JP6220822B2 - 金属リチウム電極板 - Google Patents
金属リチウム電極板 Download PDFInfo
- Publication number
- JP6220822B2 JP6220822B2 JP2015141285A JP2015141285A JP6220822B2 JP 6220822 B2 JP6220822 B2 JP 6220822B2 JP 2015141285 A JP2015141285 A JP 2015141285A JP 2015141285 A JP2015141285 A JP 2015141285A JP 6220822 B2 JP6220822 B2 JP 6220822B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- lithium
- electrode plate
- metal lithium
- current collecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/049—Processes for forming or storing electrodes in the battery container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/0459—Electrochemical doping, intercalation, occlusion or alloying
- H01M4/0461—Electrochemical alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
- H01M4/463—Aluminium based
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Description
リチウムを活性材料とするバッテリーシステムにおいて、一番早く発展されるリチウムバッテリーシステムは、充電式の金属リチウムバッテリーであり、これは非常に高いエネルギー密度を有するが、金属リチウムの化性がつよいので、電解質と反応しやすく、金属リチウムバッテリーが不安定になって安全性の問題がある。安全性の考えに基づいて、充電式のリチウムバッテリーの発展は、充電式金属リチウムバッテリーから、「充電式リチウム合金バッテリー」と「充電式リチウムイオンバッテリー」という二つのシステムに向かって転換する。
液体充電式リチウムイオンバッテリーには、有機溶剤を含有する電解液が使われるので、揮発、燃焼の危険が発生しやすく、かつ、バッテリーをパッケージする時に、完璧なシール状態にならないので、電解液が漏れる可能性があり、安全性への虞も相当にある。近年、おもに上記リチウムバッテリーの安全性について検討し、改めて新たな充電式リチウムポリマーバッテリーが研究されている。これは、元の有機溶剤の代わりにポリマー電解質をバッテリー内の電解液とすることによって、リチウムバッテリーが使用される安全性を大幅に向上させる。
リチウムバッテリーシステムの開発経緯において、かつて安全性の面から、金属リチウムバッテリーシステムの研究は中断されたが、金属リチウムが直接金属リチウムバッテリーシステムの活性材料に使用されるので、他のリチウムイオンバッテリーシステム或いはリチウムポリマーバッテリーシステムと比べて、金属リチウムバッテリーシステムが提供するエネルギー密度がこれらのリチウム化合物のバッテリーシステムより大きいことは事実である。
一方、金属リチウムは非常に活発な金属であり、適当な保管環境或いは良好な操作環境ではないと、金属リチウム自身に激しい酸化還元反応が発生しやすいことも事実である。したがって、実用的な使用において、金属リチウムバッテリーの安全性の問題を有効に克服し、プロセス或いは保管時の難しさを低減できれば、現代の携帯式スマート電子製品の要求に適合できる。
本発明が開示する金属リチウム電極板は、ゲート層が媒体の作用でリチウムイオン及び/或いは金属リチウム層と合金化反応を起こすことによって、ゲート層の原構造を少しずつ微粒状リチウム合金物質の形に変化させてその体積全体を膨張させる(スタッキングがゆるいから多量のホールが発生)一方、リチウムイオンが金属リチウム層と電気化学反応を起こす経路になる。なお、本発明が開示する金属リチウム電極板は、直接一般的な正極電極板に実装されることによって、エネルギー密度の高い給電ユニットが形成される。
この金属リチウム電極板は、金属リチウム層と、複数のゲート層と、集電層とを含み、前記集電層は複数のホールがあり、それぞれのホールは少なくとも一つの開口を有し、前記複数のゲート層は前記複数のホールに対応して設置され、前記金属リチウム層は前記複数のゲート層に対応して設置され、金属リチウム層はゲート層と隣接して設置しても、離れて設置してもよいが、隣接して設置する場合には、金属リチウム層とゲート層は接触しても接触しなくてもよい。媒体を添加することによって、ゲート層の合金化反応を進行させて金属リチウム層の酸化還元反応を起こす。更に、一般的な電極板と互いに組み合わせることが容易になってエネルギー密度の高い給電ユニットが形成される。
