JP6215538B2 - 廃棄物の処理方法及び廃棄物焼却炉 - Google Patents

廃棄物の処理方法及び廃棄物焼却炉 Download PDF

Info

Publication number
JP6215538B2
JP6215538B2 JP2013021028A JP2013021028A JP6215538B2 JP 6215538 B2 JP6215538 B2 JP 6215538B2 JP 2013021028 A JP2013021028 A JP 2013021028A JP 2013021028 A JP2013021028 A JP 2013021028A JP 6215538 B2 JP6215538 B2 JP 6215538B2
Authority
JP
Japan
Prior art keywords
air
secondary combustion
waste
furnace
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013021028A
Other languages
English (en)
Other versions
JP2014037956A (ja
Inventor
龍一 石川
龍一 石川
山口 繁
繁 山口
誠 吉良
誠 吉良
幸弘 中村
幸弘 中村
浩喜 今村
浩喜 今村
池田 太
太 池田
孝輔 菊地
孝輔 菊地
隆英 佐藤
隆英 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Environmental Plant Co Ltd
Original Assignee
Ebara Environmental Plant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Environmental Plant Co Ltd filed Critical Ebara Environmental Plant Co Ltd
Priority to JP2013021028A priority Critical patent/JP6215538B2/ja
Priority to CN201380030903.8A priority patent/CN104583678B/zh
Priority to EP13819904.7A priority patent/EP2876370B1/en
Priority to PCT/JP2013/067453 priority patent/WO2014013849A1/ja
Priority to KR20147033894A priority patent/KR20150035564A/ko
Publication of JP2014037956A publication Critical patent/JP2014037956A/ja
Application granted granted Critical
Publication of JP6215538B2 publication Critical patent/JP6215538B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/20Incineration of waste; Incinerator constructions; Details, accessories or control therefor having rotating or oscillating drums
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

本発明は、廃棄物の処理方法及び廃棄物焼却炉に関し、特に都市ごみ、シュレッダーダスト、廃プラスチック等の廃棄物を焼却処理する廃棄物の処理方法及び廃棄物焼却炉に関するものである。
都市ごみ、シュレッダーダスト、廃プラスチック等の廃棄物を効率的かつ衛生的に減容化するために、廃棄物を焼却炉によって焼却処理することが行われている。焼却処理によって窒素酸化物(NOx)が発生するため、焼却炉から排出される排ガス中には比較的多量のNOxが含まれる。NOxの発生原因には、焼却物中の窒素化合物の酸化(Fuel−NOx)と、空気中の窒素の酸化(Thermal−NOx)があるが、ごみ焼却炉においてはFuel−NOxが主体であると云われている。
ごみ焼却炉より排出されるNOxを低減するために、例えば、非特許文献1には清掃工場排ガスの窒素酸化物低減対策が開示されている。非特許文献1には以下のように記載されている。
焼却過程でNOxの発生量を抑制するためには窒素のNOxへの転換を減らし、発生したNOxを炉の乾燥、熱分解過程等から生ずるNH,CO,炭化水素等の還元性ガスによって還元する方法(自己脱硝反応)が有効である。こうした脱硝法には燃焼空気を減らして焼却を行う低酸素燃焼があるが、燃焼温度が上昇し、炉を損傷したりクリンカが生成するために燃焼ガス温度を下げる必要がある。その方法には炉内に水を噴霧したり(炉内水噴霧法)、温度が低下した燃焼排ガスを再び炉内にもどす方法(排ガス再循環法)がある。また自己脱硝反応を積極的に行う方法に燃焼ガスを乾燥ストーカからの還元性ガスと混合する還元二段燃焼法がある。
非特許文献1によれば、炉内水噴霧法では焼却量12.5t/hに対し2.0t/hの水噴霧を行うことによりNOxは120〜150ppmから平均85.9ppmに大幅に低減され、このときの酸素濃度は平均6.8%であり、水噴霧量を更に増やせばNOxが更に低減される可能性が示された。但し、水噴霧量があまり多くなると、炉温が低下し過ぎて、未燃ガスの生成や燃焼速度の低下が生じやすくなり、炉壁レンガを傷めたりするので水を多量に噴霧することはできないとしている。
さらに、非特許文献1によれば、排ガス循環法では20%の排ガス循環率においてNOx濃度は約30%低減されて、約84ppmとなったが、酸素濃度の低減によりNOxが低減されたもので、排ガス循環の有無による有意な差は見られなかったとしている。
また、特許文献1にはストーカ式焼却炉の火格子上で燃焼しているごみに向けて水噴霧を行うNOxの抑制方法が示されており、実施例の図11(a)ではNOx濃度を平均50ppmに抑えられたことが記載されている。
従来、焼却炉から排出された排ガスにアンモニアを吹き込み、触媒によりアンモニアとNOxを選択的に反応させ、水と窒素に分解する触媒脱硝法を用いているが、触媒が高価であるため、排ガス中にアンモニアを吹き込み、触媒を用いずにNOxを分解する無触媒脱硝法も用いられている。流動床炉における無触媒脱硝法に関しては、特許文献2に流動床炉内における流動砂層の直上位置から2次空気吹込み部直下位置までの範囲に尿素水やアンモニア水等の還元剤を吹き込むことによりNOx濃度を70ppm以下に抑制する方法が開示されている。
また、特許文献3には、流動化空気および燃焼空気を複数個所に吹き込む流動層ボイラの燃焼炉に、揮発分が10〜25質量%(湿基準)の石炭とその石炭より揮発分が高い石炭を混合して装入し、混炭前に対して混炭後の石炭の揮発分割合を5質量%以上増加させて燃焼させるにあたり、流動層ボイラの燃焼炉内に吹き込ませる流動化空気と燃焼空気のうち少なくとも一方に水分を事前添加するか、流動層ボイラの燃焼炉内に直接水分を投入し、流動層ボイラの燃焼炉内で脱硫を行い、燃焼排ガス中のNOxおよびSOxを低減させる方法が開示されている。特許文献3の実施例ではNOx濃度を50〜60ppmに抑制できたことが記載されている。
特開平10−148319号公報 特開平5−332521号公報 特開2009−216353号公報
東京都環境科学研究所年報1988、p.30−36、「清掃工場排ガスの窒素酸化物低減対策について」辰市祐久、他
上述した非特許文献1および特許文献1乃至3を含む先行技術文献に開示されている先行技術では、空気比を低下させることと合わせてNOxの抑制を図っているが、空気比を下げすぎると酸素不足による不完全燃焼でCOが発生するようになるため、NOx濃度はたかだか50ppm程度までしか抑制できず、低NOxおよび低COを同時に実現させることは困難であった。
これら先行技術においては、水噴霧を行う場合にも、従来から知られている焼却炉において、単に水噴霧を行っているに過ぎず、NOxの抑制効果も限定的であった。
本発明者らは、廃棄物焼却炉において水噴霧の量や噴霧位置を種々変更して繰り返し運転を行う過程で、水噴霧の量や噴霧位置を最適化するだけでは先行技術と同程度までしかNOxの抑制効果を得ることができないことを見出し、水噴霧を行う燃焼場そのものについて種々の条件を設定してNOxの発生量を検証し本件発明に至ったものである。
一例として、流動床焼却炉においては、流動層(砂層)内で廃棄物の1次燃焼が行われ、残余の2次燃焼がフリーボードで行われる。従来の流動床焼却炉では、砂層中での1次燃焼割合を高め、流動層温度を維持する熱源とする運用が行われていた。多くの流動床焼却炉では、フリーボードにおいて砂層中で燃え切れなかった未燃分を燃焼させて完全燃焼を促進するために燃焼用空気が供給され、炉壁にクリンカが付着生成するトラブルを回避するため、水噴霧により炉内温度の調節が行われているが、NOxの発生量は水噴霧の量や噴霧位置によって殆ど変化しなかった。
本発明者らは、流動床焼却炉において、砂層中での1次燃焼割合を減じ、流動層(砂層)内で緩やかに1次燃焼を行わせ、比較的多量の可燃ガスをフリーボードに供給し、フリーボードにおいて2次燃焼を行わせる際に、燃焼用空気とともに水噴霧を行うことにより、NOx濃度を20ppm以下まで大幅に低減できることを見出した。この場合に、2次燃焼における総空気比が1.5以上と比較的高くなってもNOxを十分抑制できることを確認した。更に、炉床温度を600℃以下に低下させて、炉床において緩やかに1次燃焼を行わせることにより、1.5〜1.7程度の空気比において、NOx濃度を20ppm以下までに低減するとともに、CO濃度も安定して10ppm程度以下に保つことができることを見出した。
本発明者らは、上記知見に基づいて、水噴霧の量や噴霧位置のみならず、水噴霧を行う燃焼場を特定の条件に設定することによりNOx濃度を低減できることを見出し、本発明の創案に至ったものである。
すなわち、本発明は、脱硝触媒設備といった新たな設備を設けることなく、またアンモニアや尿素水等の薬剤を用いることなく、水噴霧という簡便な方法によりNOx濃度の低減とCO濃度の低減を同時に実現できる廃棄物の処理方法及び廃棄物焼却炉を提供することを目的とする。
上述の目的を達成するため、本発明の廃棄物処理方法は、廃棄物を焼却炉によって焼却処理する廃棄物の処理方法において、前記焼却炉が流動床炉であり、1次空気として流動化空気量を1次空気比0.3〜0.8になるように供給して廃棄物の一部を燃焼させて可燃ガスを生成するとともに、前記流動床炉の炉床の温度を500〜650℃に維持し、生成した可燃ガスに2次燃焼用空気を吹き込むと同時に廃棄物の湿重量1トンあたり30〜600リットルの水を噴霧し、水噴霧は2次燃焼用空気とともに水を吹き込むことにより2次燃焼場の燃焼温度を下げると共に、2次燃焼場において可燃ガスを水分の存在下で2次燃焼させ、前記水噴霧量は、フリーボードに設けられた炉頂温度計で計測する炉頂温度が850℃以下とならないように調整することを特徴とする。
本発明によれば、都市ごみ、シュレッダーダスト、廃プラスチック等のガス化燃焼を主体とする廃棄物を、焼却処理する場合に、1次空気比を0.3〜0.8として廃棄物の一部を燃焼させて可燃ガスを生成し、2次燃焼において2次燃焼用空気を供給するとともに水噴霧を行うことにより水分の存在下で可燃ガスを燃焼させ、窒素酸化物(NOx)の生成を抑制することができる。水噴霧は、2次燃焼用空気と共に水を吹き込むことにより2次燃焼場の燃焼温度を下げると共に、2次燃焼場に水分を共存させることによりNOx生成反応を抑制する。
本発明において、空気比とは廃棄物の燃焼に必要な理論燃焼空気量に対する実際に供給される空気量の比を云う。
水噴霧量は焼却対象物の発熱量や揮発分含有量により変わるが、本発明によれば、水噴霧量が廃棄物1トン(湿重量)あたり30〜600リットルの範囲では、水噴霧量を増やすとともに脱硝効果が大きくなる。
一実施形態によれば、前記焼却炉が流動床炉であり、1次空気として流動化空気量を空気比で0.3〜0.8になるように供給する
焼却炉を流動床炉とし流動化空気をこの範囲に調節することにより、2次燃焼場であるフリーボードに適度の未燃ガスおよび還元物質を供給することができ、2次燃焼用空気および水噴霧によりNOx生成反応を抑制することができる。
本発明の好ましい態様は、前記水の噴霧は、水噴霧ノズルを2次空気ノズルに内挿させて2次燃焼用空気とともに吹き込むことを特徴とする。
本発明の好ましい態様は、前記水の噴霧は、2次燃焼用空気にミストを添加して2次燃焼用空気とともに吹き込むことを特徴とする。
本発明の好ましい態様は、総空気比が0.2多くなるとNOx濃度が約20ppm増加するという関係から、総空気比を0.2多くしたときに増加する約20ppmのNOx濃度増加分を、廃棄物の湿重量1トンあたり約100リットルの水を噴霧することにより低減することを特徴とする。
一実施形態によれば、前記焼却炉が流動床炉であり、流動床に供給される流動化空気量を領域毎に差を設け、少なくとも1つの領域の流動化速度を他の領域の流動化速度より大きくし、前記他の領域に流動砂が沈降する移動層を形成し、前記少なくとも1つの領域に流動砂が上昇する流動層を形成し、前記移動層に廃棄物を供給するようにしている
棄物は移動層に供給され、供給された廃棄物は移動層に飲み込まれて流動砂と共に下方に移動する。移動層中で廃棄物は熱分解し、可燃ガスと未燃物(チャー)が発生する。発生した未燃物(チャー)は、流動砂と共に流動層に向かい、流動層中で一部が燃焼して流動砂を加熱する。流動砂は流動層において、移動層で廃棄物の熱分解を適切に行うことができる温度に上昇させられる。
一実施形態によれば、前記流動床炉の炉床の温度を500〜650℃に維持する
流動床炉の炉床の温度をこの温度範囲に調節することにより、流動床内で緩やかにガス化反応を行わせ、2次燃焼場であるフリーボードに安定して可燃ガスを供給することができ、2次燃焼場において2次燃焼用空気および水噴霧によりNOx生成反応を抑制することができる。
一実施形態によれば、前記焼却炉がストーカ炉であり、当該ストーカ炉の主燃焼帯火格子の下方から廃棄物中に1次燃焼用空気を供給して廃棄物の一部を燃焼させて可燃ガスを生成し、主燃焼帯の上方に2次燃焼用空気を供給すると共に水噴霧を行うことにより水分の共存下で可燃ガスの2次燃焼を行わせる
却炉としてストーカ炉を用い、ストーカの主燃焼帯火格子下から焼却対象物中に空気比が0.3〜0.8になるように1次燃焼用空気を供給することにより可燃ガスを生成し、主燃焼帯の上方の側壁から2次燃焼用空気を供給するとともに水噴霧を行うことにより水分の存在下で可燃ガスの2次燃焼を行わせることができる。
一実施形態によれば、前記焼却炉は円筒状のキルンおよび前記キルンの出口に設けられた2次燃焼室を備え、前記キルン内に1次燃焼用空気を供給して廃棄物の一部を燃焼させて可燃ガスを生成し、前記2次燃焼室において前記2次燃焼用空気を供給するとともに前記水噴霧を行うことにより水分の共存下で可燃ガスの2次燃焼を行わせる
却炉がキルン炉であり、円筒状のキルン内に空気比が0.3〜0.8になるように1次燃焼用空気を供給して1次燃焼を行わせることにより可燃ガスを生成し、キルン出口に接続する2次燃焼室において2次燃焼用空気の供給とともに水噴霧を行うことにより水分の存在下で可燃ガスの2次燃焼を行わせることができる。
一実施形態によれば、前記焼却炉は廃棄物の一部を燃焼させて可燃ガスを生成する1次炉と前記可燃ガスを2次燃焼させる2次炉とを備えたガス化燃焼炉であり、前記1次炉において1次燃焼用空気を供給して可燃ガスを生成し、前記2次炉において前記2次燃焼用空気を供給するとともに水噴霧を行うことにより水分の共存下で可燃ガスの2次燃焼を行わせる
却炉が1次炉と2次炉とからなるガス化燃焼炉であり、1次炉において空気比が0.3〜0.8になるように1次燃焼用空気を供給して可燃ガスを生成し、2次炉において2次燃焼用空気を供給するとともに水噴霧を行うことにより水分の存在下で可燃ガスの2次燃焼を行わせることができる。
本発明の焼却炉は、廃棄物を焼却処理する焼却炉において、前記焼却炉が流動床炉であり、廃棄物から可燃ガスを生成させる1次燃焼部と、生成した可燃ガスを燃焼させる2次燃焼部と、前記1次燃焼部に空気を供給する1次燃焼用空気供給手段と、前記2次燃焼部に空気を供給する2次燃焼用空気供給手段と、前記2次燃焼部に水噴霧を行う水噴霧手段とを備え、前記1次燃焼用空気供給手段により、1次空気として流動化空気量を空気比で0.3〜0.8になるように1次燃焼部に供給して廃棄物の一部を燃焼させて可燃ガスを生成るとともに、前記流動床炉の炉床の温度を500〜650℃に維持し、前記2次燃焼部において可燃ガスに前記2次燃焼用空気供給手段および前記水噴霧手段から2次燃焼用空気を吹き込むと同時に廃棄物の湿重量1トンあたり30〜600リットルの水を噴霧し、水噴霧は2次燃焼用空気とともに水を吹き込むことにより2次燃焼場の燃焼温度を下げると共に、2次燃焼場において可燃ガスを水分の存在下で2次燃焼させるようにし、前記水噴霧量は、フリーボードに設けられた炉頂温度計で計測する炉頂温度が850℃以下とならないように調整するようにしたことを特徴とする。
本発明によれば、都市ごみ、シュレッダーダスト、廃プラスチック等のガス化燃焼を主体とする廃棄物を、焼却処理する場合に、1次空気比を0.3〜0.8として廃棄物の一部を燃焼させて可燃ガスを生成し、2次燃焼において2次燃焼用空気を供給するとともに水噴霧を行うことにより水分の存在下で可燃ガスを燃焼させ、窒素酸化物(NOx)の生成を抑制することができる。水噴霧は、2次燃焼用空気と共に水を吹き込むことにより2次燃焼場の燃焼温度を下げると共に、2次燃焼場に水分を共存させることによりNOx生成反応を抑制する。
発明によれば、水噴霧量が廃棄物1トン(湿重量)あたり30〜600リットルの範囲では、水噴霧量を増やすとともに脱硝効果が大きくなる。
本発明の好ましい態様は、前記2次燃焼用空気供給手段に前記水噴霧手段を内挿させて2次燃焼用空気とともに水を吹き込むことを特徴とする。
本発明によれば、燃焼用空気を供給する吹込み管に水噴霧を行う水噴霧装置を内挿することにより、燃焼用空気の供給とともに水噴霧を行うことができ、2次燃焼場に過不足なく水を供給することができるため、燃焼温度を下げると共に、2次燃焼場に水分が供給され、NOx生成反応を抑制する。
本発明の好ましい態様は、前記水噴霧手段は、2次燃焼用空気にミストを添加することを特徴とする。
一実施形態によれば、前記焼却炉は流動床焼却炉であり、前記1次燃焼用空気供給手段により前記流動床に流動化空気を供給することにより廃棄物の一部を燃焼させて可燃ガスを生成し、前記2次燃焼用空気供給手段によりフリーボードに2次燃焼用空気を供給するとともに前記水噴霧手段によりフリーボードに水噴霧を行い、可燃ガスを水分の共存下で燃焼させるようにしている
棄物焼却炉が流動床焼却炉であり、1次燃焼用空気供給手段により流動床に流動化空気を供給することにより流動床の砂中空気比を0.3〜0.8として廃棄物の部分燃焼を行わせて可燃ガスを生成し、2次燃焼用空気供給手段によりフリーボードに2次燃焼用空気を供給するとともに水噴霧手段によりフリーボードに水噴霧を行い、フリーボードにおいて可燃ガスを水分の存在下で燃焼させることができる。
一実施形態によれば、前記流動床の温度を500〜650℃に維持する
流動床の温度をこの温度範囲に調節することにより、流動床内で緩やかにガス化反応を行わせ、2次燃焼場であるフリーボードに安定して可燃ガスを供給することができ、2次燃焼場において2次燃焼用空気および水噴霧によりNOx生成反応を抑制することができる。
一実施形態によれば、前記流動床に供給される流動化空気量を領域ごとに差を設け、少なくとも1つの領域の流動化速度を他の領域の流動化速度より大きくし、前記他の領域に流動砂が沈降する移動層を形成し、前記少なくとも1つの領域に流動砂が上昇する流動層を形成し、前記移動層に廃棄物を供給するようにしている
棄物を移動層に供給し、供給された廃棄物を移動層に飲み込ませ流動砂と共に下方に移動させる。移動層中で廃棄物を熱分解し、可燃ガスと未燃物(チャー)を発生させる。発生した未燃物(チャー)は、流動砂と共に流動層に向かい、流動層中で一部が燃焼して流動砂を加熱する。流動砂は流動層において、移動層で廃棄物の熱分解を適切に行うことができる温度に上昇させられる。
一実施形態によれば、前記焼却炉が主燃焼帯火格子を備えたストーカ炉であり、前記主燃焼帯火格子の下方から廃棄物中に前記1次燃焼用空気供給手段により1次燃焼用空気を供給して廃棄物の一部を燃焼させて可燃ガスを生成させるとともに、燃焼室内の主燃焼帯の上方に前記2次燃焼用空気供給手段により2次燃焼用空気を供給するとともに前記水噴霧手段により水噴霧を行うことにより水分の存在下で可燃ガスの2次燃焼を行わせる
却炉としてストーカ炉を用い、ストーカの主燃焼帯火格子下から焼却対象物中に空気比が0.3〜0.8になるように1次燃焼用空気を供給することにより可燃ガスを生成し、主燃焼帯の上方の側壁から2次燃焼用空気を供給するとともに水噴霧を行うことにより水分の存在下で可燃ガスの2次燃焼を行わせることができる。
一実施形態によれば、前記焼却炉は円筒状のキルンおよび前記キルンの出口に2次燃焼室を備え、キルン内に前記1次燃焼用空気供給手段により1次燃焼用空気を供給して廃棄物の一部を燃焼させて可燃ガスを生成させるとともに、前記2次燃焼室において前記2次燃焼用空気供給手段により2次燃焼用空気を供給するとともに前記水噴霧手段により水噴霧を行うことにより水分の存在下で可燃ガスを2次燃焼させる
却炉がキルン炉であり、円筒状のキルン内に空気比が0.3〜0.8になるように1次燃焼用空気を供給して1次燃焼を行わせて可燃ガスを生成し、キルン出口に接続する2次燃焼室において2次燃焼用空気の供給とともに水噴霧を行うことにより水分の存在下で可燃ガスを2次燃焼させることができる。
一実施形態によれば、前記焼却炉は廃棄物の一部を燃焼させて可燃ガスを生成する1次炉と前記可燃ガスを2次燃焼させる2次炉とを備えたガス化燃焼炉であり、前記1次炉において前記1次燃焼用空気供給手段により1次燃焼用空気を供給して可燃ガスを生成させるとともに、前記2次炉において前記2次燃焼用空気供給手段により2次燃焼用空気を供給するとともに前記水噴霧手段により水噴霧を行うことにより水分の共存下で可燃ガスを2次燃焼させる
却炉が1次炉と2次炉とからなるガス化燃焼炉であり、1次炉において空気比が0.3〜0.8になるように1次燃焼用空気を供給して可燃ガスを生成させ、2次炉において2次燃焼用空気を供給するとともに水噴霧を行うことにより水分の存在下で可燃ガスを2次燃焼させることができる。
本発明によれば、脱硝触媒設備といった新たな設備を設けることなく、またアンモニア等の薬剤を使用することもなく、水噴霧という簡便な方法でNOx濃度を20ppm以下、CO濃度を10ppm以下に低減することができ、低NOxおよび低COを同時に実現できるという効果を奏する。
本発明により、更に以下の付随的な効果が得られる。
(1)脱硝触媒が不要で、水噴霧のみで脱硝を行えるので、アンモニアや尿素水等の脱硝用の薬剤貯留設備および薬剤添加装置を設ける必要がなく、設備が簡素で安価になる。
(2)脱硝触媒は排ガス除じん設備の下流に設置されるが、触媒活性をあげ、被毒成分である酸性硫安の生成を抑制するために、除じん後の排ガスを蒸気等により再加熱して酸性硫安が生成しない温度(210℃程度)にまで上昇させた後に触媒に導入させているが、触媒を使用する必要がないため、設備フローにおいて、焼却炉以降、順次温度が下がっていく合理的なシステムとすることができ、余分な蒸気の消費を不要として、熱回収の最大化と高度排ガス処理を同時に実現できる。
(3)熱回収の最大化とともに、排ガス再加熱等の余分な蒸気の消費を不要とすることにより、発電の最大化が可能となり、売電収入を最大化でき、薬剤費用が削減され、触媒交換費用が削減される結果、施設の維持管理費用を大幅に削減できる。
(4)既存の焼却炉においても、燃焼用空気の調整と水噴霧装置の増設を行うだけで本発明を実施できるため、既存施設の大幅な機能改善を安価に行うことができる。
図1は、本発明の廃棄物焼却炉の一実施形態である流動床焼却炉を示す縦断面図である。 図2は図1のII-II線断面図である。 図3は、本発明の流動床焼却炉の他の実施形態を示す縦断面図である。 図4は図3のIV-IV線断面図である。 図5は、本発明の廃棄物焼却炉の一実施形態であるストーカ炉を示す縦断面図である。 図6は図5のVI-VI線断面図である。 図7は、本発明の廃棄物焼却炉の一実施形態であるキルンストーカ炉を示す縦断面図である。 図8は、本発明の廃棄物焼却炉の一実施形態であるガス化燃焼炉を示す縦断面図である。 図9(a),(b)は、焼却炉から排出される排ガスの処理フローを示すブロック図であり、図9(a)は従来の処理フローを示し、図9(b)は本発明の処理フローを示す。 図10は試験を実施した施設の処理フローを示す。 図11は図3に示す流動床焼却炉にて試験を行った結果を示す表である。 図12(a)及び(b)は、図3に示す流動床焼却炉にて試験を行った結果を示す表である。 図13は、総空気比とNOx濃度との関係を示す図である。 図14は、炉内水噴霧量とNOx濃度との関係を示す図である。 図15は、総空気比とCO濃度との関係を示す図である。
以下、本発明に係る廃棄物の処理方法及び廃棄物焼却炉の実施形態を図1乃至図15を参照して説明する。図1乃至図15において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
図1は、本発明の廃棄物焼却炉の一実施形態である流動床焼却炉を示す縦断面図である。図2は図1のII−II線断面図である。図1および図2に示すように、流動床焼却炉1は、廃棄物を処理する炉本体2と、導入した廃棄物を熱分解し一部を燃焼させる流動床3と、流動床3を支える床板4とを備えている。流動床3は、典型的には珪砂等の砂である流動媒体が集積して形成された砂層である。炉本体2内の流動床3の上方にある空間はフリーボード7になっている。炉本体2は、炉床の水平断面が円形に形成された円筒状の炉本体からなっている。炉本体2の底部には、円筒状の炉本体の中心部に不燃物排出口5が設けられている。なお、炉本体2は、炉床の水平断面が矩形に形成された略四角筒形状であってもよい。
炉本体2の底部にある床板4は不燃物排出口5を中心として概略逆円錐状(すり鉢状)に形成されており、床板4には流動化ガスとしての流動化空気を炉内に噴出するための多数の散気ノズル(図示せず)が配置されている。炉本体2の炉壁には廃棄物を炉内に投入するための供給シュート37が形成されており、炉本体2の頂部には排ガスを排出する排気口6が形成されている。
図1および図2に示すように、炉本体2の炉壁には、複数の2次燃焼用空気吹込ノズル8が設置されている。2次燃焼用空気吹込ノズル8は、フリーボード7に設ければ、2次燃焼用空気の吹き込みにより可燃ガスの2次燃焼が行われるので、2次燃焼用空気吹込ノズル8の設置位置は制限されるものではないが、フリーボードのなるべく低い位置に設け、炉壁の円周方向の2箇所以上の複数箇所から2次燃焼用空気を吹き込み、フリーボード容量を有効に活用して2次燃焼のために滞留時間を確保できるようにするのがよい。2次燃焼用空気吹込ノズル8には水噴霧ノズル9が内挿されており、2次燃焼用空気吹込ノズル8から2次燃焼用空気を吹き込むときに同時に水噴霧ノズル9から水噴霧を行うことができるようになっている。水噴霧ノズル9は水のみを噴霧する1流体ノズルまたは空気と水とを噴霧する2流体ノズルのいずれを使用してもよい。
図1および図2に示すように構成された流動床焼却炉1において、廃棄物は供給シュート37から流動床3に供給される。このとき、床板4の散気ノズルからは、流動床3の全体に亘って均一な空気量の流動化空気が噴出されるようになっており、流動床3は、流動媒体が上下に活発に流動する、流動層となる。流動床3には、流動化空気(1次空気)を砂中空気比が0.3〜0.8、好ましくは0.5〜0.8、更に好ましくは0.5〜0.7となるように供給し、流動床3の温度は砂層中に挿入された炉床温度計38で計測されるが、500〜650℃、好ましくは550℃〜600℃に維持する。
炉内に供給された廃棄物は流動床3内で熱分解され、一部が燃焼して可燃ガスが発生するが、この際、砂中空気比が0.3以下では可燃ガスの生成量が過大となり2次燃焼の割合が大きくなりすぎNOx低減のために必要な水噴霧量が多くなりすぎる。また、砂中空気比が0.8以上となると2次燃焼割合が小さくなりすぎて水噴霧によるNOx低減の効果が著しく減少する。
熱分解速度を抑えて可燃ガスを安定して生成するには炉床温度は低い方が良く、炉床温度が650℃を越えると、廃棄物の乾燥、熱分解の速度が速くなり、廃棄物の質や量の変動により可燃ガスの生成量が変動し、水噴霧量が一定の場合にNOx削減効果が変動しやすくなる。逆に、炉床温度が500℃以下と低くなりすぎると、熱分解が抑制され、可燃ガスの生成が抑制されるとともに、廃棄物の水分が一時的に大きくなると炉床温度が低下し熱分解が抑制され、未燃物質の炉床内での燃焼が抑えられ、炉床温度が急激に低下しすぎて炉床温度の維持が困難になることがある。
流動床3の温度は、流動化空気の空気量を調整するか、又は炉床に水を供給すること(炉床注水)により制御される。
また、フリーボード7には、2次燃焼用空気吹込みノズル8から2次燃焼用空気を吹き込む。このとき、2次燃焼用空気は空気単独で吹き込んでもよいし、空気と排ガスの混合ガスとして吹き込んでもよい。これと併行して、2次燃焼用空気吹込みノズル8に内挿された水噴霧ノズル9からフリーボード7に水噴霧を行う。このときの水噴霧量は、廃棄物1トン(t)あたり30〜600リットル(L)であり、好ましくは廃棄物1トンあたり50〜300リットルである。水噴霧量が30L/廃棄物1t未満では脱硝効果が得にくく、水噴霧量を増やすとともに脱硝効果が大きくなるが、水噴霧量の増加に伴い脱硝効果は頭打ちとなり600L/廃棄物1t以上では殆ど脱硝効果は変わらない。水噴霧量が増えると燃焼温度が低下し、不完全燃焼によりCO等が生成するため、上限値を600L/廃棄物1tとし、フリーボードに設けられた炉頂温度計39で計測する炉頂温度が850℃以下とならないように焼却対象物の発熱量および総空気比から水噴霧量を決定する。2次燃焼用空気吹き込みはCOの発生を抑制するために総空気比が1.2以上となるようにするのが良く、熱回収の観点から1.8程度以下とするのが良い。
フリーボードへの水噴霧は、2次燃焼用空気と共に吹き込むことにより2次燃焼場に過不足なく水を供給することができるため、燃焼温度を下げると共に、水分の共存下で2次燃焼が行われ、NOx生成反応を抑制する。水噴霧の方法として、上記水噴霧ノズルを使用するほか、2次燃焼用空気にミストを添加しても良い。
水噴霧ノズル9を2次燃焼用空気吹き込みノズル8に内挿する場合に水噴霧ノズル9の先端部分は2次燃焼用空気吹き込みノズル8の先端から幾分外側に突き出すようにしてもよい。また、水噴霧ノズル9を2次燃焼用空気吹き込みノズル8とは別個に設けて、2次燃焼用空気吹き込み先の2次燃焼場に水噴霧が行われるようにしても良い。
1箇所の2次燃焼用空気吹き込みノズル8に挿入される水噴霧ノズル9の本数は1本だけではなく2本以上にしてもよい。
水噴霧ノズル9を2次燃焼用空気吹き込みノズル8に内挿させる方が、燃焼用空気と噴霧水を同時に2次燃焼場に確実に供給することができるとともに、水噴霧ノズルを保護し損傷を回避することができるため好ましい。
図3は、本発明の流動床焼却炉の他の実施形態を示す縦断面図である。図4は図3のIV-IV線断面図である。図3および図4に示すように、流動床焼却炉11は、廃棄物を処理する炉本体12と、導入した廃棄物を熱分解し一部を燃焼させる流動床13と、流動床13を支える床板14とを備えている。流動床13は、典型的には珪砂等の砂である流動媒体が集積して形成された砂層である。炉本体12は、概ね水平断面が矩形に形成された略四角筒形状の炉本体からなっている。炉本体12内の流動床13の上方にある空間はフリーボード17になっている。
図3に示すように、略四角筒形状の炉本体12は、一部が内側に窪んだ対向する一対の側壁21a,21aと、一対の側壁21a,21aに接続された対向する一対の側壁(図4中21b)とから構成されている。炉本体12の窪みは、側壁21a,21aが下方から上方に向かって炉本体12の内側に傾斜した傾斜部21S1と、傾斜部21S1の上方に設けられ下方から上方に向かって外側に傾斜した傾斜部21S2とによって形成されている。傾斜部21S1は、上昇する流動媒体が炉本体12の内部側に反転しやすくなるデフレクタとして機能する。
炉本体12の側壁21aには廃棄物を炉内に投入するための投入口(図示せず)が形成されており、炉本体12の頂部には排ガスを排出する排気口16が形成されている。炉本体12内に設置された床板14は、中央が高く、両側縁に向かうにつれ徐々に低くなった山形状をなしている。そして、床板14の両側縁と側壁21a,21aとの間には、不燃物排出口15,15が形成されている。床板14は中央が最も高く、両側縁に向かうにつれて徐々に低くなるような下り勾配を有して設けられている。床板14は、図3において紙面に直交する方向には傾斜はなく平面になっている。床板14には、流動化ガスとしての流動化空気を炉内に噴出するための多数の散気ノズルが配置されている。
図3に示すように、床板14の下方には、床板14から間隔をあけて底板27が設けられており、床板14と底板27との間の空間は、床板14から底板27まで延びる3つの仕切板24によって4つの空間に分割されている。このように床板14と底板27との間の空間が3つの仕切板24で分割されることにより、床板14の下方に、中央部の2つの空気箱25,25と両側部の2つの空気箱26,26が形成されることとなる。図3において、中央部の2つの空気箱25,25を形成する2つの床板と両側部の2つの空気箱26,26を形成する2つの床板とを峻別するために、空気箱25,25用の床板を床板14A,14Aと表し、空気箱26,26用の床板を床板14B,14Bと表す。
図3に示すように、4つの空気箱25,25,26,26には、炉外から流動化空気を導く空気管31A,31B,32A,32Bがそれぞれ接続されている。空気管31A,31B,32A,32Bには、内部を流れる空気流量を調節する調節弁V1−1,V1−2,V2−1,V2−2がそれぞれ配設されている。4つの空気管31A,31B,32A,32Bは最上流部で合流して1つの空気管35となり、空気管35には流動化空気を圧送する空気ブロワ36が配設されている。なお、4つの空気管31A,31B,32A,32Bにそれぞれブロワを設けてもよい。
図3および図4に示すように、炉本体12の側壁には、複数の2次燃焼用空気吹込ノズル18が設置されている。2次燃焼用空気吹込ノズル18は、フリーボード17に2次燃焼用空気を吹き込むことにより可燃ガスを燃焼させるためのノズルである。2次燃焼用空気吹込ノズル18は側壁の2箇所以上の複数箇所から2次燃焼用空気を吹き込むようになっている。2次燃焼用空気吹込ノズル18には水噴霧ノズル19が内挿されており、2次燃焼用空気吹込ノズル18から2次燃焼用空気を吹き込むときに同時に水噴霧ノズル19から水噴霧を行うことができるようになっている。
水噴霧ノズル19を2次燃焼用空気吹き込みノズル18に内挿する場合に水噴霧ノズル19の先端部分は2次燃焼用空気吹き込みノズル18の先端から幾分外側に突き出ていてもよい。また、水噴霧ノズル19を2次燃焼用空気吹き込みノズル18とは別個に設けて、2次燃焼用空気吹き込み先の2次燃焼場に水噴霧が行われるようにしても良い。
1箇所の2次燃焼用空気吹き込みノズル18に挿入される水噴霧ノズル19の本数は1本だけではなく2本以上でもよい。
水噴霧ノズル19を2次燃焼用空気吹き込みノズル18に内挿させる方が、燃焼用空気と噴霧水を同時に2次燃焼場に確実に供給することができるとともに、水噴霧ノズルを保護し損傷を回避することができるため好ましい。
水噴霧の方法としては、上記水噴霧ノズルを使用するほか、2次燃焼用空気にミストを添加しても良い。
図3および図4に示すように構成された流動床焼却炉11において、調節弁V1−1,V1−2の開度を調節して空気管31A,31Bを流れる空気流量を調節することにより、中央部の2つの床板14A,14Aに配置された散気ノズルからは、実質的に小さな流動化速度を与えるように流動化空気を噴出する。その結果、中央部の2つの床板14A,14Aの上方に流動媒体が比較的ゆっくりした速度で流動する弱流動化域を形成する。また、調節弁V2−1,V2−2の開度を調節して空気管32A,32Bを流れる空気流量を調節することにより、両側部の2つの床板14B,14Bに配置された散気ノズルからは、実質的に大きな流動化速度を与えるように流動化空気を噴出する。その結果、両側部の2つの床板14B,14Bの上方に流動媒体が活発に流動する強流動化域を形成する。
中央部の2つの床板14A,14Aの上方に形成された弱流動化域と、両側部の2つの床板14B,14Bの上方に形成された強流動化域とがそれぞれ相隣接して存在する結果、弱流動化域で流動媒体が比較的ゆっくりした速度で上方から下方に移動する移動層22が形成されて、強流動化域で流動媒体が下方から上方に移動する流動層23が形成される。したがって、弱流動化域と強流動化域とが相隣接する領域全体においては、流動媒体が、下部では移動層22から流動層23へ、上部では流動層23から移動層22へ移動することで、移動層22と流動層23との間を流動媒体が循環する循環流が左右に形成される。
炉内に供給された廃棄物は移動層22に飲み込まれて流動媒体と共に下方に移動する。移動層22中で廃棄物は乾燥・熱分解し、可燃ガスが発生する。熱分解によって発生した未燃物(チャー)は、流動媒体と共に流動層23に向かい、流動層23中で一部が燃焼して流動媒体を加熱する。流動媒体(流動砂)は、流動層23において、移動層22に循環したときに廃棄物の乾燥・熱分解を適切に行うことができる温度に上昇させられる。移動層22および流動層23からなる流動床13には、流動化空気(1次空気)を砂中空気比が0.3〜0.8、好ましくは0.5〜0.8となるように供給し、流動床13の温度は、炉床温度計28で計測され、500〜650℃、好ましくは550〜600℃に維持する。これら砂中空気比及び炉床温度の範囲とする意味は、前述したとおりである。
また、フリーボード17には、2次燃焼用空気吹込みノズル18から2次燃焼用空気を吹き込む。このとき、2次燃焼用空気は空気単独で吹き込んでもよいし、空気と排ガスの混合ガスとして吹き込んでもよい。これと併行して、2次燃焼用空気吹込みノズル18に内挿された水噴霧ノズル19からフリーボード17に水噴霧を行う。このときの水噴霧量は、廃棄物1トン(t)あたり30〜600リットル(L)であり、好ましくは廃棄物1トンあたり50〜300リットルである。水噴霧量が増えると燃焼温度が低下し、不完全燃焼によりCO等が生成するため、上限値を600L/廃棄物1tとし、フリーボードに設けられた炉頂温度計29で計測される炉頂温度が850℃以下とならないように焼却対象物の発熱量および総空気比から水噴霧量を決定する。2次燃焼用空気吹き込みはCOの発生を抑制するために総空気比が1.2以上となるようにするのが良く、熱回収の観点から1.8程度以下とするのが良い。
フリーボードへの水噴霧は、2次燃焼用空気と共に水を吹き込むことにより2次燃焼場に過不足なく水を供給することができるため、燃焼温度を下げると共に、2次燃焼場に水分を共存させることによりNOx生成反応を抑制する。水噴霧の方法として、上記水噴霧ノズルを使用するほか、2次燃焼用空気にミストを添加しても良い。
図5は、本発明の廃棄物焼却炉の一実施形態であるストーカ炉を示す縦断面図である。図6は図5のVI−VI線断面図である。ただし、図6ではストーカ炉の上部の側壁45の図示を一部省略している。
図5および図6に示すように、廃棄物はストーカ炉41に設けられた供給シュート47から供給され、供給シュート47の下部に設けられた廃棄物供給プッシャー43により炉内に供給される。炉内に供給された廃棄物は、火格子群44の往復動により乾燥帯の火格子群44A、主燃焼帯の火格子群44Bおよび後燃焼帯の火格子群44Cに順次攪拌されながら送られる。乾燥帯において図示しない空気ブロアから空気供給管55を経て火格子46の下方から廃棄物中に予熱された乾燥用空気が調節弁51Aの開度に応じて供給され、廃棄物は水分が蒸発して乾燥され温度の上昇とともに揮発分が揮発し始める。主燃焼帯においては火格子46の下方から廃棄物中に1次燃焼用空気が調節弁51Bの開度に応じて供給され、廃棄物の一部は燃焼して可燃ガスが生成する。主燃焼帯に供給する1次燃焼用空気は空気比で0.3〜0.8とし可燃ガスを生成させるようにされる。主燃焼帯の上方に設けられた燃焼室57において、生成された可燃ガス中に炉の両側壁45に複数個設けられた2次燃焼用空気吹込ノズル48から2次燃焼用空気を供給するとともに水噴霧ノズル49により廃棄物1トン(t)あたり30〜600リットルの水噴霧を行うことにより、水分の存在下で2次燃焼が行われ、NOx生成を抑制する。水噴霧量が増えると燃焼温度が低下し、不完全燃焼によりCO等が生成するため、上限値を600L/廃棄物1tとし、燃焼室に設けられた炉頂温度計59で計測される炉頂温度が850℃以下とならないように焼却対象物の発熱量および総空気比から水噴霧量を決定する。2次燃焼用空気吹き込みはCOの発生を抑制するために総空気比が1.2以上となるようにするのが良く、熱回収の観点から1.8程度以下とするのが良い。なお、主燃焼帯で一部燃焼後に残った未燃分を含む廃棄物は後燃焼帯に送られ、さらに火格子46の下方から廃棄物中に後燃焼用空気が調節弁51Cの開度に応じて供給され、廃棄物中の未燃分が燃焼して、後燃焼帯の火格子群44Cの下流端から不燃物を含む燃え殻となって排出される。ストーカ炉41において一次燃焼用空気の空気比の範囲を0.3〜0.8とする意味は、上述の流動床焼却炉1の場合と同様である。
水噴霧は基本的に前述した流動床焼却炉と同様の構成により行う。したがって、2次燃焼用空気吹込ノズル48に水噴霧ノズル49を内挿するか、または2次燃焼用空気にミストを添加して行っても良い。2次燃焼用空気吹込ノズル48により2次燃焼用空気とともに排ガス等を循環して供給することもある。
図7は、本発明の廃棄物焼却炉の一実施形態であるキルンストーカ炉を示す縦断面図である。
図7に示すように、キルンストーカ炉72は円筒状のキルン61とキルン61の出口に設けられたストーカ炉62とを備え、ストーカ炉62は2次燃焼室63を備えている。廃棄物はキルン61の入り口に設けられた供給シュート67からキルン61内に投入される。キルン61は入り口より出口に向けて下降するように傾斜しており、キルン61に投入された廃棄物はキルン61の回転によりキルン61の入り口から出口に向かって送られる。キルン入り口には起動用バーナとともに1次燃焼用空気供給ノズル65及び燃料供給ノズル66が設けられており、キルン61内に1次燃焼用空気を供給して前記廃棄物の一部を燃焼させる。本実施形態においては、前記1次燃焼用空気供給ノズル65から供給する1次燃焼用空気を空気比で0.3〜0.8とし廃棄物の一部を燃焼させ可燃ガスを生成させるようにされる。キルン出口に設けられた2次燃焼室63には2次燃焼用空気供給ノズル68及び水噴霧ノズル69が設けられており、2次燃焼用空気吹込ノズル68により2次燃焼用空気を供給するとともに水噴霧ノズル69により廃棄物1トン(t)あたり30〜600リットルの水噴霧が行われ、水分の存在下で可燃ガスの2次燃焼が行われてNOx生成が抑制される。水噴霧量が増えると燃焼温度が低下し、不完全燃焼によりCO等が生成するため、上限値を600L/廃棄物1tとし、2次燃焼室に設けられた炉頂温度計71で計測される炉頂温度が850℃以下とならないように焼却対象物の発熱量および総空気比から水噴霧量を決定する。2次燃焼用空気吹き込みはCOの発生を抑制するために総空気比が1.2以上となるようにするのが良く、熱回収の観点から1.8程度以下とするのが良い。キルンストーカ炉72において一次燃焼用空気の空気比の範囲を0.3〜0.8とする意味は、上述の流動床焼却炉1の場合と同様である。
水噴霧は基本的に前述した流動床焼却炉と同様の構成により行う。したがって、2次燃焼用空気吹込ノズル68に水噴霧ノズル69を内挿するか、または2次燃焼用空気にミストを添加して行っても良い。2次燃焼用空気吹込ノズル68により2次燃焼用空気とともに排ガス等を循環して供給することもある。
図8は、本発明の廃棄物焼却炉の一実施形態であるガス化燃焼炉を示す縦断面図である。
図8に示すように、ガス化燃焼炉81は、廃棄物の一部を燃焼させて可燃ガスを生成する1次炉(ガス化室)82と、前記可燃ガスを2次燃焼させる2次炉(ガス燃焼室)83とを備え、廃棄物は図示しないダブルダンパ等を介して1次炉82に設けられた供給シュート87から1次炉82に投入される。1次炉82において1次燃焼用空気供給管85から1次燃焼用空気を供給して廃棄物の一部が燃焼し可燃ガスを生成する。本件発明においては1次燃焼用空気供給管85から供給する1次燃焼用空気は空気比で0.3〜0.8とし前記廃棄物の一部を燃焼させ可燃ガスを生成させるようにされる。
図8においては、1次炉82の火格子86を固定床としているので1次炉82の側壁に設けた図示しないマンホールから不燃物を含む燃え殻を排出するが、火格子を稼動させ燃え殻を自動的に排出するようにしてもよい。
1次炉82で生成した可燃ガスは2次炉83において2次燃焼用空気吹込ノズル88により2次燃焼用空気を供給するとともに水噴霧ノズル89により廃棄物1トン(t)あたり30〜600リットルの水噴霧が行われ、水分の存在下で可燃ガスの2次燃焼が行われてNOx生成が抑制される。水噴霧量が増えると燃焼温度が低下し、不完全燃焼によりCO等が生成するため、上限値を600L/廃棄物1tとし、2次炉に設けられた炉頂温度計84で計測される炉頂温度が850℃以下とならないように焼却対象物の発熱量および総空気比から水噴霧量を決定する。2次燃焼用空気吹き込みはCOの発生を抑制するために総空気比が1.2以上となるようにするのが良く、熱回収の観点から1.8程度以下とするのが良い。ガス化燃焼炉81において一次燃焼用空気の空気比の範囲を0.3〜0.8とする意味は、上述の流動床焼却炉1の場合と同様である。
水噴霧は基本的に前述した流動床焼却炉と同様の構成により行う。したがって、2次燃焼用空気吹込ノズル88に水噴霧ノズル89を内挿するか、または2次燃焼用空気にミストを添加して行っても良い。
図9(a),(b)は、焼却炉から排出される排ガスの処理フローを示すブロック図であり、図9(a)は従来の処理フローを示し、図9(b)は本発明の処理フローを示す。図9(a)に示すように、従来は、NOxを50ppm以下にする場合には、焼却炉から排出される排ガスは排ガス冷却設備にて200℃以下に冷却(減温・熱回収)した後、バグフィルタからなる除じん設備により除じんし、再加熱器で210℃程度に再加熱して触媒塔に導入している。除じん設備の上流で排ガス中に消石灰および活性炭等の薬剤を添加し、HClやSOx等の酸性ガスおよびダイオキシン類を除去し、触媒塔の入り口でアンモニアを添加し、触媒塔内で触媒によりアンモニアとNOxを選択的に反応させてNOxを分解させている。バグフィルタからなる除じん設備における酸性ガスおよびダイオキシン類の除去効率は低温ほど効率が向上することと、熱回収効率を向上させるため、最新の設備では、除じん設備の入り口排ガス温度は180℃以下程度まで減温されていることが多い。一方、触媒塔の分解効率は温度が高いほど向上すること及び酸性硫安による触媒の被毒が低温になるほど進行しやすいことから、除じん設備を出た排ガスを回収蒸気を使用して210℃程度に再加熱している。この再加熱における蒸気使用が発電効率を低下させる一因となっており、近年では低温活性触媒の使用や、除じん設備の上流の添加薬剤に重曹を用いてSOxの除去率を上げ、酸性硫安の生成を防止する等の対応がなされている。
これに対して、本発明によれば、焼却炉においてNOxの生成を20ppm以下に抑制することができるため、図9(b)に示すように、排ガス処理系統には触媒塔を設ける必要がない。図9(b)に示すように、焼却炉から排出される排ガスは排ガス冷却設備にて200℃以下に冷却(減温・熱回収)した後、バグフィルタからなる除じん設備により除じんし、除じん設備の上流で消石灰等の薬剤を添加し、HClやSOx等の酸性ガスを除去すればよい。更に、ダイオキシン類や水銀等の有害物質を高効率で除去する場合には、除じん設備の下流に活性炭塔を設置すればよい。バグフィルタからなる除じん設備における酸性ガスの除去効率は低温ほど効率が向上し、活性炭塔の有害物質除去機能も低温ほど効率が向上するため、熱回収効率を上げて除じん設備の入り口排ガス温度を180℃以下まで低下させる合理的なフローが組める。
次に、図10にフローを示す施設において、図3に示す流動床焼却炉にて試験を行った結果を図11に示す。廃棄物は都市ごみを使用した。試験結果は、特記する場合を除いて、各試験における安定した1時間のデータの平均値を示している。NOx濃度およびCO濃度は煙突において赤外線分析計で連続測定し、磁気式酸素濃度計の酸素濃度を用いて酸素12%換算濃度としている。
Run0におけるデータは従来の運転条件により得られたデータである。従来の通常運転では、流動化空気量が空気比で0.9と多く、炉床温度も630℃とやや高めである。炉頂温度を900℃程度に炉頂水噴霧により調節しているが、噴霧水量は30L/ごみtと少ない量である。2次燃焼用空気吹き込みにより総空気比は1.7であり、CO濃度は0ppmであるが、NOx濃度は82ppmであった。
Run1に示すデータは本発明による流動床焼却炉を用いて試験を行った結果である。この試験運転においては流動化空気による1次空気比を0.56に抑制することにより、炉内圧変動の周期が長くなり炉床温度が575℃に低下し、熱分解および一部の燃焼反応が緩慢になった。
Run1では、熱分解および一部の燃焼の緩慢化とともに、砂中空気比および総空気比を低減させた、すなわち1次空気比(砂中空気比)は0.56であり、総空気比は1.5程度であった。
2次空気吹き込み口から炉内水噴霧を200L/ごみt程度行うことにより、NOx濃度はRun0の82ppmからRun1では26ppmに大幅に減少した。CO濃度の平均値は1.8ppmであった。
本発明による運転であるRun1の例では、流動化を抑制し緩慢な燃焼にすることにより、押し込み送風機で12〜14%、誘引送風機で約30%の消費動力を削減することができた。
Run2に示すデータは本発明による流動床焼却炉の別の試験結果である。Run2では1次空気比は0.55であるが2次燃焼における総空気比は1.7である。
炉床温度は600℃で炉頂温度は880℃である。
2次空気吹き込み口から炉内水噴霧を250L/ごみt程度行うことにより、NOx濃度は13ppmに抑制され、CO濃度も9.6ppmであった。
このように本発明による流動床焼却炉においては、炉床で乾燥、熱分解および一部の燃焼が緩やかに行われ、フリーボードには一様な燃焼場が形成される。流動空気量を抑制して流動床内燃焼割合を抑えて可燃ガスを生成し、フリーボードにおいて2次燃焼用空気と同時に水を噴霧して可燃ガスの2次燃焼を行わせることにより、NOx生成を抑制するのにきわめて有効に作用したものと考えられる。
上述した試験結果から以下のことが確認できた。
1.砂中空気比を0.55〜0.56程度とし総空気比を1.5〜1.7程度として炉内に2次燃焼用空気と共に200〜250L/ごみtの注水を行うことにより、CO濃度を10ppm以下とすると同時に、NOx濃度を30ppm以下とすることができた。
2.流動空気量を抑制し、ガス化の緩慢化を促進させると共に、総空気比を1.5程度に抑制し、押し込み送風機で12〜14%、誘引送風機で約30%の消費動力を削減できた。
図12(a)及び(b)は、図10にフローを示す設備の図3に示す流動床焼却炉において試験を行った結果を示すものである。
NOx濃度およびCO濃度の測定方法は前述した方法と同一であるが、図12におけるNOx濃度およびCO濃度は酸素12%換算は行っていない。
図12(a)のRun11〜Run20には10分程度の安定した状態における試験結果のデータが示されている。2次燃焼場への炉内水噴霧を行わない従来例1〜3のデータをRun11〜Run13に示し、一次空気比を0.47〜0.68の範囲で抑制し、流動を緩慢にさせた条件で、総空気比を1.18〜1.51の範囲で設定した実施例1〜7のデータをRun14〜Run20に示している。
図13は、図12(a)に示すRun11〜Run20のデータのうち、総空気比とNOx濃度の関係を、炉内水噴霧量をパラメータとして示すグラフである。図13に示すように、NOx濃度は総空気比の低下とともに低下するが、実施例1〜7のデータに示すように炉内水噴霧を実施することにより、NOx濃度は水噴霧量に比例して更に大幅に減少した。総空気比を1.3〜1.4とし、炉内水噴霧を行わない従来例では70ppm程度のNOx濃度であったが、炉内水噴霧量を約90L/ごみtで行った実施例1〜4の場合はNOx濃度が約30ppmに低下し、更に炉内水噴霧量を約190L/ごみtに増やした実施例5〜6の場合はNOx濃度が10ppm以下にまで低下した。
図12(b)のRun21〜Run27には、設定された条件下で1時間以上の運転を行った場合の平均値データが示されている。炉内水噴霧を行わない従来例11のデータをRun21に示し、一次空気比を0.8以上として炉内水噴霧を実施した参考例1〜2のデータをRun22〜Run23に示し、一次空気比を0.55〜0.66の範囲で設定した実施例11〜14のデータをRun24〜Run27に示している。図12(b)に示すRun21〜Run27における総空気比は、1.32〜1.39の範囲内で設定されている。
図14は、総空気比がほぼ一定である図12(b)に示すRun21〜Run27について、一次空気比(流動空気比)が約0.8と0.56〜0.66の二つのグループに区別して、炉内水噴霧量とNOx濃度との関係を示したものである。図14から明らかなように、炉内水噴霧量を増やすとNOx濃度は低下するものの、流動空気比が0.8以上の参考例1〜2の場合には、流動空気比が0.55〜0.66である実施例11〜14の場合に比べて、NOx濃度レベルが約60ppm程度大幅に高くなった。
図14から流動空気比が0.8程度の場合にNOx濃度を20ppm以下とするには約300L/ごみt程度の水噴霧量が必要であると概算される。
図13に示す総空気比とNOx濃度との関係から、総空気比が0.2多くなるとNOx濃度は約20ppm増加することがわかる。この20ppmのNOx濃度増加分を炉内水噴霧により低減するには、約100L/ごみtの水噴霧が必要であった。したがって、流動空気比が約0.8で総空気比が約1.8〜2.0の条件としたとき、NOx濃度を20ppm以下とするには500〜600L/ごみt程度の水噴霧量が見積もられ、大量の水噴霧量が必要となる。
図15は、総空気比が1.32〜1.39の範囲内で設定されている図12(b)に示すRun21〜Run27について、総空気比とCO濃度との関係を示したものである。
図15に示すように、総空気比が1.35を下回るとCO濃度が高くなるものが出現した。特に、一次空気比(流動空気比)が0.87と大きい参考例1(Run22)では総空気比が1.32でCO濃度は61ppmとなった。一方、参考例2(Run23)では一次空気比(0.82)と総空気比(1.39)は参考例1(Run22)とほぼ同じ値であるが、CO濃度は5.9ppmと減少していた。参考例1(Run22)と参考例2(Run23)の大きな違いは炉内水噴霧量の違いである。
図15に示す破線のグラフから、総空気比が1.4の場合にはCO濃度を安定して10ppm以下とすることができると考えられる。総空気比が1.4の場合のNOx濃度を図13から考察してみると、炉内水噴霧量が約90L/ごみtの場合にはNO濃度が約30ppmになり、更に炉内水噴霧量を約190L/ごみtにすればNOx濃度を10ppm以下にまで低下することができた。すなわち、低NOx(20ppm以下)および低CO(10ppm以下)を容易に達成することができた。
図12(a)〜(b)に示す試験結果から以下のことが確認できた。
1.総空気比が1.18〜1.51の範囲では、総空気比の低下と共にNOx濃度も低下した。
2.一次空気比が0.47〜0.68程度の場合に、総空気比が同じ場合であっても炉内に2次燃焼用空気と共に水噴霧を行うことにより、NOx濃度は低下した。また、水噴霧量を増やすほどNOx濃度は低下し、総空気比が1.4の場合には、炉内水噴霧量を90L/ごみtとすればNOx濃度を30ppm以下とすることができ、炉内水噴霧量を190L/ごみtとすればNOx濃度を10ppm以下とすることができた。
3.総空気比が1.32〜1.39で2次燃焼用空気と共に炉内水噴霧を行う場合に、炉内水噴霧量が同じ量であっても一次空気比が0.55〜0.66である場合には一次空気比が0.82および0.87の場合よりNOx濃度は約60ppm程度低くなった。
これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。例えば、実施形態では、2次燃焼用空気吹込ノズルと水噴霧ノズルの個数を同一としたが、2次燃焼用空気吹込ノズルと水噴霧ノズルの個数は異なってもよい。また、2次燃焼用空気吹込ノズルに水噴霧ノズルを内挿したが、2次燃焼場に2次燃焼用空気と水分とを共存させることができれば、2次燃焼用空気吹込ノズルと水噴霧ノズルとを個別に設置してもよい。
1,11 流動床焼却炉
2,12 炉本体
3,13 流動床
4,14,14A,14B 床板
5,15 不燃物排出口
6,16 排気口
7,17 フリーボード
8,18 2次燃焼用空気吹込みノズル
9,19 水噴霧ノズル
21a,21b,45 側壁
21S1,22S2 傾斜部
22 移動層
23 流動層
24 仕切板
25,26 空気箱
27 底板
28,38 炉床温度計
31A,31B,32A,32B,35 空気管
36 空気ブロワ
37,47,67,87 供給シュート
39,59,71,84 炉頂温度計
V1−1,V1−2,V2−1,V2−2,51A,51B,51C 調節弁
41 ストーカ炉
43 プッシャー
44,44A,44B,44C,64 火格子群
46,86 火格子
48,68,88 2次燃焼用空気吹込ノズル
49,69,89 水噴霧ノズル
55 空気供給管
57 燃焼室
61 キルン
62 ストーカ炉
63 2次燃焼室
65 1次燃焼用空気吹込ノズル
66 燃料供給ノズル
72 キルンストーカ炉
81 ガス化燃焼炉
82 1次炉
83 2次炉
85 一次燃焼用空気供給管

Claims (7)

  1. 廃棄物を焼却炉によって焼却処理する廃棄物の処理方法において、
    前記焼却炉が流動床炉であり、1次空気として流動化空気量を空気比0.3〜0.8になるように供給して廃棄物の一部を燃焼させて可燃ガスを生成するとともに、前記流動床炉の炉床の温度を500〜650℃に維持し、生成した可燃ガスに2次燃焼用空気を吹き込むと同時に廃棄物の湿重量1トンあたり30〜600リットルの水を噴霧し、水噴霧は2次燃焼用空気とともに水を吹き込むことにより2次燃焼場の燃焼温度を下げると共に、2次燃焼場において可燃ガスを水分の存在下で2次燃焼させ
    前記水噴霧量は、フリーボードに設けられた炉頂温度計で計測する炉頂温度が850℃以下とならないように調整することを特徴とする廃棄物の処理方法。
  2. 前記水の噴霧は、水噴霧ノズルを2次空気ノズルに内挿させて2次燃焼用空気とともに吹き込むことを特徴とする請求項1に記載の廃棄物の処理方法。
  3. 前記水の噴霧は、2次燃焼用空気にミストを添加して2次燃焼用空気とともに吹き込むことを特徴とする請求項1に記載の廃棄物の処理方法。
  4. 総空気比が0.2多くなるとNOx濃度が約20ppm増加するという関係から、総空気比を0.2多くしたときに増加する約20ppmのNOx濃度増加分を、廃棄物の湿重量1トンあたり約100リットルの水を噴霧することにより低減することを特徴とする請求項1に記載の廃棄物の処理方法。
  5. 廃棄物を焼却処理する焼却炉において、
    前記焼却炉が流動床炉であり、廃棄物から可燃ガスを生成させる1次燃焼部と、生成した可燃ガスを燃焼させる2次燃焼部と、前記1次燃焼部に空気を供給する1次燃焼用空気供給手段と、前記2次燃焼部に空気を供給する2次燃焼用空気供給手段と、前記2次燃焼部に水噴霧を行う水噴霧手段とを備え、前記1次燃焼用空気供給手段により、1次空気として流動化空気量を空気比で0.3〜0.8になるように1次燃焼部に供給して廃棄物の一部を燃焼させて可燃ガスを生成るとともに、前記流動床炉の炉床の温度を500〜650℃に維持し、前記2次燃焼部において可燃ガスに前記2次燃焼用空気供給手段および前記水噴霧手段から2次燃焼用空気を吹き込むと同時に廃棄物の湿重量1トンあたり30〜600リットルの水を噴霧し、水噴霧は2次燃焼用空気とともに水を吹き込むことにより2次燃焼場の燃焼温度を下げると共に、2次燃焼場において可燃ガスを水分の存在下で2次燃焼させるようにし
    前記水噴霧量は、フリーボードに設けられた炉頂温度計で計測する炉頂温度が850℃以下とならないように調整するようにしたことを特徴とする焼却炉。
  6. 前記2次燃焼用空気供給手段に前記水噴霧手段を内挿させて2次燃焼用空気とともに水を吹き込むことを特徴とする請求項5に記載の焼却炉。
  7. 前記水噴霧手段は、2次燃焼用空気にミストを添加することを特徴とする請求項5に記載の焼却炉。
JP2013021028A 2012-07-20 2013-02-06 廃棄物の処理方法及び廃棄物焼却炉 Active JP6215538B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013021028A JP6215538B2 (ja) 2012-07-20 2013-02-06 廃棄物の処理方法及び廃棄物焼却炉
CN201380030903.8A CN104583678B (zh) 2012-07-20 2013-06-26 废弃物处理方法及废弃物焚烧炉
EP13819904.7A EP2876370B1 (en) 2012-07-20 2013-06-26 Waste processing method
PCT/JP2013/067453 WO2014013849A1 (ja) 2012-07-20 2013-06-26 廃棄物の処理方法及び廃棄物焼却炉
KR20147033894A KR20150035564A (ko) 2012-07-20 2013-06-26 폐기물의 처리 방법 및 폐기물 소각로

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012161926 2012-07-20
JP2012161926 2012-07-20
JP2013021028A JP6215538B2 (ja) 2012-07-20 2013-02-06 廃棄物の処理方法及び廃棄物焼却炉

Publications (2)

Publication Number Publication Date
JP2014037956A JP2014037956A (ja) 2014-02-27
JP6215538B2 true JP6215538B2 (ja) 2017-10-18

Family

ID=49948683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013021028A Active JP6215538B2 (ja) 2012-07-20 2013-02-06 廃棄物の処理方法及び廃棄物焼却炉

Country Status (5)

Country Link
EP (1) EP2876370B1 (ja)
JP (1) JP6215538B2 (ja)
KR (1) KR20150035564A (ja)
CN (1) CN104583678B (ja)
WO (1) WO2014013849A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6772004B2 (ja) * 2016-09-05 2020-10-21 Jx金属株式会社 燃焼処理装置及びその操業方法
JP6322327B1 (ja) * 2017-10-11 2018-05-09 株式会社神鋼環境ソリューション 流動床式ガス化炉への酸素含有ガス供給方法及び流動床式ガス化炉
CN110749557A (zh) * 2018-07-24 2020-02-04 北京琪玥环保科技股份有限公司 具有激光氧分析仪的危废处理系统
KR102044496B1 (ko) 2019-05-07 2019-11-13 홍광표 폐기물 소각로 보수 작업용 지지 구조
CN110500577B (zh) * 2019-08-05 2020-11-17 陈其钻 低氮燃烧循环流化床锅炉及使用方法
CN110715304B (zh) * 2019-11-08 2020-08-04 浙江亿方新材料股份有限公司 一种工业塑料报废处理装置
JP6951789B2 (ja) * 2020-03-27 2021-10-20 株式会社プランテック 竪型ごみ焼却炉及び竪型ごみ焼却炉の廃棄物処理量調整方法
JP7027498B2 (ja) * 2020-09-07 2022-03-01 月島機械株式会社 流動炉及びその冷却方法
CN115013816A (zh) * 2022-05-27 2022-09-06 中国船舶重工集团公司第七一一研究所 固体废弃物处理装置
CN116379439A (zh) * 2023-04-26 2023-07-04 南京信真环境科技有限公司 一种高硫固态废物的焚烧预处理系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153091B2 (ja) * 1994-03-10 2001-04-03 株式会社荏原製作所 廃棄物の処理方法及びガス化及び熔融燃焼装置
CH583881A5 (ja) * 1975-07-04 1977-01-14 Von Roll Ag
JPH05118523A (ja) * 1991-09-25 1993-05-14 Ebara Corp 焼却炉における燃焼抑制方法及び燃焼抑制装置
TW235335B (ja) * 1991-11-05 1994-12-01 Mitsubishi Heavy Ind Ltd
JPH05203131A (ja) * 1991-11-05 1993-08-10 Mitsubishi Heavy Ind Ltd 廃棄物の燃焼方法及び装置
JP3155064B2 (ja) 1992-06-02 2001-04-09 株式会社神戸製鋼所 流動床炉における無触媒脱硝方法
JP2707186B2 (ja) * 1992-07-01 1998-01-28 株式会社荏原製作所 燃焼装置
JP3544953B2 (ja) * 1994-03-10 2004-07-21 株式会社荏原製作所 廃棄物の処理方法及びガス化及び熔融装置
JP2003090520A (ja) * 1994-03-10 2003-03-28 Ebara Corp 可燃物のガス化炉及びガス化方法
US5707596A (en) * 1995-11-08 1998-01-13 Process Combustion Corporation Method to minimize chemically bound nox in a combustion process
US6168425B1 (en) * 1996-06-25 2001-01-02 Ebara Corporation Method for fusion treating a solid waste for gasification
JP3341627B2 (ja) 1996-09-18 2002-11-05 日本鋼管株式会社 ごみ焼却炉の排ガス中のNOx及び未燃成分の抑制方法
JPH10169944A (ja) * 1996-12-03 1998-06-26 Kobe Steel Ltd 廃棄物熱分解炉における流動層制御方法
AU8562798A (en) * 1997-08-11 1999-03-01 Ebara Corporation Method of melt disposal of combustibles
JPH11118130A (ja) * 1997-10-13 1999-04-30 Nobuhide Maeda ポリ塩化ビニル樹脂を含むごみの焼却方法
JP3004629B1 (ja) * 1998-09-04 2000-01-31 川崎重工業株式会社 部分燃焼炉の起動制御方法及び停止制御方法並びに起動・停止制御装置
JP2000121025A (ja) * 1998-10-20 2000-04-28 Kanbe Ichi 流動床焼却炉の燃焼制御方法
JP3790418B2 (ja) * 2000-11-07 2006-06-28 三菱重工業株式会社 下水汚泥等の高含水率・高揮発性の廃棄物焼却炉に用いる外部循環流動層炉の運転方法
JP2003166706A (ja) * 2001-11-29 2003-06-13 Mitsubishi Heavy Ind Ltd ストーカ式焼却炉の燃焼方法及び燃焼装置
DE10339133B4 (de) * 2003-08-22 2005-05-12 Fisia Babcock Environment Gmbh Verfahren zur NOx-Minderung in Feuerräumen und Vorrichtung zur Durchführung des Verfahrens
JP2005090895A (ja) * 2003-09-18 2005-04-07 Ebara Corp 流動床炉、流動床炉の運転方法及び流動床ガス化溶融装置
JP2005274025A (ja) * 2004-03-25 2005-10-06 Ngk Insulators Ltd 流動焼却炉の運転制御方法
JP4509695B2 (ja) * 2004-07-28 2010-07-21 月島環境エンジニアリング株式会社 廃液焼却処理方法
JP2007127355A (ja) * 2005-11-04 2007-05-24 Takuma Co Ltd ごみ焼却溶融方法及びこれに用いるごみ焼却溶融装置
JP2007163078A (ja) * 2005-12-15 2007-06-28 Jfe Engineering Kk 廃棄物処理方法及び装置
JP2009216353A (ja) 2008-03-12 2009-09-24 Kobe Steel Ltd 流動層ボイラによる燃焼方法

Also Published As

Publication number Publication date
WO2014013849A1 (ja) 2014-01-23
CN104583678A (zh) 2015-04-29
JP2014037956A (ja) 2014-02-27
EP2876370A4 (en) 2016-03-02
CN104583678B (zh) 2017-12-05
KR20150035564A (ko) 2015-04-06
EP2876370B1 (en) 2018-12-19
EP2876370A1 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP6215538B2 (ja) 廃棄物の処理方法及び廃棄物焼却炉
CN106731560B (zh) 一种生活垃圾与污泥协同焚烧发电废气净化超低排放系统
KR20130126634A (ko) 테일 가스의 소각에서 nox 배출을 감소시키는 방법 및 장치
EP3193084B1 (en) Stoker-type incinerator
CA2298785A1 (en) Reburn process
JP2009229056A (ja) 循環型流動層炉、循環型流動層炉を備えた処理システム、及び循環型流動層炉の運転方法
JP5812630B2 (ja) 廃棄物焼却プラント
CN110513693B (zh) 一种污泥焚烧方法
CN102705832A (zh) 无烟气排放的固体废弃物焚烧炉
CN110715289B (zh) 一种层燃微流化锅炉结构及燃烧方法
CN1259523C (zh) 处理高浓度有机废液的双温双床气化氧化流化床焚烧炉
CN111256147A (zh) 生活垃圾热解气化焚烧炉排炉及其处理系统
CN105546552A (zh) 树脂类危废流化床高温焚烧净化一体化装置及方法
CN113464953A (zh) 一种高效减排氮氧化物的垃圾焚烧系统及方法
JP2006194533A (ja) 循環流動層ボイラにおけるNOx低減方法
CN202561765U (zh) 无烟气排放的固体废弃物焚烧炉
KR20130052174A (ko) 스팀을 생산하여 자원화하는 일체형 유동층 연소장치
JP2003166706A (ja) ストーカ式焼却炉の燃焼方法及び燃焼装置
JP7075574B2 (ja) 有機性廃棄物の燃焼炉及び該燃焼炉を用いた有機性廃棄物の処理システム
JP2003227604A (ja) 焼却炉および焼却炉の燃焼排ガス再循環方法
CN213725710U (zh) 一种烧结烟气协同处理系统
JP2014211243A (ja) ごみ焼却炉の燃焼制御装置
KR102580496B1 (ko) Sncr-scr 하이브리드 질소산화물 저감 시스템
KR102572768B1 (ko) 고효율 에너지 회수형 소각 설비
CN212108415U (zh) 生活垃圾热解气化焚烧炉排炉及其处理系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170921

R150 Certificate of patent or registration of utility model

Ref document number: 6215538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250