JP6402474B2 - スイッチング電源の制御装置 - Google Patents

スイッチング電源の制御装置 Download PDF

Info

Publication number
JP6402474B2
JP6402474B2 JP2014088248A JP2014088248A JP6402474B2 JP 6402474 B2 JP6402474 B2 JP 6402474B2 JP 2014088248 A JP2014088248 A JP 2014088248A JP 2014088248 A JP2014088248 A JP 2014088248A JP 6402474 B2 JP6402474 B2 JP 6402474B2
Authority
JP
Japan
Prior art keywords
gain
converter
output
input
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014088248A
Other languages
English (en)
Other versions
JP2015039284A (ja
Inventor
鉄也 川島
鉄也 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014088248A priority Critical patent/JP6402474B2/ja
Publication of JP2015039284A publication Critical patent/JP2015039284A/ja
Application granted granted Critical
Publication of JP6402474B2 publication Critical patent/JP6402474B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • H02M3/33553Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明はスイッチング電源の制御装置に関し、特にスイッチング電源の一方式である電流共振コンバータにおいて出力電圧設定値の変更時における出力電圧の安定性改善に関するものである。
以前より損失を低減できる高効率なスイッチング電源として電流共振コンバータが使われている。ここで、従来の電流共振コンバータの構成例について説明する。
図10は従来の電流共振コンバータの構成例を示す図、図11は電流共振コンバータ部の入出力特性(スイッチング周波数依存性)を示す図である。
図10の構成例においては、電流共振コンバータは、電流共振コンバータ部100と制御部110とを備えている。電流共振コンバータ部100は、直列接続された2つのスイッチング素子M1,M2を備え、この直列回路に入力電圧Edが印加されるよう構成されている。スイッチング素子M1は、これと並列に、直列接続された共振コンデンサCr、共振インダクタンスLrおよび励磁インダクタンスLmが接続されている。励磁インダクタンスLmには、トランスTの1次巻線Lpが並列に接続されている。トランスTは、センタータップ付きの2次巻線Ls1,Ls2を有し、その両端には、2つの整流素子D1,D2のアノードが接続されている。整流素子D1,D2のカソードは、ともに接続され、正極側の出力端子に接続されている。2次巻線Ls1,Ls2のセンタータップは、負極側の出力端子に接続されている。そして、整流素子D1,D2のカソードと2次巻線Ls1,Ls2のセンタータップとの間には、平滑コンデンサCoが接続されている。
この電流共振コンバータ部100において、トランスTの1次側には、2つのスイッチング素子M1,M2、共振インダクタンスLr、共振コンデンサCrおよび励磁インダクタンスLmによって共振回路が構成されている。また、条件によってトランスTの1次巻線Lpも共振回路の一部となる。一方、トランスTの2次側は、2つの整流素子D1,D2および平滑コンデンサCoによって整流回路が構成されている。
制御部110は、直流出力電圧Voutと目標電圧とを受けて誤差信号Veを出力する出力電圧検出器111と、絶縁器112と、絶縁器112の出力信号V1を入力してスイッチング周波数fswのパルス波形信号を出力する電圧/周波数変換器113と、駆動部114とを備えている。駆動部114は、電流共振コンバータ部100のスイッチング素子M1,M2をオン/オフ制御する制御信号Vg1,Vg2を出力する。
この制御部110において、出力電圧検出器111が直流出力電圧Voutと目標電圧との誤差を検出し、その誤差を表す誤差信号Veを受けて絶縁器112が誤差信号Veとは電気的に絶縁された出力信号V1を出力する。この出力信号V1は、電圧/周波数変換器113により所望のスイッチング周波数fswを有するスイッチング信号に変換され、そのスイッチング信号は、駆動部114において2つのスイッチング素子M1,M2に供給する制御信号Vg1,Vg2に変換される。
これにより、電流共振コンバータは、電流共振コンバータ部100のスイッチング素子を制御部110が制御することにより、入力電圧Edから所望の直流出力電圧Voutを出力するDC/DCコンバータとして動作する。
電流共振コンバータでは、直流出力電圧Voutは、一般的にスイッチング素子M1,M2のスイッチング周波数を変化させることにより制御されている(たとえば、特許文献1参照)。また、2つのスイッチング素子M1,M2は、相補にオン/オフをさせ、各々同じオン時間、すなわち50%のデューティー比でスイッチングさせることが望ましいとされている(たとえば、特許文献1、特許文献2参照)。
また、図示する電流共振コンバータは、2つの共振周波数fr1,fr2(fr1<fr2)を持っており、共振周波数fr1と共振周波数fr2との間でスイッチング素子M1,M2のスイッチング周波数を可変にしている。入出力変換比Gとスイッチング周波数fswとの関係は、図11に示すように、入出力変換比Gが低い側の共振周波数fr1でピークを示すことが知られている(たとえば、特許文献3参照)。なお、2つの共振周波数fr1,fr2は、式(1),(2)で表される。
fr1=1/[2π√((Lr+Lm)*Cr)] …(1)
fr2=1/[2π√(Lr*Cr)] …(2)
図11において、スイッチング周波数が低い側の共振周波数fr1よりも低い場合は、スイッチング損失が大幅に増加してしまうことから、スイッチング周波数は、共振周波数fr1以上の範囲で使用される。また、高い側の共振周波数fr2では、入出力変換比GがG=1となり、1次側電圧がそのまま出力電圧に現れる。そして、高い側の共振周波数fr2より高い領域では、図11から分かるように、スイッチング周波数を変えても入出力変換比Gがほとんど変化せず、したがって、出力電圧もほとんど変化しないことから、実質的に出力電圧を制御することができない。
これらの理由により、スイッチング周波数は、共振周波数fr1から共振周波数fr2までの間で変化させ、これによって出力電圧を制御することになる。出力電圧は、共振周波数fr1と共振周波数fr2と間の範囲でスイッチング周波数を下げることにより上昇させることができ、スイッチング周波数を上げることにより低下させることができる。
図10の構成例においては、直流出力電圧Voutと目標電圧との誤差を出力電圧検出器111が検出し、電圧/周波数変換器113がその誤差電圧に応じたスイッチング周波数fswを有するパルス波形信号を生成する。そして、スイッチング周波数fswを有するパルス波形信号を受けた駆動部114が2つのスイッチング素子M1,M2に制御信号Vg1,Vg2を与えることで、電流共振コンバータ部100を制御し、所望の出力電圧に整定させている。
特開2006−109566号公報 特表2003−510001号公報 特開2012−249363号公報(図5)
しかしながら、図11の入出力特性を見ると、その特性は非線形性を持っており、スイッチング周波数の変化に対する入出力変換比G、すなわち直流出力電圧Voutの変化幅が出力電圧設定値(目標電圧)によって異なることが明らかである。そのため、出力電圧設定値を変更した場合に、出力電圧が低い場合には緩やかに新たな出力電圧に遷移するが、出力電圧が高い場合には、急峻に変化してオーバーシュートを引き起こし、場合によっては負荷に過大な電圧がかかり、負荷を破壊するおそれがある。特に負荷が軽い状態でオーバーシュートしてしまうと、目標電圧に回復するまでに大きな整定時間を要するという問題点がある。
このような問題点を避けるためには、出力電圧検出器や電圧/周波数変換器を含む制御部の制御ゲインを下げることが考えられるが、出力電圧が低い場合には、出力電圧設定値を変更してから出力電圧が目標電圧に整定するまでの時間が大幅に長くなる。このため、オーバーシュートを避けるために、制御部の制御ゲインを下げるような手法を採ることはできない。なお、上記の先行技術文献においては、電流共振コンバータの制御についての記載はあるが、出力電圧設定値変更に対する応答性については言及されていない。
本発明はこのような点に鑑みてなされたものであり、出力電圧設定値を変更したときに出力電圧がオーバーシュートすることなく迅速に目標電圧に整定することができるスイッチング電源の制御装置を提供することを目的とする。
本発明では、上記の課題を解決するために、電流共振コンバータ部を備えたスイッチング電源の制御装置が提供される。このスイッチング電源の制御装置は、電流共振コンバータ部の直流出力電圧と目標電圧との誤差を検出して誤差信号を出力する出力電圧検出器と、出力電圧検出器が検出した誤差信号をデジタル信号に変換するアナログ−デジタル変換器と、アナログ−デジタル変換器から出力されるデジタル信号を入力とするゲイン変換器と、ゲイン変換器から出力されるデジタル信号に比例してスイッチング電源のスイッチング周期を決定する出力信号周期を変化させ、かつデューティー比50%の矩形波信号となる出力信号を生成する周波数生成器と、を備え、ゲイン変換器の入力に対する出力のゲイン特性として、設定した入力範囲において、ゲイン変換器の入力に対する電流共振コンバータ部の入出力特性の非線形性を打ち消すような非線形ゲイン特性が設定されていることを特徴とする。
このようなスイッチング電源の制御装置によれば、電流共振コンバータ部を組み合わせたゲイン特性を線形特性に近似させることができ、設定した入力範囲においては、部分的にゲインが高くなることによる出力電圧のオーバーシュートを防止することができる。
上記構成のスイッチング電源の制御装置は、ゲイン変換器の特性を電流共振コンバータ部ゲインの非線形性を打ち消すように与えている。これにより、電流共振コンバータ部の入出力変換比が高い条件で用いた場合に出力電圧設定値を急変させても、負荷に過剰な電圧がかかることなく負荷の破壊を防ぐことができる。さらに、電流共振コンバータ部の入出力変換比が低い条件で用いた場合にも直流出力電圧が迅速に整定されるので、その整定された直流出力電圧の元で負荷が動作を開始することができるようになる。
第1の実施の形態に係るスイッチング電源の制御装置を適用した電流共振コンバータの構成例を示す図である。 電流共振コンバータ部の入出力特性(スイッチング周期依存性)を示す図である。 本発明の目標値となる入出力特性を示す図である。 本発明による理想的なゲイン変換器特性を示す図である。 本発明による実用的なゲイン変換器特性を示す図である。 周波数生成器の構成例を示す図である。 線形なゲイン変換器を用いた場合の出力電圧の応答特性の波形例を示す図であって、(a)は電流共振コンバータ部のゲインが低く、(b)は高い場合を示している。 非線形なゲイン変換器を用いた場合の出力電圧の応答特性波形を示す図であって、(a)は電流共振コンバータ部のゲインが低く、(b)は高い場合を示している。 第2の実施の形態に係るスイッチング電源の制御装置を適用した電流共振コンバータの構成例を示す図である。 従来の電流共振コンバータの構成例を示す図である。 電流共振コンバータ部の入出力特性(スイッチング周波数依存性)を示す図である。
以下、本発明の実施の形態について、図面を参照して詳細に説明するが、ここでは、電流共振コンバータ部をスイッチング周波数により制御する従来例に代えて、スイッチング周波数の逆数となるスイッチング周期で制御するものとして説明する。なお、各実施の形態は、矛盾のない範囲で複数の実施の形態を組み合わせて実施することができる。
図1は第1の実施の形態に係るスイッチング電源の制御装置を適用した電流共振コンバータの構成例を示す図、図2は電流共振コンバータ部の入出力特性(スイッチング周期依存性)を示す図である。
電流共振コンバータは、電流共振コンバータ部10と制御部20とを備えている。電流共振コンバータ部10は、直列接続された2つのスイッチング素子M1,M2を備え、この直列回路には、直流入力電源が接続され、入力電圧Edが印加されるよう構成されている。スイッチング素子M1は、これと並列に、直列接続された共振コンデンサCr、共振インダクタンスLrおよび励磁インダクタンスLmが接続されている。励磁インダクタンスLmには、トランスTの1次巻線Lpが並列に接続されている。トランスTは、センタータップ付きの2次巻線Ls1,Ls2を有し、その両端には、2つの整流素子D1,D2のアノードが接続されている。整流素子D1,D2のカソードは、ともに接続され、正極側の出力端子に接続されている。2次巻線Ls1,Ls2のセンタータップは、負極側の出力端子に接続されている。そして、整流素子D1,D2のカソードと2次巻線Ls1,Ls2のセンタータップとの間には、平滑コンデンサCoが接続されている。
この電流共振コンバータ部10において、トランスTの1次側は、2つのスイッチング素子M1,M2、共振インダクタンスLr、共振コンデンサCrおよび励磁インダクタンスLmによって共振回路が構成されている。また、条件によってトランスTの1次巻線Lpも共振回路の一部となる。一方、トランスTの2次側は、2つの整流素子D1,D2および平滑コンデンサCoによって整流回路が構成されている。
制御部20は、出力電圧検出器21、絶縁器22、アナログ−デジタル変換器(以下、A/D変換器という)23、ゲイン変換器24、周波数生成器25および駆動部26がこの順に直列に接続されている。出力電圧検出器21は、直流出力電圧Voutと目標電圧とが入力されてその誤差を検出してその誤差を表す誤差信号Veを出力する。絶縁器22は、電気的には絶縁しつつトランスTの2次側から1次側に信号を伝送するもので、ここでは、フォトカプラを使用し、誤差信号Veを入力して誤差信号Veに相当する出力信号V1を出力する。A/D変換器23は、出力信号V1を入力して誤差信号Veに相当するアナログ値をデジタル値に変換する。ゲイン変換器24は、誤差信号Veに相当するデジタル値が入力され、予め設定された入出力特性(ゲイン特性)により、電流共振コンバータ全体のゲイン特性を調整する働きをする。周波数生成器25は、ゲイン変換器24の出力を入力として、入力に応じたスイッチング周期Tsを有するパルス波形信号を出力する。駆動部26は、スイッチング素子M1,M2をオン/オフ制御する制御信号Vg1,Vg2を出力する。
この制御部20においては、直流出力電圧Voutに基づいてスイッチング素子M1,M2を駆動する制御信号Vg1,Vg2のスイッチング周期Tsを可変にすることで、直流出力電圧Voutを目標電圧になるように制御する。このとき、電流共振コンバータ部10の入出力特性は、図2に示したとおりであり、図11に示したスイッチング周波数に対する電流共振コンバータ部の入出力特性と同様に、その特性が非線形であることには変わりはない。また、図2においては、スイッチング周波数の逆数となるスイッチング周期Tsの変化で表しているので、図11の共振周波数fr1は、共振周期Tr2に、そして、共振周波数fr2は、共振周期Tr1にそれぞれ置き換えられている。さらに、制御されるスイッチング周期Tsは、一般的には、この2つの共振周期Tr1,Tr2の間で変化させることについても、図11の場合と変わりはない。本発明は、共振周期Tr1,Tr2の間の入出力特性の非線形性に対し、これを打ち消すようにゲイン変換器24の入出力特性(ゲイン特性)を設定することにより、出力電圧設定値を変更したときに出力電圧のオーバーシュートが発生しないようにすることにある。
次に、ゲイン変換器24の入出力特性をどのように設定するかについて説明する。
図3は本発明の目標値となる入出力特性を示す図、図4は本発明による理想的なゲイン変換器特性を示す図、図5は本発明による実用的なゲイン変換器特性を示す図である。
まず、ゲイン変換器24の特性を決めるためには、電流共振コンバータ部の入出力特性を既知としなければならない。ここで、図2に示すように入出力特性は、ピークを持った波形であり、数式で正確に表現すると、
Figure 0006402474
で表すことができる。ここで、Lrは共振インダクタンス、Lmは励磁インダクタンス、fr2は式(2)で表される共振周波数、fsはスイッチング周波数(スイッチング周期Tsの逆数)、NはトランスTの巻数比、Roは負荷抵抗である。
この式(3)は、図2に示す入出力特性を表す式として複雑すぎるため、より低次の近似式が必要となる。幸いにも、電流共振コンバータの多くは、共振周期Tr1〜Tr2の範囲でしか使用されないことから、この周期範囲のみに限定することにより、スイッチング周期Tsに対する電流共振コンバータ部10の入出力変換比Gは、式(4)に示す3次程度の近似式で表すことができる。
G(Ts)=a3*Ts^3+a2*Ts^2+a1*Ts+a0 …(4)
ここで、a0、a1、a2、a3は係数、Tsはスイッチング周期である。なお、A^Bは、AのB乗を意味する。なお、式(4)の近似式の係数a0、a1、a2、a3は、式(3)のうち、おおよそ共振周期Tr1〜Tr2のTsの範囲について表計算ソフトでグラフ化し、さらに表計算ソフトの近似曲線機能を使うことによって求めることができる。
次に、周波数生成器25およびゲイン変換器24の特性が線形の場合について考える。電流共振コンバータ部10の制御信号となるスイッチング周期Tsのパルス信号を生成する周波数生成器25のゲイン特性をG1(定数)とし、ゲイン変換器24のゲイン特性G2を1とし、ゲイン変換器24の入出力信号をそれぞれDna,Dnbとする。このような場合、スイッチング周期Tsおよび線形であるとしたゲイン変換器24と電流共振コンバータ部10とを組み合わせたゲイン特性Gaは、次式で表される。このときのゲイン特性Gaは、従来からの特性に相当する。
Ts=G1*Dnb,Dnb=Dna …(5)
Ga(Ts)=Ga(G1*G2*Dna)=Ga(G1*Dna)
=c3*Dna^3+c2*Dna^2+c1*Dna+c0 …(6)
なお、係数c0〜c3は、c0=a0、c1=a1*G1、c2=a2*G1^2、c3=a3*G1^3である。
以上の式(4)〜(6)により、図3に破線で示した、ゲイン変換器24の入力信号Dnaに対するゲイン特性Gaの特性曲線を決定することができる。なお、共振周期Tr1,Tr2に対応するゲイン変換器24の入力信号DnaをそれぞれDna1,Dna2とすると、式(5)より、Dna1=Tr1/G1,Dna2=Tr2/G1となる。
次に、非線形特性としたゲイン変換器24と電流共振コンバータ部10とを組み合わせた場合に目標とする全体ゲイン特性式を決める。すなわち、ここでは、式(6)に従って図3に描かれた破線の曲線から図3の実線で示される目標ゲイン特性Ga_idealを決定する。
目標とする特性は、2つの共振周期Tr1,Tr2の範囲において、出力電圧に拘わらずスイッチング周期Tsに対する出力電圧変化幅を一定にするものである。すなわち、目標ゲイン特性Ga_idealは、式(4)より、共振周期Tr1,Tr2に対応する入力信号Dna1,Dna2における入出力変換比G(Dna),G(Dnb)を求め、点(Dna,G(Dna))と点(Dnb,G(Dnb))を結ぶことで決めることができ、
Ga_ideal=d1*Dna+d0 …(7)
で表される。なお、d0,d1は係数である。
ここまでで得た式(3)〜(7)は、2つの共振周期の範囲で決めているが、第2の共振周期Tr2より低いスイッチング周期であれば、必ずしもこれらの2つの共振周期の間でなくてもよい。たとえば、スイッチング電源の出力電圧仕様範囲に合わせて、近似式を求めるスイッチング周期範囲を変えてもよい。
次に、目標ゲイン特性Ga_idealを実現するために、ゲイン変換器24に必要な特性式を求める。まず、図3に実線で示した理想特性から、任意の4点の入力信号Dna(Dna3,Dna4,Dna5,Dna6)に対する目標ゲイン特性Ga_ideal(Ga_ideal3,Ga_ideal4,Ga_ideal5,Ga_ideal6)を求める。なお、入力信号Dna3〜Dna6のいずれかが、上記の入力信号Dna1,Dna2と同じであってもよい。この特性は、ゲイン変換器24に非線形ゲインを設定した場合の特性であり、ゲイン変換器24の出力信号Dnbは未知の値である。
非線形ゲインを適用する場合も、周波数生成器25のゲイン特性G1および電流共振コンバータ部10の入出力変換比Gは変わらないので、式(4)および式(5)の前半の式(Ts=G1*Dnb)より、次式が成り立つ。
Ga_ideal=c3*Dnb^3+c2*Dnb^2+c1*Dnb+c0…(8)
この式(8)と先に求めた4つの目標ゲイン特性Ga_ideal(Ga_ideal3,Ga_ideal4,Ga_ideal5,Ga_ideal6)とにより、各目標ゲイン特性Ga_idealに対応する非線形ゲイン特性の出力信号Dnb(Dnb3,Dnb4,Dnb5,Dnb6)が求められる。これらの出力信号Dnbは、具体的には、数値解析ソフトを使って求めている。
以上の結果より、非線形ゲインの入出力の関係が、入力信号Dna3,Dna4,Dna5,Dna6に対し、出力はそれぞれDnb3,Dnb4,Dnb5,Dnb6が得られる。ここで4点の情報があるので、ゲイン変換器24の特性式を表す近似式として3次式を適用することができる。すなわち、出力信号DnbとDnaとの間の関係式として、次の式(9)が適用できる。式(9)をグラフ化した例を図4に示す。当然、図3に示した理想特性から求める点数を増やせばゲイン変換器の特性を表す近似式の次数を増やすことは可能である。
Dnb=e3*Dna^3+e2*Dna^2+e1*Dna+e0 …(9)
この式(9)で下記のように連立方程式を立てることにより、係数e3,e2,e1,e0が求まり、図4の曲線を表す式を決定することができる。なお、理想特性を求めた入力範囲を超える入力に対しては、ゲイン変換器24は線形としており、トータルでは、図4のような非線形の特性となる。
Dnb1=e3*Dna1^3+e2*Dna1^2+e1*Dna1+e0…(10)
Dnb2=e3*Dna2^3+e2*Dna2^2+e1*Dna2+e0…(11)
Dnb3=e3*Dna3^3+e2*Dna3^2+e1*Dna3+e0…(12)
Dnb4=e3*Dna4^3+e2*Dna4^2+e1*Dna4+e0…(13)
これらの演算結果より、ゲイン変換器24と周波数生成器25と電流共振コンバータ部10とを組み合わせたゲイン特性Gaを線形、または、それに準じた特性とすることができる。
ゲイン変換器24の特性を式(9)とするためには、ゲイン変換器24をデジタル演算器で構成することにより簡単に実現できる。ゲイン変換器24をデジタル演算器とするために、本発明では、ゲイン変換器24の前段にA/D変換器23を設けている。これらにより、理想的には、出力電圧仕様範囲において一定のゲイン特性を得ることができ、出力電圧設定変更に対して、出力電圧の如何に拘わらず、同等の応答特性を実現することができる。
しかしながら、周波数生成器25では、ゲイン変換器24からのデジタル信号に比例した周期のパルス信号を出力するため、実際には、図4の例のように入力信号Dnaが大きい場合には、入力信号Dnaの変化に対する出力信号Dnbの変化が非常に小さく、周波数生成器25には高分解能な特性が要求され、場合によってはゲイン変換器24を用いない場合に比べて10倍以上もの分解能が要求される。その結果、ゲイン変換器24の回路規模は増大し、周波数生成器25は、回路面積および消費電力を大幅に増加させてしまう。
本実施の形態では、式(9)を忠実に再現する回路とするのではなく、式(9)に近似した特性とすることで、大幅な高分解能化を避ける手段を用いている。具体的には、ゲイン変換を行う周期範囲(ここでは、2つの共振周期のTr1からTr2の間とする)を複数の領域(図5の例では、5つの点a,b,c,d,eにて4つの領域)に分けている。そして各々の領域に対してゲインを設定し、図4のように入力信号Dnaに対して連続的ではなく、離散的にゲインを変化させている。なお、図5の点a,b,c,d,eについては、グラフ化して図4の特性に近い特性となるように調整して決めている。加えて、各領域のゲインは、基本ゲインの2のN乗(Nは正負の整数)となるように設定される。これにより、ゲイン変換器24の演算は、乗算器および加算器を不要とし、シフト演算のみで実現でき、ゲイン変換器24の追加による回路面積増加を最小限に抑えることができる。
また、基本ゲインは、ゲイン変換器24を用いない場合の1/2〜1/8程度にしている。これにより、周波数生成器25の分解能増加は、2倍から4倍、多くても8倍に留めることができる。なお、ゲイン変換器24において、ゲインを変化させる点、および各領域に設定するゲインについては、式(9)に追従するように任意に設定すればよい。
次に、ゲイン変換器24の特性を求める別の方法について説明する。図4の破線で示す従来の特性の傾き(ゲイン変換器24のゲイン特性G2)を基本ゲインとする。なお、上記では、G2=1としたが、上記の議論は、G2が1以外の値でも同様に成立する。
折れ線のゲインは、G2*2^j(j=…,−2,−1,0,1,2,…)となるので、ゲインが変化する点は、その点の傾きが隣り合う折れ線傾きの相加平均または相乗平均とする。すなわち、上記のように、G2*2^jで求めたG2をG2jとすると、図4の非線形ゲイン特性を表すカーブの傾きが、(G2j+G2(j+1))/2または√(G2j*G2(j+1))となる点を、たとえば数値解析ソフトを使って求めることができる。
次に、ゲイン変換器24を備えた制御部20の動作について説明する。
図6は周波数生成器の構成例を示す図、図7は線形なゲイン変換器を用いた場合の出力電圧の応答特性の波形例を示す図であって、(a)は電流共振コンバータ部のゲインが低く、(b)は高い場合を示し、図8は非線形なゲイン変換器を用いた場合の出力電圧の応答特性波形を示す図であって、(a)は電流共振コンバータ部のゲインが低く、(b)は高い場合を示している。
まずは、本発明の構成において、ゲイン変換器24の特性がすべての入力範囲で1の場合について説明する。図1に示す構成において、出力電圧検出器21は、直流出力電圧Voutと同じ電位であるトランスTの2次側に配置され、直流出力電圧Voutと目標電圧との誤差を検出し、誤差信号Veを出力する。その誤差信号Veは、絶縁器22を介してトランスTの1次側に配置されたA/D変換器23に出力信号V1として伝送される。A/D変換器23は、誤差信号Veに相当する出力信号V1をデジタル値に変換する。ゲイン変換器24の特性は、ゲインを1とするため、A/D変換器23からの出力は、周波数生成器25にそのまま入力される。
周波数生成器25は、その構成例が図6に示される。周波数生成器25は、ゲイン変換器24から伝送されたデジタル信号(Dnb)を入力する入力端子INと、生成されたスイッチング周期Tsを駆動部26へ伝送する出力端子OUTとを備えている。入力端子INは、第1の比較器(デジタルコンパレータ)31の第1の入力(+)に接続されるとともに、乗算器32を介して第2の比較器(デジタルコンパレータ)33の第1の入力(+)に接続される。第1および第2の比較器31,33の第2の入力(−)は、発振器34の出力を受けるカウンタ35の出力に接続されている。第1の比較器31の出力は、出力端子OUTを構成し、第2の比較器33の出力は、カウンタ35のリセット(RESET)端子に接続されている。
この周波数生成器25は、入力信号に応じた周期でデューティー比50%のパルス信号を生成するものであって、第1の比較器31が出力信号のオン期間を決め、第2の比較器33が出力信号の周期を決めている。そのため、第2の比較器33には、オン期間を決める入力信号を乗算器32で2倍した信号、すなわち、(N−1)ビットの入力信号に1ビット追加してNビットにした信号を入力している。
第1の比較器31は、カウンタ35がリセットされてカウンタ35の全出力ビットがローレベルになったときにその出力をハイレベルにし、入力信号の(N−1)ビットとカウンタ35から出力されるNビットのうちの下位の(N−1)ビットとが一致したときローレベルを出力して、オン期間を決めている。そして、このローレベルの出力は次にカウンタ35がリセットされまで継続する。第2の比較器33は、カウンタ35がリセットされたとき、ハイレベルを出力し、乗算器32からのNビットとカウンタ35から出力されるNビットとが一致したときローレベルのリセット信号を出力し、カウンタ35をリセットする。これにより、周波数生成器25は、入力信号に応じた周期でデューティー比50%のパルス信号を生成している。例として、スイッチング周期の最小変化幅を80nsec、最大出力スイッチング周期を40μsecと仕様を設定した場合、発振器34は発振周期が40nsec、カウンタ35は10ビットのカウンタ、そして、入力信号は、9ビット構成の信号が必要になる。
周波数生成器25から出力されたパルス信号は、駆動部26へ送られる。駆動部26では、2つのスイッチング素子M1,M2が同時にオンして電流が貫通するのを防ぐためのデッドタイムを設けた制御信号Vg1,Vg2に変換される。これらの制御信号Vg1,Vg2は、スイッチング素子M1,M2のゲート端子にそれぞれ入力される。この構成においても、電流共振コンバータは、周波数制御され、設定された所望の出力電圧に収束するよう制御される。
ここで、出力電圧設定値(目標電圧)を変更したときの出力電圧の応答特性の例を示す。まず、ゲイン変換器24が線形なゲイン特性を有しているとした場合の2つの応答特性の例を図7に示す。図7の(a)に示す応答特性の例は、出力電圧設定値を25Vから30Vに変化させた場合であり、図2において入出力変換比Gが1付近での動作となる。図7の(b)に示す応答特性の例は、出力電圧設定値を40Vから48Vに変化させた場合であり、図2において入出力変換比Gが2〜3付近での動作となる。図7の(b)から明らかなとおり、電流共振コンバータ部10の入出力変換比Gが高い条件では、直流出力電圧Voutは大きなオーバーシュートを引き起こし、新たな出力電圧設定値に収束するまでの時間も長くなっている。
次に、本発明の構成において、ゲイン変換器24が非線形なゲイン特性を有しているとした場合について説明する。すなわち、スイッチング周期Tsに対する電流共振コンバータ部10の入出力変換比Gは、図2の特性とし、図3の実線で示す理想特性(Ga_ideal)とするために、図5で示すゲイン特性をゲイン変換器24に与えた場合である。具体的には、図5の各領域のゲインは、a点までは1、a〜b点は4、b〜c点は2、c〜d点は1、d〜e点は0.5、e点以上では1と設定することで、理想特性に近似している。
ゲイン変換器24は整数で取り扱うため、各領域のゲインは、それぞれ2倍して、2、8、4、2、1、2に変更し、ゲイン変換器24の出力を1ビット増やして、10ビットと設定する。この場合、A/D変換器23の出力までの動作は、出力電圧検出器21が直流出力電圧Voutと目標電圧との差である誤差信号Veを出力し、絶縁器22を介して供給された誤差信号Veに相当するアナログ値をデジタル値に変換する点で上述の動作と同じである。A/D変換器23からの出力は、ゲイン変換器24でその値が判定され、それぞれ設定されたゲインが掛けられる。実際には、2のN乗でゲインを設定するため、ビットシフトが行われる。ゲイン変換器24からの出力は、10ビットで出力され、周波数生成器25に入力される。周波数生成器25の構成は、図6に示した構成と同じである。しかし、この例では、入力が1ビット分増加するため、同じ目標仕様を実現するためには、発振器34を20nsecの発振周期にし、カウンタ35を11ビット構成にして、構成要素の特性を上げる必要はあるが、1ビット分の増加に留められている。
この構成について、図7の結果と同様のシミュレーションを行った結果が図8に示す応答特性である。この図8によれば、非線形なゲイン特性を有するゲイン変換器24を加えたことにより、(a)に示すように、電流共振コンバータ部10のゲインが低い領域で出力電圧設定値を変更したときの直流出力電圧Voutは、その応答特性が落ちていないことが分かる。また、図8の(b)に示すように、電流共振コンバータ部10のゲインが高い領域で出力電圧設定値を変更したときの直流出力電圧Voutは、オーバーシュートが抑えられていて、良好な特性が実現されていることが分かる。
図9は第2の実施の形態に係るスイッチング電源の制御装置を適用した電流共振コンバータの構成例を示す図である。
この第2の実施の形態によれば、制御部20は、トランスTの2次側の信号を1次側に伝達する絶縁器22として、絶縁アンプを用い、その絶縁器22に電流共振コンバータ部10の直流出力電圧Voutが直接入力されるよう配置されている。出力電圧検出器21には、絶縁器22の出力が入力されて、目標電圧との誤差の誤差信号Veを出力する。出力電圧検出器21の出力は、A/D変換器23に入力され、ここでアナログ値の誤差信号Veをデジタル信号Deに変換する。A/D変換器23の出力は、デジタル演算器27に入力され、ここで直流出力電圧Voutを出力電圧設定値の電圧に収束させるための制御演算が行われる。デジタル演算器27としては、PI(比例・積分)制御またはPID(比例・積分・微分)制御を行う演算器が用いられる。デジタル演算器27の出力は、ゲイン変換器24に入力され、入力信号Dnaをゲイン変換器24に設定されたゲイン特性に応じて変換し、出力信号Dnbを出力する。ゲイン変換器24の出力は、周波数生成器25に入力され、周波数生成器25では、ゲイン変換器24の出力信号Dnbに応じたスイッチング周期Tsを有するパルス波形信号が生成される。周波数生成器25の出力は、駆動部26に入力され、駆動部26では、2つのスイッチング素子M1,M2を制御する制御信号Vg1,Vg2が出力される。
この制御部20では、電流共振コンバータ部10の直流出力電圧Voutの値をトランスTの1次側に送り、直流出力電圧Voutと目標電圧との差である誤差信号Veを検出してデジタル信号に変換する。第2の実施の形態に係る電流共振コンバータの制御部20では、誤差信号Veをデジタル信号Deに変換し、変換されたデジタル信号Deに対し、PI制御またはPID制御を用いて、設定した出力電圧に収束させるための制御演算を行う。デジタル演算器27によって制御演算された出力信号は、第1の実施の形態でのゲイン変換器24の入力信号Dnaに相当する信号であるが、それよりも、目標電圧との残留偏差およびハンチングの少ない安定した制御を可能にしている。
ゲイン変換器24には、第1の実施の形態と同様のデジタル信号が送られるため、以降の動作については、第1の実施の形態の制御部20の動作と同じである。また、ゲイン変換器24に与える特性についても、電流共振コンバータの特性および周波数生成器25の出力仕様で決まるため、第1の実施の形態のゲイン変換器24に与えた特性と同様となる。
以上、本発明の好適な実施の形態について説明したが、本発明はこの特定の実施の形態に限定されるものではなく、本発明の精神を逸脱しない範囲で各種変更が可能である。たとえば、ゲイン変換器24の非線形ゲイン特性において、分割された領域のゲインを基本ゲインの2のN乗となるように設定しているが、この非線形ゲイン特性のデータをあらかじめROM(Read Only Memory)に記憶しておくこともできる。この場合、ゲイン変換をするときに、入力信号Dnaに対応する値をROMから読み出して出力信号Dnbとすることになる。
具体的には、図4,5の特性を表すのに、入力信号Dnaに対する出力信号Dnbのゲインを2のN乗で変化させるやり方ではなく、図4のグラフを表す(Dnai,Dnbi)(i=1,2,3,・・・)のデータをROMに書き込んでおく。制御時に、領域Dnai〜Dna(i+1)の間に来た入力信号Dnaに対しては、(Dnai,Dnbi)と(Dna(i+1),Dnb(i+1))の値より補間計算して出力信号Dnbとすることになる。このとき、出力信号Dnbは、
Dnb=Dnbi+(Dnb(i+1)−Dnbi)*(Dna−Dnai)/(Dna(i+1)−Dnai)
で求めることができる。これにより、共振コンバータの制御精度をさらに高める場合に、変換のための演算を複雑にすることなく、さらに高次の非線形ゲイン特性を容易に実現することができる。
なお、非線形ゲイン係数をフラッシュROMに書き込む構成とした場合、外部との通信インタフェースを備えておくことで、非線形ゲイン係数を外部から自由に書き換えることもできるようになる。
10 電流共振コンバータ部
20 制御部
21 出力電圧検出器
22 絶縁器
23 A/D変換器(アナログ−デジタル変換器)
24 ゲイン変換器
25 周波数生成器
26 駆動部
27 デジタル演算器
31 第1の比較器
32 乗算器
33 第2の比較器
34 発振器
35 カウンタ

Claims (5)

  1. 電流共振コンバータ部を備えたスイッチング電源の制御装置において、
    前記電流共振コンバータ部の直流出力電圧と目標電圧との誤差を検出して誤差信号を出力する出力電圧検出器と、
    前記出力電圧検出器が検出した前記誤差信号をデジタル信号に変換するアナログ−デジタル変換器と、
    前記アナログ−デジタル変換器から出力されるデジタル信号を入力とするゲイン変換器と、
    前記ゲイン変換器から出力されるデジタル信号に比例して前記スイッチング電源のスイッチング周期を決定する出力信号周期を変化させ、かつデューティー比50%の矩形波信号となる出力信号を生成する周波数生成器と、
    を備え、
    前記ゲイン変換器の入力に対する出力のゲイン特性として、設定した入力範囲において、前記ゲイン変換器の入力に対する前記電流共振コンバータ部の入出力特性の非線形性を打ち消すような非線形ゲイン特性が設定されていることを特徴とするスイッチング電源の制御装置。
  2. 前記ゲイン変換器は、ゲイン変換を行う周期範囲に対して前記非線形ゲイン特性に近似したゲインが連続的に設定されていることを特徴とする請求項1記載のスイッチング電源の制御装置。
  3. 前記ゲイン変換器は、ゲイン変換を行う周期範囲を複数の領域に分割し、それぞれの領域に対して前記非線形ゲイン特性に近似したゲインが離散的に設定されていることを特徴とする請求項1記載のスイッチング電源の制御装置。
  4. 前記ゲイン変換器は、それぞれの領域に設定されるゲインは、基本ゲインの2のN乗(Nは整数)となるように設定されていることを特徴とする請求項3記載のスイッチング電源の制御装置。
  5. 前記アナログ−デジタル変換器と前記ゲイン変換器との間に設置され、前記アナログ−デジタル変換器から出力されるデジタル信号に応じて比例・積分または比例・積分・微分制御の演算を行うデジタル演算装置をさらに備えていることを特徴とする請求項1記載のスイッチング電源の制御装置。
JP2014088248A 2013-07-17 2014-04-22 スイッチング電源の制御装置 Expired - Fee Related JP6402474B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088248A JP6402474B2 (ja) 2013-07-17 2014-04-22 スイッチング電源の制御装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013148197 2013-07-17
JP2013148197 2013-07-17
JP2014088248A JP6402474B2 (ja) 2013-07-17 2014-04-22 スイッチング電源の制御装置

Publications (2)

Publication Number Publication Date
JP2015039284A JP2015039284A (ja) 2015-02-26
JP6402474B2 true JP6402474B2 (ja) 2018-10-10

Family

ID=52320414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088248A Expired - Fee Related JP6402474B2 (ja) 2013-07-17 2014-04-22 スイッチング電源の制御装置

Country Status (3)

Country Link
US (1) US9729069B2 (ja)
JP (1) JP6402474B2 (ja)
CN (1) CN104300798B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516902A1 (de) * 2015-03-09 2016-09-15 Fronius Int Gmbh Resonanzwandler mit einem Transformator mit Mittelpunktanzapfung
US9723661B2 (en) * 2015-05-01 2017-08-01 GE Lighting Solutions, LLC Systems and methods for powering a microprocessor from an isolated secondary side to enable off-line communication on an LED driver
JP6706533B2 (ja) * 2016-04-14 2020-06-10 株式会社アイ・ライティング・システム Led電源装置
US10326370B2 (en) * 2016-06-02 2019-06-18 Semiconductor Components Industries, Llc Controlling output voltage for power converter
US10277140B2 (en) * 2017-08-31 2019-04-30 Google Llc High-bandwith resonant power converters
CN109951062B (zh) * 2017-12-21 2022-07-26 雅达电子国际有限公司 谐振转换器及用于谐振转换器的控制方法
JP7061548B2 (ja) * 2018-10-04 2022-04-28 株式会社日立産機システム 共振型電源装置
JP6695405B1 (ja) * 2018-11-21 2020-05-20 三菱電機株式会社 電力変換装置
US11502609B2 (en) 2019-11-04 2022-11-15 Appulse Power Inc. Digital nonlinear transformation for voltage-mode control of a power converter
US11711023B2 (en) * 2021-05-14 2023-07-25 Queen's University At Kingston Methods and circuits for sensing isolated power converter output voltage across the isolation barrier
JP2023049712A (ja) * 2021-09-29 2023-04-10 国立大学法人 岡山大学 制御方法、制御装置及び制御システム
CN115864860B (zh) * 2023-03-03 2023-05-26 电子科技大学(深圳)高等研究院 一种具有宽增益的llc谐振型dc变换器系统及应用方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700285A (en) * 1986-11-18 1987-10-13 National Semiconductor Corporation Combined PWM-FM control method and circuit for the high efficiency control of resonant switch mode inverters/converters
WO2001020758A1 (en) 1999-09-17 2001-03-22 Koninklijke Philips Electronics N.V. Llc converter, and method for controlling an llc converter
JP3789364B2 (ja) * 2002-01-24 2006-06-21 Tdk株式会社 二段構成のdc−dcコンバータ
JP4682578B2 (ja) 2004-10-01 2011-05-11 富士電機システムズ株式会社 Dc−dcコンバータ
JP2006204048A (ja) 2005-01-24 2006-08-03 Shindengen Electric Mfg Co Ltd 直列共振形コンバータ
US7518885B2 (en) * 2006-10-04 2009-04-14 Power Integrations, Inc. Method and apparatus for a control circuit with multiple operation modes
US8279628B2 (en) * 2008-07-25 2012-10-02 Cirrus Logic, Inc. Audible noise suppression in a resonant switching power converter
EP2421136B1 (en) * 2009-04-14 2019-05-08 Murata Manufacturing Co., Ltd. Switching power supply unit
JP4924659B2 (ja) * 2009-05-27 2012-04-25 サンケン電気株式会社 Dc−dcコンバータ
JP4901939B2 (ja) * 2009-10-26 2012-03-21 コーセル株式会社 スイッチング電源装置
IT1397087B1 (it) * 2009-12-28 2012-12-28 St Microelectronics Srl Dispositivo di controllo in modalità a controllo di carica per un convertitore risonante.
CN101800475B (zh) * 2010-03-22 2012-08-22 艾默生网络能源有限公司 Llc谐振变换器控制方法及控制装置
CN101938222B (zh) * 2010-07-27 2014-02-05 Bcd半导体制造有限公司 一种供电装置和为显示装置提供背光的背光系统
JP5746560B2 (ja) 2011-05-25 2015-07-08 新電元工業株式会社 スイッチング電源装置
JP2012249415A (ja) * 2011-05-27 2012-12-13 Minebea Co Ltd スイッチング電源装置の制御方法
US8786377B2 (en) * 2011-11-21 2014-07-22 Intersil Americas LLC System and method of maintaining gain linearity of variable frequency modulator
EP2811638B1 (en) * 2012-02-03 2017-12-20 Fuji Electric Co., Ltd. Control device for resonance-type dc-dc converter
US9136760B2 (en) * 2012-06-27 2015-09-15 Analog Devices Global Digital switched mode voltage regulator
JP6089529B2 (ja) * 2012-09-20 2017-03-08 富士電機株式会社 スイッチング電源装置
US20140091718A1 (en) * 2012-09-28 2014-04-03 Power Systems Technologies, Ltd. Power Converter with an Inductor-Inductor-Capacitor Stage and Method of Operating the Same

Also Published As

Publication number Publication date
US9729069B2 (en) 2017-08-08
JP2015039284A (ja) 2015-02-26
CN104300798B (zh) 2019-03-01
US20150023066A1 (en) 2015-01-22
CN104300798A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
JP6402474B2 (ja) スイッチング電源の制御装置
JP4341753B2 (ja) ロバストディジタル制御器およびその設計装置
JP6196834B2 (ja) スイッチング電源制御回路
KR100593521B1 (ko) 스위치모드 파워서플라이를 컨트롤하기 위한 최적화된디지털 신호프로세서 아키텍쳐
JP4545439B2 (ja) 高周波数電源用デジタル制御器
CN111211667B (zh) 多阶切换式电源转换电路、其控制电路与控制方法
JP5226399B2 (ja) 電源装置及び電源装置の制御方法
US9124187B2 (en) Control device for switching power source
EP2003527A2 (en) Digital controller
JPH0819250A (ja) 電源装置
CN110086324B (zh) 切换式电源转换电路及其中的控制电路
JP6211726B1 (ja) スイッチング電源回路
US9602002B2 (en) Switching power supply device
US10638587B2 (en) Device and method for processing an inductor current
TWI462453B (zh) 直流轉直流控制器及其控制方法
JP2006050723A (ja) ロバストディジタル制御器の設計装置
JP2008099362A (ja) Δς変調器回路及びδς変調回路を備えたスイッチング電源
JP2001339256A (ja) スイッチング方式交流信号増幅器
KR100446283B1 (ko) 아날로그/디지털 변환기를 포함한 다단구조의 프로그래머블이득 제어 증폭장치 및 그에 따른 이득 오차 보정방법
JP2018042383A (ja) スイッチング電源装置
US20240136928A1 (en) Control circuit for a buck-boost power converter
JP6528634B2 (ja) スイッチング電源回路の制御方法及び電源装置
CN116744181A (zh) 用于驱动电路的方法及驱动电路
SU760246A1 (en) Method and device for phase control in piezosemiconductor transformer
KR101515511B1 (ko) Dc-dc 컨버터의 pwm 제어 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180827

R150 Certificate of patent or registration of utility model

Ref document number: 6402474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees