JP5800095B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5800095B2
JP5800095B2 JP2014536549A JP2014536549A JP5800095B2 JP 5800095 B2 JP5800095 B2 JP 5800095B2 JP 2014536549 A JP2014536549 A JP 2014536549A JP 2014536549 A JP2014536549 A JP 2014536549A JP 5800095 B2 JP5800095 B2 JP 5800095B2
Authority
JP
Japan
Prior art keywords
region
electric field
implantation
impurity concentration
field relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014536549A
Other languages
English (en)
Other versions
JPWO2014045480A1 (ja
Inventor
洪平 海老原
洪平 海老原
憲治 濱田
憲治 濱田
川上 剛史
剛史 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014536549A priority Critical patent/JP5800095B2/ja
Application granted granted Critical
Publication of JP5800095B2 publication Critical patent/JP5800095B2/ja
Publication of JPWO2014045480A1 publication Critical patent/JPWO2014045480A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、半導体装置に関するものである。
半導体装置において、電圧が印加された場合、半導体素子として能動的に機能する活性領域に空乏層が形成され、その空乏層の境界で電界集中が発生することから半導体装置の耐圧が低下する。そのため、半導体層の導電型と逆の導電型となる終端領域を活性領域の外周側に設けることで、半導体層と終端領域との間のpn接合によって空乏層が広がり、電界集中が緩和され、半導体装置の耐圧を高めることができる。従来の半導体装置では、半導体装置の耐圧を高める終端領域の構造として、異なる濃度の不純物濃度からなる複数の注入領域を有するJTE(Junction Termination Extention)構造を用いることで、半導体装置の外周側に向かうにつれて不純物濃度が段階的に低くなるため、単一の注入領域を有するJTE構造を用いる場合と比較して、高い耐圧が得られる半導体装置が存在した。(例えば、特許文献1参照。)
特表2000−516767号公報
しかしながら、このような半導体装置にあっては、複数の注入領域同士の境界や最外周に形成された注入領域の外周端部においては依然として電界集中が生じる場合があった。特に、半導体装置の外周側に向かうにつれて不純物濃度が段階的に低くなるように注入領域が形成されていることから、最外周の注入領域の不純物濃度は比較的低い濃度となっているため、最外周の注入領域の外周端側では空乏層が十分に広がらず、その結果、最外周の注入領域の外周端部における電界集中を十分に緩和することができず半導体装置の耐圧が十分に得られないという問題があった。
本発明は、上述のような問題を解決するためになされたもので、電界集中を効果的に緩和することができる終端領域を備えた半導体装置を提供することを目的とする。
本発明に係る半導体装置は、第一導電型の半導体層と、半導体層の表面の一部に形成され、かつ、第二導電型で第一の不純物濃度である第一の小領域と第二導電型で第一の不純物濃度よりも低い第二の不純物濃度である第二の小領域とがそれぞれ交互に設けられた第一の電界緩和領域と、第一の電界緩和領域の外周側に向かって第一の電界緩和領域を囲むように形成され、かつ、第二導電型で第一の不純物濃度以上の第三の不純物濃度である複数の第三の小領域と第二導電型で第二の不純物濃度よりも低い第四の不純物濃度である複数の第四の小領域とがそれぞれ交互に設けられた第二の電界緩和領域とを備えたものである。
本発明に係る半導体装置によれば、第一の電界緩和領域の実効的な不純物濃度は第一の電界緩和領域よりも外周側に設けられた第二の電界緩和領域の実効的な不純物濃度よりも高くなることから、半導体装置の外周側に向かうにつれて実効的な不純物濃度が段階的に低くなり各領域の境界での電界集中を緩和することができる。さらに、外周側の第二の電界緩和領域に設けられた第三の小領域の不純物濃度は第一の電界緩和領域に設けられた第一の小領域以上の不純物濃度であることから、第二の電界緩和領域の外周端側において空乏層が十分に広がるため、電界緩和領域の外周端側の電界集中をより効果的に緩和することができる。
本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の製造工程を示す断面図である。 本発明の実施の形態1に関する半導体装置の製造工程を示す断面図である。 本発明の実施の形態1に関する半導体装置のドーズ量分布を示す図である。 本発明の実施の形態1に関する半導体装置のシミュレーション結果を示す図である。 本発明に関する半導体装置のシミュレーション結果を示す図である。 本発明の実施の形態1に関する半導体装置の製造工程を示す要部断面図である。 本発明に関する半導体装置のシミュレーション結果を示す図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の製造工程を示す断面図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置のドーズ量分布を示す図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態1に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態2に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態2に関する半導体装置のドーズ量分布を示す図である。 本発明の実施の形態2に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態2に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態2に関する半導体装置の構成を示す要部断面図である。 本発明の実施の形態2に関する半導体装置の構成を示す要部断面図である。
実施の形態1.
