象物質の検出方法
US11686679B2 (en) Optical waveguide and optical concentration measuring apparatus wherein evanescent wave interacts with gas or liquid through the protection film of the waveguide
JP6530521B2 (ja) 光導波路及び光学式濃度測定装置
JP4237665B2 (ja) 光導波路型センサ及びその製造方法
JP6420932B1 (ja) 光学式濃度測定装置および光学式濃度測定装置の製造方法
US11313797B2 (en) Optical waveguide and optical concentration measuring apparatus
JP6348242B1 (ja) 光導波路及び光学式濃度測定装置
JP6744851B2 (ja) 光導波路及び光学式濃度測定装置
JP6733062B2 (ja) 光導波路及び光学式濃度測定装置
JP6640403B1 (ja) 光導波路及び光学式濃度測定装置
JP6815438B2 (ja) 光導波路及び光学式濃度測定装置
US11280729B2 (en) Optical density measuring apparatus and optical waveguide
JP2021096227A (ja) 光学式濃度測定装置および光導波路
JP7161363B2 (ja) 光導波路および光学式濃度測定装置
JP7179549B2 (ja) 光導波路、光学式濃度測定装置、および製造方法
JP2008241796A (ja) ラマン散乱光増強デバイス
JP7409881B2 (ja) 光学式濃度測定装置および光導波路
JP7526069B2 (ja) 光学式濃度測定装置および光導波路
US11549885B2 (en) Optical chemical analysis apparatus
JP7362497B2 (ja) 光学式濃度測定装置および光導波路
US11209361B2 (en) Optical density measuring apparatus and optical waveguide
JP2021096226A (ja) 光学式濃度測定装置および光導波路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200731

R150 Certificate of patent or registration of utility model

Ref document number: 6744851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150