JP6200864B2 - 高耐圧半導体装置 - Google Patents

高耐圧半導体装置 Download PDF

Info

Publication number
JP6200864B2
JP6200864B2 JP2014150565A JP2014150565A JP6200864B2 JP 6200864 B2 JP6200864 B2 JP 6200864B2 JP 2014150565 A JP2014150565 A JP 2014150565A JP 2014150565 A JP2014150565 A JP 2014150565A JP 6200864 B2 JP6200864 B2 JP 6200864B2
Authority
JP
Japan
Prior art keywords
region
breakdown voltage
semiconductor device
concentration
termination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014150565A
Other languages
English (en)
Other versions
JP2016025300A (ja
Inventor
小野瀬 秀勝
秀勝 小野瀬
森 睦宏
森  睦宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014150565A priority Critical patent/JP6200864B2/ja
Publication of JP2016025300A publication Critical patent/JP2016025300A/ja
Application granted granted Critical
Publication of JP6200864B2 publication Critical patent/JP6200864B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

本発明は、高信頼なターミネーション構造を有する高耐圧半導体装置に関する。
高性能なパワー半導体素子を実現する技術として、シリコン(以下「Si」と記す)よりもアバランシェ降伏電界が大きいシリコンカーバイド(以下「SiC」と記す)を用いることにより、ドリフト層をSiより高濃度かつ薄くすることで電気抵抗を小さくし、導通状態並びにスイッチング時に発生する電力損失を小さくする技術が開発されている。
SiCを用いるものも含めパワー半導体素子は、高耐圧化のために、次のようなターミネーション構造を有する。
非導通状態における電気力線を端面ではなく表面から半導体外部に放出するプレーナ型の半導体素子では、ターミネーション領域はn−層表面に形成される。電気力線の間隔を拡げることで表面における電界強度を低減できるようにするには、機能部から周辺に向かって一様に濃度が低下する構造(傾斜接合ターミネーション)が適用される。
ターミネーション構造において問題となるのは、長時間の動作により絶縁膜中の界面電荷密度が変動し、ターミネーション表面における正味の不純物濃度が変わることである。従来のJTE(Junction Termination Extensionの略記)の場合、領域全体の濃度がほぼ一定であるため、界面電荷密度が変化することで、同じ電圧でもJTE表面が完全に空乏化したり、空乏化しなくなったりするという変動が発生する。その結果、長時間の耐圧信頼性が低下する。これに対し傾斜接合ターミネーションは、界面電荷により正味の表面濃度が変化しても、変化前と同一の濃度を有する場所が有るため、空乏化する位置が横方向に移動するだけであり、耐圧信頼性に優れている。
Siの場合はイオン注入と熱拡散を組み合わせることにより、横方向の濃度が傾斜勾配となるターミネーション構造を容易に形成できるが、SiCは拡散係数が小さいため、傾斜勾配を形成するのは困難である。そのため、濃度の異なる複数のJTE領域を形成することで、耐圧信頼性を向上させる技術が知られている(例えば、特許文献1参照)。
本技術が適用される多段階JTE構造の従来例を図7に示す。本図は、JTE領域の概略断面を示す。図7においては、p+層13,n−層12,n+層11、並びに主電極21,22を含む活性領域の周辺において、n−層12中に、ターミネーションが4つのJTE(p型領域)4a,4b,4cおよび4dで形成されている。このような4段JTEを形成するには、例えば、第1のホトマスクを用いて、最も内側かつ最も濃度の高い領域4aを開口し、イオン注入を施し、次に、第2のホトマスクを用いて領域4bを開口し、イオン注入を施す、というような処理を4回実施する。このため、ホトマスクの枚数は、形成するJTE領域の数だけ必要になる。
これに対し、3層マスクプロセスにより、3回のイオン注入で7段階の濃度領域(第1〜7部分領域:この順で横方向に並び、かつ濃度が高くなる)を形成する技術が知られている(例えば、特許文献2参照)。本技術においては、まず、第1のホトマスクを用いて、第1部分領域,第3部分領域,第5部分領域および第7部分領域に対応する領域に、所定のドーズ量でイオン注入を施す。次に、第2のホトマスクを用いて、第2部分領域,第3部分領域,第6部分領域および第7部分領域に対応する領域に、前記所定のドーズ量の2倍のドーズ量で、イオン注入を施す。さらに、第3のホトマスクを用いて、第5部分領域,第6部分領域および第7部分領域に対応する領域に、前記所定のドーズ量の4倍のドーズ量でイオン注入を施す。
本技術を応用して、JTE構造を形成すれば、3回のホトマスクプロセスおよび3回のイオン注入により、7段階の濃度領域を有するJTE構造を形成できる。これにより、傾斜接合に近いターミネーション構造を形成することができる。
特表2000−516767号公報 特開2007−173422号公報
上述したような3層マスクプロセスでは、マスク間の合わせズレにより、高濃度のイオン注入領域が局所的に形成される。Siでは、イオン注入後の熱処理により、局所的高濃度領域から不純物が拡散するため、局所的な高濃度は緩和される。しかし、SiCでは、Siに比べて拡散係数が小さいため、熱処理しても局所的高濃度領域が残る。このような高濃度領域には電気力線が集中することとなり、界面電荷が変動すると、結果として耐圧が低下する。
そこで、本発明は、マスクの合わせズレが生じる場合であっても耐圧低下を生じ難いターミネーション構造を有する高耐圧半導体装置を提供する。
上記課題を解決するために、本発明による高耐圧半導体装置は、第1導電型の第1領域,第2領域,第3領域,第4領域,第5領域,第6領域および第7領域が、この順に並置され、かつこの順に低くなる不純物キャリア濃度を有するターミネーション部を備えると共に、SiCからなるものであって、第1領域は第2領域に包含され、第2領域および第3領域は第4領域に包含され、第2領域と第3領域との間には第4領域が介在し、第5領域は第6領域に包含され、第4領域と第6領域との間、および第6領域と第7領域との間には、第2導電型の領域が介在する。
第1領域は第2領域に包含され、第2領域および第3領域は第4領域に包含され、第2領域と第3領域との間には第4領域が介在し、第5領域は第6領域に包含され、第4領域と第6領域との間、および第6領域と第7領域との間には、第2導電型の領域が介在するというターミネーション構造によって、マスクの合わせズレが生じる場合であっても局所的高濃度部が形成されることが防止される。これにより、耐圧低下を生じ難いターミネーション構造を有する高耐圧半導体装置を提供できる。
上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
第1実施例である高耐圧ダイオードのターミネーション部の概略断面図である。 第1実施例におけるターミネーション部の濃度プロファイルを示す。 第1実施例のターミネーション部の製造工程の概要を示す。 第2実施例である高耐圧ダイオードのターミネーション部の概略断面図である。 第3実施例である高耐圧ダイオードのターミネーション部の概略断面図である。 第4実施例である高耐圧ダイオードのターミネーション部の概略断面図である。 多段階JTE構造の従来例を示す。
以下、本発明の実施例について、図面を用いて詳細に説明する。図中および説明中において、「p」および「n」は、それぞれ、半導体層の導電型がp型およびn型であることを示す。また、「+」および「−」は、半導体層中の不純物キャリア濃度の相対的な大小関係を示し、「+」の方が「−」よりも不純物キャリア濃度が高いことを示す。なお、以下、簡単のために、「不純物キャリア濃度」は「濃度」と記す。
図1は、本発明の第1実施例である高耐圧ダイオードのターミネーション部の概略断面図である。本実施例において、各半導体層の材料はSiCである。
図1において、11はダイオードのカソード領域であるn+型のSiC基板、12はSiC基板11に接する、濃度3.0×1015cm−3,厚さ30μmのn−層、13はn−層12とpn接合を構成し、ダイオードの活性領域に位置するアノード領域となるp+領域である。21はSiC基板11と電気的に接触する主電極であるカソード電極、22はp+領域13と電気的に接触する主電極であるアノード電極、31は絶縁膜である。41から47はJTEを構成する第1から第7のp型領域である。p+領域13の端部から第1領域41と第2領域42との境界部までの距離は35μm〜100μmが好ましく、本実施例では65μmである。なお、15は、JTEの周辺部、すなわちSiC基板11の周辺部に位置し、チャネルストッパとなるn+層であり、23はn+層15と電気的に接触して、n+層15の電位を均等化する補助電極である。
第1領域41,第2領域42,第3領域43,第4領域44,第5領域45,第6領域46,第7領域47は、各主要部が、この順に、p+領域13の端部からSiC基板11の周辺部に向かって横方向に並ぶ。さらに、同順で、相対的に濃度が低くなる。ここで、各領域の主要部とは、各領域において実効的にJTEとして機能する部分であり、図1の実施例においては、各領域中で最も幅が広く、露出表面の面積が最も広い部分である。
第1領域41は、p+領域13の端部に接すると共に、全体が第2領域42に包含される。このため、第1領域41の主要部と第2領域42の主要部は互いに接触している。第2領域42は、p+領域13の端部に接すると共に、全体が第4領域44に包含される。なお、第4領域44もp+領域13の端部に接する。
第3領域43は、全体が第4領域44に包含される。第3領域43の主要部(但し、第3領域44全体が主要部)は第2領域42の主要部に近接するが、第3領域43と第2領域42の間には、第4領域44の一部(但し、主要部ではない)が介在している。すなわち、第3領域43と第2領域42は互いに分かれている。第5領域45の全体が第6領域46に包含される。このため、第5領域45の主要部(但し、第5領域45全体が主要部)と第6領域の主要部は互いに接触している。
第5領域45の主要部(但し、第5領域45全体が主要部)と第4領域44の主要部は互いに近接するが、第5領域45と第4領域44の間には、第4領域44とpn接合を構成するn−層12の一部と、第5領域45を包含する第6領域46の一部(但し、主要部ではない)が介在する。すなわち、第4領域44と第6領域46は互いに分かれている。また、第4領域45と第5領域45も互いに分かれている。
第7領域47は、第6領域46の主要部と近接するが、第7領域47と第6領域46の間にはn−層12の一部が介在する。すなわち、第7領域47と第6領域46は互いに分かれている。
上述したように第2領域42と第3領域43が互いに分かれ、第4領域44と第5領域45とが互いに分かれ、かつ第6領域46と第7領域47とが互いに分かれていることにより、後述するように、マスク合わせのズレによる高耐圧半導体装置すなわち本実施例ではダイオードの耐圧低下を防止することができる。
なお、図1に示すように、第1領域41,第2領域42,第4領域44がp+領域13の端部に接触することにより、p+領域13を含む活性領域からターミネーション部に向かって空乏層が広がり易くなる。これにより、JTE構造がより有効に作用し、高耐圧化が容易になる。
図2は、本実施例におけるターミネーション部における第1領域41ないし第7領域47の濃度プロファイルを示す。第1領域41から第7領域47の濃度はこの順に低くなり、濃度の比は7:6:5:4:3:2:1である。図2の横軸は任意単位で表わすp+領域13の端部からの距離であり、本実施例では65μmが1単位の距離となる。縦軸は相対濃度である。相対濃度の1単位は0.5×1017cm−3〜1.8×1017cm−3の間の濃度が好ましく、本実施例では1.0×1017cm−3である。
本実施例におけるターミネーション部(JTE部)における最大濃度は、第1領域41の濃度(図示しない縦方向プロファイルを考慮すれば「最大濃度」)に依る。デバイスシミュレーションを用いた本発明者の検討によれば、第1領域41の濃度が3.5×1017cm−3を下回るとp+領域13の端部に電界が集中し、耐圧が低下する。このため、第1領域41の濃度としては、3.5×1017cm−3以上が好ましい。一方、濃度の1単位の最大値は、第7領域47の濃度(図示しない縦方向プロファイルを考慮すれば「最大濃度」)に依る。同様の発明者の検討によれば、第7領域47の濃度が1.8×1017cm−3を上回ると、第7領域が空乏化する前に第7領域47の端部に電界が集中し、耐圧が低下する。このため、第7領域47の濃度としては、1.8×1017cm−3以下が好ましい。このような検討により、本実施例においては、上述したように、相対濃度の1単位を1.0×1017cm−3にしている。
図2に示すように、本実施例のターミネーション部は、実質的に濃度7段のJTE構造を有し、従って傾斜接合構造に近いターミネーション構造を有する。
以下、本実施例の製造工程について説明する。
本実施例のホトリソグラフィー工程ではステッパーでマスク合わせを行う。本実施例では、ステッパーの合わせ精度は±0.3μmであり、半導体領域のパターン間の空隙の設計中心を1.0μmとする。これにより2層合わせで互いに空隙が狭まる方向にずれた場合であっても0.4μmの空隙が確保される。空隙が確保されることにより、局所的な高濃度領域が形成され難くなり、所望の耐圧を確保することができる。
本実施例において、空隙は、3箇所、すなわち第2領域42と第3領域43の間,第4領域44と第5領域45および第6領域46との間,第6領域46と第7領域47の間に設けられる。デバイスシミュレーションを用いた本発明者の検討によれば、これら3箇所の空隙が2μm以下であれば耐圧の低下はみられない。したがって、本実施例では、上述したように空隙の設計中心を1.0μmとするので、互いに空隙が拡がる方向にマスク合わせがずれても最大1.6μmであり、耐圧を確保できる。さらに第5領域45と第6領域46間の合わせずれについては、第5領域45が第6領域46に包含されるため、耐圧への影響は少ない。
図3は、上述したようなマスク合わせと耐圧に関する検討に基づき構成される、3層のホトマスクを用いて本実施例のターミネーション部のJTE構造を形成する製造工程(a〜c)の概要を示す。
製造工程(a)において、注入イオンを遮蔽する注入マスク51にホトリソグラフィーにより開口部を形成し、アルミニウム(以下、Alと記す)を第4領域44にイオン注入する。Alの濃度は4.0×1017cm−3である。
注入マスク51を除去後、注入マスク52を形成し、製造工程(b)において、注入マスク52にホトリソグラフィーにより開口部を形成し、Alを第2領域42および第6領域46にイオン注入する。Alの濃度は2.0×1017cm−3である。ステッパーの合わせ精度の範囲内でマスク合わせがずれても第4領域44と第6領域46が互いに重複しないように、すなわち第4領域44と第6領域46の間の空隙が確保されるようにホトマスクの各部寸法が設定されている。これにより、第4領域44と第6領域46は互いに分かれるように形成され、第4領域44と第6領域46の間にはn−層12の一部が介在する。
注入マスク52を除去後、注入マスク53を形成し、製造工程(c)において、注入マスク53にホトリソグラフィーにより開口部を形成し、Alを第1領域41,第3領域43,第5領域45および第7領域47にイオン注入する。Alの濃度は1.0×1017cm−3である。ステッパーの合わせ精度の範囲内でマスク合わせがずれても、第2領域42と第3領域43が互いに重複しないように、かつ第6領域46と第7領域47が重複しないように、すなわち第2領域42と第3領域43の間の空隙が確保され、かつ第6領域46と第7領域47の間の空隙が確保されるようにホトマスクの各部寸法が設定されている。これにより、第2領域42と第3領域43の間には第4領域44の一部が介在し、かつ第6領域46と第7領域47の間にはn−領域12の一部が介在する。また、第5領域45が第6領域46の内部に包含されるようにホトマスクの各部寸法が設定されているので、依然として、第4領域44と第6領域46の間にn−層12の一部が介在し、第4領域44と第6領域46の間の空隙が確保されている。
なお、図示しないが、製造工程(c)終了後、注入マスク53を除去した後、p+領域13とn+層15(チャネルストッパー)をイオン注入により形成する。さらに1700℃の活性化アニール処理を施した後、絶縁膜31を形成する。そして、絶縁膜31において、p+領域13上にコンタクト窓を開口し、電極22を形成する。
上述した製造工程によれば、局所的な高濃度部分が形成されることなく、濃度7段のJTE構造を、濃度段数よりも少ない3層のホトマスクによって形成することができる。従って、JTE構造の製造工程を短縮することができる。
以上、詳述したような第1実施例のターミネーション構造によれば、マスクの合わせズレが生じた場合であっても局所的高濃度領域が形成され難いので、耐圧低下が生じ難い。すなわち、第1実施例のターミネーション構造によれば、所望の高耐圧を確保できると共に、耐圧の信頼性が向上する。例えば、本発明者の検討によれば、上記製造工程を用いて作成されるダイオードの耐圧は、4100Vという所望の高耐圧が得られる。また、このダイオードに2600Vの電圧を長時間印加する耐圧信頼性試験では、1000時間後も耐圧変動が観察されないという、良好な耐圧信頼性が見られる。
図4は、本発明の第2実施例である高耐圧ダイオードのターミネーション部の概略断面図である。以下、第1実施例と異なる点について説明する。
本実施例では、図1の第1実施例の活性領域におけるp+領域13すなわちアノード領域が設けられず、第4領域44が活性領域の端部まで延び、延びた部分にアノード電極22が電気的に接触する。すなわち、この延びた部分が、活性領域におけるp型領域の少なくとも一部を構成する。ターミネーション部のJTE構造を含め、他の構成は図1の第1実施例と同様である。
この第2実施例は、例えば、pn接合ダイオード部で電圧を阻止し、かつショットキー障壁ダイオード(以下SBDと記す;SBDは、Schottky Barrier Diodeの略)部で電流通電を制御する複合型ダイオード、いわゆるJBS(Junction Barrier SBD)に好適である。この場合、第4領域44が活性領域の端部まで延びた部分とn−層12によってpn接合ダイオード部の一部が構成される。また、図示されないが、n−層12とアノード電極22によりSBD部が構成される。
このような第2実施例によれば、第1実施例と同様に、所望の高耐圧を確保できると共に、耐圧の信頼性が向上する。本発明者の検討によれば、第2実施例により、第1実施例と同様に、4100Vという所望の高耐圧が得られると共に、良好な耐圧信頼性が得られる。さらに、アノード電極下に位置するp型領域がターミネーション部のp型領域の一部によって構成されるため、半導体素子の活性領域も含めた製造工程が簡略化できる。
図5は、本発明の第3実施例である高耐圧ダイオードのターミネーション部の概略断面図である。以下、第1実施例と異なる点について説明する。
本実施例では、図1の第1実施例の活性領域におけるp+領域13すなわちアノード領域が設けられず、第2領域42および第4領域44が活性領域の端部まで延び、第2領域42が延びた部分にアノード電極22が電気的に接触する。すなわち、第2領域42および第4領域44の延びた部分が、活性領域におけるp型領域の少なくとも一部を構成する。ターミネーション部のJTE構造を含め、他の構成は図1の第1実施例と同様である。
本実施例によれば、第1実施例と同様に、所望の高耐圧を確保できると共に、耐圧の信頼性が向上する。本発明者の検討によれば、第3実施例により、第1実施例と同様に、4100Vという所望の高耐圧が得られると共に、良好な耐圧信頼性が得られる。さらに、アノード電極下に位置する活性領域のp型領域がターミネーション部のp型領域の一部によって構成されるため、半導体素子の活性領域も含めた製造工程が簡略化できる。また、7段の濃度の内、2番目に高い濃度を有する第2領域42が延びた部分にアノード電極22が電気的に接触するので、低抵抗接触が可能である。
図6は、本発明の第4実施例である高耐圧ダイオードのターミネーション部の概略断面図である。以下、第1実施例と異なる点について説明する。
本実施例では、図1の第1実施例の活性領域におけるp+領域13すなわちアノード領域が設けられず、第1領域41,第2領域42および第4領域44が活性領域の端部まで延び、第1領域41が延びた部分にアノード電極22が電気的に接触する。すなわち、第1領域41,第2領域42および第4領域44の延びた部分が、活性領域におけるp型領域の少なくとも一部を構成する。ターミネーション部のJTE構造を含め、他の構成は図1の第1実施例と同様である。
本実施例によれば、第1実施例と同様に、所望の高耐圧を確保できると共に、耐圧の信頼性が向上する。本発明者の検討によれば、第4実施例により、第1実施例と同様に、4100Vという所望の高耐圧が得られると共に、良好な耐圧信頼性が得られる。さらに、アノード電極下に位置する活性領域のp型領域がターミネーション部のp型領域の一部によって構成されるため、半導体素子の活性領域も含めた製造工程が簡略化できる。また、7段の濃度の内、最も高い濃度を有する第1領域41が延びた部分にアノード電極22が電気的に接触するので、低抵抗接触が可能である。
なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。
例えば、上述した各ターミネーション構造は、SiCからなるMOSFETなどのスイッチングデバイスにも適用できる。また、各実施例において、半導体領域の導電型p,nを逆にしても良い。
11 SiC基板
12 n−層
13 p+領域
15 n+層
21 カソード電極
22 アノード電極
23 補助電極
31 絶縁膜
41 第1領域
42 第2領域
43 第3領域
44 第4領域
45 第5領域
46 第6領域
47 第7領域
51,52,53 注入マスク

Claims (9)

  1. 第1導電型の第1領域,第2領域,第3領域,第4領域,第5領域,第6領域および第7領域が、この順に並置され、かつこの順に低くなる不純物キャリア濃度を有するターミネーション部を備え、SiCからなる高耐圧半導体装置において、
    前記第1領域は前記第2領域に包含され、
    前記第2領域および前記第3領域は前記第4領域に包含され、
    前記第2領域と前記第3領域との間には前記第4領域が介在し、
    前記第5領域は前記第6領域に包含され、
    前記第4領域と前記第6領域との間、および前記第6領域と前記第7領域との間には、第2導電型の領域が介在することを特徴とする高耐圧半導体装置。
  2. 請求項1において、前記第1領域と前記第2領域および前記第4領域は、活性領域における前記第1導電型を有する半導体領域の端部に接することを特徴とする高耐圧半導体装置。
  3. 請求項2において、前記半導体領域に主電極が接触することを特徴とする高耐圧半導体装置。
  4. 請求項1において、前記第4領域が活性領域に延びた部分が、前記活性領域における前記第1導電型を有する半導体領域の一部を構成することを特徴とする高耐圧半導体装置。
  5. 請求項4において、前記第4領域が前記活性領域に延びた前記部分が主電極に電気的に接触することを特徴とする高耐圧半導体装置。
  6. 請求項1において、前記第2領域と前記第4領域が活性領域に延びた部分が、前記活性領域における前記第1導電型を有する半導体領域の一部を構成することを特徴とする高耐圧半導体装置。
  7. 請求項6において、前記第2領域が前記活性領域に延びた部分が主電極に電気的に接触することを特徴とする高耐圧半導体装置。
  8. 請求項1において、前記第1領域と前記第2領域および前記第4領域が活性領域に延びた部分が、前記活性領域における前記第1導電型を有する半導体領域の一部を構成することを特徴とする高耐圧半導体装置。
  9. 請求項8において、前記第1領域が前記活性領域に延びた部分が主電極に電気的に接触することを特徴とする高耐圧半導体装置。
JP2014150565A 2014-07-24 2014-07-24 高耐圧半導体装置 Active JP6200864B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014150565A JP6200864B2 (ja) 2014-07-24 2014-07-24 高耐圧半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014150565A JP6200864B2 (ja) 2014-07-24 2014-07-24 高耐圧半導体装置

Publications (2)

Publication Number Publication Date
JP2016025300A JP2016025300A (ja) 2016-02-08
JP6200864B2 true JP6200864B2 (ja) 2017-09-20

Family

ID=55271789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014150565A Active JP6200864B2 (ja) 2014-07-24 2014-07-24 高耐圧半導体装置

Country Status (1)

Country Link
JP (1) JP6200864B2 (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002159A (en) * 1996-07-16 1999-12-14 Abb Research Ltd. SiC semiconductor device comprising a pn junction with a voltage absorbing edge
JP3708057B2 (ja) * 2001-07-17 2005-10-19 株式会社東芝 高耐圧半導体装置
JP4713327B2 (ja) * 2005-12-21 2011-06-29 トヨタ自動車株式会社 半導体装置とその製造方法
US8716717B2 (en) * 2010-10-15 2014-05-06 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing the same
JP5605230B2 (ja) * 2011-01-14 2014-10-15 トヨタ自動車株式会社 半導体装置
US8866158B2 (en) * 2011-04-04 2014-10-21 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing same
JP5745954B2 (ja) * 2011-06-29 2015-07-08 三菱電機株式会社 半導体装置およびその製造方法
JP2014038937A (ja) * 2012-08-16 2014-02-27 Mitsubishi Electric Corp 半導体装置
JP5784242B2 (ja) * 2012-10-11 2015-09-24 三菱電機株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP2016025300A (ja) 2016-02-08

Similar Documents

Publication Publication Date Title
KR101464846B1 (ko) 반도체 장치
JP5177151B2 (ja) 炭化珪素半導体装置
JP5101985B2 (ja) ジャンクションバリアショットキーダイオード
JPWO2009116444A1 (ja) 半導体装置
JP2008130775A (ja) 半導体装置
JP5800095B2 (ja) 半導体装置
JP2014165306A (ja) 超接合半導体装置の製造方法
WO2015015808A1 (ja) 炭化珪素半導体装置およびその製造方法
JP6599001B2 (ja) 半導体装置および半導体装置の製造方法
CN111344866A (zh) 半导体装置及其制造方法
JP2009188177A (ja) 半導体素子およびその製造方法
JP2014107408A (ja) 半導体装置
JP2013069786A (ja) 電力用半導体装置
JP6338134B2 (ja) 炭化ケイ素縦型mosfet及びその製造方法
JP5943846B2 (ja) 炭化珪素半導体装置及びその製造方法
JP6227255B2 (ja) ダイオード及びその製造方法
JP5476439B2 (ja) ジャンクションバリアショットキーダイオード
JP2019102761A (ja) 半導体装置および半導体装置の製造方法
JP2019021788A (ja) 半導体装置および半導体装置の製造方法
JP4964996B2 (ja) 炭化珪素半導体装置の製造方法
JP6200864B2 (ja) 高耐圧半導体装置
JP5684304B2 (ja) 炭化珪素半導体装置
JP2020096080A (ja) 半導体装置の製造方法
JP2012004466A (ja) 半導体装置
JP2011165924A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6200864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350