しかし、給電ユニット内の電気化学反応が進行し始めると、つまり、給電ユニットの正、負極の間に電圧差がある場合に(例えば、充電を行う状態である)、媒体から提供されたリチウムイオンと正極電極板から遊離するリチウムイオンは、正極電極板から金属リチウム電極板10Aへマイグレーションし、金属リチウム電極板10Aに達した後に、ゲート層142におけるリチウムイオン及び/或いは金属リチウムと反応できる材料と、先に合金化反応を起こす。これによって、ゲート層142の初始格子構造が少しずつ崩れて格子構造のゆるい合金物質になり、ゲート層142とリチウムイオンからなる合金物質が所定の量になる際に、合金物質は媒体(電解液)に伴って開口OからホールH内に充填される。最終的には、合金物質中の隙間によって媒体をホールHに導き、リチウムイオンのイオンチャンネルを形成すると共に、金属リチウム層12と接触して金属リチウム電極板10Aにおける集電層14とゲート層142との電位が共に金属リチウム層12の電位に近づく。その構造は図2Aに示される。このうち、前記媒体は、例えば、液体電解質、固体電解質、コロイド電解質、液体イオン(liquidion)或いは上記材料の組み合わせであってもよい。
給電ユニットが充電を行う時、つまり第1回の充電を例として給電ユニットが化成(formation)を行う時に、ゲート層142は金属リチウム層12と接触していないので、ゲート層142におけるリチウムイオン及び/或いは金属リチウムと反応できる成分は、媒体から提供されたリチウムイオンと合金化反応を行うだけである。要するに、ゲート層142が媒体と接触する界面に、形成合金物質が発生し始め、かつ反応時間を長くするに連れて、ゲート層142におけるリチウムイオン及び/或いは金属リチウムと反応できるほとんどすべての成分は、リチウムイオンと反応する。このとき、ゲート層142はほとんど完全に崩れて合金物質に形成され、合金物質は、量の増加に連れて、だんだん集電層14のホールH内に充填される。これによって、媒体は合金物質を通して金属リチウム層12の表面に達すると共に、イオンと電子との交換作用が発生する。換言すると、給電ユニットが化成終了或いは何回かの充電後に、最初に金属リチウム層12と媒体を区別するためのゲート層142が合金化反応によって崩れた後に、媒体は崩れたゲート層142(つまり合金物質であり)によってホールHに充填されて金属リチウム層12と接触する。これによって、金属リチウム層12は給電ユニット内の電気化学反応を生じさせる。このことから、ゲート層142は、電気化学反応が発生した後は、合金化反応によって、初始構造から微粒状の合金物質構造に潰れ、かつ最初の構造に戻れないことが分かる。
機能性から見ると、ゲート層142は、給電ユニットにおいて電気化学反応が発生する前、主にその金属構造又はメタロイド構造の特性を使って封止構造の役割を担うことによって、いかなる物質とも作用が発生しないように金属リチウム層12を完全に封止する。しかし、電気化学反応が発生したら、ゲート層142はだんだん崩れて合金物質になる。換言すると、ゲート層142の金属構造は最終に消えてしまい、合金の状態で給電ユニット内に存在する。
これらの形態においてゲート層142が金属リチウム層12と接触しない例で説明するが、実際には、ゲート層142が金属リチウム層12と接触する構造形態であってもよい。なお、ここでスルーホールの形で集電層14のホールHを示すが、前記ホールHは図1Dに示されるように止り穴であってもよい。
図2Dにおいて、図1Dにおけるゲート層142が合金化された後の構造模式図を示す。また、これらの実施形態における金属リチウム層12は完全に集電層14の一側の表面を覆うが、局所的に集電層14の表面を覆う形であってもよい。例えば、集電層14の開口Oがスルーホールの開口になる時に、金属リチウム層12はゲート層142に対応して、開口Oを覆って開口Oの他の端まで充填され、或いは開口Oの他の端まで充填されるだけである。つまり、金属リチウム層12は局所的或いは完全に集電層14を覆ってもよい。
ゲート層142は一種或いは多種の金属を含んでもよく、金属材料及び/又はメタロイド材料を含み、且つゲート層142の様々な材料において、リチウムとリチウム合金に形成できる材料以外、リチウム合金に形成できない材料を含んでもよい。この二種類の材料は非合金態或いは合金態の何れの形態で存在してもよい。例えば、非合金態はパターン化されたスパッタリング、蒸着、メッキによって形成されるが、ゲート層142の組成において、リチウム合金に形成できる材料の含有量は0.1重量%以上であり、残部はリチウムと合金化反応を発生できる材料であってもよい。このうち、上記リチウム合金に形成できる材料として、アルミニウム、スズ、シリコン、アルミニウム合金、スズ合金、シリコン合金、他の単一の金属或いは合金材料が挙げられ、リチウム合金に形成できない材料は、単独或いは多種類の材料からなってもよく、例えば、銅、ニッケル、鉄、チタン、亜鉛、銀、金或いはこれらの組み合わせが挙げられる。
リチウム合金に形成できる材料は、アルミニウム、スズ、シリコン、アルミニウム合金、スズ合金、シリコン合金、他の単一の金属或いは合金材料、又は多種の金属或いは合金材料であってもよく、リチウム合金に形成できない材料は単一でも複数の材料の組み合わせでもよく、例えば、銅、ニッケル、鉄、チタン、亜鉛、銀、金或いはその組み合わせである。例えば、このゲート層142がジアロイである時に、リチウムイオン/リチウム金属と合金に形成できるスズ金属と、リチウムと合金化反応を発生しないニッケル金属からなるニッケル−スズ合金であってもよく、このうち、スズの含有量は0.1%重量以上である。
