JP6357820B2 - 超高分子量ポリエチレン製切削薄膜 - Google Patents

超高分子量ポリエチレン製切削薄膜 Download PDF

Info

Publication number
JP6357820B2
JP6357820B2 JP2014053362A JP2014053362A JP6357820B2 JP 6357820 B2 JP6357820 B2 JP 6357820B2 JP 2014053362 A JP2014053362 A JP 2014053362A JP 2014053362 A JP2014053362 A JP 2014053362A JP 6357820 B2 JP6357820 B2 JP 6357820B2
Authority
JP
Japan
Prior art keywords
molecular weight
weight polyethylene
high molecular
temperature
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014053362A
Other languages
English (en)
Other versions
JP2015174942A (ja
Inventor
稲富 敬
敬 稲富
阿部 成彦
成彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014053362A priority Critical patent/JP6357820B2/ja
Publication of JP2015174942A publication Critical patent/JP2015174942A/ja
Application granted granted Critical
Publication of JP6357820B2 publication Critical patent/JP6357820B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、融点が高く、高結晶性を示す超高分子量ポリエチレン粒子を成形してなる切削薄膜に関するものであり、さらに詳細には、高い強度を有し、耐熱性、耐衝撃性、耐摩耗性、耐薬品性に優れることからシート、フィルム、膜、ガイドレール、テープ、チューブ、スキー等のスポーツ用品のソール、ライニング材等としての適用が期待される超高分子量ポリエチレン製切削薄膜に関するものである。
超高分子量エチレン系重合体は、粘度平均分子量(Mv)で100万以上に相当する極めて高い分子量を有していることから、耐衝撃性、自己潤滑性、耐摩耗性、耐候性、耐薬品性、寸法安定性等に優れており、エンジニアリングプラスチックに匹敵する高い物性を有している。このため、各種成形方法により、ライニング材、食品工業のライン部品、機械部品、人工関節、スポーツ用品、微多孔膜等の用途への適用が試みられている。
しかし、超高分子量エチレン系重合体は、その高い分子量故に、溶融時の流動性が極めて低く、分子量が数万から約50万の範囲にある通常のポリエチレンのように混練押出により成形することは困難である。そこで、超高分子量ポリエチレンは、重合により得られた重合体粉末を直接焼結する方法、圧縮成形する方法、間歇圧縮させながら押出成形するラム押出機による成形方法、溶媒等に分散させた状態で押出成形した後、溶媒を除去する方法等の方法が行われている。更には、得られた塊状成形体を、スカイブ加工(いわゆる桂剥き)と呼ばれる切削成形により、シート、フィルムにする方法が行われている。
このうち、超高分子量ポリエチレンの切削シートもしくはフィルムは、超高分子量ポリエチレンの高い分子量により発現する強度、耐衝撃性、耐寒性、耐薬品性等の特性により、シート、フィルム、膜、テープ、チューブ、スキー等のスポーツ用品のソール、ガイドレール、及びライニング材等に利用されている。但し、現在市販されているチーグラー触媒によって製造される超高分子量ポリエチレンは、重量平均分子量(Mw)と数平均分子量(Mn)との比(分子量分布)が4より大きく、分子量分布が広いため、成形体の強度の向上は、通常分子量のポリエチレンに比べて十分に向上したものとは言えず、期待される性能を発揮するものとは言えないものである。
一方、メタロセン系触媒、ポストメタロセン系触媒を用いて製造した分子量分布の狭い超高分子量エチレン系重合体も提案されている(例えば特許文献1、2参照。)。
特許4868853号公報(例えば特許請求の範囲参照。) 特開2006−36988号公報(例えば特許請求の範囲参照。)
しかし、特許文献1、2に提案された超高分子量ポリエチレンを用いて切削シートもしくはフィルムを製造した場合、成形品としての性能向上は見られるものの、強度という点では、その性能は充分満足を得られるものではなかった。
また、一般的な超高分子量ポリエチレンは分子量が高くなるほど、分子鎖どうしの絡み合いが解けにくくなるため、分子量が高くなることにより期待される効果を十分発現することができず、例えば、引張破断強度は、分子量300万程度で最大となり、それ以上に分子量を高くしても、逆に引張破断強度が低下するという課題があった。
そこで、本発明は、上記課題に鑑みてなされたものであり、高い強度を有し、耐熱性、耐衝撃性、耐摩耗性、耐薬品性に優れるシート、フィルム等に代表される超高分子量ポリエチレン製切削薄膜を提供することを目的とするものである。
本発明者らは、上記課題を解決するために鋭意研究した結果、特定の溶融挙動を有する新規な超高分子量ポリエチレン粒子を用いた成形体より切削してなるシート、フィルムに代表される薄膜が、高い強度を有する切削薄膜となることを見出し、本発明を完成させるに到った。
即ち、本発明は、少なくとも下記(1)、(2)、(3)、(4)に示す特性のいずれをも満足する超高分子量ポリエチレン粒子を用い、成形温度150℃以上250℃以下で溶融圧縮成形し超高分子量ポリエチレン製溶融圧縮成形物とした後、該超高分子量ポリエチレン製溶融圧縮成形物の切削加工を行い、少なくとも下記(1)、(4)に示す特性のいずれをも満足するものとすることを特徴とする超高分子量ポリエチレン製切削薄膜の製造方法に関するものである。
(1)固有粘度([η])が15dl/g以上60dl/g以下、
(2)嵩密度が130kg/m 以上700kg/m 以下、
(3)示差走査型熱量計(DSC)にて、0℃から10℃/分の昇温速度で230℃まで昇温(1stスキャン)した際の1stスキャンの融点(Tm )、その後、5分間放置後、10℃/分の降温速度で−20℃まで降温し、5分間放置後、再度、10℃/分の昇温速度で−20℃から230℃まで昇温(2ndスキャン)した際の2ndスキャンの融点(Tm )をそれぞれを測定し、該Tm と該Tm の差(ΔTm=Tm −Tm )が11℃以上30℃以下。
(4)チタンの含有量が0.2ppm以下又は測定検出限界以下である。
以下に、本発明を詳細に説明する。
本発明の超高分子量ポリエチレン製切削薄膜は、少なくとも(1)固有粘度([η])が15dl/g以上60dl/g以下、(2)嵩密度が130kg/m以上700kg/m以下、(3)示差走査型熱量計(DSC)にて、0℃から10℃/分の昇温速度で230℃まで昇温(1stスキャン)した際の1stスキャンの融点(Tm)、その後、5分間放置後、10℃/分の降温速度で−20℃まで降温し、5分間放置後、再度、10℃/分の昇温速度で−20℃から230℃まで昇温(2ndスキャン)した際の2ndスキャンの融点(Tm)をそれぞれ測定し、該Tmと該Tmの差(ΔTm=Tm−Tm)が11℃以上30℃以下、という特性のいずれをも満足する超高分子量ポリエチレン粒子を用いた成形体を、切削してなるものである。
該超高分子量ポリエチレン粒子は、超高分子量ポリエチレンが粒子形状を有するものであり、超高分子量ポリエチレンには、ポリエチレンと称される範疇のものが属し、例えば超高分子量エチレン単独重合体;超高分子量エチレン−プロピレン共重合体、超高分子量エチレン−1−ブテン共重合体、超高分子量エチレン−1−ヘキセン共重合体、超高分子量エチレン−1−オクテン共重合体等の超高分子量エチレン−α−オレフィン共重合体;等を挙げることができる。
該超高分子量ポリエチレン粒子は、(1)固有粘度([η])が15dl/g以上60dl/g以下のものであり、特に切削薄膜とした際に優れた成形性と力学特性を有するものとなることから15dl/g以上50dl/g以下であることが好ましい。ここで、固有粘度が15dl/g未満である場合、得られる切削薄膜は力学特性に劣るものとなる。一方、固有粘度が60dl/gを越える場合、成形体とする際の流動性に劣るため、成形加工が困難なものとなる。なお、固有粘度は、例えばウベローデ型粘度計を用い、オルトジクロルベンゼン、デカヒドロナフタレン、テトラヒドロナフタレン等を溶媒としたポリマー濃度0.0005〜0.01%の溶液にて、135℃において測定する方法により測定することが可能である。
また、該超高分子量ポリエチレン粒子は、(2)嵩密度が130kg/m以上700kg/m以下であり、成形体とする際の加工性に優れるものとなることから200kg/m以上600kg/m以下であることが好ましい。ここで、嵩密度が130kg/m未満である場合、粒子の流動性が低下する、保管設備、保管容器、ホッパーでの充満率が低下する等、操作性を著しく低下させる等の課題を発生しやすくなる。一方、嵩密度が700kg/mを超える場合、成形体とする際の加工性に劣り、得られる切削薄膜の物性低下等の課題を発生しやすくなる。なお、嵩密度は、例えばJIS K6760(1995)に準拠した方法で測定することが可能である。
該超高分子量ポリエチレン粒子は、(3)示差走査型熱量計(DSC)にて、0℃から10℃/分の昇温速度で230℃まで昇温(1stスキャン)した際の1stスキャンの融点(Tm)、その後、5分間放置後、10℃/分の降温速度で−20℃まで降温し、5分間放置後、再度、10℃/分の昇温速度で−20℃から230℃まで昇温(2ndスキャン)した際の2ndスキャンの融点(Tm)をそれぞれ測定し、該Tmと該Tmの差(ΔTm=Tm−Tm)が11℃以上30℃以下であり、特に耐熱性、機械的強度、成形性のバランスに優れる超高分子量ポリエチレン製切削薄膜となることからΔTmが11℃以上15℃以下であることが好ましい。ここで、ΔTmが11℃未満である場合、得られる成形体は、耐熱性、強度等に劣るものとなる。一方、ΔTmが30℃を超える場合、得られる超高分子量ポリエチレン粒子を成形加工に供した際の成形加工性に劣るものとなるばかりか、得られる成形体も物性に劣るものとなる。
なお、一般的なポリエチレンにおいては、高融点を有するポリエチレンとして、高密度ポリエチレンに属するエチレン単独重合体が知られている。しかし、該高密度ポリエチレンにおける融点は130〜135℃程度と低いものである。一方、本発明の切削シートもしくはフィルムに用いる超高分子量ポリエチレン粒子は、従来から知られているポリエチレンと比較しても極めて高い融点(Tm)を有するものであり、例えばエチレン単独重合体であるならば、Tmとして140℃を超える極めて高い融点を有している。該超高分子量ポリエチレン粒子においては、ポリエチレンの分子鎖が配向するなどして、高度に結晶化されているため、示差走査型熱量計(DSC)にて測定した際のTmとTm差であるΔTmが11℃以上30℃以下という極めて大きな差となると考えている。
さらに、該超高分子量ポリエチレン粒子は、チタンが原因で発生する変色(黄変)や酸化劣化等の抑制が可能で色調が良好なものとなり、耐候性にも優れる超高分子量ポリエチレン製切削薄膜を提供することが可能となるから、チタンの含有量が少ないものであることが好ましく、特に(4)チタンの含有量が0.02ppm以下又は検出限界以下、のものが好ましい。なお、チタンの含有量は、化学滴定法、蛍光X線分析装置、ICP発光分析装置等による測定等により求めることができる。
該超高分子量ポリエチレン粒子は、より強靭な超高分子量ポリエチレン製切削薄膜を提供することが可能となることから、(5)プレス温度190℃、プレス圧力20MPaで加熱圧縮した後、前記(3)により測定した2ndスキャンの融点(Tm)より10℃〜30℃低い金型温度で冷却して成形したシートの引張破断強度(TS(MPa))が、下記関係式(a)を満たすものであることが好ましく、更により強靭で機械強度、耐摩耗性に優れる超高分子量ポリエチレン製切削薄膜を提供することが可能となることから、下記関係式(c)を満たすものであることが好ましい。
TS≧1.35×Tm−130 (a)
1.35×Tm−130≦TS≦2×Tm−175 (c)
なお、一般的なポリエチレンの引張破断強度は、最も高い高密度ポリエチレンでも45MPa程度と低いものである。また、従来の超高分子量ポリエチレンも、その高い分子量を十分生かすことができておらず、引張破断強度は一般的なポリエチレンと同等であり、50MPaを超えることはなかった。このため、高延伸倍率で圧延成形するなどにより配向させて、強度を高める方法がとられていた。
しかし、本発明の切削薄膜に用いる超高分子量ポリエチレン粒子は、高分子鎖が適度に絡み合っているため、固有粘度が15dl/gを超える超高分子量ポリエチレンの領域であっても、更にその分子量を高くしても引張破断強度が低下せず、むしろ、さらに向上する傾向を示すものである。そして、本発明の切削薄膜に用いる超高分子量ポリエチレン粒子としては、成形体とした際により強度が優れるものとなることから、高密度ポリエチレンの領域に属するものであるならば前記(5)により測定した引張破断強度として、40MPa以上を有するものであることが好ましく、より好ましくは50MPa以上を有するものである。
なお、引張破断強度の測定条件としては、特に制限はなく、例えば厚み0.1〜5mm、幅1〜50mmの短冊形、ダンベル型等の試験片を、引張速度1mm/分〜500mm/分の速度で測定する方法を例示することができる。
該超高分子量ポリエチレン粒子は、比較的低分子量成分の含有量が低く、高分子鎖の適度な絡み合いが可能となり、特に耐熱性にも優れる超高分子量ポリエチレン製切削薄膜となることから、(6)加熱圧縮成形したシートを、前記(3)により測定した2ndスキャンの融点(Tm)より20℃高い温度で溶融延伸したときの破断応力(MTS(MPa))が2MPa以上を有するものであることが好ましく、更に3MPa以上を有するものであることが好ましい。
なお、分子量50万以下の一般的なポリエチレンは、融点(Tm)より20℃高い温度では、流動性が高く、自重で成形体が変形してしまい、溶融延伸はできない。また、従来の超高分子量ポリエチレンは、融点(Tm)より20℃高い温度でも、溶融延伸は可能であるが、含有する低分子量成分の影響により、歪み硬化が起きず、応力が低い状態のまま、1MPa前後の応力で破断してしまい、耐熱性に劣るものであった。
そして、溶融延伸に用いる加熱圧縮成形シートの成形条件としては、制限はなく、例えばプレス温度100〜250℃、プレス圧力5〜50MPaの条件であり、その中でも特に前記(5)に記載した加熱圧縮成形法を例示することができる。また、溶融延伸方法としては、例えば厚み0.1〜5mm、幅1〜50mmの短冊形、ダンベル型等の試験片を、引張速度1mm/分〜500mm/分の速度で延伸する方法を例示することができる。さらに、溶融延伸時の破断応力としては、歪み硬化が起き、延伸に伴い応力が増加した場合はその最大値を破断応力とし、歪み硬化が起きず、延伸しても応力が増加しない場合は、降伏後の平坦領域の応力を破断応力とした。
該超高分子量ポリエチレン粒子は、特に耐熱性に優れる超高分子量ポリエチレン製切削薄膜となることから、(7)前記(6)により測定した溶融延伸したときの破断時の応力(MTS(MPa))と固有粘度([η])が、下記関係式(b)を満たすものであることが好ましく、特に溶融延伸性、成形性にも優れるものとなることから、下記関係式(d)を満たすものであることが好ましい。
MTS≧0.11×[η] (b)
0.11×[η]≦MTS≦0.32×[η] (d)
該超高分子量ポリエチレン粒子は、特に粉体としての流動性に優れ、成形加工性、物性に優れる超高分子量ポリエチレン製切削薄膜となることから、(8)平均粒径が1μm以上1000μm以下であるものが好ましい。なお、平均粒径に関しては、例えばJIS Z8801で規定された標準篩を用いたふるい分け試験法等の方法により測定することができる。
本発明の超高分子量ポリエチレン製切削薄膜に用いられる超高分子量ポリエチレン粒子の製造方法としては、該超高分子量ポリエチレン粒子の製造が可能であれば如何なる方法を用いても良く、例えばポリエチレン製造用触媒を用い、エチレンの単独重合、エチレンと他のオレフィンとの共重合を行う方法を挙げることができ、その際のα−オレフィンとしては、例えばプロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン等を挙げることができる。また、重合方法としては、例えば溶液重合法、塊状重合法、気相重合法、スラリー重合法等の方法を挙げることができ、その中でも、特に粒子形状が整った超高分子量ポリエチレン粒子の製造が可能となると共に、高融点、高結晶化度を有し、機械強度、耐熱性、耐摩耗性に優れる超高分子量ポリエチレン製切削薄膜を提供しうる超高分子量ポリエチレン粒子を効率よく安定的に製造することが可能となることからスラリー重合法であることが好ましい。また、スラリー重合法に用いる溶媒としては、一般に用いられている有機溶媒であればいずれでもよく、例えばベンゼン、トルエン、キシレン、ペンタン、ヘキサン、ヘプタン等が挙げられ、イソブタン、プロパン等の液化ガス、プロピレン、1−ブテン、1−オクテン、1−ヘキセンなどのオレフィンを溶媒として用いることもできる。
また、該超高分子量ポリエチレン粒子を製造するのに用いる、ポリエチレン製造用触媒としては、該超高分子量ポリエチレン粒子の製造が可能であれば如何なるものを用いることも可能であり、例えば少なくとも遷移金属化合物(A)、脂肪族塩にて変性した有機変性粘土(B)及び有機アルミニウム化合物(C)より得られるメタロセン系触媒を挙げることができる。
そして、該遷移金属化合物(A)としては、例えば(置換)シクロペンタジエニル基と(置換)フルオレニル基を有する遷移金属化合物、(置換)シクロペンタジエニル基と(置換)インデニル基を有する遷移金属化合物、(置換)インデニル基と(置換)フルオレニル基を有する遷移金属化合物等を挙げることができ、その際の遷移金属としては、例えばジルコニウム、ハフニウム等を挙げることができ、その中でも特に超高分子量ポリエチレン粒子を効率よく製造することが可能となることから、(置換)シクロペンタジエニル基とアミノ基置換フルオレニル基を有するジルコニウム化合物、(置換)シクロペンタジエニル基とアミノ基置換フルオレニル基を有するハフニウム化合物であることが好ましい。
そして、より具体的には、例えばジフェニルメチレン(1−インデニル)(9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(4−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2−(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2−(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2,7−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2,7−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2,7−ビス(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(4−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(4−(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(4−(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2−(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2−(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2,7−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2,7−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2,7−ビス(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライドジフェニルメチレン(シクロペンタジエニル)(4−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(4−(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(4−(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジイソプロピルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジ−n−ブチル−アミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(3、6−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(3、6−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(3、6−ビス(ジ−n−プロピル−アミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、5−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、5−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、5−ビス(ジイソプロピルアミノ)−9−フルオレニル)ジルコニウムジクロライドなどのジルコニウム化合物;これらのジクロロ体をジメチル体、ジエチル体、ジヒドロ体、ジフェニル体、ジベンジル体に変えたジルコニウム化合物、およびこれら化合物のジルコニウムをハフニウムに変えたハフニウム化合物などを例示することができる。
該脂肪族塩にて変性した有機変性粘土(B)としては、例えばN,N−ジメチル−ベヘニルアミン塩酸塩、N−メチル−N−エチル−ベヘニルアミン塩酸塩、N−メチル−N−n−プロピル−ベヘニルアミン塩酸塩、N,N−ジオレイル−メチルアミン塩酸塩、N,N−ジメチル−ベヘニルアミンフッ化水素酸塩、N−メチル−N−エチル−ベヘニルアミンフッ化水素酸塩、N−メチル−N−n−プロピル−ベヘニルアミンフッ化水素酸塩、N,N−ジオレイル−メチルアミンフッ化水素酸塩、N,N−ジメチル−ベヘニルアミン臭化水素酸塩、N−メチル−N−エチル−ベヘニルアミン臭化水素酸塩、N−メチル−N−n−プロピル−ベヘニルアミン臭化水素酸塩、N,N−ジオレイル−メチルアミン臭化水素酸塩、N,N−ジメチル−ベヘニルアミンヨウ化水素酸塩、N−メチル−N−エチル−ベヘニルアミンヨウ化水素酸塩、N−メチル−N−n−プロピル−ベヘニルアミンヨウ化水素酸塩、N,N−ジオレイル−メチルアミンヨウ化水素酸塩、N,N−ジメチル−ベヘニルアミン硫酸塩、N−メチル−N−エチル−ベヘニルアミン硫酸塩、N−メチル−N−n−プロピル−ベヘニルアミン硫酸塩、N,N−ジオレイル−メチルアミン硫酸塩等の脂肪族アミン塩;P,P−ジメチル−ベヘニルホスフィン塩酸塩、P,P−ジエチル−ベヘニルホスフィン塩酸塩、P,P−ジプロピル−ベヘニルホスフィン塩酸塩、P,P−ジメチル−ベヘニルホスフィンフッ化水素酸塩、P,P−ジエチル−ベヘニルホスフィンフッ化水素酸塩、P,P−ジプロピル−ベヘニルホスフィンフッ化水素酸塩、P,P−ジメチル−ベヘニルホスフィン臭化水素酸塩、P,P−ジエチル−ベヘニルホスフィン臭化水素酸塩、P,P−ジプロピル−ベヘニルホスフィン臭化水素酸塩、P,P−ジメチル−ベヘニルホスフィンヨウ化水素酸塩、P,P−ジエチル−ベヘニルホスフィンヨウ化水素酸塩、P,P−ジプロピル−ベヘニルホスフィンヨウ化水素酸塩、P,P−ジメチル−ベヘニルホスフィン硫酸塩、P,P−ジエチル−ベヘニルホスフィン硫酸塩、P,P−ジプロピル−ベヘニルホスフィン硫酸塩等の脂肪族ホスフォニウム塩;等の脂肪族塩により変性された粘土を挙げることができる。
また、該有機変性粘土(B)を構成する粘土化合物としては、粘土化合物の範疇に属するものであれば如何なるものであってもよく、一般的にシリカ四面体が二次元上に連続した四面体シートと、アルミナ八面体やマグネシア八面体等が二次元上に連続した八面体シートが1:1又は2:1で組合わさって構成されるシリケート層と呼ばれる層が何枚にも重なって形成され、一部のシリカ四面体のSiがAl、アルミナ八面体のAlがMg、マグネシア八面体のMgがLi等に同型置換されることにより層内部の正電荷が不足し、層全体として負電荷を帯びており、この負電荷を補償するために層間にはNaやCa2+等の陽イオンが存在しているものとして知られているものである。そして、該粘土化合物としては天然品、または合成品としてのカオリナイト、タルク、スメクタイト、バーミキュライト、雲母、脆雲母、縁泥石等が存在し、これらを用いることが可能であり、その中でも入手のしやすさと有機変性の容易さからスメクタイトが好ましく、特にスメクタイトのなかでもヘクトライトまたはモンモリロナイトがさらに好ましい。
該有機変性粘土(B)は、該粘土化合物の層間に該脂肪族塩を導入し、イオン複合体を形成することにより得る事が可能である。該有機変性粘土(B)を調製する際には、粘土化合物の濃度0.1〜30重量%、処理温度0〜150℃の条件を選択して処理を行うことが好ましい。また、該脂肪族塩は固体として調製して溶媒に溶解させて使用しても良いし、溶媒中での化学反応により該脂肪族塩の溶液を調製してそのまま使用しても良い。該粘土化合物と該脂肪族塩の反応量比については、粘土化合物の交換可能なカチオンに対して当量以上の脂肪族塩を用いることが好ましい。処理溶媒としては、例えばペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類;エチルアルコール、メチルアルコール等のアルコール類;エチルエーテル、n−ブチルエーテル等のエーテル類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類;アセトン;1,4−ジオキサン;テトラヒドロフラン;水、等を用いることができる。そして、好ましくは、アルコール類または水を単独もしくは溶媒の一成分として用いることである。
また、本発明のポリエチレン製造用触媒を構成する有機変性粘土(B)の粒径に制限はなく、その中でも触媒調製時の効率、ポリエチレン製造時の効率に優れるものとなることから1〜100μmであることが好ましい。その際の粒径を調節する方法にも制限はなく、大きな粒子を粉砕して適切な粒径にしても、小さな粒子を造粒して適切な粒径にしても良く、あるいは粉砕と造粒を組み合わせても良い。また、粒径の調節は有機変性前の粘土に行っても、変性後の有機変性粘土に行っても良い。
該有機アルミニウム化合物(C)としては、有機アルミニウム化合物と称される範疇に属するものであれば如何なるものも用いることができ、例えばトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムなどのアルキルアルミニウムなどを挙げることができる。
該ポリエチレン製造用触媒を構成する該遷移金属化合物(A)(以下(A)成分ということもある。)、該有機変性粘土(B)(以下、(B)成分ということもある。)、および該有機アルミニウム化合物(C)(以下、(C)成分ということもある。)の使用割合に関しては、ポリエチレン製造用触媒としての使用が可能であれば如何なる制限を受けるものでなく、その中でも、特に超高分子量ポリエチレン粒子を生産効率よく製造することが可能なポリエチレン製造用触媒となることから、(A)成分と(C)成分の金属原子当たりのモル比は(A)成分:(C)成分=100:1〜1:100000の範囲にあることが好ましく、特に1:1〜1:10000の範囲であることが好ましい。また、(A)成分と(B)成分の重量比が(A)成分:(B)成分=10:1〜1:10000にあることが好ましく、特に3:1〜1:1000の範囲であることが好ましい。
該ポリエチレン製造用触媒の調製方法に関しては、該(A)成分、該(B)成分および該(C)成分を含むポリエチレン製造用触媒を調製することが可能であれば如何なる方法を用いてもよく、例えば各(A)、(B)、(C)成分に関して不活性な溶媒中あるいは重合を行うモノマーを溶媒として用い、混合する方法などを挙げることができる。また、これらの成分を反応させる順番に関しても制限はなく、この処理を行う温度、処理時間も制限はない。また、(A)成分、(B)成分、(C)成分のそれぞれを2種類以上用いてポリエチレン製造用触媒を調製することも可能である。
本発明の超高分子量ポリエチレン製切削薄膜に用いられる超高分子量ポリエチレン粒子を製造する際の重合温度、重合時間、重合圧力、モノマー濃度などの重合条件については任意に選択可能であり、その中でも、重合温度0〜100℃、重合時間10秒〜20時間、重合圧力常圧〜100MPaの範囲で行うことが好ましい。また、重合時に水素などを用いて分子量の調節を行うことも可能である。重合はバッチ式、半連続式、連続式のいずれの方法でも行うことが可能であり、重合条件を変えて、2段以上に分けて行うことも可能である。また、重合終了後に得られるポリエチレン粒子は、従来既知の方法により重合溶媒から分離回収され、乾燥して得ることができる。
次に、本発明の超高分子量ポリエチレン製切削薄膜の製造方法を説明する。本発明の切削薄膜は、該超高分子量ポリエチレン粒子を成形体とし、該成形体よりシート状又はフィルム状に切削加工を行なうことにより薄膜として得られるものである。
その際の該成形体の製造方法としては、例えば圧縮成形法により、ロッド状、ブロック状、ドーナツ状などの形状を付与した成形体とする方法を挙げることができる。そして、圧縮成形法としては、例えば圧縮成形機での圧縮成形、ラム押出機で間歇圧縮しながら押出成形する方法等を挙げることができる。圧縮成形する際の成形温度としては、超高分子量ポリエチレン同士の融着性が良好であり、緻密な成形体が得られると共に、超高分子量ポリエチレン粒子の酸化劣化を抑制することが可能となることから0℃以上300℃以下、特に100℃以上250℃以下、更に150℃以上250℃以下であることが好ましい。
また、シート状、フィルム状の切削薄膜とする際の切削加工法としては、例えばスカイブと称される切削加工法により該成形体の表面から切削により薄膜を得る方法を挙げることがきる。そして、切削時の成形の条件としては、特に制限はなく、中でも200℃以下、より好ましくは130℃以下の温度で切削加工を行なうことが好ましい。また、無延伸状態でも、延伸が掛かった状態で、切削薄膜を成形することも可能である。
本発明の超高分子量ポリエチレン製切削薄膜は、主にシート状又はフィルム状の薄膜でありどちらの形状を有するものであってもかまわない。なお、シートとフィルムは一般的に厚みで分類され、例えばJISの包装用語規格では、厚さ0.25mm以上のものをシートと定義し、0.25mm未満のものをフィルムと定義している。また、本発明の超高分子量ポリエチレン製切削薄膜は、切削加工後に、アニーリングを施したものであってもかまわない。
本発明の超高分子量ポリエチレン製切削薄膜は、本発明の目的を逸脱しない限りにおいて、耐熱安定剤、耐候安定剤、帯電防止剤、防曇剤、抗ブロッキング剤、スリップ剤、滑剤、核剤、顔料等;カーボンブラック、タルク、ガラス粉、ガラス繊維、金属粉等の無機充填剤または補強剤;有機充填剤または補強剤;難燃剤;中性子遮蔽剤等の公知の添加剤、更には、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(L−LDPE)、低密度ポリエチレン(LDPE)、ポリプロピレン系樹脂、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、ポリスチレン、これらの無水マレイン酸グラフト物等の樹脂を配合していても良く、このような添加剤の添加方法としては、超高分子量ポリエチレン粒子に配合する方法、超高分子量ポリエチレン粒子と、成形の際にブレンドする方法、予めドライブレンドもしくはメルトブレンドする方法、等を挙げることができる。
本発明の超高分子量ポリエチレン製切削薄膜は、高い強度を有し、耐熱性、滑り性等にも優れることから、シート、フィルム、膜、ガイドレール、テープ、チューブ、スキー等のスポーツ用品のソール、ライニング材、等の部材として用いることができる。
本発明によって得られる超高分子量ポリエチレン製切削薄膜は、強度、耐熱性に優れることから、シート、フィルム、膜、ガイドレール、テープ、チューブ、スキー等のスポーツ用品のソール、ライニング材、等に好適に利用される。
以下に、実施例を示して本発明を更に詳細に説明するが、本発明はこれら実施例により制限されるものではない。
なお、断りのない限り、用いた試薬等は市販品、あるいは既知の方法に従って合成したものを用いた。
有機変性粘土の粉砕にはジェットミル(セイシン企業社製、(商品名)CO−JET SYSTEM α MARK III)を用い、粉砕後の粒径はマイクロトラック粒度分布測定装置(日機装(株)製、(商品名)MT3000)を用いてエタノールを分散剤として測定した。
ポリエチレン製造用触媒の調製、ポリエチレンの製造および溶媒精製は全て不活性ガス雰囲気下で行った。トリイソブチルアルミニウムのヘキサン溶液(20wt%)は東ソーファインケム(株)製を用いた。
さらに、実施例における超高分子量ポリエチレン粒子の諸物性は、以下に示す方法により測定した。
〜固有粘度([η])の測定〜
ウベローデ型粘度計を用い、ODCB(オルトジクロルベンゼン)を溶媒として、135℃において、超高分子量ポリエチレン濃度0.005wt%で測定した。
〜嵩密度の測定〜
JIS K6760(1995)に準拠した方法で測定した。
〜TmとTmの測定〜
示差走査型熱量計(DSC)(エスアイアイ・ナノテクノロジー(株)製 (商品名)DSC6220)を用いて、0℃から10℃/分の昇温速度で230℃まで昇温(1stスキャン)し1stスキャンの結晶融解ピーク(Tm)の測定を行った。その後、5分間放置後、10℃/分の降温速度で−20℃まで降温し、5分間放置後、再度、10℃/分の昇温速度で−20℃から230℃まで昇温(2ndスキャン)し2ndスキャンの結晶融解ピーク(Tm)を測定した。その際の超高分子量ポリエチレンのサンプル量は6mgとした。
〜チタン含有量の測定〜
超高分子量ポリエチレンを灰化し、アルカリ溶融して、調製した溶液を用いて、ICP発光分析装置((株)パーキンエルマー製、(商品名)Optima3000XL)により、超高分子量ポリエチレン中のチタン含有量を測定した。
〜平均粒径の測定〜
JIS Z8801で規定された9種類の篩(目開き:710μm、500μm、425μm、300μm、212μm、150μm、106μm、75μm、53μm)を用いて、100gの超高分子量ポリエチレン粒子を分級した際に得られる各篩に残った粒子の重量を目開きの大きい側から積分した積分曲線において、50%の重量になる粒子径を測定することにより平均粒径を求めた。
〜超高分子量ポリエチレン粒子の評価用シートの作成〜
超高分子量ポリエチレン粒子の評価用シートは以下の方法で成形した。すなわち、超高分子量ポリエチレン粒子をポリエチレンテレフタレートフィルムに挟んで、190℃で、5分間予熱した後、190℃、プレス圧力20MPaの条件にて加熱圧延した。その後、金型温度110℃、10分間冷却し、厚さ0.3mmのプレスシートを作成した。
〜引張破断強度の測定〜
超高分子量ポリエチレン粒子の評価用シートからダンベル型に切り出したサンプル(測定部の幅5mm)を、23℃にて48時間静置した後、引張試験機((株)エイ・アンド・ディー製、(商品名)テンシロンRTG−1210)にて、測定温度23℃、試験片の初期長さ20mm、引張速度20mm/分で引張試験をし、引張破断強度を求めた。
〜溶融延伸時の破断応力の測定〜
上記引張破断強度の測定に記載の方法によりダンベル型に切り出したサンプル(測定部の幅10mm)を、23℃にて48時間静置した後、引張試験機((株)エイ・アンド・ディー製、(商品名)テンシロンUMT2.5T)にて、150℃で、試験片の初期長さ10mm、引張速度20mm/分で引張試験をし、溶融延伸時の破断応力を求めた。歪み硬化が起き、延伸に伴い応力が増加した場合はその最大値を破断応力とし、歪み硬化が起きず、延伸しても応力が増加しない場合は、降伏後の平坦領域の応力を破断応力とした。
〜切削薄膜の引裂強度の測定〜
切削薄膜から幅100mm、長さ200mmの短冊状に切り出し、幅50mmのところに長さ方向に70mmの切れ込みを入れ、試験用サンプルとした。引張試験機((株)エイ・アンド・ディー製、(商品名)テンシロンRTG−1210)にて、測定温度23℃、つかみ具間距離50mm、試験速度200mm/分で、引裂強度を求めた。
製造例1
(1)有機変性粘土の調製
1リットルのフラスコに工業用アルコール(日本アルコール販売社製、(商品名)エキネンF−3)300ml及び蒸留水300mlを入れ、濃塩酸15.0g及びジオレイルメチルアミン(ライオン(株)製、(商品名)アーミンM20)64.2g(120mmol)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製、(商品名)ラポナイトRDS)を100g分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水600mlで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより160gの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を7μmとした。
(2)ポリエチレン製造用触媒の懸濁液の調製
温度計と還流管が装着された300mlのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108ml入れ、次いでジフェニルメチレン(4−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロライドを0.795g、及び20%トリイソブチルアルミニウム142mlを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mlのヘキサンにて2回洗浄後、ヘキサンを200ml加えてポリエチレン製造用触媒の懸濁液を得た(固形重量分:11.7wt%)。
(3)超高分子量ポリエチレン粒子の製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を356mg(固形分41.7mg相当)加え、45℃にした後、分圧が1.6MPaになるようにエチレンを連続的に供給し、エチレンのスラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで47.9gの超高分子量ポリエチレン粒子(1)を得た(活性:1150g/g触媒)。得られた超高分子量ポリエチレン粒子(1)の物性は表1に示す。
製造例2
(1)有機変性粘土の調製
製造例1と同様に実施した。
(2)ポリエチレン製造用触媒の懸濁液の調製
温度計と還流管が装着された300mlのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108ml入れ、次いでジフェニルメチレン(シクロペンタジエニル)(2−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライドを0.600g、及び20%トリイソブチルアルミニウム142mlを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mlのヘキサンにて2回洗浄後、ヘキサンを200ml加えてポリエチレン製造用触媒の懸濁液を得た(固形重量分:11.5wt%)。
(3)超高分子量ポリエチレン粒子の製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を89.9mg(固形分10.3mg相当)加え、50℃に昇温後、1−ブテン1.0gを加え、分圧が1.1MPaになるようにエチレンを連続的に供給しスラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで65.0gの超高分子量ポリエチレン粒子(2)を得た(活性:6300g/g触媒)。得られた超高分子量ポリエチレン粒子(2)の物性は表1に示す。
製造例3
(1)有機変性粘土の調製
1リットルのフラスコに工業用アルコール(日本アルコール販売製、(商品名)エキネンF−3)300ml及び蒸留水300mlを入れ、濃塩酸15.0g及びジメチルベヘニルアミン(ライオン(株)製、(商品名)アーミンDM22D)42.4g(120mmol)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製、(商品名)ラポナイトRDS)を100g分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水600mlで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより125gの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を7μmとした。
(2)ポリエチレン製造用触媒の懸濁液の調製
温度計と還流管が装着された300mlのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108ml入れ、次いでジフェニルメチレン(シクロペンタジエニル)(2−(ジエチルアミノ)−9−フルオレニル)ハフニウムジクロライドを0.715g、及び20%トリイソブチルアルミニウム142mlを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mlのヘキサンにて2回洗浄後、ヘキサンを200ml加えてポリエチレン製造用触媒の懸濁液を得た(固形重量分:12.9wt%)。
(3)超高分子量ポリエチレン粒子の製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を108.7mg(固形分14.0mg相当)加え、65℃に昇温後、分圧が1.3MPaになるようにエチレンを連続的に供給し、エチレンのスラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで130gの超高分子量ポリエチレン粒子(3)を得た(活性:9300g/g触媒)。得られた超高分子量ポリエチレン粒子(3)の物性は表1に示す。
製造例4
(1)固体触媒成分の調製
温度計と還流管が装着された1リットルのガラスフラスコに、金属マグネシウム粉末50g(2.1モル)およびチタンテトラブトキシド210g(0.62モル)を入れ、ヨウ素2.5gを溶解したn−ブタノール320g(4.3モル)を90℃で2時間かけて加え、さらに発生する水素ガスを排除しながら窒素シール下において140℃で2時間撹拌し、均一溶液とした。次いで、ヘキサン2100mlを加えた。
この成分90g(マグネシウムで0.095モルに相当)を別途用意した500mlのガラスフラスコに入れ、ヘキサン59mlで希釈した。45℃でイソブチルアルミニウムジクロライド0.29モルを含むヘキサン溶液106mlを2時間かけて滴下し、さらに70℃で1時間撹拌し、固体触媒成分を得た。ヘキサンを用いて傾斜法により残存する未反応物および副生成物を除去し、組成を分析したところチタニウム含有量は8.6wt%であった。
(2)超高分子量ポリエチレンの製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(1)で得られた固体触媒成分を4.2mg加え、80℃に昇温後、分圧が0.6MPaになるようにエチレンを連続的に供給した。90分経過後に脱圧し、スラリーを濾別後、乾燥することで170gの超高分子量ポリエチレン(4)を得た(活性:51000g/g触媒)。得られた超高分子量ポリエチレン(4)の物性は表1に示す。
Figure 0006357820
実施例1
製造例1で製造した超高分子量ポリエチレン粒子(1)を、190℃で予備加熱した後、プレス圧力を20MPaにして20分間、圧縮成形した。その後、110℃、プレス圧力10MPaで10分間冷却し、円柱状の圧縮成形体を作成し、この成形体からスカイブ加工にて厚さ0.5mmのシート状の超高分子量ポリエチレン製切削薄膜を作成した。得られた切削シート(薄膜)の引張破壊強度、引裂強度を表2に示す。
比較例1
超高分子量ポリエチレン粒子(1)の代りに、製造例4で製造した超高分子量ポリエチレン(4)を用いた以外は、実施例1と同様の方法により切削シート(薄膜)を製造した。得られた切削シート(薄膜)の引張強度、引裂強度を表2に示す。引張破断強度、引裂強度のいずれもが劣るものであった。
比較例2
超高分子量ポリエチレン粒子(1)の代りに、(商品名)ミリオン240M(三井化学(株)製)(以下、超高分子量ポリエチレン(5)と記す。)を用いた以外は、実施例1と同様の方法により切削シート(薄膜)を製造した。得られた切削シート(薄膜)の引張強度、引裂強度を表2に示す。引張破断強度、引裂強度のいずれもが劣るものであった。
実施例2
超高分子量ポリエチレン粒子(1)の代りに、製造例2で製造した超高分子量ポリエチレン粒子(2)を用い、実施例1と同様の方法により、超高分子量ポリエチレン製切削シート(薄膜)を製造した。得られた切削シート(薄膜)の引張破壊強度、引裂強度を表2に示す。
実施例3
超高分子量ポリエチレン粒子(1)の代りに、製造例3で製造した超高分子量ポリエチレン粒子(3)を用い、実施例1と同様の方法により、超高分子量ポリエチレン製切削シート(薄膜)を製造した。得られた切削シート(薄膜)の引張破壊強度、引裂強度を表2に示す。
実施例4
圧縮成形の際の温度を220℃としたこと、厚み0.2mmのフィルム状の切削薄膜としたこと以外は、実施例1と同様の方法により、超高分子量ポリエチレン製切削フィルム(薄膜)を製造した。得られた切削フィルム(薄膜)の引張破壊強度、引裂強度を表2に示す。
Figure 0006357820
本発明によって得られる超高分子量ポリエチレン製切削薄膜は、強度、耐熱性に優れることから、シート、フィルム、膜、ガイドレール、テープ、チューブ、スキー等のスポーツ用品のソール、ライニング材、等の各種用途に利用可能である。

Claims (1)

  1. 少なくとも下記(1)、(2)、(3)、(4)に示す特性のいずれをも満足する超高分子量ポリエチレン粒子を用い、成形温度150℃以上250℃以下で溶融圧縮成形し超高分子量ポリエチレン製溶融圧縮成形物とした後、該超高分子量ポリエチレン製溶融圧縮成形物の切削加工を行い、少なくとも下記(1)、(4)に示す特性のいずれをも満足するものとすることを特徴とする超高分子量ポリエチレン製切削薄膜の製造方法。
    (1)固有粘度([η])が15dl/g以上60dl/g以下、
    (2)嵩密度が130kg/m 以上700kg/m 以下、
    (3)示差走査型熱量計(DSC)にて、0℃から10℃/分の昇温速度で230℃まで昇温(1stスキャン)した際の1stスキャンの融点(Tm )、その後、5分間放置後、10℃/分の降温速度で−20℃まで降温し、5分間放置後、再度、10℃/分の昇温速度で−20℃から230℃まで昇温(2ndスキャン)した際の2ndスキャンの融点(Tm )をそれぞれを測定し、該Tm と該Tm の差(ΔTm=Tm −Tm )が11℃以上30℃以下。
    (4)チタンの含有量が0.2ppm以下又は測定検出限界以下である。
JP2014053362A 2014-03-17 2014-03-17 超高分子量ポリエチレン製切削薄膜 Active JP6357820B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014053362A JP6357820B2 (ja) 2014-03-17 2014-03-17 超高分子量ポリエチレン製切削薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053362A JP6357820B2 (ja) 2014-03-17 2014-03-17 超高分子量ポリエチレン製切削薄膜

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018078785A Division JP6590020B2 (ja) 2018-04-17 2018-04-17 超高分子量ポリエチレン製切削薄膜

Publications (2)

Publication Number Publication Date
JP2015174942A JP2015174942A (ja) 2015-10-05
JP6357820B2 true JP6357820B2 (ja) 2018-07-18

Family

ID=54254424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053362A Active JP6357820B2 (ja) 2014-03-17 2014-03-17 超高分子量ポリエチレン製切削薄膜

Country Status (1)

Country Link
JP (1) JP6357820B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023224106A1 (ja) * 2022-05-19 2023-11-23 国立大学法人弘前大学 ポリオレフィン製シートの製造方法及び超高分子量ポリエチレン製シート

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471830A (ja) * 1990-07-13 1992-03-06 Nippon Petrochem Co Ltd 超高分子量ポリエチレンの成形方法
JPH0570519A (ja) * 1991-09-17 1993-03-23 Tosoh Corp 超高分子量ポリエチレンの製造方法
JPH06220129A (ja) * 1993-01-20 1994-08-09 Nippon Oil Co Ltd 高強度・高弾性率ポリエチレン材料の製造方法
US5721334A (en) * 1996-02-16 1998-02-24 Newyork Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Process for producing ultra-high molecular weight low modulus polyethylene shaped articles via controlled pressure and temperature and compositions and articles produced therefrom
JPH09291112A (ja) * 1996-04-25 1997-11-11 Tosoh Corp 超高分子量エチレン系重合体、その粉末及びそれらの製造方法
JPH11236410A (ja) * 1998-02-20 1999-08-31 Nippon Polyolefin Kk 超高分子量エチレン系重合体の製造方法
JP4786065B2 (ja) * 2001-06-18 2011-10-05 三井化学株式会社 切削フィルム用超高分子量ポリエチレン樹脂組成物、切削フィルム用厚肉成形体、超高分子量ポリエチレン切削フィルムの製造方法および切削フィルム
WO2006070886A1 (ja) * 2004-12-28 2006-07-06 Asahi Kasei Chemicals Corporation 超高分子量エチレン系共重合体パウダー
EP2036942B1 (en) * 2006-06-27 2013-05-08 Asahi Kasei Chemicals Corporation Stretch-molded ultra-high-molecular-weight polyolefin sheet having excellent transparency and mechanical propreties, and method for production thereof
EP2014445A1 (en) * 2007-07-09 2009-01-14 Teijin Aramid B.V. Polyethylene film with high tensile strength and high tensile energy to break
JP2011121992A (ja) * 2008-11-25 2011-06-23 Sakushin Kogyo Kk 半導電性超高分子量ポリエチレン成形品
JP2011144297A (ja) * 2010-01-15 2011-07-28 Mitsui Chemicals Inc エチレン重合体、その製造方法および前記重合体を含む成形体。
US8951456B2 (en) * 2010-08-31 2015-02-10 National University Corporation Gunma University Method for producing ultra-high-molecular-weight polyethylene porous membrane, method for producing ultra-high-molecular-weight polytheylene film, and porous membrane and film obtained by these methods
JP5780679B2 (ja) * 2011-04-14 2015-09-16 旭化成ケミカルズ株式会社 超高分子量ポリエチレン粒子の製造方法、およびそれを用いた成形体
JP2013227539A (ja) * 2012-03-26 2013-11-07 Japan Polyethylene Corp 耐摩耗性樹脂成形体製造用エチレン系重合体、耐摩耗性樹脂成形体製造用エチレン系樹脂組成物、耐摩耗性樹脂成形体およびその製造方法

Also Published As

Publication number Publication date
JP2015174942A (ja) 2015-10-05

Similar Documents

Publication Publication Date Title
JP6572520B2 (ja) 超高分子量ポリエチレン粒子およびそれよりなる成形体
KR102330629B1 (ko) 초고분자량 폴리에틸렌제 연신 미다공막
JP6711022B2 (ja) 超高分子量ポリエチレン製多孔質焼結体
JP2017165938A (ja) 超高分子量ポリエチレン組成物製セパレータ
JP6357781B2 (ja) 超高分子量ポリエチレン製圧縮成形体
JP6364774B2 (ja) 超高分子量ポリエチレン粒子及びそれよりなる成形体
JP6252322B2 (ja) 超高分子量ポリエチレン組成物製延伸微多孔膜
JP2018145412A (ja) 超高分子量ポリエチレン粒子およびそれよりなる成形体
JP2015071737A (ja) 超高分子量ポリエチレン粒子及びそれよりなる成形体
JP6604398B2 (ja) 超高分子量ポリエチレン製圧延成形体
JP6357820B2 (ja) 超高分子量ポリエチレン製切削薄膜
JP6705467B2 (ja) 超高分子量ポリエチレン製圧縮成形体
JP6686530B2 (ja) 超高分子量ポリエチレン組成物及びそれよりなる延伸微多孔膜
JP6349843B2 (ja) 超高分子量ポリエチレン製圧延成形体
JP6590020B2 (ja) 超高分子量ポリエチレン製切削薄膜
JP6318649B2 (ja) 超高分子量ポリエチレン組成物およびそれよりなる成形体
JP6521027B2 (ja) 超高分子量ポリエチレン共重合体
JP6747468B2 (ja) 超高分子量ポリエチレン製切削成形体
JP6357819B2 (ja) 超高分子量ポリエチレン製切削成形体
JP6405888B2 (ja) 超高分子量ポリエチレン組成物及びそれよりなる成形体
JP2017162755A (ja) セパレータ
JP6822070B2 (ja) 超高分子量ポリエチレン組成物及びそれよりなる延伸微多孔膜
JP2019142990A (ja) 超高分子量ポリエチレン共重合体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R151 Written notification of patent or utility model registration

Ref document number: 6357820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151