まず、本発明の実施の形態1にかかる半導体装置であるショットキーダイオード100の構成を説明する。以下において、第1導電型の半導体をn型の半導体とし、第2導電型の半導体をp型の半導体として説明するが、これに限定されるものではなく、第1導電型の半導体をp型の半導体とし第2導電型の半導体をn型の半導体としてもよい。また、以下において、半導体装置である炭化珪素(SiC)からなる縦型構造のショットキーダイオードに本発明を適用する場合について説明するが、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の他の半導体装置に用いることもできる。さらに、以下の説明において、内側とは半導体装置の中央部側である活性領域側を指すものとし、外側とは半導体装置の外周側である終端領域側を指すものとする。
図1は、本発明の実施の形態1に関する半導体装置であるショットキーダイオード100の構成を示す要部断面図であり、ショットキーダイオード100の外周側に設けられた終端領域60の周辺における断面を示している。
図1において、図示しない4H−SiCの半導体基板上にn型の半導体層1が設けられており、半導体層1の表面上には金属電極3が設置されている。また、半導体層1は能動素子として機能する活性領域50と活性領域50の外周側に設けられ半導体装置の耐圧を保持するための終端領域60から構成され、終端領域60は活性領域50を取り囲むように形成される。また、終端領域60の領域上には図示しない絶縁性の表面保護膜が形成される。さらに、終端領域60においては、活性領域50側から、p型ガードリング2、第一の電界緩和領域4、接続領域10、及び第二の電界緩和領域5が形成されており、各電界緩和領域における実効的な不純物濃度が段階的に変化するように不純物が注入されている。なお、電界緩和領域の実効的な不純物濃度とは、電界緩和領域内に設けられた各小領域の不純物濃度を各小領域の面積に応じて平均化して求めた電界緩和領域の不純物濃度とする。また、各領域における不純物濃度とは、その領域内における不純物の総量を各領域の体積で除算したものとする。
第一の電界緩和領域4においては、p型の不純物であるAlイオンが注入された第一の小領域6と同じくAlイオンが注入された第二の小領域7がそれぞれ交互に複数設けられている。そして、第一の小領域6における不純物濃度を第一の不純物濃度とし第二の小領域7における不純物濃度を第二の不純物濃度とすると、第一の不純物濃度が第二の不純物濃度よりも高くなるように形成されている。ここで、第一の小領域6と第二の小領域7は、第一の電界緩和領域4において一定の領域を占めており、第一の電界緩和領域4よりも小さい領域となっている。以下、他の小領域についても同様である。
一方、第二の電界緩和領域5においては、第一の電界緩和領域4と同様にAlイオンが注入された第三の小領域8とAlイオンが注入された第四の小領域9がそれぞれ交互に複数設けられている。そして、第三の小領域8における不純物濃度を第三の不純物濃度とし第四の小領域9における不純物濃度を第四の不純物濃度とすると、第三の不純物濃度は第一の不純物濃度と等しく、第四の不純物濃度は第一の不純物濃度及び第二の不純物濃度よりも低くなるように形成されている。さらに、第一の不純物濃度および第三の不純物濃度が、第二の不純物濃度と第四の不純物濃度の和となるように各領域の不純物濃度は調整されている。なお、本実施の形態では、p型の不純物としてAlイオンを用いることとしているが、ホウ素等の他のp型の不純物を用いることとしてもよい。
また、第一の電界緩和領域4の内側に設けられたp型ガードリング2は、既に説明した第一の小領域6の不純物濃度と等しい第一の不純物濃度の単一のp型領域から形成され、その表面の一部には金属電極3が設けられている。さらに、第一の電界緩和領域4と第二の電界緩和領域5との間に設けられた接続領域10も、第一の不純物濃度からなる単一のp型領域から形成された領域となっている。なお、接続領域10については省略し、第一の電界緩和領域4と第二の電界緩和領域5とが接するように構成することとしてもよい。
次に、本発明の実施の形態1にかかる半導体装置であるショットキーダイオード100の製造方法について説明する。図2及び図3は、本発明の実施の形態1に関する半導体装置の製造工程を示す断面図である。また、図4は本発明の実施の形態1に関する半導体装置であるショットキーダイオード100の終端領域60における各領域の不純物のドーズ量と、第一の注入領域12及び第二の注入領域13との関係を示す図である。ショットキーダイオード100を製造するにあたっては、図示しない半導体基板上に半導体層1を形成し、半導体層1の表面上にはショットキー接合となる金属電極3を設置することとなるが、金属電極3を設置する前に終端領域60を形成する必要がある。そして、半導体層1の終端領域60上には、図示しない絶縁性の表面保護膜が形成される。以下においては、特にショットキーダイオード100の終端領域60を形成する方法について、図2、図3及び図4を用いて説明する。なお、以下において、ドーズ量とは、単位面積当たりのドーズされた不純物の個数を示すものとする。
本実施の形態にかかる半導体装置の製造方法では、2回の注入工程によって終端領域60を形成する。以下では、一回目の注入工程である第一の注入工程で不純物が注入される領域を第一の注入領域12と呼び、二回目の注入工程である第二の注入工程で不純物が注入される領域を第二の注入領域13と呼び、第一の注入領域12と第二の注入領域13が組み合わさることによって終端領域60が形成される。なお、第一の注入領域12と第二の注入領域13は一部の領域が重なっている。
まず、図2において、半導体層1の形成後に第一の注入領域12においてp型の不純物であるAlイオンを注入する第一の注入工程を行う。第一の注入工程は、半導体層1の表面上に第一注入マスク11aを設置した状態で行われる。第一注入マスク11aのマスクパターンは、p型ガードリング2、第一の電界緩和領域4、及び第三の小領域8の領域上に相当する第一の注入領域12上が開口し、他の領域上を覆う形状となっている。また、第一の注入工程において注入される不純物のドーズ量は、第一の注入領域12の第二の小領域7における不純物濃度が第二の不純物濃度となるドーズ量とする。なお、第一の注入工程及び後述する他の注入工程において、深さ方向の濃度分布は、ボックスプロファイルでも良いし、レトログレードプロファイルでも良いし、他のプロファイルあっても構わない。
続いて、図3において、第二の注入領域13においてp型不純物であるAlイオンを注入する第二の注入工程を行う。第二の注入工程は、半導体層1の表面上に第二注入マスク11bを設置した状態で行われる。第二注入マスク11bのマスクパターンは、p型ガードリング2、第1の小領域6、及び第二の電界緩和領域5の領域上に相当する第二の注入領域13上が開口し、他の領域上を覆う形状となっている。また、第二の注入工程において注入される不純物のドーズ量は、第一の注入工程において注入されるドーズ量よりも少ないものとする。なお、第一の注入工程と第二の注入工程は、先に第二の工程を行い、その後第一の注入工程を行うことしてもよい。
以上の工程により、図4に示す内側の領域において、第一の注入領域12と第二の注入領域13が重なった領域、すなわち第一の注入工程及び第二の注入工程の双方によってAlイオンが注入された領域が第一の不純物濃度のp型ガードリング2となる。また、p型ガードリング2の外側の領域において、第一の注入工程及び第二の注入工程の双方によってAlイオンが注入された領域が第一の不純物濃度の第一の小領域6となり、第一の注入工程のみによってAlイオンが注入された領域が第二の不純物濃度の第二の小領域7となり、第一の電界緩和領域4が形成される。
さらに、第一の電界緩和領域4の外側の領域において、第一の注入工程及び第二の注入工程の双方によってAlイオンが注入された領域が第三の不純物濃度(第一の不純物濃度)の第三の小領域8となり、第二の注入工程のみによってAlイオンが注入された領域が第四の不純物濃度の第四の小領域9となり、第二の電界緩和領域5が形成される。そして、第一の電界緩和領域4と第二の電界緩和領域5の間の領域において、第一の注入工程及び第二の注入工程の双方によってAlイオンが注入された領域が第一の不純物濃度の接合領域10として形成される。
なお、第一の不純物濃度および第三の不純物濃度は第一の注入工程及び第二の注入工程で注入されるAlイオンのドーズ量の和を変化させることで調整することができ、第二の不純物濃度は第一の注入工程で注入されるAlイオンのドーズ量を変化させることで調整することができ、第四の不純物濃度は第二の注入工程で注入されるAlイオンのドーズ量を変化させることで調整することができる。
また、第一の電界緩和領域4と第二の電界緩和領域5の境界に、接続領域10が形成されているが、マスクの位置合わせ精度が十分に保証される場合は、接続領域10を小面積にするか、接続領域10を省略して第一の電界緩和領域4と第二の電界緩和領域5を直接接続してもよい。
このように、第一の不純物濃度および第三の不純物濃度を第二の不純物濃度と第四の不純物濃度の和とすれば、二回の注入工程によって、p型ガードリング2、第一の電界緩和領域4、接続領域10、及び第二の電界緩和領域5からなる終端領域60を形成することができる。
次に、本発明の実施の形態1にかかる半導体装置及びその製造方法の作用、効果について説明する。図5は、本発明の実施の形態1にかかる半導体装置であるショットキーダイオード100に逆方向電圧を段階的に変化させて印加した場合の電位分布の変化に関するシミュレーション結果を示す図である。図5における各線はショットキーダイオード100の半導体層1内の等電位線を示しており、上側から順に、低電圧、中電圧、高電圧をショットキーダイオード100の逆方向電圧として印加した場合のシミュレーション結果をそれぞれ示している。
本実施の形態にかかる半導体装置では、第一の電界緩和領域4において第一の不純物濃度の第一の小領域6と第二の不純物濃度の第二の小領域7が交互に形成されており、第一の電界緩和領域4の外側に形成される第二の電界緩和領域5において第一の不純物濃度と等しい第三の不純物濃度の第三の小領域8と第二の不純物濃度よりも低い第四の不純物濃度の第四の小領域9が交互に形成されていることから、第一の電界緩和領域4における実効的な不純物濃度は第二の電界緩和領域5における実効的な不純物濃度よりも高くなり、終端領域60の外側に向かうにつれ不純物濃度が低くなるように終端領域60が形成されている。そのため、図5に示すように、印加される逆方向電圧が高くなるにつれて、注入領域内部において第二の電界緩和領域5から第一の電界緩和領域4へと空乏層が段階的に広がり第二の電界緩和領域5から第一の電界緩和領域4へと段階的に電位分担が行われていることがわかる。
また、終端領域60の外側に設けられた第二の電界緩和領域5の実効的な不純物濃度は第一の電界緩和領域4の実効的な不純物濃度よりも低い濃度となっているが、第二の電界緩和領域5内に設けられた第三の小領域8の不純物濃度は第一の電界緩和領域4内に設けられた第一の小領域6の不純物濃度と同じ第一の不純物濃度となっているため、第二の電界緩和領域5の外側においても空乏層が十分に広がっていることがわかる。よって、本実施の形態によれば、各領域の境界面や不純物が注入された最外周の領域の外周端部における電界集中をより効果的に緩和することができる。
さらに、本実施の形態にかかる半導体装置の製造方法では、上述したように、二回の注入工程によってp型ガードリング2、第一の電界緩和領域4、及び第二の電界緩和領域5を形成しており、少ない製造工程で不純物濃度が異なる複数の領域を備えた終端領域60を形成することができる。さらに、新たな注入工程を増やすことなく、後述する第三の電界緩和領域17や第四の電界緩和領域19、さらには第二の不純物濃度又は第四の不純物濃度からなる単一の領域を追加することも可能であり、各領域を組み合わせることにより終端領域60における不純物濃度の階調数を増加させ半導体装置の高耐圧化を図ることができる。
また、本実施の形態にかかる半導体装置は、各注入工程で注入される不純物のドーズ量によって耐圧が大きく変化する。図6に、各注入工程で注入される不純物のドーズ量を変化させた場合のショットキーダイオード100の耐圧についてのシミュレーション結果を示す。図6において、縦軸は半導体装置の耐圧を示しており、各棒グラフは第一の注入工程において第一の注入領域12に注入されるドーズ量と第二の注入工程において第二の注入領域13に注入されるドーズ量を特定のドーズ量にした場合の耐圧を示している。これより、第一の注入領域12又は第二の注入領域13のいずれか一方のドーズ量が0.0cm−2、つまり、第一の注入工程又は第二の注入工程のいずれか一方しか行わず終端領域60を形成した場合においてもある程度の耐圧が得られているが、第一の注入領域12と第二の注入領域13のドーズ量がそれぞれ1.4E+13cm−2以下で、第一の注入領域12と第二の注入領域13のドーズ量の合計が1.2E+13〜2.4E+13cm−2の場合に高耐圧の半導体装置が得られることがわかる。さらに、第一の注入領域12のドーズ量が1.0E+13cm−2以上であり、第二の注入領域13のドーズ量が1.0E+13cm−2以下の場合に、1700kVを超える耐圧を有する半導体装置が数多く得られることがわかる。
ただし、現実には、不純物の活性化率が100%でなはなく、またプロセス中にトラップされる固定電荷による影響を受け、シミュレーションどおりの耐圧が得られることは少ない。以上のような影響を考慮すると、実際に注入するドーズ量は、シミュレーション等に基づくドーズ量の設計値よりも大きくする必要があり、4H−SiCの場合には設計値よりも6E+12cm−2程度大きいドーズ量で注入することが望ましい。そのため、本発明の終端構造では、活性化率や固定電荷の影響を考慮して、第一の注入領域12と第二の注入領域13のドーズ量がそれぞれ2.0E+13cm−2以下で、第一の注入領域12と第二の注入領域13のドーズ量の合計が1.2E+13〜3.0E+13cm−2の範囲で不純物の注入を行うことが望ましい。
なお、本実施の形態においては、第二の小領域7の不純物濃度である第二の不純物濃度を第四の小領域の不純物濃度である第四の不純物濃度よりも大きくすることで、外周側に向かうにつれて実効的な不純物濃度が小さくなるように構成し、耐圧の向上を図っているが、第二の不純物濃度を第四の不純物濃度よりも小さくすることしてもよい。図6に示すように、第二の不純物濃度が第三の不純物濃度よりも小さくした場合、すなわち第一の注入工程で注入される不純物が第二の注入工程で注入される不純物よりも少ない場合においても、実効的な不純物濃度が低い第一の電界緩和領域4から実効的な不純物濃度が高い第二の電界緩和領域5へと段階的に電位分担するため、比較的高耐圧の半導体装置を得られることがある。
また、本実施の形態においては、第一の小領域6と第三の小領域8の不純物濃度が同じになるように構成しているが、新たな注入工程を行うなどして第三の小領域8の不純物濃度である第三の不純物濃度を第一の小領域6の不純物濃度である第一の不純物濃度よりも高くすることとしてもよい。このような場合、第二の小領域7と第四の小領域9の不純物濃度に変化はないため、図5に示すように、印加される逆方向電圧が高くなるにつれて、注入領域内部において第二の電界緩和領域5から第一の電界緩和領域4へと空乏層が段階的に広がり第二の電界緩和領域5から第一の電界緩和領域4へと段階的に電位分担が行われる。また、第二の電界緩和領域5内に設けられた第三の小領域8の不純物濃度がさらに高くなるため、第二の電界緩和領域5の外側において空乏層がより大きく広がる。よって、注入領域を外周側に広げることなく、各領域の境界面や不純物が注入された最外周の領域の外周端部における電界集中をより効果的に緩和することができる。
また、高耐圧化のためには離間した第一の注入領域12および第二の注入領域13の最内周の間隔をどれだけ狭められるかが重要になる。ここで、各注入工程によって不純物が注入されたp型領域の間隔の最小寸法が余りに小さいときには、注入マスク11aとなるレジストが過度に露光された際等に、レジストが倒れて狙いどおりのパターンが得られない可能性がある。レジストが倒れるのを抑制しつつp型領域の間隔を狭めるには、図7のように注入マスク11として側面にテーパー形状の付いたレジストを用いて注入することが有効である。例えばレジストが1μmの幅よりも小さく仕上がると倒れてしまうとして、通常は過度の露光によりレジスト幅がシュリンクする可能性も踏まえて1μmよりもやや太く仕上がるように設計を行なう。ただし、図7のように側面にテーパーがある場合は1μmの幅の仕上がりでもレジストが倒れることなく注入工程を行なうことができる。
また、半導体基板が4H−SiCからなる場合には、レジスト直下のn型領域においては隣り合うp型領域の双方からの不純物拡散が起こり、耐圧が得られる現実的な不純物注入量では0.2〜0.8μm程度の間隔の縮小が可能である。図8は、1μm間隔のマスクを用いて、不純物濃度が1E+16cm−3のn−ドリフト層にドーズ量1E+13cm−2のAlイオンを500keVで注入した場合の、p型領域の形状をシミュレーションした結果である。図8に示すように、かかる場合では、p型領域の間隔が約0.4μm狭くなり、高耐圧化に向けて有利な設計が可能になる。さらに、テーパー形状の付いたレジストを用いる場合、テーパー形状の直下ではレジスト越しに注入される不純物も存在し、テーパーがない場合と比べてより高濃度なp型領域が得られ、高耐圧化に有利になる。
また、本実施の形態では、p型ガードリング2と第一の電界緩和領域4が直接接続し、接続領域10を挟んで第一の電界緩和領域4と第二の電界緩和領域5が直接接続するか、接続領域10を挟まずに第一の電界緩和領域4と第二の電界緩和領域5が直接接続する場合について述べたが、図9に示すように、ガードリング2と第一の電界緩和領域4が離間し、第一の電界緩和領域4と第二の電界緩和領域5が離間して形成されている場合においても、印加電圧の増加とともに、第一の電界緩和領域4と第二の電界緩和領域5に段階的に電位分担が進み、効果的な電界緩和効果が得られる。
また、以上の説明では第一の電界緩和領域4および第二の電界緩和領域5において、それぞれの各小領域の幅は一定のものとしているが、図10に示すように、第一の電界緩和領域4および第二の電界緩和領域5において、不純物濃度の高い第一の小領域6及び第三の小領域8の幅を終端領域60の外側に向かって徐々に小さくし、不純物濃度の低い第二の小領域7及び第四の小領域9の幅を終端領域60の外周に向かって徐々に大きくすることで、外周側に向かうにつれて不純物濃度がよりなだらかに小さくなるため、より効果的に電界集中を緩和することができ、より高いオフ耐圧を実現する半導体装置が得られる。
かかる場合、第一の注入工程で不純物を注入する際に、複数の離間した第一の小領域6は、互いの間隔を外周側に向かうにつれて変化させるように注入を行うことで形成できる。また、第二の注入工程で不純物を注入する際に、複数の離間した第二の小領域7は、互いの間隔を外周側に向かうにつれて変化させるように注入を行うことで形成できる。この点は、第三の小領域8及び第四の小領域9についても同様で、すなわち、各注入工程で不純物を注入する各注入領域は、各注入領域における複数の離間した領域の間隔を変化させるように注入を行うことで形成することができる。
また、本実施の形態では、第一の注入領域12と第二の注入領域13の注入深さは一定としているが、図11および図12で示すように、第一の注入領域12と第二の注入領域13の注入深さが異なるように形成してもよい。図11では第一の注入領域12の注入深さをより深くした場合、図12では第二の注入領域13の注入深さをより深くした場合を示している。例えば、4H−SiCからなる半導体基板にAlイオンを注入する場合、第一の注入領域12を200〜500keV、第二の注入領域13を300〜700keVなどの注入エネルギーで注入することで、図12に示すように第二の注入領域13の注入深さをより深くすることができる。このような場合、より深く注入された第二の注入領域13では半導体層1へ空乏層がより広がりやすくなり、高耐圧化に有利となる。
ただし、イオン注入を行う場合、通常は深さ方向に濃度ピークを持つように不純物が分布し、不純物が注入された各領域の表面における不純物濃度はやや小さくなる。しかし、金属電極3の端部での破壊を防ぐためには、金属電極3の端部直下においてある程度の不純物濃度を確保しておくことが必要であり、図11および図12で示すように、第一の注入領域12と第二の注入領域13のどちらかの注入深さは浅くしておくと良い。
また、図13および図14で示すように、第一の注入領域12と第二の注入領域13のどちらかの表面の位置がn型半導体となっても良い。
また、本実施の形態では、縦型構造のショットキーダイオード100を例として挙げて説明したが、他の例として、図15に示すようなp+コンタクト領域23、nソース領域24、ゲート絶縁膜25、ゲート電極26、フィールド絶縁膜27、層間絶縁膜28などを備えた縦型構造のMOSFET101としてもよい。このようなpベース領域15を活性領域50に持つ半導体装置の場合には、終端領域60の全領域において表面がn型半導体となっても良い。
また、ショットキーダイオードの順方向導通時の抵抗を下げるため、活性領域50にイオン注入や高濃度エピタキシャル成長を行うなどして、半導体層1よりも濃いn型の不純物領域であるn+領域70を設けることがあるが、図16で示すように、ショットキーダイオード100においては注入マスク等を用いずに、半導体層1の表面の全面にn+領域70を形成してもよい。この場合においても、第一の小領域6および第三の小領域8の不純物濃度が高くなっているため、注入領域の外側において空乏層を十分に広げることができ、各領域の境界面や不純物が注入された最外周の領域の外周端部における電界集中を効果的に緩和することができる。
また、このようなn+領域70をショットキーダイオードに形成した場合、順方向導通時の抵抗の低減が可能であるが、半導体層1の表面付近での電界集中により耐圧が低下する場合がある。低抵抗と高耐圧を両立するには活性領域をJBS(Junction Barrier Schottky)とすることが効果的で、図17に示すように第一の注入工程および第二の注入工程のいずれかまたは両方において、JBS領域29を同時に形成しておくとよい。図17においては、第一の注入領域12を形成する際に同時にJBS領域29を形成した場合のJBSを示している。この場合においては、活性領域50ではn+領域70の効果により低抵抗となり、かつJBS領域29で耐圧を保持し、また終端領域60では第一の小領域6および第三の小領域8の不純物濃度が高くなっているため、注入領域の外側において空乏層を十分に広げることができ、各領域の境界面や不純物が注入された最外周の領域の外周端部における電界集中を効果的に緩和することができる。
また、MOSFETのオン動作時の抵抗を下げるため、活性領域50にイオン注入を行い、pベース領域15と同じ程度の深さに半導体層1よりも濃いn型の不純物領域であるn+領域80を設けることがあるが、図18で示すように、MOSFET101などにおいては注入マスクを用いずに、半導体層1の表面の全面にn+領域80を形成してもよい。この場合においても、第一の小領域6および第三の小領域8の不純物濃度が高くなっているため、注入領域の外側において空乏層を十分に広げることができ、各領域の境界面や不純物が注入された最外周の領域の外周端部における電界集中を効果的に緩和することができる。
また、図19に示すように、第二の電界緩和領域5の外側に第二の不純物濃度の第五の小領域16を複数離間して備えることにより、第三の電界緩和領域17を形成することとしてもよい。かかる場合、電界集中がさらに緩和されることとなり、より高耐圧の半導体装置を得ることができる。図19に示した終端領域60は、図20に示すように、第一の注入領域12を外周側に広げて第一の注入工程を行うことで形成する。そのため、第三の電界緩和領域17を形成するために新たな注入工程を追加する必要はない。このとき、第二の電界緩和領域5と第三の電界緩和領域17の境界に、新たに第一の注入領域12と第二の注入領域13が重なった接続領域10が形成されているが、マスクの位置合わせ精度が十分に保証される場合は、接続領域10を小面積にするか、接続領域10を省略して第二の電界緩和領域5と第三の電界緩和領域17を直接接続してもよい。
なお、第三の電界緩和領域17を備える場合において、図21又は図22に示すように、第五の小領域16における不純物濃度は第一の不純物濃度や第四の不純物濃度とすることとしてもよい。図21において、第五の小領域16の不純物濃度を第四の不純物濃度とする場合には、第二の注入領域13を外周側に広げて第二の注入工程を行うことで第五の小領域16を形成する。一方、図22において、第五の小領域16の不純物濃度を第一の不純物濃度とする場合には、第一の注入領域12と第二の注入領域13を広げ、第三の電界緩和領域17において第一の注入領域12と第二の注入領域13を重ねるように各注入工程を行うことで第五の小領域16を形成する。
特に、図21に示すような終端領域60の場合には、隣接する第二の電界緩和領域5と第三の電界緩和領域17とがともに第二の注入領域から形成され、すなわち第二注入マスク11bによって形成されるため、注入マスクの位置合わせの精度を考慮する必要がなくなる。その結果、接続領域10を省略することができる。
また、図22に示すような終端領域60とした場合には、第五の小領域16の不純物濃度は第一の不純物濃度となり、終端領域60の最外周にあたる第五の小領域16の不純物濃度が他の場合と比較して大きいため、空乏層が終端領域60の外周側により広がっていくこととなり電界集中の緩和を効果的に行うことができる。このような場合、隣接する第二の電界緩和領域5と第三の電界緩和領域17はそれぞれ第一の注入領域12と第二の注入領域13から形成され、すなわち第一注入マスク11aと第二注入マスク11bからそれぞれ形成される異なるため、注入マスクの位置合わせの精度が問題となるため、接続領域10を設けることが効果的とである。ただし、注入マスクの位置合わせの精度が十分に確保されるときは、接続領域10を小面積にするか、省略することとしてもよい。
さらに、第一の注入領域12と第二の注入領域13とを重ねることで形成される第一の不純物濃度の各領域の形成において、第一注入マスク11aと第二注入マスク11bとの重ね合わせの精度の問題が存在する。マスクの重ね合わせ精度の問題を克服するため、例えば、図23に示すように、第五の小領域16を形成する部分の第一の注入領域12と第二の注入領域13のどちらか一方の幅を、もう一方よりも広くとると良い。図23では、第二の注入領域13の幅が第一の注入領域12の幅よりも広い場合を示している。
また、図24に示すように、第五の小領域16の不純物濃度が第二の不純物濃度の場合には(第一の不純物濃度の場合においても同様)、第三の電界緩和領域17の外周に第四の不純物濃度の第六の小領域18を形成することで、第四の電界緩和領域19が形成され、電界集中がより一層緩和されることとなり、高耐圧な半導体装置を得ることができる。さらに、図25に示すように、第四の電界緩和領域19の外周に、第七の小領域20を複数離間して形成し、第五の電界緩和領域21を形成することとしてもよい。このような場合であっても、第六の小領域18や第七の小領域20は第一の注入領域12や第二の注入領域13を外周側に広げることで形成することができるため、新たな注入工程を追加する必要はない。
また、本発明は半導体基板がSiCからなる場合について説明を行ったが、珪素(Si)等の他の半導体基板においても適用することができる。ここで、本発明においては、各電界緩和領域の不純物濃度は二つの小領域における不純物濃度の実効的な濃度となることから、各小領域の幅を細かくしてより微細な構造とすることで、各領域の境界面における電界集中をより効果的に緩和することができる。微細な構造を形成するに際しては、不純物の熱拡散が問題となるが、SiCはSi等の他の半導体と比較して不純物の熱拡散が少ないため、SiCからなる半導体装置においてはより微細な構造を有する電界緩和領域を形成することが可能となり、電界集中の緩和において顕著な効果が得られる。
実施の形態2.
実施の形態1においては、2回の注入工程によって形成することができる終端領域60を備えた半導体装置について説明したが、これに限定されることなく、3回の注入工程によって形成された終端領域を備えることとしてもよい。以下、実施の形態2にかかる半導体装置として、3回の注入工程で形成される終端領域60を備えたショットキーダイオード102について説明する。なお、実施の形態2にかかる半導体装置において、実施の形態1にかかる半導体装置と同一または対応する部分についての説明は省略し、相違する部分について説明を行う。
図26は、実施の形態2にかかる半導体装置であるショットキーダイオード102を示す要部断面図であり、図27は、実施の形態2にかかる半導体装置の終端領域のドーズ量と各注入工程における注入領域を示す図である。図26に示されたショットキーダイオード102は、図示しない半導体基板上に形成されたn−型の半導体層1の活性領域50に対応する表面上に、ショットキー接合となる金属電極3が形成されている。また、金属電極3を形成する前には、あらかじめ電界緩和のための終端領域60を形成しておく必要がある。
図26に示されたショットキーダイオード102の終端領域60において、不純物濃度の異なるp型の電界緩和領域は、ドーズ量の異なる三回の注入工程によって形成されている。3回の注入工程を行う場合には、第一の注入工程で不純物が注入される第一の注入領域12、第二の注入工程で不純物が注入される第二の注入領域13、及び第三の注入工程で不純物が注入される第三の注入領域22の組み合わせによって、異なる不純物濃度の電界緩和領域は数多く形成することができる。そこで、3回の注入工程から形成することができる異なる種類の電界緩和領域を以下に示す。
・第一の注入領域12のドーズ量と第二の注入領域13のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域と、第一の注入領域12のドーズ量と第二の注入領域13のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域からなる電界緩和領域(電界緩和領域30A)
・第一の注入領域12のドーズ量と第二の注入領域13のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域と、第一の注入領域12のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域からなる電界緩和領域(電界緩和領域30B)
・第一の注入領域12のドーズ量と第二の注入領域13のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域と、第二の注入領域13のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域からなる電界緩和領域
・第一の注入領域12のドーズ量と第二の注入領域13のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域と、第一の注入領域12のドーズ量で定まる不純物濃度の小領域からなる電界緩和領域
・第一の注入領域12のドーズ量と第二の注入領域13のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域と、第二の注入領域13のドーズ量で定まる不純物濃度の小領域からなる電界緩和領域
・第一の注入領域12のドーズ量と第二の注入領域13のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域と、第三の注入領域22のドーズ量で定まる不純物濃度の小領域からなる電界緩和領域
・第一の注入領域12のドーズ量と第二の注入領域13のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域と、第一の注入領域12のドーズ量で定まる不純物濃度の小領域からなる電界緩和領域(電界緩和領域30C)
・第一の注入領域12のドーズ量と第二の注入領域13のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域と、第二の注入領域13のドーズ量で定まる不純物濃度の小領域からなる電界緩和領域(電界緩和領域30D)
・第一の注入領域12のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域と、第一の注入領域12のドーズ量で定まる不純物濃度の小領域からなる電界緩和領域
・第一の注入領域12のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域と、第三の注入領域22のドーズ量で定まる不純物濃度の小領域からなる電界緩和領域
・第二の注入領域13のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域と、第二の注入領域13のドーズ量で定まる不純物濃度の小領域からなる電界緩和領域
・第二の注入領域13のドーズ量と第三の注入領域12のドーズ量とを合わせたドーズ量で定まる不純物濃度の小領域と、第三の注入領域22のドーズ量で定まる不純物濃度の小領域からなる電界緩和領域(電界緩和領域30E)
・第一の注入領域12のドーズ量で定まる不純物濃度の電界緩和領域
・第二の注入領域13のドーズ量で定まる不純物濃度の電界緩和領域
・第三の注入領域22のドーズ量で定まる不純物濃度の電界緩和領域(電界緩和領域30F)
・第一の注入領域12のドーズ量と第二の注入領域13のドーズ量とを合わせたドーズ量で定まる不純物濃度の電界緩和領域
・第一の注入領域12のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の電界緩和領域
・第二の注入領域13のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の電界緩和領域
・第一の注入領域12のドーズ量と第二の注入領域13のドーズ量と第三の注入領域22のドーズ量とを合わせたドーズ量で定まる不純物濃度の電界緩和領域
以上の異なる19種類の電界緩和領域のうちから適宜2種類以上の電界緩和領域を選択し終端領域を形成することで、印加電圧の増加につれて不純物濃度の小さな領域から順に電界緩和領域が電位を分担する。これにより、終端領域の外周に向かって効果的に電界集中を緩和されるため、高耐圧の半導体装置を得ることができる。
図27において、第一の注入領域12、第二の注入領域13、及び第三の注入領域22と各電界緩和領域におけるドーズ量との関係を示す。実施の形態2にかかる半導体装置であるショットキーダイオード102は、図27に示すように、第一の注入領域12、第二の注入領域13、及び第三の注入領域22の組み合わせによって、上記19種類の電界緩和領域から選択された6つの電界緩和領域30A〜Fを備える終端領域60から形成されている。このような構成によって、終端領域60の外周側に向かうにつれて不純物濃度が小さくなるように電界緩和領域が形成されているため、印加電圧が増加するにつれて外側の電界緩和領域から順に電位分担が段階的に進み、電界集中を緩和することができる。その結果、高耐圧の半導体装置が得られる。また、実施の形態2では、3回の注入工程から6種類の電界緩和領域を形成することができ、製造工程の増加を抑制しつつ電界緩和領域の階調数を増加させることが可能であり、高耐圧の半導体装置を製造することが可能となる。
また、各電界緩和領域において、それぞれの注入領域の幅は同一としているが、図28に示すように、異なる各電界緩和領域における小領域の幅を終端領域の外周側に向かって徐々に変化させることで、より効果的に電界集中を緩和することができ、高耐圧の半導体装置が得られる。
また、上述の説明では第一の注入領域12、第二の注入領域13、及び第三の注入領域22の注入深さは同一の深さとしているが、図29に示すように、各注入領域の注入深さが異なるように形成してもよい。この場合、深く注入された領域では半導体層1へ空乏層がより広がりやすくなり、高耐圧化に有利となる。ただし、イオン注入を行う場合、通常は深さ方向に濃度ピークを持つように不純物が分布し、注入領域表面の不純物濃度はやや薄くなる。金属電極3の端部での破壊を防ぐためには、金属電極3の端部直下においてある程度の表面不純物濃度を確保しておくことが得策であり、図29に示すように、各注入領域のいずれかの注入深さは浅くしておくと良い。なお、図29においては、第一の注入領域が最も深く、続いて第二の注入領域13が深く、第三の注入領域22が最も浅く図示している。
また、図30に示すように、第一の注入領域12、第二の注入領域13、及び第三の注入領域22のいずれかの表面はn型半導体となっても良い。図30においては、第二の注入領域の表面がn型半導体となるように図示している。
また、以上の説明では縦型構造のショットキーダイオードを例として挙げていたが、図31のように、縦型構造のMOSFETなどのpベース領域15を活性領域に持つ半導体装置においては、終端領域の全てにおいて表面がn型半導体となっても良い。
また、以上では3種類の注入領域、すなわち3回の注入工程から形成される異なる不純物濃度の電界緩和領域について説明したが、4回の注入工程から形成する場合には異なる不純物濃度の電界緩和領域は65種類存在し、注入工程の数が多くなるほど異なる不純物濃度の電界緩和領域の種類は急激に増やすことができる。
なお、本発明は、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。
1 半導体層、2 p型ガードリング、3 金属電極、4 第一の電界緩和領域、5 第二の電界緩和領域、6 第一の小領域、7 第二の小領域、8 第三の小領域、9 第四の小領域、10 接続領域、11、11a、11b 注入マスク、12 第一の注入領域、13 第二の注入領域、14 表面保護膜、15 pベース領域、16 第五の小領域、17 第三の電界緩和領域、18 第六の小領域、19 第四の電界緩和領域、20 第七の小領域、21 第五の電界緩和領域、22 第三の注入領域、23 p+コンタクト領域、24 nソース領域、25 ゲート絶縁膜、26 ゲート電極、27 フィールド絶縁膜、28 層間絶縁膜、29 JBS領域、30A、30B、30C、30D、30E、30F 電界緩和領域、50 活性領域、60 終端領域、70、80 n+領域、100、102 ショットキーダイオード、101 MOSFET。

Claims (12)

  1. 第一導電型の半導体層と、
    前記半導体層の表面の一部に形成され、かつ、第二導電型で第一の不純物濃度である第一の小領域と第二導電型で前記第一の不純物濃度よりも低い第二の不純物濃度である第二の小領域とがそれぞれ交互に設けられた第一の電界緩和領域と、
    前記第一の電界緩和領域の外周側に向かって前記第一の電界緩和領域を囲むように形成され、かつ、第二導電型で前記第一の不純物濃度以上の第三の不純物濃度である複数の第三の小領域と第二導電型で前記第二の不純物濃度よりも低い第四の不純物濃度である複数の第四の小領域とがそれぞれ交互に設けられた第二の電界緩和領域と、
    を備えたことを特徴とする半導体装置。
  2. 前記第三の不純物濃度は、前記第一の不純物濃度であり、
    前記第一の不純物濃度は、前記第二の不純物濃度と前記第四の不純物濃度の和である、
    ことを特徴とする請求項1に記載の半導体装置。
  3. 前記複数の第一の小領域の幅は外周側に向かうにつれて小さくなる、
    ことを特徴とする請求項1又は2に記載の半導体装置。
  4. 前記複数の第二の小領域の幅は外周側に向かうにつれて大きくなる、
    ことを特徴とする請求項1ないし3のいずれか1項に記載の半導体装置。
  5. 前記複数の第三の小領域の幅は外周側に向かうにつれて小さくなる、
    ことを特徴とする請求項1ないし4のいずれか1項に記載の半導体装置。
  6. 前記複数の第四の小領域の幅は外周側に向かうにつれて大きくなる、
    ことを特徴とする請求項1ないし5のいずれか1項に記載の半導体装置。
  7. 前記半導体層は炭化珪素半導体である、
    ことを特徴とする請求項1ないし6のいずれか1項に記載の半導体装置。
  8. 第二導電型の不純物を前記半導体層にイオン注入することにより形成される第一の注入領域及び第二の注入領域を備え、
    前記第一の注入領域は、前記第一の小領域と前記第二の小領域と前記第三の小領域とを含み、
    前記第二の注入領域は、前記第一の小領域と前記第三の小領域と前記第四の小領域とを含み、
    前記第一の注入領域は、前記第二の注入領域と前記イオン注入の深さが異なる、
    ことを特徴とする請求項1ないし7のいずれか1項に記載の半導体装置。
  9. 前記半導体層内において、前記第一の電界緩和領域の内側に設けられ、前記第一の注入領域及び前記第二の注入領域に含まれる、第二導電型のガードリングと、
    をさらに備えた請求項8に記載の半導体装置。
  10. 前記ガードリング、前記第一の電界緩和領域及び前記第二の電界緩和領域が形成された前記半導体層の表面にエピタキシャル成長された、前記半導体層よりも高い不純物濃度を有する第一導電型の領域をさらに備えた、
    ことを特徴とする請求項9に記載の半導体装置。
  11. 前記ガードリング、前記第一の電界緩和領域及び前記第二の電界緩和領域が形成された前記半導体層の表面に第一導電型の不純物イオンを注入することにより形成された、前記半導体層よりも高い不純物濃度を有する第一導電型の領域をさらに備えた、
    ことを特徴とする請求項9に記載の半導体装置。
  12. 前記半導体装置は、MOSFETである、
    ことを特徴とする請求項1ないし11のいずれか1項に記載の半導体装置。
JP2014536549A 2012-09-21 2013-03-28 半導体装置 Active JP5800095B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014536549A JP5800095B2 (ja) 2012-09-21 2013-03-28 半導体装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012208221 2012-09-21
JP2012208221 2012-09-21
PCT/JP2013/002110 WO2014045480A1 (ja) 2012-09-21 2013-03-28 半導体装置及び半導体装置の製造方法
JP2014536549A JP5800095B2 (ja) 2012-09-21 2013-03-28 半導体装置

Publications (2)

Publication Number Publication Date
JP5800095B2 true JP5800095B2 (ja) 2015-10-28
JPWO2014045480A1 JPWO2014045480A1 (ja) 2016-08-18

Family

ID=50340823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014536549A Active JP5800095B2 (ja) 2012-09-21 2013-03-28 半導体装置

Country Status (2)

Country Link
JP (1) JP5800095B2 (ja)
WO (1) WO2014045480A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9711600B2 (en) 2013-09-09 2017-07-18 Hitachi, Ltd. Semiconductor device and method of manufacturing the same, power conversion device, three-phase motor system, automobile, and railway vehicle
WO2016002058A1 (ja) * 2014-07-03 2016-01-07 株式会社日立製作所 半導体装置およびその製造方法、パワーモジュール、並びに電力変換装置
JP6672764B2 (ja) * 2015-12-16 2020-03-25 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2018012159A1 (ja) * 2016-07-15 2018-01-18 富士電機株式会社 炭化珪素半導体装置
CN109478559B (zh) * 2016-07-20 2022-02-11 三菱电机株式会社 碳化硅半导体装置及其制造方法
JP6903942B2 (ja) * 2017-02-23 2021-07-14 富士電機株式会社 半導体装置の製造方法
JP6733605B2 (ja) * 2017-05-25 2020-08-05 三菱電機株式会社 半導体装置の製造方法
DE102017127848A1 (de) * 2017-11-24 2019-05-29 Infineon Technologies Ag Siliziumcarbid-Halbleiterbauelement mit Randabschlussstruktur
JP2020119922A (ja) * 2019-01-18 2020-08-06 トヨタ自動車株式会社 半導体装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049872A1 (ja) * 2010-10-15 2012-04-19 三菱電機株式会社 半導体装置およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193018A (ja) * 1993-12-27 1995-07-28 Takaoka Electric Mfg Co Ltd 高耐圧半導体素子の製造方法
US6002159A (en) * 1996-07-16 1999-12-14 Abb Research Ltd. SiC semiconductor device comprising a pn junction with a voltage absorbing edge
JP2008103529A (ja) * 2006-10-19 2008-05-01 Toyota Central R&D Labs Inc 半導体装置
JP2009140963A (ja) * 2007-12-03 2009-06-25 Panasonic Corp ショットキーバリアダイオードおよびその製造方法
US9640609B2 (en) * 2008-02-26 2017-05-02 Cree, Inc. Double guard ring edge termination for silicon carbide devices
JP5223773B2 (ja) * 2009-05-14 2013-06-26 三菱電機株式会社 炭化珪素半導体装置の製造方法
JP5601849B2 (ja) * 2010-02-09 2014-10-08 三菱電機株式会社 炭化珪素半導体装置の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049872A1 (ja) * 2010-10-15 2012-04-19 三菱電機株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
WO2014045480A1 (ja) 2014-03-27
JPWO2014045480A1 (ja) 2016-08-18

Similar Documents

Publication Publication Date Title
JP5800095B2 (ja) 半導体装置
JP5601849B2 (ja) 炭化珪素半導体装置の製造方法
JP5784242B2 (ja) 半導体装置およびその製造方法
WO2014054319A1 (ja) 半導体装置およびその製造方法
JP2013084905A (ja) 縦型半導体素子を備えた半導体装置
US9825164B2 (en) Silicon carbide semiconductor device and manufacturing method for same
JP2008294214A (ja) 半導体装置
JP2014038937A (ja) 半導体装置
JP2015126086A (ja) 半導体装置及び半導体装置の製造方法
JP6064547B2 (ja) 半導体装置
JP2006165145A (ja) 横型半導体デバイスおよびその製造方法
JP6091395B2 (ja) 半導体装置およびその製造方法
US9406745B2 (en) Method of manufacturing super junction for semiconductor device
JP6381067B2 (ja) 半導体装置および半導体装置の製造方法
JP4998524B2 (ja) 半導体装置
US20170263698A1 (en) Power metal-oxide-semiconductor device
JP6488204B2 (ja) 半導体装置の製造方法
JP2013089677A (ja) 半導体装置
JP6129117B2 (ja) 半導体装置及びその製造方法
US20200091282A1 (en) Semiconductor device
JP2008251925A (ja) ダイオード
JP2019102761A (ja) 半導体装置および半導体装置の製造方法
JP2019021788A (ja) 半導体装置および半導体装置の製造方法
JP2015070185A (ja) 半導体装置及びその製造方法
JP6336165B2 (ja) 半導体装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150810

R151 Written notification of patent or utility model registration

Ref document number: 5800095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250