かかる金属リチウム極板10Bは、金属リチウム層12、複数のゲート層142及び複数のホールHを有する集電層14を含み、図3Aに示すように、金属リチウム層12の一つの端部に隣接しているところで、ゲート層142がホールHの開口Oを覆う。図3Bには、ゲート層142が開口O上を覆うと共にホールH内に充填する形態が開示されるが、この開口Oは金属リチウム層12と隣接している。
更に図3Cを参照する。ゲート層142はホールH内に充填されるが、集電層14の表面を覆わず、かつゲート層142は金属リチウム層12と隣接している。図3A〜図3Cにおける金属リチウム層12は局部的に或は完全に電層14を覆う。また、イオン伝導層16もこの形態に適用され、図3Dは一種のイオン伝導層16を含む構造模式図である。図3A〜図3Dに対応する図4A〜図4Dのそれぞれは、ゲート層142が合金化されることによって合金物質が形成される形態である。このうち、金属リチウム層12、集電層14、ゲート層142、イオン伝導層16と絶縁エリア(図示しない)に関する構造特徴と材料特性は、既に前の段落に記載したので、ここでは省略する。
以下の図5A〜図5Cにて、ゲート層が完全にホールを充填し、かつ金属リチウム層と隣接している態様を例として、金属リチウム層と集電層のホール及びその開口の構造との対応関係を説明する。もちろん、これらの形態は他の形態のゲート層と組み合わせてもよく、他の異なる設置関係がある金属リチウム層及びゲート層と組み合わせてもよく、イオン伝導層と絶縁エリアとを合併して実施してもよい。
図5Cにおいて、金属リチウム層12はホールH内に充填してホールH内のゲート層142と隣接する。このうち、上記の形態は何れも金属リチウム層12及びゲート層142が接触していない形態で説明したが、金属リチウム層12とゲート層142が隣接している場合、互いに接触してもかまわない。
図5Dは一種のイオン伝導層16を含む構造模式図である。図6A〜図6Dは、図5A〜図5Dにおけるゲート層142が合金化された後の構造を対応的に示す模式図である。
図7Aに開示される形態は、金属リチウム層12及び集電層14と実質的に接触する例を説明し、かかる形態の金属リチウム電極板10Aの構造は、下から上の順で、金属リチウム層12と、イオン伝導層16と、開口O端部に位置するゲート層142と、開口Oを有する集電層14を含む。このうち、金属リチウム層12、集電層14及びゲート層142の特性は上記段落に説明されるので、ここではイオン伝導層16の特徴を詳しく説明するのみである。
化学特性について、イオン伝導層16は直接金属リチウム層12と接触するので、何れの状態であっても、金属リチウム層12と合金化反応が発生しない。また、図7Aで示されるイオン伝導層16と、開口Oの他の端部にあるゲート層142との間に空乏エリア162が存在する。かかる空乏エリア162は、給電ユニットにおいて電気化学反応が進行する前に、物質が充填されていない隙間であり、更に電解質のみを含む隙間であってもよい(このうち、電解質材料は液体電解質、コロイド電解質、固体電解質或いは液体イオンなどであってもよい)。しかし、以上の通り、給電ユニット内の電気化学反応が進行し始めると、ゲート層142とリチウムイオンからなる合金物質は、だんだん開口O内の空乏エリア162に充填され、更にイオン伝導層16内まで埋める。つまり、電気化学反応が進行して合金物質が空乏エリア162とイオン伝導層16に充填された後に、合金物質と電解質によってイオンと電子を金属リチウム層12と、集電層14、ゲート層142との間に導通させることができ、その構造は図8Aで示される。
このことから、イオン伝導層16の導電性は、それ自身の材料特性から実現される以外、ゲート層142が合金化された後に合金物質がイオン伝導層16に充填されることによってイオン伝導層16の導電性を実現できる。このうち、かかる形態のイオン伝導層16は、一般的には、セラミック絶縁材料、ポリマー材料、液体電解質、コロイド電解質、固体電解質或いは液体イオン以外、更に導電材料或いは上記材料とイオン伝導層16自身の隙間の様々な組み合わせを含んでもよい。このうち、導電材料として、金属材料、合金材料、導電炭素材料(例えば、カーボンブラック、硬質炭素、カーボンナノチューブ、グラファイト、グラフェン等)が挙げられる。上記多種の材料とイオン伝導層16自身の隙間の組み合わせは、原導電性材料に対してメッキ、蒸着、スパッタリングを行って金属或いは合金フィルムが形成されることも含み、前記セラミック絶縁材料は酸化金属、硫化金属、窒化金属或いは酸性化反応した金属材料(例えば、リン酸化金属)などである。
一般的には、イオン伝導層には多量の隙間があるから、イオン伝導の経路になると共に、これらの経路は体積が膨張した合金化されたゲート層142をイオン伝導層を通過させて集電層14と金属リチウム層12を接続することによって、電子を伝導する効果に達する。
柱状のイオン伝導層16には多量な隙間があるので、イオンを伝導するチャンネルとして提供でき、かつ、イオン伝導層16の両端は直接金属リチウム層12と集電層14と接触するから、電子を伝導する効果が達成できる。もちろん、一旦給電ユニット内に電気化学反応が始まったら、図8Cのように、ゲート層142とリチウムイオンからなる合金物質は更に少しずつ柱状のイオン伝導層16の隙間に充填されてゲート層142からなる合金物質を金属リチウム層12と接触させる。
イオン伝導層16がリチウム突出物の形態になる原因は、電解質に浸潤される環境で、金属リチウム電極板10Aの電位が0ボルトに近い時、集電層14の電位は金属リチウム層12の電位に近いので、リチウムイオンの界面に沈積作用が発生しやすく、つまり、電気化学反応の過程において、集電層14がイオン伝導層16と隣接する表面に、リチウム金属が容易に析出されてリチウム突出物が形成される。
イオン伝導層16は多量な隙間を有するから、リチウム突出物が集電層14から金属リチウム層12に生長する時、リチウム突出物がイオン伝導層の隙間を介して金属リチウム層12と接触すると、集電層14と金属リチウム層12との間に、集電層14と金属リチウム層12を導電させるブランチ状結晶(リチウム突出物)構造成分のイオン伝導層16構造(その構造形態は7Cの構造と類似している)が形成される。
公知の給電ユニットと比べると、一般的な給電ユニット内にリチウム金属が析出されてリチウム突出物(デンドライト状結晶)が形成されると、分離層が突き破られて内部ショートの問題が発生するので、給電ユニットの機能を阻害することがある一方、本発明が開示するリチウム突出物は、集電層14が金属リチウム層12と隣接する表面に発生するので、発生されたリチウム突出物がバッテリー内部構造を破壊しないため、内部ショートの問題を有さず、更にリチウム突出物の形成によって集電層14と金属リチウム層12を電気的接続の表面積を増加することでバッテリー内部の抵抗値が低下される。
また、第2の電極板ユニット10Aは、ホールHを有する第2の集電層14と、ホールHの端部にあるゲート層142と、イオン伝導層16と、金属リチウム層12と、イオン伝導層16と、ホールHを有する第2の集電層14と、ホールHの端部にあるゲート層142とを含み、第2の電極板ユニット10Aの上下両側にある第2の集電層14は、第1の電極板ユニット20の分離層26と互いに隣接して配置される。
本実施形態の例では、パッケージユニット30は、水、気体をバリアできる材質から構成され、かつその型態は枠状或いは他の形状であってもよい。例えば、パッケージユニット30は単層のシリカゲル枠であっても、多層のシリカゲル枠であってもよい。ここでは三層のシリカゲル枠を例として説明するが、これは一つの例であって本発明の範囲を制限するものではない。
パッケージユニット30は、第2の電極板ユニット10Aの必要構造ではなく、例えば、第2の電極板ユニット10Aが独立なパッケージユニットを含まない場合に、第1の電極板ユニット20に実装した後に、パッケージを行ってもよい。
第2の電極板ユニット10Aにおける第2の集電層14の開口Oから進入し、ゲート層142と接触してゲート層142に合金化反応を進行させることによって、媒体における多量のリチウムイオンがゲート層142と合金化反応し、リチウムを有する合金物が形成される。これによって、第2の電極板ユニット10Aにおける第2の集電層14、ゲート層142及びイオン伝導層16の電位は金属リチウム層12の電位に接近し、つまり、第2の電極板ユニット10A全体の電位は相対的に0ボルトに近づく。
10B 金属リチウム電極板
10C 金属リチウム電極板
12 金属リチウム層
14 集電層/第2の集電層
142 ゲート層
16 イオン伝導層
162 空乏エリア
20 第1の電極板ユニット
22 活性材料層
24 第1の集電層
26 分離層
30 パッケージユニット
A 絶縁エリア
BC バッテリーコア
H ホール
O 開口
Claims (22)
- 集電層と、金属リチウム層と、複数のゲート層と、少なくとも一つの絶縁エリアとを含み、バッテリーシステムへの適用前に通常環境で保管、操作可能である金属リチウム電極板であって、
前記集電層は複数のホールを有し、それぞれの前記ホールは少なくとも一つの開口を有し、
前記金属リチウム層は前記集電層の下、あるいは前記ホールの中に設置され、前記金属リチウム層の一部は前記開口によって露出し、
前記複数のゲート層は前記開口を覆って、前記集電層によって覆われていない前記金属リチウム層の前記露出側を遮蔽し、
前記少なくとも一つの絶縁エリアは集電層の前記金属リチウム層と隣接しない一側の外表面に位置し、
前記ゲート層がリチウムイオン或いは金属リチウムと合金化できる少なくとも一つの材料を含み、
前記ゲート層が合金化反応後に微粒状の合金物質に変化でき、電気化学反応を起こす経路になることを特徴とする、
金属リチウム電極板。 - 前記ゲート層は更に前記開口を覆う請求項1に記載の金属リチウム電極板。
- 前記ゲート層は、更に前記開口を覆ってかつ前記ホールに充填される請求項1に記載の金属リチウム電極板。
- 前記ゲート層は更に前記ホールに充填される請求項1に記載の金属リチウム電極板。
- 前記ゲート層は局所的に前記集電層を覆う請求項1に記載の金属リチウム電極板。
- 前記開口はスルーホール及び/または止め穴である請求項1に記載の金属リチウム電極板。
- 前記金属リチウム層は更に前記開口を覆う請求項6に記載の金属リチウム電極板。
- 集電層と、金属リチウム層と、複数のゲート層とを含む金属リチウム電極板であって、
前記集電層は複数のホールを有し、それぞれの前記ホールは少なくとも一つの開口を有し、
前記金属リチウム層は前記集電層の下、あるいは前記ホールの中に設置され、前記金属リチウム層の一部は前記開口によって露出し、
前記複数のゲート層は前記開口を覆って、前記集電層によって覆われていない前記金属リチウム層の前記露出側を遮蔽し、
前記ゲート層がリチウムイオン或いは金属リチウムと合金化できる少なくとも一つの材料を含み、
前記開口はスルーホール及び/または止め穴であり、
前記金属リチウム層は更に前記開口を覆い、且つ前記ホールに充填され、
前記ゲート層が合金化反応後に微粒状の合金物質に変化できることを特徴とする、
金属リチウム電極板。 - 集電層と、金属リチウム層と、複数のゲート層とを含む金属リチウム電極板であって、
前記集電層は複数のホールを有し、それぞれの前記ホールは少なくとも一つの開口を有し、
前記金属リチウム層は前記集電層の下、あるいは前記ホールの中に設置され、前記金属リチウム層の一部は前記開口によって露出し、
前記複数のゲート層は前記開口を覆って、前記集電層によって覆われていない前記金属リチウム層の前記露出側を遮蔽し、
前記ゲート層がリチウムイオン或いは金属リチウムと合金化できる少なくとも一つの材料を含み、
前記開口はスルーホール及び/または止め穴であり、
前記金属リチウム層は更に前記ホールに充填されることを特徴とする、金属リチウム電極板。 - 前記金属リチウム層は更に完全に前記開口を覆う請求項8または9に記載の金属リチウム電極板。
- 前記金属リチウム層は前記複数のゲート層と隣接して設置され、且つ前記ゲート層と前記金属リチウム層は接触するか或いは接触しない請求項1に記載の金属リチウム電極板。
- 集電層と、金属リチウム層と、複数のゲート層とを含む金属リチウム電極板であって、
前記集電層は複数のホールを有し、それぞれの前記ホールは少なくとも一つの開口を有し、
前記金属リチウム層は前記集電層の下、あるいは前記ホールの中に設置され、前記金属リチウム層の一部は前記開口によって露出し、
前記複数のゲート層は前記開口を覆って、前記集電層によって覆われていない前記金属リチウム層の前記露出側を遮蔽し、
前記ゲート層がリチウムイオン或いは金属リチウムと合金化できる少なくとも一つの材料を含み、
前記金属リチウム層は前記複数のゲート層と離れて設置され、
前記ゲート層が合金化反応後に微粒状の合金物質に変化できることを特徴とする、
金属リチウム電極板。 - 集電層と、金属リチウム層と、複数のゲート層と、イオン伝導層とを含む金属リチウム電極板であって、
前記集電層は複数のホールを有し、それぞれの前記ホールは少なくとも一つの開口を有し、
前記金属リチウム層は前記集電層の下、あるいは前記ホールの中に設置され、前記金属リチウム層の一部は前記開口によって露出し、
前記複数のゲート層は前記開口を覆って、前記集電層によって覆われていない前記金属リチウム層の前記露出側を遮蔽し、
前記イオン伝導層が前記金属リチウム層と隣接して設置され、
前記イオン伝導層は前記金属リチウム層と合金化反応を発生せず、
前記ゲート層がリチウムイオン或いは金属リチウムと合金化できる少なくとも一つの材料を含み、
前記ゲート層が合金化反応後に微粒状の合金物質に変化できることを特徴とする、
金属リチウム電極板。 - 前記イオン伝導層は前記集電層及び/又は前記金属リチウム層及び/又は前記ゲート層と少なくとも局所に接触する請求項13に記載の金属リチウム電極板。
- 前記イオン伝導層は更に導電性を持つ請求項13に記載の金属リチウム電極板。
- 前記イオン伝導層の構造型態は、多孔層状構造、ネット状構造、柱状構造或いは上記構造の組み合わせである請求項13に記載の金属リチウム電極板。
- 前記イオン伝導層は更にセラミックス絶縁材料、ポリマー材料、液体電解質、コロイド電解質、導電材料または上記材料の組み合わせを含む請求項13に記載の金属リチウム電極板。
- 前記集電層の材料は、銅、ニッケル、鉄、亜鉛、金、銀、チタン或いはリチウムと合金に形成できない材料から選ばれる請求項1に記載の金属リチウム電極板。
- 前記ゲート層は少なくとも一つの金属材料及び/又はメタロイド材料を有する、リチウム合金に形成できる材料を含み、前記リチウム合金に形成できる材料は、前記媒体から提供されるリチウムイオンと合金化反応を起こし、前記リチウム合金に形成できる材料はアルミニウム、スズ、シリコン、リチウム合金、スズ合金、シリコン合金或いはこれらの組み合わせから選ばれる請求項1に記載の金属リチウム電極板。
- 前記媒体は、液体電解質、固体電解質、コロイド電解質、液体イオン或いは上記材料の組み合わせから選ばれる請求項19に記載の金属リチウム電極板。
- 前記ゲート層におけるリチウムと合金に形成できる材料は合金態或いは非合金態であってもよく、且つ前記リチウムと合金に形成できる材料の含有量は0.1重量%以上である請求項19に記載の金属リチウム電極板。
- 前記集電層の前記絶縁エリアは電気的絶縁層であり、或いは表面処理された電気的絶縁表面である請求項1に記載の金属リチウム電極板。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103124343 | 2014-07-16 | ||
TW103124343 | 2014-07-16 | ||
TW104118226 | 2015-06-05 | ||
TW104118226A TWI528619B (zh) | 2014-07-16 | 2015-06-05 | 金屬鋰極板 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2016029652A JP2016029652A (ja) | 2016-03-03 |
JP2016029652A5 JP2016029652A5 (ja) | 2016-11-24 |
JP6220822B2 true JP6220822B2 (ja) | 2017-10-25 |
Family
ID=53546163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015141285A Active JP6220822B2 (ja) | 2014-07-16 | 2015-07-15 | 金属リチウム電極板 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9755228B2 (ja) |
EP (1) | EP2975673B1 (ja) |
JP (1) | JP6220822B2 (ja) |
KR (2) | KR20160009512A (ja) |
CN (1) | CN105280883B (ja) |
ES (1) | ES2754504T3 (ja) |
HU (1) | HUE047277T2 (ja) |
TW (1) | TWI528619B (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9847531B2 (en) * | 2015-12-01 | 2017-12-19 | Ut-Battelle, Llc | Current collectors for improved safety |
US10615391B2 (en) * | 2016-10-12 | 2020-04-07 | Prologium Technology Co., Ltd. | Lithium metal electrode and its related lithium metal battery |
JP7148150B2 (ja) * | 2017-02-10 | 2022-10-05 | ユニバーシティー・オブ・ノース・テキサス | 再充電可能なバッテリのための2次元物質によるリチウム金属のパッシベーション |
JP7117658B2 (ja) * | 2017-05-29 | 2022-08-15 | パナソニックIpマネジメント株式会社 | リチウム金属二次電池 |
ES2973987T3 (es) | 2017-09-07 | 2024-06-25 | Lg Energy Solution Ltd | Batería secundaria flexible |
TWI631751B (zh) * | 2017-10-12 | 2018-08-01 | 輝能科技股份有限公司 | 鋰金屬極板及其應用之鋰金屬電池 |
CN110462902B (zh) * | 2017-12-22 | 2022-05-13 | 株式会社Lg化学 | 用于锂金属电池的阳极和包括该阳极的锂金属电池 |
KR20190076890A (ko) | 2017-12-22 | 2019-07-02 | 주식회사 엘지화학 | 리튬 메탈 전지용 음극 및 이를 포함하는 리튬 메탈 전지 |
JP2019212605A (ja) * | 2018-05-31 | 2019-12-12 | パナソニックIpマネジメント株式会社 | リチウム二次電池 |
FR3091625B1 (fr) * | 2019-01-08 | 2021-02-12 | Commissariat Energie Atomique | Electrodes negatives utilisables dans des accumulateurs fonctionnant selon le principe d’insertion et desinsertion ionique ou de formation d’alliage et a configuration spiralee |
CN112993383B (zh) | 2019-12-18 | 2023-04-11 | 财团法人工业技术研究院 | 电池 |
EP4379862A1 (en) * | 2022-01-12 | 2024-06-05 | LG Energy Solution, Ltd. | Lithium metal negative electrode and electrochemical device comprising same |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61151975A (ja) | 1984-12-24 | 1986-07-10 | Matsushita Electric Ind Co Ltd | 非水電解液二次電池 |
JPH07114124B2 (ja) | 1986-07-02 | 1995-12-06 | 日立マクセル株式会社 | 非水電解質二次電池 |
JPH08255610A (ja) * | 1995-03-17 | 1996-10-01 | Canon Inc | リチウム二次電池 |
CA2202604C (fr) | 1997-04-14 | 2000-12-26 | Hydro-Quebec | Feuillard d'anode alliee et dense a relaxation locale de stress |
JP4161400B2 (ja) * | 1998-03-31 | 2008-10-08 | 宇部興産株式会社 | 非水電解質リチウム二次電池およびその製造方法 |
KR100449765B1 (ko) | 2002-10-12 | 2004-09-22 | 삼성에스디아이 주식회사 | 리튬전지용 리튬메탈 애노드 |
CN101048898B (zh) | 2004-10-29 | 2012-02-01 | 麦德托尼克公司 | 锂离子电池及医疗装置 |
KR100582558B1 (ko) | 2004-11-25 | 2006-05-22 | 한국전자통신연구원 | 스페이서가 구비된 리튬금속 고분자 이차전지용 리튬금속음극 및 그 제조 방법 |
FR2910721B1 (fr) | 2006-12-21 | 2009-03-27 | Commissariat Energie Atomique | Ensemble collecteur de courant-electrode avec des cavites d'expansion pour accumulateur au lithium sous forme de films minces. |
JP5515308B2 (ja) | 2009-02-03 | 2014-06-11 | ソニー株式会社 | 薄膜固体リチウムイオン二次電池及びその製造方法 |
JP5235715B2 (ja) | 2009-02-25 | 2013-07-10 | 富士重工業株式会社 | 蓄電デバイスおよびその製造方法 |
KR101028657B1 (ko) | 2009-08-19 | 2011-04-11 | 고려대학교 산학협력단 | 리튬 분말과 실리콘 옥사이드 이중층 음극, 그 제조 방법 및 이를 이용한 리튬 이차 전지 |
CN102097647B (zh) | 2009-12-09 | 2014-03-26 | 微宏动力系统(湖州)有限公司 | 锂离子电池 |
JP5368589B2 (ja) | 2010-01-28 | 2013-12-18 | 三菱電機株式会社 | 電力貯蔵デバイスセルとその製造方法および蓄電デバイス |
WO2013003846A2 (en) | 2011-06-30 | 2013-01-03 | The Regents Of The University Of California | Surface insulated porous current collectors as dendrite free electrodeposition electrodes |
KR20130067920A (ko) | 2011-12-14 | 2013-06-25 | 한국전자통신연구원 | 탄소 분말을 리튬 표면에 코팅한 음극을 적용한 리튬 이차 전지 |
TWI469426B (zh) | 2011-12-16 | 2015-01-11 | Prologium Technology Co Ltd | 電能供應系統及其電能供應單元 |
KR20140148384A (ko) | 2012-03-22 | 2014-12-31 | 스미토모덴키고교가부시키가이샤 | 리튬 2차 전지 |
KR101417268B1 (ko) * | 2012-05-02 | 2014-07-08 | 현대자동차주식회사 | 리튬금속배터리용 리튬전극 및 그 제조방법 |
CN102683639B (zh) * | 2012-06-12 | 2016-03-23 | 宁德新能源科技有限公司 | 一种锂离子电池阳极片及使用该阳极片的锂离子电池 |
CN202905890U (zh) | 2012-10-17 | 2013-04-24 | 中国东方电气集团有限公司 | 一种使用复合负极的锂离子二次电池 |
KR101410803B1 (ko) | 2014-03-10 | 2014-06-24 | 경상대학교산학협력단 | 불연속 전극, 이를 이용한 전지 및 이를 제조하는 방법 |
-
2015
- 2015-06-05 TW TW104118226A patent/TWI528619B/zh active
- 2015-07-13 US US14/797,747 patent/US9755228B2/en active Active
- 2015-07-14 CN CN201510411871.7A patent/CN105280883B/zh active Active
- 2015-07-15 HU HUE15176755A patent/HUE047277T2/hu unknown
- 2015-07-15 ES ES15176755T patent/ES2754504T3/es active Active
- 2015-07-15 KR KR1020150100399A patent/KR20160009512A/ko active Application Filing
- 2015-07-15 EP EP15176755.5A patent/EP2975673B1/en active Active
- 2015-07-15 JP JP2015141285A patent/JP6220822B2/ja active Active
-
2017
- 2017-08-22 KR KR1020170106258A patent/KR101878608B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
US20160020461A1 (en) | 2016-01-21 |
JP2016029652A (ja) | 2016-03-03 |
EP2975673A1 (en) | 2016-01-20 |
TWI528619B (zh) | 2016-04-01 |
CN105280883B (zh) | 2018-05-29 |
US9755228B2 (en) | 2017-09-05 |
CN105280883A (zh) | 2016-01-27 |
ES2754504T3 (es) | 2020-04-17 |
KR20160009512A (ko) | 2016-01-26 |
HUE047277T2 (hu) | 2020-04-28 |
TW201605105A (zh) | 2016-02-01 |
KR20170101853A (ko) | 2017-09-06 |
EP2975673B1 (en) | 2019-09-11 |
KR101878608B1 (ko) | 2018-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6220822B2 (ja) | 金属リチウム電極板 | |
US20220200306A1 (en) | Overcharge protection in electrochemical cells | |
CN101312244B (zh) | 电极组件及使用该电极组件的二次电池 | |
JP6602360B2 (ja) | リチウム金属電極およびそれに関連するリチウム金属電池 | |
JP5481443B2 (ja) | 2次電池 | |
TWI619297B (zh) | 活性材料 | |
KR101310735B1 (ko) | 이차전지용 부품 및 그 제조 방법, 및 상기 부품을 사용하여 제조된 이차전지와 조립 이차전지 장치 | |
KR101357470B1 (ko) | 이차전지용 전극단자 및 이를 포함하는 리튬 이차전지 | |
WO2008096834A1 (ja) | 予備ドープ前リチウムイオン電池、およびリチウムイオン電池の製造方法 | |
JP4358789B2 (ja) | 二次電池 | |
KR20120132341A (ko) | 이차 전지 | |
CN107925121A (zh) | 二次电池 | |
JP7169959B2 (ja) | 電極構造体、その製造方法およびこれを含む二次電池 | |
CN208078090U (zh) | 电极、电芯、电池以及电子设备 | |
CN103094585B (zh) | 电化学电池 | |
JPH10247516A (ja) | 全固体リチウム電池 | |
JP5708527B2 (ja) | 固体電池用電極層及び固体電池 | |
JP2011228119A (ja) | 非水電解質二次電池 | |
KR20150083633A (ko) | 젤리롤 전극조립체 및 그를 포함하는 리튬 이차전지 | |
JP2012195249A (ja) | リチウムイオン電池およびその製造方法 | |
JP2014082122A (ja) | リチウムイオン二次電池 | |
JP5614234B2 (ja) | 溶融塩電池 | |
JP2020021532A (ja) | 二次電池モジュール | |
JP2011228118A (ja) | 非水電解質二次電池 | |
JP2022096167A (ja) | 固体電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160719 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20161006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161007 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170314 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170710 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170712 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20170719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170919 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171002 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6220822 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |